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Abstract

本文是一份关于杨李相变理论的讲义。我们将从对液气相变的介

绍开始，系统讨论杨李相变理论的基本框架，搞清楚杨李相变理论如

何在基本理论的层次上解决了液气相变的描述难题。同时，我们还会

详细讨论并证明杨李的单位圆定理。
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1 液液液气气气相相相变变变简简简介介介

水可以凝固成冰，也可以气化成水蒸气，气、水、冰本质都是由H2O分子

组成的物质，然而它们的物理性质截然不同。这种在环境变化无穷小时，

物质的物理性质发生的不连续的改变，就是相相相变变变。气、水、冰就是宏观数

量的H2O分子的三种不同形态，或者说不同的相(phase)。这里值得注意的

是，相变不是组成物质的分子的微观改变，也不是少量分子的改变，而是

宏观数量的分子宏观物理性质的改变。

通常有不止一个变量可以影响物质的相。例如可以通过降低温度或者

增加压强来使得蒸气凝结。我们使用相图来显示平衡相与温度和压强的关

系(注意压强的单位，1bar = 105Pa, Pa表示帕斯卡，1bar大约就是一个标

准大气压(atm), 实际上1atm约为1.01325bar)。

为了确定相图，19世纪人们就对气液相变进行了系统的研究。其中一种

办法是将一定量的液体(如水、乙醚)封在容器中，缓慢加热，测定压力随

温度的变化曲线。只要容器中同时存在液体和它的蒸气，气液两相就在共

存，因此这样测得的P − T曲线，就是气液的相界线，它也叫气化线。

如图(1)所示，如果保持压强为P0, 由液相开始加热，状态将从图中

的L点沿水平线向右移动，与气化线交于Q点，一部分液体开始气化，这时

尽管在继续加热，温度却不会升高，一直保持在Q点的T0值，加热的热量

全部被吸收来用于气化了。这种在相变时才表现出来的气化热，是一种相

变潜热。日常生活中，手上沾了水会有清凉感，就是因为水气化时从手里

吸收了潜热。

液体全部气化之后，温度才继续沿着图中的QG线继续升高。值得注意

的是，沿着LQG线做实验，为了保持压强不变，要不断改变系统的体积，

因此这样的实验不能用前面提到的密封容器来做。

一个自然的问题是，气化线是会随着温度和压强的不断增加而无限延

伸，还是会有一个截止的端点？1869年英国物理学家安德鲁斯作了一个题

为“论物质液态和气态的连续性”的报告，明确地回答了这个问题。他精

确地测量了二氧化碳在液态与气态时的密度差，发现在31摄氏度附近，两

者的差别消失了！这意味着气液相界线有一个明确的终点，安德鲁斯称之

为“临临临界界界点点点”。其他物理学家也观察到这个现象，发现在这个点，相变潜

热等于零！
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Figure 1: P − T相图上的气液相界线

这其实不难理解，关键是要注意到液气相界线总是有正的斜率，因此

对于共存的液相和气相，如果要提高温度，就必须同时施加更高的压强，

然而，随着压强的增加，气体将变得更加稠密，因此液体和气体之间的密

度差会逐渐缩小，直至消失，也就是达到临界点。对于H2O，这个临界点

在Tc =374摄氏度、Pc =221bar。在临界点上，就不再有任何不连续的从液

相到气相的变化了。

由于临界点的存在，液相其实可以连续地变成气相，而不需要经过任何

不连续的相变。方法是沿着图(1)b中所示的虚线变化温度和压强。

1873年，荷兰青年范德瓦尔斯利用当时刚刚发展起来的分子运动论观

念，对液气相变提出了理论解释。他的论文题目与安德鲁斯的报告类似，

也叫“论气态和液态的连续性”。

为了描写气液相变，范德瓦尔斯建议计入气体分子间的两种相互作用：

第一，每个分子具有一定的体积b(在小于b的范围之内，气体分子间会非

常强烈地相互排斥), 因此气体活动的有效体积缩小为V − Nb。第二，气

体分子间在较远的距离上有微弱的相互吸引力，相当于补充了一点“内压

力”，使P增加到P + a
(
N
V

)2
。这里“内压力”之所以能写成a

(
N
V

)2
, 是因

为，首先它来自于分子之间的微弱吸引，既然是分子之间的，那就应该正

比于N × N = N2。其次，作为压强，“内压力”应该是强度量，所以就

只能正比于
(
N
V

)2
了。根据这些考虑，于是范德瓦尔斯把理想气体的物态方
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程PV = NkBT修改为(
P + a(

N

V
)2
)
(V −Nb) = NkBT. (1)

我们可以在P − V图上画出范德瓦尔斯方程方程的等温线，如图(2)所

示。在足够高的温度下，减小体积会导致压强平稳地上升到无穷，同时体

积逼近Nb。然而，在较低的温度下，等温线的行为要复杂得多，随着V的

减小，等温线上升，下降，然后再次上升。似乎暗示着，对于某些状态来

说，压缩液体会导致压强下降，即等温压缩系数κT ≡ − 1
V

∂V
∂P

|T < 0, 但是，

热力学稳定性的考虑告诉我们，κT一定是大于零的。这就说明，为了正确

地描写液气相变，范德瓦尔斯方程还需要一些修正。

Figure 2: 范德瓦尔斯方程的等温线。

为了进行这样的修正，麦克斯韦提出了所谓的麦麦麦克克克斯斯斯韦韦韦构构构造造造法法法(细节我

们这里不做讨论)。图(3)给出了在不同温度下重复麦克斯韦构造法得到的

结果。对于每个温度，都有一个确定的压强(对应阴影部分的水平直线)，

称为蒸气压，在该温度和压强下会发生液气转变，换言之，在一定的温度

之下，P − V图上的等温曲线有一个平台区，它描写的就是液气两相共存

的情况。这也符合实验，因为实验表明，两相共存时压强是确定的。平台

区的左侧，随着体积的减小压强迅速增大，对应液相，平台区的右侧，体

积减小导致的压强增加相对比较小，对应气相。

但是，范德瓦尔斯方程毕竟是一个唯象的理论，麦克斯韦构造法更是

一个人为的东西。因此，一个自然的问题就是，能不能从一个基本理论出
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Figure 3: 范德瓦尔斯模型预测的相图。阴影部分的稳定态是两相共存。右

图是相应P − T图上的液气相界线。

发，比如从统计物理出发，得到能同时描写液气两相的物态方程呢？比如

推导出如图(3)那样的P − V图等温曲线呢？尤其是，我们是通过人为的麦

克斯韦构造法得到等温曲线上描写两相共存的平台区的，能不能从一个基

本理论出发，自动得到这些平台区呢？在很长时间之内，这都是未解的难

题，杨振宁和李政道的相变理论正是解决了这个难题。

2 统统统计计计物物物理理理和和和相相相变变变

为了看清如何从微观的统计物理出发理解宏观的液气相变，我们不妨将问

题一般化为，如何从统计物理出发理解相变。从热力学的角度来看，所谓

的相变，就是当我们连续变化系统的控制参数(例如温度)时，某些宏观物

理量(比如比热、磁化率等等) 表现出来的对控制参数的不连续依赖。根据

热力学，各种宏观物理量都可以从热力学势函数的偏导计算中得出，因

此，相变就是某些热力学势函数偏导对控制参数的不连续性，或者说，非

解析性。

但是根据统计物理，热力学势函数正比于配分函数的对数，而配分函

数的计算就是以e−βH(H为系统哈密顿量)为权重对系统位形进行求和。但
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是，权重因子e−βH对控制参数都是解析依赖的。因此，如果这个位形求和

只涉及有限项，那有限个解析函数的和必定依然是解析函数，那就必然不

会有相变。因此，结论就是，一个有限系统从严格意义上来说是没有相变

的。现实中的系统当然都是有限的，但是，它们也是宏观的，也就是涉及

超过1023量级的粒子数，同时系统的体积V也是宏观的。对于这样的宏观

系统而言，我们可以近似认为其粒子数N → ∞, 体积V → ∞, 同时保持粒

子数密度n = N/V固定，这就是所谓的热力学极限。可以近似认为宏观系

统是满足热力学极限的，而热力学极限下，位形求和就是一个无穷求和，

无穷多个解析函数的和是有可能不解析的，换言之，在热力学极限下，相

变可以发生。

但是，为了保证热力学极限的存在性，通常需要对粒子间的相互作用势

能u(r)(r是两粒子间距)进行一些假设：

• 第一，随着粒子间距大到一定程度，u(r)随着r的增加必须下降得足
够快，通常来说要求随着r → ∞, |u(r)| ≤ C/rd+ϵ, 式中C > 0, d为空

间维数，ϵ为一个正常数。这种系统也就是所谓的短程相互作用的系

统。之所以短程相互作用的系统才能保证热力学极限存在，是因为，

有限系统必定有一个空间边界，边界条件可能影响系统体内的行为，

如果相互作用是短程的，那么边界条件就只能影响边界附近薄薄的一

层区域，对真正体内的影响可以忽略，从而在V → ∞的热力学极限
下，整个边界都可以忽略。相反，如果相互作用是长程的，那边界条

件的影响就可以穿透整个体内，那V → ∞下的行为将严重依赖边界
条件，从而无法定义热力学极限。

• 第二，当粒子间距足够小时，u(r)必须有一个排斥势部分，它随
着距离的减小势能迅速上升到无穷。这是为了防止整个系统坍

缩到一个点上(那粒子数密度n就趋于无穷了)。这里我们不妨假设

当r < r0时，u(r) = ∞, 也就是说，每个粒子都有一个有限大的硬

核。根据这个假设，给定一个有限的体积V , 整个系统内能放下的

粒子总数必定有一个上限，不妨记这个上限为M。在热力学极限之

下，M/V是固定的。

• 第三，无论粒子间距为多少，势能u(r)都有下界！换言之，u(r) ≥
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−u0, 式中u0是一个正常数。这一条是为了保证整个系统的总能量有
下界，因为否则系统是不可能稳定存在的。

杨李相变理论是以上面这三条假设为基础的。考虑一个体积为V的盒

子，内部是一盒子气体分子，分子之间的相互作用势能为u(r)。盒子处于

温度为T的环境中，并与一个化学势为µ的粒子源交换气体分子。则系统的

巨配分函数为

ΞV (T, z) =
M∑

N=0

ZN(T )z
N , (2)

式中ZN(T )为N个粒子的正则系综配分函数，

z = eµ/kBT (3)

为逸度。根据配分函数的定义，显然ZN(T )是正实数，ΞV (T, z)就是一个

以ZN(T )为系数的关于z的多项式。杨李理论的关键想法是，将这个多项式

的定义域从正实轴延拓到整个复z平面！

有了巨配分函数以后，我们就可以定义有限体积的压强PV和有限体积

的粒子数密度nV如下(式中log表示以e为底的对数)

PV (z) = kBT
1

V
log ΞV (T, z),

nV (z) =
∂

∂ log(z)

1

V
log ΞV (T, z). (4)

并且人们还可以把这个定义从z的正实轴往整个复平面延拓，当然延拓以

后，除正实轴之外的复PV (z)和复nV (z)就只有数学上的意义。取热力学极

限之后，就得到我们关心的压强和粒子数密度

P (z) = lim
V→∞

PV (z), n(z) = lim
V→∞

nV (z). (5)

通过将P (z)和n(z)消去逸度z，就可以得到系统的物态方程。问题是，上

述P (z)和n(z)是否对整个复z平面都有定义？对于液气相变而言，我们怎么

知道这样得到的物态方程既可以描写液相，同时又可以描写气相，以及如

何刻画两相之间的相变？
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3 杨杨杨李李李理理理论论论基基基础础础

3.1 杨杨杨李李李理理理论论论的的的基基基本本本框框框架架架

注意到ΞV (T, z)是一个关于z的M次多项式，杨李的关键观察是，除了这

个多项式在复z平面上的零点处之外，PV (z)和nV (z)关于z均是解析的，

因此相变只可能和ΞV (T, z)关于z的零点有关。注意到多项式ΞV (T, z) =∑M
N=0 ZN(T )z

N各项系数都是正实数，所以ΞV (T, z)在z的正实轴上必定没

有零点，但是，z的正实轴才是物理的逸度，所以，这就说明，对于有限

的V , 系统必定没有相变。

类似的，由于多项式ΞV (T, z) =
∑M

N=0ZN(T )z
N各项系数都是实数，所

以它的零点必定成对出现，每一个零点都有一个相应的复共轭零点。进

而，我们可以把这个多项式因式分解成

ΞV (T, z) = Ξ0(T )
M∏
i=1

[
1− z

zi(T )

]
, (6)

式中zi(T )表示第i个零点位置，Ξ0(T )是与z无关的常数。注意，这些零点

的分布与温度T有关，随着温度的改变，零点分布也会改变。同样，零点

分布还依赖于体积V。特别的，因为零点数目M是给定体积下粒子数目的

上限，所以，随着V → ∞, 必定同步的也有M → ∞。
根据(4)式，即可以得到

PV (z) = P0(T ) + kBT
1

V

M∑
i=1

log
[
1− z

zi(T )

]
,

nV (z) =
∂

∂ log(z)
PV (z)/kBT =

1

V

M∑
i=1

z

z − zi
. (7)

式中P0(T ) ≡ kBT (log Ξ0(T ))/V , 这一项对PV (z)的贡献其实不重要，因

为我们关心的是PV作为z的函数。注意，由上式不一定能推出n(z) =
∂

∂ log(z)
P (z)/kBT , 因为正如后文会分析的，虽然P (z)在整个复z平面上都有

定义，但是n(z)却并非如此。

对于物理的z，也即是正实轴，根据统计物理的标准知识，有

∂

∂ log z
log ΞV (z) = ⟨N⟩, (8)
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也即是粒子数N的统计期望值。进一步也有

∂2

(∂ log z)2
log ΞV (z) = ⟨N2⟩ − ⟨N⟩2 = ⟨(∆N)2⟩ > 0, (9)

式中∆N ≡ N − ⟨N⟩。即log ΞV对log(z)的二阶偏导大于零，由于nV (z) =
∂

∂ log(z)
1
V
log ΞV (z)正比于log ΞV对log(z)的一阶偏导，这就说明，对于物理

的z，nV (z)是log(z)的单调递增函数，并且很显然，根据(7)给出的nV (z)表

达式，nV (z)在正实轴上有一个有限的上界M/V。进一步，同样根据

这个nV (z)的表达式，不难看出nV (0) = 0, 结合nV (z)是z的单调递增函

数即可知，在正实轴上，nV (z) > 0且有上界。也即，log ΞV对log(z)的

一阶偏导在z的正实轴上大于零且有上界，进而可知，在z的正实轴

上，log ΞV是log(z)的单调增函数。显然这说明，在z的正实轴上，PV (z)

是log(z)的单调增函数。取热力学极限，即有P (z), n(z)在正实轴上都是单

调递增函数(对于有定义的z), 且n(z)在正实轴上有上界M/V。

注意到除了ΞV (z)的零点之外，PV (z)在整个复平面上均解析，换言之，

给定复z平面上的某个任意点z0, PV在z0处解析的充要条件是：围绕z0取一

个任意小的邻域，此邻域内不含有ΞV (z)的零点。换言之，随着V → ∞，
只要ΞV (z)的零点不以z0为聚点，则P (z)在z0处就一定解析。同样的道理也

适用于n(z)。这种解析性得以满足的地方当然和相变没有关系。因此，相

变只可能发生在ΞV (z)零点的聚聚聚点点点处(随着V → ∞)。进一步，由于真正的

物理量只对正实数的z有定义，所以，相变对应于ΞV (z)的零点在正正正实实实轴轴轴上上上

的的的聚聚聚点点点。前面说过，对于有限的V，ΞV (z)在正实轴上没有零点，但，这并

不表示，随着V → ∞, 复z平面上的零点不会在正实轴上形成聚点。

同时，由nV (z)的表达式可知，对于有限的V , 复z平面上这些零点

是nV (z)的极点，但是，这些零点的聚点，就会成为n(z)的本性奇点，所

以，在这些零点的聚点处，n(z)一般来说会有无穷多个取值(或者说n(z)在

该处没有定义)。类似的分析也适用于ΞV (z)对log(z)的高阶偏导。问题

是，P (z)在这些聚点处有没有定义呢？这个问题我们稍后再做讨论。

现在我们来改写一下方程(7)。设复平面上的坐标z = x + iy, 零点zj =

xj + iyj, 进而定义零点密度函数ρ(z)为

ρ(z) ≡ 1

V

M∑
i=1

δ(x− xi)δ(y − yi), (10)
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由于零点是成对出现的，每一对中的两个零点互为对方的复共轭，所以显

然有

ρ(z) = ρ(z), (11)

式中z表示z的复共轭。假设所有的零点均分布在复平面上的区域D之
内(D当然依赖于温度T )，则很显然∫

D
dzρ(z) =

M

V
, (12)

式中dz ≡ dxdy. 可以设想，随着V → ∞, M → ∞的热力学极限，复平面
上的零点可能在区域D内汇聚成连续的一片，即，D内的每一个点都是聚
点，并使得ρ(z) = ρ(x, y)成为x, y的连续函数(在热力学极限之下)。后文我

们默认所说的ρ(z)都是指此热力学极限之下的零点密度函数。

根据(7)式不难看出，

P (z) = P0(T ) + kBT

∫
D
dz′ρ(z′) log

[
1− z

z′
]
,

n(z) =
∂

∂ log(z)
P (z)/kBT =

∫
D
dz′ρ(z′)

z

z − z′
. (13)

当然，P (z)是z的多值函数。很明显，只要知道了零点的分布函数ρ(z)，那

我们就能根据上式算出P (z)和n(z)，对于物理的z(正实轴)，通过消去它，

就能得到系统的物态方程P = P (n, T )。然而，给定一个系统，算出其零点

分布函数ρ(z)是一个极端困难的事情，事实上，即使只是决定零点的分布

区域D都是一个难题。好在对于一大类系统(伊辛模型和格气模型)，杨振

宁和李政道的原始论文解决了后面这个难题，这就是著名的单位圆定义，

它说的是，对于这一类系统，其零点均分布在复z平面的单位圆上，即D是
一个单位圆。后文我们再回到对单位圆定理的讨论和证明。

现在，不妨将P (z)− P0(T )的实部和虚部分开来考虑，定义

[P (z)− P0(T )]/kBT ≡ φ(z) + iψ(z), (14)

式中φ(z), ψ(z)是两个实函数。很显然，

φ(z) =

∫
dz′ρ(z′) log |1− z

z′
|. (15)

10



注意 1
2π

log |z|是两维拉普拉斯算符∆ = ∂2/∂x2 + ∂2/∂y2的格林函数。进而

通过将拉普拉斯算符作用于上式，不难看出

∆φ(z) = 2πρ(z). (16)

这意味着φ(z)是两维平面上电荷密度ρ(z)所对应的静电势！根据电动力学

的知识可知，对于有限区域D内的任何电荷密度ρ(z)，相应的静电势φ(z)在
整个两维平面上都有解，且这个解是连续函数！特别的，这说明φ(z)在零

点的聚点处有定义，且在这些地方也是连续的！

不仅如此，假设最终的零点汇聚在复平面上的一条封闭曲线上(这是

很典型的情况)，当然它也就是我们的电荷分布区域D，因此这样的曲
线D就将整个复平面分割成内外两个区域，区域1和区域2。在这两个区域

内部，由于电荷为零，所以静电势φ(z)是解析函数，分别记这两个解析函

数为φ1(z), φ2(z)。由于静电势在整个两维平面上连续，所以必定有

φ1(z)|D = φ2(z)|D. (17)

但是，请注意，在区域分割线D上，φ(z)虽然连续，但并不解析。
承接上一段的假设，假设封闭曲线D与z的正实轴相交，那这些交点

就对应相变发生的地方。同时，由于在z的正实轴上，P (z) − P0(T )是一

个实函数，它只有实部kBTφ(z)。因此上面关于φ(z)连续性的讨论就说

明，P (z)在整个正实轴上都有定义，且是连续函数。特别的，对于零点在

正实轴上的聚点处，P (z)有定义，且在此处连续。总之，对于任何物理的

逸度z，P (z)均有定义，且是连续函数。

依然承接上面的假设，由于D是一条曲线，所以相应的零点密度ρ(z)可
以改成线密度λ(z)。进一步假设zp = xp为D与正实轴的某个交点。为了看
清楚沿着正实轴从两侧趋于xp时，粒子数密度n(z)的跳变情况(注意，前文

分析过，在这样的聚点处，n(z)一般来说有无穷多个取值)，我们不妨把两

维z平面逆向旋转90度，使得实轴变成虚轴，虚轴变成实轴，从而旋转之

后z → iz = ix− y。记x± = x± ϵ, 式中ϵ为无穷小正实数，则根据n(z)的计

算公式(13), 有(注意ρ(z) → λ(z)了)

n(x−p ) =

∫
D
dz′λ(z′)

izp
izp − iϵ− z′

=

∫
D
dz′λ(z′)

−ixp
z′ − izp + iϵ

. (18)
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利用数学公式

1

z − iϵ
=

1

z
+ iπδ(z),

1

z + iϵ
=

1

z
− iπδ(z). (19)

可得

n(x−p ) = −ixpP
∫
D
dz′

λ(z′)

z′ − izp
− xpπλ(izp). (20)

式中P
∫
表示主值积分。同理可得

n(x+p ) = −ixpP
∫
D
dz′

λ(z′)

z′ − izp
+ xpπλ(izp). (21)

从而即有(坐标轴旋转回来了)

n(x+p )− n(x−p ) = 2πxpλ(zp) = 2πxpλ(xp). (22)

所以，只要零点密度在聚点xp处不为零，那么n(z)在z = xp处就是不连续

的, 而是会发生一个2πxpλ(xp)的正向的跳变。

3.2 相相相变变变的的的物物物理理理图图图像像像

根据以上分析，我们可以得出如下物理图像。假设在热力学极限之下，z的

正实轴x上没有聚点，如图(4)所示。则，压强随着log(x)连续单调递增，同

时，粒子数密度n随着log(x)也连续单调上升，且有一个上界。所以，系统

只有唯一的一个相，没有相变。最终在P − 1/n(1/n为比体积)图上，等温

线连续单调下降, 没有平台区。

而假设在热力学极限之下，z的正实轴x上有比方说两个聚点xp和xq，如

图(5)(a)所示。则系统共有三个不同的相，xp和xq就是相变发生的地方。

压强P随log(x)连续单调增，但在log(xp)和log(xq)处不解析，如图(5)(b)所

示。粒子数密度n随log(x)也单调增，同时在log(xp)和log(xq)处有正向跃

变，如图(5)(c)所示。根据图(b)和图(c)可以画出最终压强和比体积1/n的

曲线，如图(5)(d)所示, 注意，在粒子数密度跳变的地方，log(x)是固定

的，因此相应的压强P也固定，这就对应P − 1/n曲线上的平台区。

随着温度的变化，聚点xp和xq当然会在正实轴上移动。假设在某个温

度Tc之下，xp处的聚点消失了，那就说明1相和2相之间的相变消失了，
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Figure 4: 在热力学极限之下，左上角图中的区域R内没有零点，则系统只

有一个相，在给定温度下，其压强随着比体积1/n单调下降。

那这个温度Tc就是一个所谓的临界温度。当然，也有可能在比方说聚

点xp处，零点密度λ(xp) = 0, 则根据(22)式可知，这时候，粒子数密度n没

有跳变，而是连续的。因此这时候xp处的相变就是所谓的连续相变。

很显然，如果正实轴上的聚点只有一个，那就是两个相，分析和上面完

全类似。特别的，P − 1/n等温线上会自动出现描述两相共存的平台区。很

显然，这幅物理图像自然可以正确描述液气相变。但，这里的关键是，我

们得出这幅物理图像并不需要任何唯象的或者手动的假设，而是从统计物

理的基本理论中自动得出来的。特别的，从不同温度下的P − 1/n等温曲

线，我们原则上可以得到能够同时描写两个不同相的物态方程。所以，杨

李的这个相变理论自然解决了如何从基本理论出发描述液气相变的难题。

3.3 对对对相相相变变变的的的进进进一一一步步步刻刻刻画画画

为了进一步刻画相变，依然让我们假设零点的分布区域D是一条曲线，并
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Figure 5: 图(a)表示正实轴上有两个聚点xp和xq, 区域R1, R2, R3之内

没有零点。图(b)是相应的P − log(x)曲线，P随log(x)连续单调增，但

在log(xp)和log(xq)处不解析。图(c)是n − log(x)曲线，n随log(x)单调增，

同时在log(xp)和log(xq)处有正向跃变。图(d)是P − 1/n曲线，注意在两相

共存区自动出现了等温线的平台。

假设它与正实轴交于z0点，如图(6)所示。当然，z0就是相变点。不妨以s来

表示这条曲线D的弧长参数，其中弧长从z0点开始量起，并以逆时针方向
为s增加的方向。显然，这条曲线将复z平面分成了左右两个区域，记左侧

为区域1, 右侧为区域2.

将方程∇2φ(z) = 2πρ(z)类比于静电学的拉普拉斯方程，并在曲线D附
近应用静电场的高斯定理，即有

[∇φ2(z)−∇φ1(z)] · n|D = λ(s), (23)

式中n为曲线D的单位法向量，λ(s)是曲线上的零点线密度。由于P (z) −
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Figure 6: 零点分布区域D是一条曲线的典型情况。图中此曲线与正实轴交
于z0，当然，这就是相变点。

P0(T ) = kBT [φ(z) + iψ(z)]在左右两个区域均为z的解析函数，应用解析函

数的柯西-黎曼方程，即有

∇φ1,2(z) · n|D = ∇ψ1,2(z) · t|D, (24)

式中t为曲线D的单位切向量。结合上面这两个方程，即有

d

ds
[ψ2(z)− ψ1(z)]|D = 2πλ(s). (25)

特别的，在相变点z0处，我们有

d

ds
[ψ2(z)− ψ1(z)]|z0 = 2πλ(0). (26)

这些结果，再结合下面的连续性条件就可以对相变构成进一步的刻画

φ2(z)|D = φ1(z)|D. (27)

为此，我们把[P (z)− P0(T )]/kBT在z0点的两侧分别做泰勒展开

[P1,2(z)− P0]/kBT = C(z0) + a1,2(z − z0) + b1,2(z − z0)
2 +O((z − z0)

3),(28)
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式中C(z0)为泰勒展开的零阶项，由P (z)在z0处的连续性，这个零阶项对于

左右两侧都是一样的。同时，为了确保P1,2(z)在正实轴上为实函数，上式

所有的展开系数都必定是实数。记z = x+ iy, 则根据连续性条件(27), 即可

以得到曲线D在z0附近的方程，为

(a2 − a1)(x− z0) + (b2 − b1)[(x− z0)
2 − y2] + Re[O((z − z0)

3)] = 0. (29)

下面分几种情况进行讨论：

• 一一一阶阶阶相相相变变变：假如a2 ̸= a1, 则复压强的一阶导数在z0处不连续，相应的

相变称之为一阶相变。假如进一步有b2 ̸= b1, 则曲线D在z0附近是双
曲线，方程为

y2 = (x− z0)
2 +

a2 − a1
b2 − b1

(x− z0). (30)

它在z0处的切向量平行于虚轴。进而通过取方程(28)的虚部，并应

用(26), 即可以得到

λ(0) =
a2 − a1
2π

. (31)

因此，对于一阶相变，相变点处的零点密度非零。这与上一小节的物

理图像完全吻合。

• 二二二阶阶阶相相相变变变：假如a2 = a1, 但是b2 ̸= b1, 那这就是二阶相变。相

应D在z0附近的方程为

y = ±(x− z0), (32)

很显然，这说明D在z0处与虚轴成±π/4的夹角。进而通过取方程(28)的

虚部，并应用(25)，即可以得到

λ(s) =
b2 − b1
π

|s|+O(s2). (33)

即零点密度在相变点处线性地趋于零。

• 高高高阶阶阶相相相变变变：假如复压强的不连续性出现在更高阶的导数上，那这就
是高阶相变。这时候，完全类似于上面的分析，也可以得到D在相变
点附近的方程，并能得出零点密度在相变点处也是趋于零的。实际

上，假设相变是n阶的(n ≥ 3)，则具体分析表明λ(s) ∼ |s|n−1。
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4 伊伊伊辛辛辛模模模型型型与与与格格格气气气模模模型型型

为了考察具体的零点分布情况，杨和李考察了两类相互等价的模型，伊辛

模型和格气模型，其中格气模型可以用来理解液气相变。下面我们从伊辛

模型开始讲起。

考虑N个伊辛自旋σi = ±1(i = 1, 2, · · · , N), 式中σi = +1表示自旋向上

状态，σi = −1表示自旋向下状态。(1). 这N个自旋放置在一个d-维格点

上。(2). 不同的自旋两两结对，每对的两个自旋之间存在铁磁相互作用，

即当这两个自旋平行时(都向上或都向下)能量比较低，而反平行时(一个向

上一个向下)则能量比较高。(3). 整个系统处于一个非均匀磁场中，第i个

自旋感受到的磁场为hi。

则系统的哈密顿量HY可以写成

HY = −1

2

∑
i,j,i ̸=j

Jijσiσj −
∑
i

hiσi, (34)

铁磁相互作用要求Jij > 0, 且关于i, j指标对称。则系统的正则配分函数为

Z(h1, h2, · · · , hN) =
∑
{σi}

e−HY /kBT . (35)

很明显，在磁场翻转之下，即在所有hi同步变换为−hi时，Z保持不变，因
为我们可以同时作翻转自旋的变换σi → −σi，从而可以保持系统的哈密顿
量HY不变，进而使得配分函数保持不变，即有

Z(h1, h2, · · · , hN) = Z(−h1,−h2, · · · ,−hN). (36)

为了得到与之等价的格气模型，我们进行如下变量代换

σi = 2ni − 1, (37)

显然ni = 0, 1,分别对应σi = −1,+1。代入HY的表达式，即有

HY = −2
∑
i,j,i̸=j

Jijninj −
1

2

∑
i,j,i̸=j

Jij + 2
∑
i

(−hi +
∑
j,j ̸=i

Jij)ni +
∑
i

hi. (38)

记
∑

j,j ̸=i Jij ≡ Ji,
1
2

∑
i,j,i̸=j Jij = J , 则上式可以重写成

HY = −2
∑
i,j,i̸=j

Jijninj − J + 2
∑
i

(−hi + Ji)ni +
∑
i

hi. (39)
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下面我们定义相应格气模型的哈密顿量HG为

HG ≡ −2
∑
i,j,i ̸=j

Jijninj − J. (40)

之所以称这个哈密顿量描述的格点模型为格气模型，原因在于我们可以

把ni = 1的格点想象成是某种气体原子占据的格点，而ni = 0的格点则是未

被占据的格点，且每个格点最多被一个原子占据。那哈密顿量HG描述的就

是这些格点气体原子之间以−4Jij < 0的吸引型相互作用能进行相互作用的

气体系统，称之为格气系统。

则由(39)式和HG的定义，不难看出，

Z(h1, h2, · · · , hN) =
∑
{ni}

e−HG/kBT
∏
i

e−2ni(Ji−hi)/kBT
∏
i

e−hi/kBT . (41)

定义局域逸度yi为

yi ≡ e−2Ji/kBT e2hi/kBT ≡ aizi, 其中ai ≡ e−2Ji/kBT , zi ≡ e2hi/kBT . (42)

后文我们将保持ai > 0为实数不变，但是把zi延拓到复平面上去(相当于让

局域磁场hi可以取复数值)。进而即有

Z(h1, h2, · · · , hN) = (z1z2 · · · zN)−1/2
∑
{ni}

[
e−HG/kBT

∏
i

yni
i

]
. (43)

很显然，式中
∑

{ni} e
−HG/kBT

∏
i y

ni
i 是一个以{ni}为变量，局域逸度为yi =

aizi的格气系统的巨配分函数，不妨记作Ξ(z1, z2, · · · , zN)，

Ξ(z1, z2, · · · , zN) =
∑
{ni}

[
e−HG/kBT

∏
i

yni
i

]
=

∑
{ni}

[
e−HG/kBT

∏
i

(aizi)
ni
]
.

从而

Z(h1, h2, · · · , hN) = (z1z2 · · · zN)−1/2Ξ(z1, z2, · · · , zN). (44)

很明显, 磁场翻转hi → −hi相应于变换zi → 1/zi(根据zi的定义)。进而结合

式(36)与式(44), 即可知

Ξ(1/z1, 1/z2, · · · , 1/zN) = (z1z2 · · · zN)−1Ξ(z1, z2, · · · , zN). (45)
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将HG的定义式(40)代入巨配分函数Ξ(z1, z2, · · · , zN)的计算公式，即
有(结合ai的定义式, 以及Ji的定义)

Ξ(z1, z2, · · · , zN) =
∑
{ni}

[
(e−HG/kBT

∏
i

(aizi)
ni)

]
= eJ/kBT

∑
{ni}

∏
i,j,j ̸=i

e2ninjJij/kBT−2niJij/kBT zni
i . (46)

由于Jij > 0, 所以很显然2ninjJij/kBT − 2niJij/kBT ≤ 0, 所以

0 < e2ninjJij/kBT−2niJij/kBT ≤ 1, (47)

并且很明显，当ni = nj = 1时(即i, j格点均被占据时)，或者ni = 0时(即i格

点为空时), 有e2ninjJij/kBT−2niJij/kBT = 1。又请注意i格点为空时，zni
i = 1，

而当i格点被占据时，zni
i = zi。

不妨将所有被原子占据的格点(即ni = 1)的集合记作S ⊆ {1, 2, · · · , N}，
其补集(空格点集合)记作S，并记zS ≡

∏
i∈S zi。则不难将上面的巨配分函

数按照被占据的格点泰勒展开成如下形式

Ξ(z1, z2, · · · , zN) = eJ/kBT
∑
S

[zS
∏

i∈S,j∈S

Aij] ≡ eJ/kBTQN(z1, · · · , zN). (48)

式中0 < Aij ≤ 1, 且关于指标i, j对称。人们也常常记∏
i∈S,j∈S

Aij ≡ AS. (49)

很显然，AS = AS。进而将多项式QN(z1, · · · , zN)简写成

QN(z1, · · · , zN) =
∑
S

ASz
S. (50)

根据(45)式，当然也有

QN(1/z1, 1/z2, · · · , 1/zN) = (z1z2 · · · zN)−1QN(z1, z2, · · · , zN). (51)

这个结论也可以通过直接在(50)式中交换集合S与其补集S，并利用AS =

AS直接证明。

我们要研究的，就是巨配分函数Ξ(z1, z2, · · · , zN)关于所有复自变量zi的
零点，很显然，这等价于研究多项式QN(z1, · · · , zN)关于所有复自变量zi的
零点。
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5 单单单位位位圆圆圆定定定理理理

定定定理理理叙叙叙述述述

先概括一下上一节关于多项式QN(z1, · · · , zN)的定义：设(Aij) 是实对

称矩阵，满足任意矩阵元0 < Aij ≤ 1。对[N ] = {1, 2, . . . , N} 的子集S，定
义AS =

∏
i∈S

∏
j /∈S Aij，其中A∅ = A[N ] = 1。定义N 元多项式

QN(z1, . . . , zN) =
∑
S⊆[N ]

ASz
S,

式中zS =
∏

i∈S zi。容易证明，这样的N 元多项式满足

QN(1/z1, 1/z2, · · · , 1/zN) = (z1z2 · · · zN)−1QN(z1, z2, · · · , zN). (52)

所为的单单单位位位圆圆圆定定定理理理，说的就是: 如果|z1| ≤ 1, |z2| ≤ 1, · · · |zN | ≤ 1,

则QN(z1, . . . , zN)在此范围内的零点，全部位于N为复空间CN的如下单位

环面TN上

TN : |z1| = |z2| = · · · = |zN | = 1. (53)

不妨引入一个术语，用D 表示(开)单位圆盘{z : |z| < 1}，称一个多元多
项式P (z1, . . . , zN)是D-stable的，如果对任意z1, . . . , zN ∈ D，P (z1, . . . , zN) ̸=
0。称线性变换T 是D-stable 的，如果T 将D-stable 多项式映为D-stable 多
项式或者0。

很显然，要证明单位圆定理，只需证明，QN(z1, . . . , zN)是D-stable
的。而且由于QN(z1, . . . , zN)满足反演关系(52)，所以，如果它对圆盘内部

是D-stable 的，则它对圆盘外部也同样是D-stable 的。特别的，这就意味
着N次多项式QN(z, . . . , z)的零点全部位于|z| = 1的单位圆之上。

5.1 证证证明明明思思思路路路

证明的策略是从一些基本的、容易验证的D-stable 多项式出发，通过一系
列D-stable 的变换得到QN(z1, . . . , zN)。为此，我们需要以下引理：

引引引理理理1
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设复数|a| < 1，则多项式g(z1, z2) = 1+ az1 + az2 + z1z2 是D-stable 的。
证证证明明明：：： 若z1, z2 ∈ D，则

|1 + az1|2 − |a+ z1|2 = (1− |a|2)(1− |z1|2) > 0,

于是 |1 + az1| > |a+ z1| ≥ |az2 + z1z2|,

从而必有 g(z1, z2) ̸= 0.

引引引理理理2: (Asano Contraction)

考虑线性映射Tzw 将P1(z, w) = a+bz+cw+dzw映射成P2(z) = a+dz，

那么Tzw 是D-stable 的。注意，Tzw相当于将变量z和w进行配对收缩，一
对变量收缩成一个(记为z), 如果某个变量没有相应的配对，那它就收缩为

零。人们也称Tzw为Asano Contraction。

证证证明明明：：： 假设P1(z, w) = a + bz + cw + dzw 是D-stable 的多项式，下
证|a| ≥ |d|。
反证，假设|a| < |d|，对任意|z| < 1，由P1(z, w) = a+ bz+(c+ dz)w 可

知|a+ bz| ≥ |c+ dz|，取极限可知该式对|z| = 1 也成立。

取z = 0 可得|a| ≥ |c|。若|a| ≤ |b|，取z = −a/b 得矛盾，从而必
有|a| > |b|。
取|z| = 1满足|c+dz| = |c|+ |d|，则由三角不等式有|a|+ |b| ≥ |c|+ |d|，

由|a| < |d| 可知|b| > |c|，即|d| > |a| > |b| > |c|。
取|z| = 1 满足|a+ bz| = |a| − |b| 可得矛盾。
于是必有|a| ≥ |d|，从而P2(z) = a+ dz 是D-stable 的。

定定定义义义: (Schur-Hadamard 乘乘乘积积积)

设多项式

f(z1, . . . , zN) =
∑
S⊆[N ]

aSz
S, g(z1, . . . , zN) =

∑
S⊆[N ]

bSz
S,

定义其Schur-Hadamard 乘积为

(f · g)(z) =
∑
S⊆[N ]

aSbSz
S.
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引引引理理理3: (Hinkkanen’s composition theorem)

沿用上面的定义，若f, g 是D-stable 的，则f · g 也是D-stable 的。
证证证明明明：：： 考虑2N 元多项式ϕ(z, w) = f(z)g(w) =

∑
S⊆[N ] aSz

Sg(w)。

将Asano Contraction Tzk,wk
简记为Tk，不难看出(请大家想象一下配对

收缩的定义)

TNTN−1 · · ·T1ϕ(z, w) =
∑
S⊆[N ]

aSbSz
S = f · g

显然ϕ关于z, w是D-stable的，故我们依次作Asano Contraction T1, T2, . . . , TN

后得到的多项式f · g 也是D-stable 的。

最后，考虑多项式

fi,j(z) = (1 + Aijzi + Ajizj + zizj)
∏
k ̸=i,j

(1 + zk)

对所有i < j 求Schur-Hadamard 乘积，计算可得

QN(z1, . . . , zN) = f12 · f13 · · · · · fN−1,N

由引理1，fi,j是D-stable的多项式。于是不断使用引理3可得QN(z1, . . . , zN)

是D-stable 的，证毕。

5.2 物物物理理理讨讨讨论论论

回到我们的物理问题，如果取z1 = z2 = · · · = zN = z, 即取所有的局域复磁

场hi均相等，也就是相当于对系统施加的是一个整体的磁场h。相应伊辛模

型的哈密顿量成为

HY = −1

2

∑
i,j,i̸=j

Jijσiσj − h
∑
i

σi. (54)

这里，z ≡ e2h/kBT .

这时候格气模型的巨配分函数Ξ(z, · · · , z)可以简记为Ξ(z), 很显然

Ξ(z) =
∑
{ni}

[
e−HG/kBT

∏
i

yni
i

]
=

∑
{ni}

[
(e−HG/kBT

∏
j

a
nj

j )z
∑

i ni
]
.
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注意
∑

i ni其实就是总粒子数。所以这就是一个比较标准的以z为逸度的巨

配分函数，它是关于z的一个N次多项式。

这时候相应的，也可以将多项式QN(z, · · · , z)简记为QN(z), 它由一

个N元多项式变成了一个N次多项式。则由(48)式知

Ξ(z) = eJ/kBTQN(z). (55)

引用单位圆定理，即有，Ξ(z)的零点均分布在复z空间的单位圆|z| = 1上。

注意，在格气模型中，格点的总数N就相当于总体积V , 也相当于最大

粒子数M , 所以热力学极限其实就是N → ∞的极限。如果这个极限存在(这

对相互作用Jij有要求，一般要求它是一种短程相互作用)，那根据上面的

讨论可知，Ξ(z)在热力学极限之下的零点依然分布在单位圆上，即零点分

布区域D为复z平面上的单位圆。
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