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前言

我一直都在思考统计物理学的逻辑基础。大约十多年前，我开始有从信息论基础建立

统计物理大厦的想法，当时是想先通过麦克斯韦妖把热力学熵和信息熵联系起来，再通过

极大熵原理引出各种系综。当时记了一点笔记，最近两三年不断回到这个问题，断断续续

地进行了一些思考。最终在 2025 年想法开始清晰，就形成了本书的前两章《从概率到信
息熵》以及《统计物理的基本原理》。

近半年来因为纳米热力学读书会的推广我才了解到 Jaynes 更早有这一类的想法，但
是我并没有读过 Jaynes 的东西，他对我应该是没有什么影响的。实际上，写完上面说的
两章以后我才去查了一下 Jaynes 的东西，和我还是很不同的，似乎他主要是从极大熵原
理出发，和我十多年前的想法可能有点像。但是，这条路已经被我放弃了，因为虽然数学

家会喜欢极大熵原理，但是我不知道如何预先论证它在物理学上是成立的。相反，极大熵

原理在我这里是作为事后归纳出现的，而不是作为第一性原理出现的。当然，人们可以直

接假设极大熵原理，但是我所做的事情正好是说明了，在物理学上，并不需要额外假设这

条新的原理，哈密顿力学加上信息熵的概念就能自然地引出一切。

我甚至不需要假设热力学第二定律，因为我可以在哈密顿力学和信息熵概念的基础上

证明它。同样，什么等概率原理啊遍历性啊在我这里都不是直接假设的，而是在这些基础

上自然地引导出来的。

在我看来统计物理的支点就是熵的概念，抓住了这个支点统计物理就能立起来，没抓

住，那它就是垮的。关于如何建立这个支点，我归纳了一下，大约有三种不同的方式：第

一种就是遵循历史的逻辑，从热力学开始，从热机的研究中引入热力学熵；第二种就是玻

尔兹曼的方式，先引入玻尔兹曼熵公式，然后建立一切，包括建立热力学，我非常喜欢的

《热物理学导论》这本书采用的就是这种方式；第三种就是我的这本书采用的方式，就是

先引入香农-吉布斯熵，然后再建立一切。我个人觉得第三种方式是最现代的。而且我做的
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事情也表明，第三种方式才是真能自然地把哈密顿力学与统计力学连接起来的，不需要什

么额外的假设，包括不需要假设遍历性和等概率原理。

关于《统计物理的基本原理》一章，还有两点值得说明一下: 第一，相空间的分形结
构这个思想是从  @ 贾明子老师的知乎文章中了解到的，当然我作了一些发展。第二，文
中第四节关于熵增加原理的证明一半是文献中的，但是我解决了一个重要的遗留问题。具

体来说就是，文献中的粗粒化和我的有点不同，因此只能证明任意 t 时刻的粗粒化熵大于
初始时刻的 (这个初始时刻是固定的而不是任意选的），而不能证明粗粒化熵随时间递增。
我改进以后就可以证明粗粒化熵随宏观时间递增了。不过证明的技术其实是一样的，改进

的地方在于如何合适地定义粗粒化演化。

由于是草稿版，讲义中有一些插图是手绘的，还有一些插图直接取自网络或者是从其

它资料里面截图出来的，文中并没有全部一一说明，后续版本会逐渐改过来。



1. 从概率到信息熵

统计物理是研究大量粒子的行为，微观上，这些粒子都满足哈密顿力学规律，而宏观

上则会涌现出诸如温度和压强等新的物理量，统计物理的目标就是在微观和宏观之间建立

桥梁。而这就需要在力学规律的基础上引入一些新的概念，最核心的就是概率和信息熵的

概念，这也就是本章要讲述的内容。

1.1 概率论的一般公理

概率论是用来描述随机事件的，其背后有一个随机变量，记为 x, 它有多种可能的取
值，记这些不同可能性的集合为 S。S 可以是一个离散的集合，比如单个比特的两种可

能状态 {0,1}, 比如色子的六种可能状态 {1,2,3,4,5,6}。S 也可以是一个连续的集合，比

如某个随机出现的粒子的位置坐标。

一个事件就是 S 的某个子集 E ⊆ S , 只要 E 中的任何一个可能性得以实现，我们就

称事件 E 发生了。设有两个事件 A 和 B, 如果定义 A 发生或者 B 发生为一个新的事件，

我们就记这个新的事件为 A∪B, 也就是 A 和 B 的并集。相反，如果定义 A 发生且 B 也发

生为一个新的事件，那就记它为 A∩B, 也就是 A,B 的交集。如果 A∩B = /0, 其中 /0 表示空

集，则称 A,B 为互不相容的事件。

概率论的核心就是给每一个事件 E 赋予一个发生的概率 P(E)，它要满足如下三条公

理：

(i) 非负性公理：即对于任意事件 A, 有 P(A)≥ 0。即概率值不能为负数。

(ii) 归一化公理: 即 P(S ) = 1, 换言之必然发生的事件概率为 1。
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(iii) 加法公理：即对于任意两个不相容事件 A,B，有 P(A∪B) = P(A)+P(B)。结合前

两条公理，立即有一条明显的推论，即对于任何 A, 均有 0 ≤ P(A)≤ 1。

对于 S 为离散集合的情况，满足这些公理的最简单办法是，对每一种单独的可能性

i ∈ S 都赋予一个概率 0 ≤ pi ≤ 1, 并且要求它们满足如下归一化条件

∑
i∈S

pi = 1. (1.1)

对于 S 为连续集合的情形，如果仅仅只有一个随机变量，那满足上述公理的常见办

法是，对于每一个 x ∈ S 引入一个所谓的概率密度 p(x)≥ 0(有时也记作 ρ(x)), 并取

P(A) =
∫

A
p(x)dx, (1.2)

式中
∫

A 表示在集合 A 上积分。当然，p(x) 要满足如下归一化条件

P(S ) =
∫

S
p(x)dx = 1. (1.3)

如果有多个随机变量 x = (x1,x2, · · · ,xN), 每一个都是连续取值的，依然记相应的状态
空间为 S , 则可以引入联合概率密度

p(x) = p(x1,x2, · · · ,xN). (1.4)

它满足如下归一化条件

P(S ) =
∫

S
dNxp(x) = 1, (1.5)

式中 dNx = ∏N
i=1 dxi。假设我们仅仅只关心这 N 个随机变量中的一部分，则相应的概率密

度可以通过将其余变量积分掉来得到，比方说

p(x1, · · · ,xm) =
∫ N

∏
i=m+1

dxi p(x1, · · · ,xN). (1.6)

而，如果这 N 个随机变量相互独立 (也称作统计独立)，则联合分布 p(x) 是每个变量单独
分布的乘积，即

p(x) =
N

∏
i=1

pi(xi). (1.7)

在已知事件 B 发生的前提下 (当然要求 P(B)> 0)，事件 A 发生的概率，称为事件 A

在事件 B 发生的条件下的条件概率，记作 P(A|B), 其定义是

P(A|B)≡ P(A∩B)
P(B)

. (1.8)

其含义就是事件 A∩B 在事件 B 中所占的比例。根据条件概率的这个定义，很容易推导出

如下贝叶斯定理：

P(A|B) = P(B|A)P(A)
P(B)

. (1.9)
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贝叶斯定理的常见应用如，将 A 解释为模型或假说，将 B 解释为观测数据。则 P(A)

就是观测之前对模型的先验信念，P(B|A)是基于模型或假说对数据可能性的推断，P(B)则

是实验中具体数据出现的概率，最后，P(A|B) 则是实验之后，数据的支撑对模型选择的依
据。

如果事件 B 的发生与否对事件 A 发生的概率没有影响，反之亦然，即满足 P(A|B) =
P(A) 或 P(B|A) = P(B), 则就称 A 和 B 是相互独立的，有时候也说是统计独立的。很显然，

对于两个相互独立的事件，我们有

P(A∩B) = P(A)P(B). (1.10)

设 B1,B2, ...,Bn 是一个完备事件组。即满足：第一，Bi 两两互不相容，Bi∩B j = /0(i ̸= j)。
第二, ∪n

i=1Bi = S。则不难看出

P(A) =
n

∑
i=1

P(A∩Bi) =
n

∑
i=1

P(A|Bi)P(Bi). (1.11)

例：新冠检测。设有一种常规新冠检测法的灵敏度和可靠度均为 99%, 即患者 (D)99%

将检出为阳性 (+), 而健康者 (N)99% 将检出为阴性 (−)。已知一群体的新冠患病率为

0.5%. 问每个检出为阳性的个体真正患病的概率有多大？
先写下已知的所有概率

P(D) = 0.005, P(+|D) = 0.99, P(−|N) = 0.99. (1.12)

于是，P(N) = 1−P(D) = 0.995, P(+|N) = 1−P(−|N) = 0.01。代入这些数据，不难得出总

阳性率为

P(+) = P(+|D)P(D)+P(+|N)P(N) = 0.0149. (1.13)

最后由贝叶斯定理，即有

P(D|+) =
P(+|D)P(D)

P(+)
=

0.99×0.005
0.0149

= 0.332. (1.14)

也即是说，尽管检测法可靠性不低，但是由于人群患病率不高，所以即使检测出阳性，个

体真正患病的概率也不算高。

1.2 信息熵

本节介绍信息论的一些基本概念。正如下一章将会看到的，统计物理就是在哈密顿力

学的基础上，通过引入这些新概念而建立起来的。

1.2.1 香农熵

假设我们收到一条消息，它是由字母 a 和 b 所构成的字符串，比如

aababbaaaab · · · (1.15)
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假设字母 a 的出现概率为 p, 字母 b 的出现概率为 1− p。假设某个人接受到这样的一长

串消息，比方说共 N 个字母，N 很大，我们想问，他可以从这串消息中提取多少比特的信

息？

上面这句话是什么意思呢？意思就是，在这个人读取消息的具体内容之前，他是无知

的，或者说他对消息的内容是不确定的，所谓他能提取的信息量，意思就是，当他读取消

息的具体内容之后，他被消除的无知有多少？或者说他被消除的不确定度有多少？

为了衡量具体消息消除掉的无知有多少，或者说消除掉的不确定性有多少，不妨数一

下可能的消息共有多少条。根据概率的含义，如果 N 很大，那么这样的消息中大约会包含

有 pN 个字母 a, 包含有 (1− p)N 个字母 b, 很显然，这样的消息的可能数目为

Ω =
N!

(pN)!((1− p)N)!
. (1.16)

根据斯特林公式，当 n很大时，n!∼
√

2πn(n/e)n(或者等价的，ln(n!)≈ n lnn−n+ 1
2 ln(2πn))。

所以，当 N 足够大时，近似有

Ω ∼ NN

(pN)pN((1− p)N)(1−p)N
=

1
ppN(1− p)(1−p)N

= 2NS, (1.17)

式中 (这里 log 是以 2 为底的对数)

S =−p log p− (1− p) log(1− p). (1.18)

注意，单个比特仅有 0,1 两种可能状态，因此也就是说，如果要把这些消息用比特记

录下来，我们至少需要 NS 个比特，其中每一条具体消息对应这 NS 个比特组的一种可能

状态。因此，我们就称，每一条具体消息能够消除的无知或者说消除的不确定度为 NS 比

特，因为它使得这个比特组的状态确定了！换言之，每一条具体消息的信息量为 NS 比特，

平均每个字母的信息量为 S 比特。

推而广之，假设这些字母是从一个更大的字母表 {a1,a2, ...,ak} 中选取的，字母 ai 的

出现概率为 pi(不妨记这个概率分布为 A)。那么当字符串很长时，即字符串有 N 个字母且

N 很大时，字母 ai 大约会出现 piN 次。因此，总的可能消息的数目大约为

N!
(p1N)!(p2N)! · · ·(pkN)!

∼ NN

∏k
i=1(piN)piN

= 2NSA , (1.19)

式中 SA 为

SA =−
k

∑
i=1

pi log pi. (1.20)

它就是平均每个字母所包含的信息量，称之为香农熵。
根据上面的讲述可以知道，对于一个概率分布为 A 的字母表，香农熵 SA 就是平均每

读取一个字母所能消除掉的无知量，或者说所能消除掉的不确定度。从另一个方面来说，

SA 也就是了解具体字母之前，我们对每一个字母具体为何的无知量，或者说对每一个字母

的不确定度。
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很显然，可能的消息总量 2NSA 一定大于 1，从而可知

SA ≥ 0. (1.21)

要让 SA = 0, 那总共就只能有一条可能消息，也就是说，只可能出现一个字母，它出现的
概率为 1，其它字母出现的概率都为零。对于一个共 k 个字母的字母表，最大可能的香农

熵在每个字母均以相等概率 1/k 出现的时候取到，这时候

SA =−
k

∑
i=1

(1/k) log(1/k) = logk. (1.22)

读者可以利用拉格朗日乘子法证明这个结论，其中要最大化的泛函为 S({pi})=−∑i pi log pi,
约束条件为 ∑i pi = 1。

很显然，只要有一个概率分布就可以定义相应的香农熵，它就是这个概率分布中所包

含的信息量，也就是我们了解随机变量具体的可能状态之前对它的无知量。假设记随机变

量的状态空间为 S，概率分布为 pi, i ∈ S (依然记为分布 A)，则相应的香农熵就是

SA ≡− ∑
i∈S

pi log pi. (1.23)

当然，香农熵可以直接推广到连续的概率分布, 假设记概率密度为 p(x)，则相应的香农熵

就是，

SA ≡−
∫

S
dxp(x) log p(x). (1.24)

香农熵的可加性：假设有两个独立的随机变量，它们的概率分布分别为 A = {pi}、
B = {q j}, 由于是独立的随机变量，所以这两个分布也是统计独立的。记这两个随机变量的
联合分布为 AB，很显然 AB = {piq j}。则由于

−∑
i, j

piq j log(piq j) =−∑
i, j

piq j(log pi + logq j)

=−∑
i

pi log pi −∑
j

q j logq j. (1.25)

这就说明

SAB = SA +SB. (1.26)

推广到连续随机变量也是类似的。总之，独立随机变量的香农熵有可加性。

由于香农熵是具体消息所能消除的无知量，而如果把消息擦除了，那无知当然就增加

了，所以，擦除信息会导致香农熵增加！

1.2.2 相对熵

假设某个随机变量 X，其状态空间为 S = {i = 1,2, · · · ,s}, 其真实的概率分布为 pX =

{pi}, 但是我们不知道，我们猜测了一个描写它的概率分布 qX = {qi}, 那我们这个猜测中
额外包含的无知是多少呢？
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为了回答这个问题，假设我们重复 N 次观察这个随机变量的取值，N 很大，则状

态 i 出现的次数大约为 piN 次，根据上一小节的分析，可能的观测序列共有 N!
∏s

j=1(p jN)! ∼
2−N ∑ j p j log p j 个。但是由于我们认为这个随机变量的概率分布是 qX , 所以我们会认为每一
个观测序列出现的概率为 ∏s

i=1 qpiN
i , 所以相关观测结果出现的总概率为

P =
s

∏
i=1

qpiN
i

N!
∏s

j=1(p jN)!
∼ 2−N ∑i pi(log pi−logqi) = 2−NS(pX∥qX ). (1.27)

式中

S(pX ∥ qX)≡ ∑
i

pi(log pi − logqi) = ∑
i

pi log
( pi

qi

)
. (1.28)

NS(pX ∥ qX) 就是我们的猜测中额外包含的无知，平均来说，我们的猜测相对于每一次观

测的额外无知是 S(pX ∥ qX), 它就称之为概率分布 qX 相对于概率分布 pX 的相对熵。

由于概率 P 总小于等于 1，所以很明显必然有

S(pX ∥ qX)≥ 0. (1.29)

等于号当且仅当 qX = pX 时取到 (相应于 P = 1), 即仅当我们的猜测完全正确时，额外的
无知才是零。值得注意的是，S(pX ∥ qX) 关于 pX 和 qX 是不对称的。另外，相对熵的概念

当然也可以推广到连续随机变量，比方说

S(pX ∥ qX)≡
∫

dxp(x) log
( p(x)

q(x)

)
≥ 0. (1.30)

由于 (1.29) 非常重要，这里不妨指出另一个独立的证明。为此只需注意到

log(x)−1+1/x ≥ 0, (1.31)

等于号当且仅到 x = 1 时取到。因此

S(pX ∥ qX) = ∑
i

pi log
( pi

qi

)
≥ ∑

i
pi(1−

qi

pi
) = 0. (1.32)

互信息

假设有两个随机变量 X 和 Y , X 的状态空间为 {x1, . . . ,xk}, Y 的状态空间为 {y1, · · · ,yr},
X ,Y 的联合概率分布为 pXY (xi,y j), 相应的香农熵记作 SXY。进而可以得到 X 和 Y 各自单

独的概率分布，为

pX(xi) = ∑
j

pXY (xi,y j), pY (y j) = ∑
i

pXY (xi,y j). (1.33)

相应的香农熵分别记作 SX 和 SY。我们想知道，通过观测这两个随机变量中的一个，能够

对另一个了解多少？也就是，两个随机变量的相互关联中所包含的信息量有多少？
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为此我们定义互信息 I(X ;Y ), 它由如下相对熵给出

I(X ;Y )≡ ∑
i, j

pXY (xi,y j) log
( pXY (xi,y j)

pX(xi)pY (y j)

)
= ∑

i, j
pXY (xi,y j)

(
log pXY (xi,y j)− log pX(xi)− log pY (y j)

)
= SX +SY −SXY . (1.34)

最后一行我们利用了 (1.33) 式，以及各香农熵的定义。根据相对熵的非负性，很显然有

I(X ;Y ) = SX +SY −SXY ≥ 0. (1.35)

等于号当且仅当 pXY (xi,y j) = pX(xi)pY (y j), 也就是两个随机变量相互独立时，才成立。从
上面这个定义可知，I(X ;Y ) 衡量是根据对 X 和 Y 各自的单独观察，并猜测两者相互统计

独立时，所包含的额外无知，换言之，也就是两个随机变量的相互关联中所包含的信息量。

因此当这两个随机变量相互独立 (不相关) 时，I(X ;Y ) = 0。

1.3 期望值

考虑到在统计物理中的应用，本节主要以单个连续随机变量为例进行讨论。

随机变量 x 的任何函数 O(x) 依然是随机变量，可以定义其统计期望值为

⟨O(x)⟩ ≡
∫

S
dxp(x)O(x). (1.36)

特别的，O(x) = xn 的统计期望值，称之为随机变量 x 的 n 阶矩，记作 Mn

Mn = ⟨xn⟩. (1.37)

概率密度 p(x) 的傅里叶变换称之为随机变量 x 的特征函数，

p̃(k) = ⟨e−ikx⟩=
∫

dxp(x)e−ikx. (1.38)

反过来当然也有

p(x) =
1

2π

∫
dkp̃(k)eikx. (1.39)

很显然，特征函数是 n 阶矩的生成函数，即

p̃(k) = ⟨
∞

∑
n=0

(−ik)n

n!
xn⟩=

∞

∑
n=0

(−ik)n

n!
⟨xn⟩. (1.40)

也即是说，将特征函数 p̃(k) 进行泰勒展开，展开项第 n 阶的系数基本上就是 n 阶矩。

进一步可以按照下式定义 n 阶累积量 (Cumulants)⟨xn⟩c

p̃(k) = exp
( ∞

∑
n=0

(−ik)n

n!
⟨xn⟩c

)
. (1.41)
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一个重要的定理使得我们可以方便地根据累积量算出矩，即：首先，将 n 阶累积量表示成

n 个点的连通集团。则通过把 m 个点分解成更小的集团 (连通或者不连通)，并对所有可能
的分解求和，即可以表示 m 阶矩。其中，每一种可能分解的贡献由相应连通子集团所表示

的累积量的乘积表示。举例如下图:

对应的代数表达式为

⟨x⟩= ⟨x⟩c

⟨x2⟩= ⟨x2⟩c + ⟨x⟩2
c ⇒ ⟨x2⟩c = ⟨x2⟩−⟨x⟩2

⟨x3⟩= ⟨x3⟩c +3⟨x2⟩c⟨x⟩c + ⟨x⟩3
c

⟨x4⟩= ⟨x4⟩c +4⟨x3⟩c⟨x⟩c +3⟨x2⟩2
c +6⟨x2⟩c⟨x⟩2

c + ⟨x⟩4
c .

这个定理的证明可以通过比较 (1.40) 式和 (1.41) 式完成
∞

∑
n=0

(−ik)n

n!
⟨xn⟩= exp

( ∞

∑
n=0

(−ik)n

n!
⟨xn⟩c

)
= ∏

n
∑
ln

[(−ik)nln

ln!
(⟨xn⟩c

n!
)ln]. (1.42)

通过比较两边 (−ik)m 项的系数，即可得

⟨xm⟩=
′

∑
{ln}

m!∏
n

1
ln!(n!)ln

⟨xn⟩ln
c , (1.43)

式中的求和表示对整数 m 的所有满足 ∑nln = m 的分解求和。这个表达式中的数值因子刚

好就是将 m 个点分解成 {ln} 个 n 点集团的可能方式数。

1.4 数学附录

这个数学附录其实是为下一章作准备的，读者可以在读到下一章的相关部分再来参

考。

(一)，高斯积分

高斯积分（也称为概率积分）是数学中的一个重要积分，定义为：

I =
∫ ∞

−∞
e−x2

dx
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它的结果是
√

π，即 I =
√

π。下面我将一步步推导这个结果。推导的核心技巧是利用双重
积分和极坐标变换。

推导步骤：

1. 定义积分：令 I =
∫ ∞
−∞ e−x2

dx。我们可以考虑它的平方来简化问题：

I2 =

(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−y2

dy
)

由于两个积分独立，我们可以将它们合并为一个双重积分：

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

这个双重积分表示对整个 xy-平面的积分。
2. 转换为极坐标：为了计算这个双重积分，我们使用极坐标变换。令：

x = r cosθ , y = r sinθ

那么：

x2 + y2 = r2, 且 dxdy = rdrdθ

代入后，双重积分变为：

I2 =
∫ 2π

0

∫ ∞

0
e−r2 · rdrdθ

3. 分离变量（角度和径向部分）：由于积分可分离，我们将它拆分为两个独立积分的
乘积：

I2 =

(∫ 2π

0
dθ
)(∫ ∞

0
e−r2

rdr
)

4. 计算角度部分：角度积分很简单：∫ 2π

0
dθ = θ

∣∣∣2π

0
= 2π

5. 计算径向部分：径向积分是
∫ ∞

0 e−r2
rdr。这是一个标准积分，我们可以通过换元法

求解。令 u = r2，则：

du = 2rdr =⇒ rdr =
du
2

积分限变化：当 r = 0 时，u = 0; 当 r → ∞ 时，u → ∞。代入后：∫ ∞

0
e−r2

rdr =
∫ ∞

0
e−u · du

2
=

1
2

∫ ∞

0
e−udu =

1
2
.

6. 合并结果：代入回 I2 的表达式：

I2 = (2π)×
(

1
2

)
= 2π · 1

2
= π

7. 求解 I：于是：
I2 = π =⇒ I =±

√
π
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由于被积函数 e−x2
总是正数，积分结果必须是正的，因此我们取正根：

I =
√

π.

（二），推导 n 维笛卡尔空间中单位球面的面积

在 n 维笛卡尔空间 Rn 中，单位球面定义为满足 x2
1 +x2

2 + · · ·+x2
n = 1 的所有点构成的

集合。其面积（即超球面的表面积）记为 Ωn。我们将利用高斯积分来推导 Ωn 的表达式。

步骤 1: 回顾高斯积分
在 n 维空间中，我们考虑径向对称的高斯积分：

In =
∫
Rn

e−(x2
1+x2

2+···+x2
n)dx1dx2 · · ·dxn

因为被积函数仅依赖于 r2 = x2
1 + x2

2 + · · ·+ x2
n，且每个变量独立，我们可以将积分分解为 n

个一维高斯积分的乘积：

In =

(∫ ∞

−∞
e−x2

dx
)n

= (
√

π)n = πn/2

所以，

In = πn/2.

步骤 2: 在极坐标下表达 In

在 n 维空间中，使用极坐标变换更为方便。令：r =
√

x2
1 + · · ·+ x2

n（径向距离）。则体

积元变换为：

dnx = rn−1drdΩn

其中 dΩn 是单位球面上的面积元，因此单位球面的面积 Ωn 定义为：

Ωn =
∫

dΩn

现在，将 In 在极坐标下展开：

In =
∫
所有x

e−r2
dnx =

∫
所有角度

∫ ∞

0
e−r2

rn−1drdΩn

因为被积函数独立于角度，积分可分离为：

In =

(∫ ∞

0
e−r2

rn−1dr
)(∫

dΩn

)
=

(∫ ∞

0
e−r2

rn−1dr
)

Ωn.

令 Jn =
∫ ∞

0 e−r2
rn−1dr，则：

In = Jn ·Ωn.

步骤 3: 计算径向积分 Jn

我们需要计算 Jn =
∫ ∞

0 e−r2
rn−1dr。通过变量替换将其与 Gamma 函数关联。令 t = r2，

则：r = t1/2, 且 dr = 1
2 t−1/2dt。
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当 r = 0 时，t = 0；当 r → ∞ 时，t → ∞。代入积分：

Jn =
∫ ∞

0
e−t(t1/2)n−1 · 1

2
t−1/2dt =

∫ ∞

0
e−tt(n−1)/2 · 1

2
t−1/2dt

简化指数：t(n−1)/2−1/2 = tn/2−1，因此：

Jn =
1
2

∫ ∞

0
e−ttn/2−1dt

Gamma 函数的定义为 Γ(z) =
∫ ∞

0 tz−1e−tdt，所以：

Jn =
1
2

Γ
(n

2

)
.

步骤 4: 结合结果求解 Ωn

综合上面的结果，有：

In = πn/2 = Jn ·Ωn

代入 Jn：

πn/2 =
1
2

Γ
(n

2

)
·Ωn

解得 Ωn:

Ωn =
2πn/2

Γ
( n

2

) .





2. 统计物理的基本原理

2.1 引言：从混乱到秩序的法则

想象这样的场景：清晨，水汽在冰冷的玻璃窗上凝结成无数细密的水珠。每一颗水珠

都由亿万水分子组成，这些分子永不停歇地运动、碰撞。如果，我们拥有神�般的视野，能

同时追踪每一个水分子的精确位置和速度——它们都遵循着简单、确定的力学规则（无论

是牛顿定律还是量子力学）。那么，一个问题必然浮现：这些确定性规则驱动的微观粒子，

如何“合作”出我们肉眼可见的、规律且可预测的宏观世界？为何散乱飞舞的分子，在宏

观尺度上形成了稳定的水流、均匀的温度、或者⋯窗上这颗晶莹的水珠？为何极度的微观

“混乱”（chaos）反而孕育出了宏观的“秩序”（order）与“可预言性”？
这便是统计物理要回答的核心命题。它不是对经典力学的否定，而是对经典力学在面

对天文数字粒子数（ 1023）的复杂系统时局限性的超越与升级。当粒子数量如此巨大：

精确追踪每一个粒子变得不可能且无意义：求解亿万联立的运动方程是计算能力的噩

梦。更重要的是，我们宏观感官根本无法分辨也无法关心某个特定粒子的精确轨迹。

确定性规则导致了“表观”的随机性：大量粒子间频繁、复杂的相互作用，使得即使

系统初始状态只有极其微小的差异，其后的演化路径也会迅速变得千差万别，像无数个被

轻轻扰动的多米诺骨牌阵列。这种对初值的极端敏感，使得长时间、大系统中所有粒子的

行为在“表观”层面上表现得近乎随机。

“多”即“新”：涌现的革命性：当粒子数量达到某个临界点（大约在阿伏伽德罗常数量

级），系统的整体行为会涌现（emerge）出全新的性质，这是单一粒子或少量粒子系统所完



22 Chapter 2. 统计物理的基本原理

全不具有的。温度、压力、粘度、冰点⋯这些我们赖以理解和描述物质世界的核心概念，并

非刻在单个粒子上，而是亿万粒子集体舞动在宏观舞台上展现出的统计规律性（statistical
regularity）。

统计物理的核心洞见：拥抱概率

统计物理应对这种“微观精确/表观随机”困境的突破在于：放弃对“确定性”微观路
径的执着，拥抱“可能性”的概率描述。

“微观态”的海洋：想象将系统在某一瞬间的所有粒子状态（位置、速度/动量）拍摄
一张“照片”，这就是一个微观态（microstate）。系统的演化可以看作在无数张可能的微
观态照片间切换。

“宏观态”的模糊透镜：当我们戴上宏观的“眼镜”，比如只看整个系统的总能量、总

体积、总粒子数和平均密度时，我们看到的只是一个宏观态（macrostate）。这个宏观镜头
是“模糊”的——许许多多张微观态照片看起来是完全一样的（它们具有相同的总能量等

宏观参数）。

宏观量即统计平均：我们在宏观世界测到的任何量（如气压、温度），本质都是某个微

观物理量（如分子撞击器壁的力、分子运动的平均动能）在系统所有可能微观态上的统计

平均值。微观的波动在平均中被平滑掉，留下稳定可测的宏观值。就像赌场老板不关心某

位赌客某次的输赢，只关心长期的平均收益是否稳定为正。

统计物理与信息论：深远的联系，统一的本质

这里，一个与统计物理核心紧密相连的、深刻而现代的概念出现了——信息的缺失或

者说无知（ignorance）。
微观态“照片库”的大小 = 信息缺失的度量：一个宏观态所对应的微观态照片的数

目 Ω 越多，意味着当我们只知道系统的宏观态（如能量、体积）时，对系统到底处于哪一
张具体的微观态照片上的不确定性就越大，无知就越多。

熵：与信息论的核心桥梁：统计物理赋予了物理量熵（Entropy，SB）革命性的定义：

SB = kB logΩ (kB 是玻尔兹曼常数)。熵直接量化了一个宏观态所对应的微观态数 Ω。Ω 越
大，熵 SB 越大。因此熵正精确地反映了我们对于一个处于该宏观态的系统的微观细节有

多无知！这种对微观细节的无知度，正是信息论中香农熵（Shannon Entropy）的核心概
念——它衡量的是信息缺失的程度。

自然定律：趋向最大未知？系统会自发地趋向于拥有更多微观可能性的宏观态，也就
是趋向于使我们对系统微观细节更加无知的状态，这就是所谓的熵增加定律。宏观世界的

演化方向，深刻地与我们对系统微观状态信息缺失的程度紧密相连。平衡态，就是我们对

系统微观信息最无知的状态（在约束条件下熵 SB 达到最大）。

下面让我们具体讲述从哈密顿力学出发，通过引入概率和信息熵等新的要素，如何自

然地建立起整个统计物理的理论体系。
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2.2 刘维尔定理与相空间分形结构

我们要考察的是一个由 N 个相互作用的粒子所构成的经典力学系统，并且，我们假

定它是一个孤立系统，也就是不受外界影响的系统 (或者说与外界没有物质和能量交换的
系统)。比方说一盒子气体，假定盒子是刚性且绝热的话，盒内的气体就是一个孤立系统。
这样的经典力学系统的动力学演化可以由哈密顿力学描述。

系统的状态 (指微观状态) 空间称作相空间，记为 M , 系统的每一个状态 (微观状态)
对应相空间中的一个点 (相点)µ = (q, p), 其中 q, p 是一个缩写符号，代表共轭的正则变量，

q 代表位置坐标，是 qa = (q1,q2, ...,q3N) 的缩写 (N 个粒子，每个粒子有 3 个位置坐标，共
3N 个位置坐标，即指标 a = 1,2, ...,3N), p 代表正则动量，是 pa = (p1, p2, ..., p3N) 的缩写

(同样，每个粒子有 3 个动量分量，共 3N 个正则动量分量)。所以相空间M 是一个 6N 维

空间，如果记 m = 3N 为系统的自由度数目，则 M 就是 2m 维的, 即

dim(M ) = 2m. (2.1)

物理量为相空间的函数，一般记作 O(µ)。特别的，系统的时间演化由哈密顿量 H(µ)
决定，满足如下哈密顿正则方程

dqa

dt
=

∂H
∂ pa = {qa,H}, d pa

dt
=− ∂H

∂qa = {pa,H}, (2.2)

式中 {A,B} 表示两个物理量 A(µ),B(µ) 的泊松括号，其定义为

{A,B}= ∂A
∂qa

∂B
∂ pa −

∂A
∂ pa

∂B
∂qa . (2.3)

式中我们默认对重复出现两次的 a 指标进行求和，从 1 加到 m = dim(M )/2。后文类似，

对表达式中重复出现的指标，均默认求和。

哈密顿量的物理含义就是系统的总能量。由哈密顿正则方程可以得出能量守恒，即
dH
dt

=
∂H
∂qa

dqa

dt
+

∂H
∂ pa

d pa

dt
=

∂H
∂qa

∂H
∂ pa −

∂H
∂ pa

∂H
∂qa = 0. (2.4)

给定初始条件 µ0 = (q0, p0)，记哈密顿正则方程的解为 qt = q(µ0, t), pt = p(µ0, t), 满足
qt=0 = q0, pt=0 = p0。我们可以抽象地把这个解简记为

µt = gt µ0, (2.5)

随着时间的变动，µt = (qt , pt) 划出一条由初始相点 µ0 决定的相空间演化轨道。gt 称作相

流，它是一个抽象的运算，gt 作用在初始相点 µ0 上，即得到 t 时刻的相点 µt , 换言之，gt

的抽象作用所产生的，就是系统在相空间的时间演化。很显然，g0 应该是一个恒等作用，

不妨记作

g0 = 1. (2.6)

假设我们把时间平移一下，从 s 时刻开始演化一段时间 t(即演化到 t + s 时刻)，则应该
有 µt+s = gt µs = gtgsµ0, 另一方面，我们也可以直接从 0 时刻演化到 t + s 时刻，从而有

µt+s = gt+sµ0, 两者一比较，即有

gtgs = gt+s. (2.7)
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特别的，gtgs = gsgt。注意到初始相点 µ0 本身也可以跑遍整个相空间，因此也即是说，相

流 gt 是相空间的一个单参变换群，而且是一个阿贝尔群，群的乘法由相流的抽象作用决

定。

不妨记相空间的体积元为 dµ ≡ dmqdm p ≡ dq1dq2 · · ·dqmd p1d p2 · · ·d pm，即刘维尔体积

元。则著名的刘维尔定理告诉我们

dµt = dµ0. (2.8)

即在相流的作用之下，相空间体积元保持不变。这个结论对于统计物理如此重要，后面我

们当然会给出证明，但在具体给出证明之前，更重要的是要领会这个定理的重大意义，所

以，让我们费点笔墨进行一些解释。

首先，假设我们在相空间中任取一个区域 D0, 记它的体积为 Vol(D0)，并记在相流的

作用下，这个区域在 t 时刻演化成 Dt , 即 Dt = gtD0, 则刘维尔定理告诉我们

Vol(Dt) = Vol(D0). (2.9)

即在时间演化之下，相空间的体积保持不变。这是因为

Vol(Dt) =
∫

Dt

dµt =
∫

D0

det(
∂ µt

∂ µ0
)dµ0 =

∫
D0

dµ0 = Vol(D0). (2.10)

式中我们注意到，由于刘维尔定理的 (2.8) 式, 雅可比行列式 det( ∂ µt
∂ µ0

) 其实等于 1。

相空间的分形结构

假设系统各粒子间的相互作用足够，以至于会产生混沌动力学。因此，系统在相空间

中的演化将对初始条件极端敏感，从而，相空间两个邻近的初始相点，在相流的作用下一

般来说会迅速地相互远离。结合上面关于刘维尔定理的推论，即有: 给定相空间的一个初
始小区域 D0(比如一个小球体)，在时间演化之下，由于对初始条件的极端敏感，它在某些
方向上将被拉伸 (这些方向上的邻近点在相互远离)，而又由于总体积要保持不变，它在其
它方向上就必定会被压缩，而且拉伸以后的部分还可能会发生弯折、扭曲等一系列形变。

所以，经过了一段固定的时间 τ 之后，Dτ = gτD0 就会被拉扯成如图 (2.1) 所示的八
爪鱼形状，其中每一条爪都被拉扯得很细长。而且由于我们所考察的相空间是一个高维空

间，所以与图中所示的两维情况不同，实际可以拉伸的方向是很多的，八爪鱼 Dτ 的细长

爪子其实非常多。

进一步，我们可以考察 D2τ , 由于它是相流 gτ 作用在 Dτ 上的结果，即 D2τ = gτDτ , 所
以 D2τ 必定是由前一步的八爪鱼 Dτ 再进行一个和上面类似的拉扯的结果。具体来说，就

是把 Dτ 的每一个局部区域都进一步拉扯成和上面类似但是更小、爪子更细一些的八爪鱼。

完全类似的道理，由于 Dnτ = gτD(n−1)τ , 所以，在时间演化的第 n 步 (即 nτ 时刻) 所产生
的相空间结构，其实是在第 n−1 步的相空间结构的基础上再进行一个类似的拉扯而得到，

这个拉扯会把 D(n−1)τ 的每一个局部区域拉扯成更小、爪子更细的八爪鱼。整个这个过程

其实就是一个所谓的分形迭代过程。现在，请大家停下来尽力想象一下，当这个迭代过程

无限进行下去，我们最终得到的相空间结构 D+∞ 将会是什么？
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Figure 2.1: 相空间区域 D0 在 gτ 作用下变成 Dτ。

对，我们将得到一个相空间“恶魔”，它有无数条无限细的爪子，这些爪子密密麻麻

地相互纠缠着，像一个剪不断理还乱的毛线球一样，塞满了相空间的所有可达区域。或者

我们也可以换一个比喻，相空间的整个可达区域就像一杯水，最初的 D0 就像滴入水中的

一滴墨，随着时间的演化，它会在水中纤维化 (伸出细爪)、拉伸、扭曲，最后逐渐均匀地
弥漫到整杯水中。是的，所有墨水的总体积依然和最初的墨滴一样，但是这些墨水变成了

弥漫在整杯水中的无限精细的结构。D+∞ 就是一个这样的无限精细的相空间结构。

然而我们的观测能力是有限的，我们无法识别这样的无限精细的结构，就好像我们无

法识别出最终弥漫在水中的墨的精细结构一样，对于我们来说，这些墨就像是均匀地布满

了整杯水。同样，对于我们来说，D+∞ 就像是均匀地布满了相空间的所有可达区域。

更精确地说，在相空间中，我们无法识别足够精细的结构，而只能把这相空间切分成

足够小的但是体积有限的“像素”，在一个“像素”之内的 D+∞ 精细结构因为无法识别而

要被模糊掉。正是在这样的模糊之后，D+∞ 才像是均匀地布满了相空间的所有可达区域。

不妨记 D+∞ 为 D+∞“像素模糊”之后的结果，很显然 D+∞ 的体积 Vol(D+∞) 就不再是最

初的 Vol(D0) 了 (它现在布满整个相空间可达区域了), 而是相对于它大大膨胀了！
实际上，即使在有限时间，比如 Dnτ 中，也会包含一些很精细的相空间结构，它是从

D(n−1)τ 中那些八爪鱼爪子的细小尖端进一步拉扯而来的。因此，“像素模糊”对于 Dnτ 同

样也有影响，只是由于 Dnτ 的精细结构没有 D+∞ 那么多，所以“像素模糊”对它的影响相

对少一点。直观上很显然的是，随着 n 的增长，Dnτ 中的精细结构会越来越多，因此“像

素模糊”对它的影响也就越来越大，“像素模糊”导致的体积膨胀也就越来越大。假设记

Dnτ 为 Dnτ 像素模糊之后的结果。则直观上比较显然的是 Vol(Dnτ)应该是 n的增函数，即

· · ·< Vol(D(n−1)τ)< Vol(Dnτ)< · · ·< Vol(D+∞). (2.11)
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也即是说，在“像素模糊”以后，随着时间的增长，相空间区域的体积总是在不断膨胀的。

玻尔兹曼指出：对于一个宏观系统，假设从一个足够小的初始区域 D0 出发，那么大

体上区域 Dnτ 内的所有状态在宏观上看起来都一样，大体上是系统同一宏观状态所对应的

所有不同微观状态，因此 Vol(Dnτ) 大体上就是此宏观状态所对应的微观状态数目 Ω。进
而玻尔兹曼定义 SB = kB log

(
Vol(Dnτ)

)
为此宏观状态的玻尔兹曼熵。基于上面这个关于相

空间区域体积膨胀的观察，玻尔兹曼进一步把这种体积膨胀现象解释成熵增加定律。特别

的，最终熵最大的 D+∞ 所对应的系统宏观状态就是热平衡态。

以上就是关于相空间分形结构的全部讲述。当然，我们这个讲述主要是提供一个直观

物理图像，这个物理图像对于后文的理解也都很有帮助。尤其是我们初步提及了“像素模

糊”的想法，后文会讨论这个想法的进一步发展。

刘维尔定理的证明

下面我们给出刘维尔定理的证明。很显然，要证明 dµt = dµ0, 只需证明 ∂
∂ t (dµt) = 0,

而这又等价于证明

dµt+ε = dµt , (2.12)

式中 ε 为一个无穷小的时间。要证明这个结果，我们需要用到如下线性代数恒等式

det(I +Aε) = 1+ εTr(A), (2.13)

式中 I 为 n×n 的单位矩阵，A 为任意 n×n 矩阵，也记作 An×n。

下面证明 (2.12) 式。首先，

dµt+ε = det(
∂ µt+ε

∂ µt
)dµt . (2.14)

所以，要证明 (2.12) 式，只要证明 det( ∂ µt+ε
∂ µt

) = 1。由于 µt+ε = µt + εµ̇t , 所以

(∂ µt+ε

∂ µt

)
2m×2m = I2m×2m + ε

(∂ µ̇t

∂ µt

)
2m×2m. (2.15)

代入上面的恒等式 (2.13), 即有

det(
∂ µt+ε

∂ µt
) = 1+ εTr(

∂ µ̇t

∂ µt
) = 1+ ε

m

∑
a=1

(
∂ q̇a

t

∂qa
t
+

∂ ṗa
t

∂ pa
t
)

= 1+ ε
m

∑
a=1

[ ∂
∂qa

t

( ∂H
∂ pa

t

)
− ∂

∂ pa
t

( ∂H
∂qa

t

)]
= 1. (2.16)

最后一行我们代入了哈密顿正则方程。(2.12) 式得证！进而刘维尔定理得证！

2.3 系综与刘维尔绘景

系综与吉布斯熵
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给定系统处于某状态 µ0, 如果我们能对它进行完备且无限精确的测量，那我们就能确
定这个状态，当然，它对应于相空间 M 上的一个确定点。但，无限精确的测量是不可能

的，测量总有误差，而且，由于我们所考察的是宏观系统，其涉及的粒子数目是巨量的，

因此能测得每一个粒子的位置和动量的完备测量实际上也是不现实的。总之，我们对系统

的微观信息必然有无知，往往只能了解到系统的部分信息，我们只能根据这些有限的信息

对系统的微观状态进行一个推测，既然是推测，那就有不确定性，也即是说，我们只能推

断系统处在各个状态的可能性大小。根据得到的信息，也许我们推断系统处于 µ0 的可能

性高一点，但是我们并不能 100% 确定 µ0，对于我们来说，除了它之外，也许系统处于其

它不同状态的可能性也非零。

所以，对于我们来说，只能根据得到的有限信息，对系统可能微观状态的概率分布进

行一个推断，也即是说，无论真实系统的实在状态是什么 (这个是我们不可能知道的)，我
们只能推断关于系统可能状态的一个相空间概率分布，也就是一个相空间概率密度，记作

ρ(µ)。作为概率分布，ρ(µ) 需要满足 ρ(µ)≥ 0, 以及归一化条件∫
M

ρ(µ)dµ = 1. (2.17)

再次强调一下：ρ(µ) 就是我们对系统微观状态的一种推断，反映了由于我们的无知而预
计的系统处于各微观状态的可能性大小，称之为系综态，简称系综。

给定一个物理量 O(µ), 既然我们不能完全确定系统的状态，从而我们也就不能完全确
定这个物理量的值。不过，根据对系统各状态可能性大小的推断，我们完全可以计算出这

个物理量的统计期望值 (称之为系综平均)，即为

⟨O⟩ρ =
∫

M
O(µ)ρ(µ)dµ. (2.18)

至于系综平均的结果怎么和实际的实验测量值进行比较，尤其是为什么可以进行比较，这

个我们留待后文再进一步讨论。

为了度量我们对系统状态的推断中所包含的无知，可以定义如下吉布斯熵

S(ρ) =−kB

∫
M

dµρ(µ) log
(
ρ(µ)

)
, (2.19)

与标准的香农信息熵的定义相比，我们取了以 e 为底的对数而不是以 2 为底的对数，另外

我们多乘了一个整体因子 kB，也就是玻尔兹曼常数。因此不难看出

S(ρ) = kB log(2)×用 ρ(µ) 定义的香农熵. (2.20)

所以，吉布斯熵 S(ρ) 的本质依然是信息熵，只是为了方便统计物理的应用，我们取了不
同的单位，这样的单位选取本质上只是一种约定俗成，主要是为了使得对于宏观系统最终

算出的吉布斯熵不是一个天文数字 (注意 kB 的数值非常小)。
吉布斯熵具有可加性。也即是说，假设整个系统可以分成 A,B 两部分，从而系统的状

态 µ = (µA,µB), 这里 µA,µB 分别为 A,B 部分的状态。并且假定两部分之间统计独立，即

满足

ρ(µ) = ρA(µA)ρB(µB), (2.21)
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ρA,ρB分别为 A,B部分的系综态。则
∫

dµρ log(ρ)=
∫

dµAdµBρAρB log(ρAρB)=
∫

dµAρA log(ρA)+∫
dµBρB log(ρB), 所以

S(ρ) = S(ρA)+S(ρB). (2.22)

即整个系统的吉布斯熵 S 为 A,B 部分各自吉布斯熵的和。

哈密顿绘景

在哈密顿绘景中，我们认为系综态 ρ(µ) 是不变的，随时间演化的是物理量。给定一
个相空间函数 O(µ), 记相应的物理量在 t 时刻为 Ot(µ), 其定义为

Ot(µ0)≡ O(µt) = O(gt µ0). (2.23)

特别的，由于能量守恒，所以 Ht(µ0) = H(µt) = H(µ0), 即 Ht = H! 进而不难导出，Ot 满

足如下哈密顿方程

∂Ot

∂ t
= {Ot ,H}. (2.24)

以上方程 (2.24) 的具体推导如下 (推导过程要代入哈密顿正则方程),

∂Ot(µ0)

∂ t
=

∂Ot+s(µ0)

∂ s
|s=0 =

∂
∂ s

|s=0O(gtgsµ0)

=
∂
∂ s

|s=0Ot(gsµ0) =
∂Ot

∂qa
s

dqa
s

ds
|s=0 +

∂Ot

∂ pa
s

d pa
s

ds
|s=0

=
∂Ot

∂qa
0

∂H
∂ pa

0
− ∂Ot

∂ pa
0

∂H
∂qa

0
= {Ot ,H}µ0 . (2.25)

式中泊松括号的下标 µ0 表示计算泊松括号的时候是相对于相空间坐标 µ0 = (q0, p0)。这

个推导也告诉我们，哈密顿方程 (2.24) 更清楚的写法应该是，

∂Ot(µ0)

∂ t
= {Ot ,H}µ0 . (2.26)

刘维尔绘景

在哈密顿绘景中，系综态不随时间演化，随时间演化的是物理量 Ot , 它按照哈密顿方
程 (2.26) 演化。这时候物理量的期望值可以写作

⟨Ot⟩ρ =
∫

M
Ot(µ0)ρ(µ0)dµ0 =

∫
M

O(gt µ0)ρ(µ0)dµ0. (2.27)

但是，我们也可以对 (2.27) 式进行 µ0 → g−t µ0 的变量代换 ( 从而 gt µ0 → gtg−t µ0 =

g0µ0 = µ0), 则有

⟨Ot⟩ρ =
∫

M
O(gt µ0)ρ(µ0)dµ0

=
∫

M
O(µ0)ρ(g−t µ0)d(g−t µ0)

=
∫

M
O(µ0)ρ(g−t µ0)dµ−t . (2.28)
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根据刘维尔定理，相空间的体积元在时间演化之下保持不变，从而 dµ−t = dµ0。另外再定

义随时间演化的系综态 ρt

ρt(µ0)≡ ρ(g−t µ0). (2.29)

从而即有

⟨Ot⟩ρ =
∫

M
O(µ0)ρt(µ0)dµ0 = ⟨O⟩ρt . (2.30)

也即是说，等价的，我们也可以认为物理量不随时间演化，永远为 O, 随时间演化的是系
综态，它按照 ρt 的定义进行演化。这就是刘维尔绘景。

完全类似于前面对哈密顿方程 (2.24) 的推导，根据 ρt 的定义 (2.29), 不难导出它满足
的运动微分方程，如下

∂ρt

∂ t
=−{ρt ,H}= {H,ρt}. (2.31)

这就是刘维尔方程。它更清楚的写法当然是

∂ρt(µ0)

∂ t
= {H,ρt}µ0 . (2.32)

另外，根据 ρt 的定义 (2.29), 不难得到

ρt(µt) = ρ(g−t µt) = ρ(g−tgt µ0) = ρ(µ0). (2.33)

很多书上也把这个结果写成

d
dt

ρt(µt) = 0. (2.34)

它告诉我们，跟随着相空间一条给定的演化轨道，刘维尔绘景的系综态是一个常数。

请读者暂停一下，请根据 ρt 的定义 (2.29) 或者等价的 (2.33) 式摩想一下 ρt(µ) 随时
间的演化情况。不妨假设初始时的 ρ(µ) 只分布在一个小区域 D0 之内，且在这个区域内

取常数，在 D0 之外取零。则，根据 (2.33) 式，t 时刻这些概率将被输送到区域 Dt 内去，

即是说，ρt(µ) 将会在区域 Dt 内取常数。现在，请结合前面关于相空间分形结构的讨论，

想象随着时间的推移，ρt(µ) 将会是怎么样的分布。很明显，随着时间的推移，ρt(µ) 将表
现出越来越多越来越精细的相空间结构。

2.4 精细化熵与粗粒化熵，热力学第二定律

从刘维尔绘景来看，统计物理的核心就是根据对真实系统演化过程的了解建立对系综

态演化的合理推断。给定系统的哈密顿量 H，最简单的建立这种推断的方法是，于 t = 0

时刻任取一个初始系综态 ρ(µ0), 然后让它按照刘维尔方程演化到任意时刻。其隐含的假
设是，我们对系统演化过程的了解是无限精确的，对系统的一切无知都仅仅来源于初始时

刻的无知, 也就是来源于初始系综态 ρ(µ0)。
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的确，为了度量我们的无知，可以计算 ρt 的吉布斯熵

S(ρt) =−kB

∫
M

dµρt(µ) log
(
ρt(µ)

)
. (2.35)

不难证明，S(ρt) 实际上是守恒的！证明如下，

S(ρt)/kB =−
∫

M
dµρt(µ) log

(
ρt(µ)

)
=−

∫
M

dµtρt(µt) log
(
ρt(µt)

)
=−

∫
M

dµtρ(µ0) log
(
ρ(µ0)

)
=−

∫
M

dµ0ρ(µ0) log
(
ρ(µ0)

)
= S(ρ)/kB. (2.36)

其中推导的第二行利用了 ρt(µt) = ρ(µ0), 即 (2.33) 式，最后一行则利用了刘维尔定理。
由于 ρt 假定了我们对系统演化过程的了解是无限精确的，所以常常称相应的 S(ρt)为

系统的精细化熵，很显然，精细化熵是守恒的，不依赖于时间。这正反映了系统的精细演
化过程是信息守恒的。也即是说，只要我们能对演化过程了解得无限精确，则我们对系统

的一切无知都源于初始时刻。但是，由于混沌动力学的特征，系统的演化过程表观上看起

来却是越来越随机越来越混乱的，表观上信息一直在丢失，并不守恒！

表观上的信息不守恒来源于，即使理论上我们能建立系综态的精细化演化 ρt , 实际上
由于我们追踪真实系统演化的时间尺度不是无限精细的，而且我们对真实系统演化过程的

追踪能力也不是无限精细的，所以，我们对系统真实演化过程必然有所无知，我们真正能

建立的其实是所谓系综态的粗粒化 (coarse grained) 演化 (或者说系综态的表观演化)ρc
t，

其具体定义稍后再谈。

表观上，我们是在一个相对于日常生活的宏观时间尺度来说很小，但是相对于系统微

观过程的典型时间来说却很长的时间尺度 τ 上追踪真实系统演化的，所谓粗粒化演化 ρc
t，

首先是以这个粗粒化时间尺度 τ(而不是无限精细的时间尺度) 为时间步长的演化。为了计
算我们对系统的表观了解中所包含的无知，其实应该计算的，正是这种粗粒化演化所对应

的熵，称作粗粒化熵 S(ρc
t )。而正如稍后我们将证明的，这个粗粒化熵永远不会减少，只

可能随时间增加。

所谓的粗粒化演化，具体来说，是从对 t 时刻系综态的粗粒化推断 ρc
t 开始, 将之按照

刘维尔方程演化到 t +τ 时刻 (τ 就是刚才说过的粗粒化时间尺度，它相对宏观小而相对微
观大，有时也称这样的尺度为物理小)，得到

ρt+τ(µ) = ρc
t (g−τ µ), (2.37)

注意，这一步是无限精确的。但是，由于实际上我们对演化过程的了解不可能无限精确，

所以我们还要对 ρt+τ 进行粗粒化，也就是模糊掉它的相空间精细结构，进而得到 t + τ 时
刻的粗粒化系综态 ρc

t+τ。

(从这里也能看清为什么 τ 应该是一个相对于微观过程足够长的时间尺度，因为否则
相比于已经模糊了精细结构的 ρc

t，在相流 gτ 作用下，ρt+τ 就还来不及拉扯出有待进一步

被模糊的新精细结构。)
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如何才能模糊掉相空间的精细结构呢？为此我们把相空间划分成一个一个的“像素”，

称之为相格或者相空间元胞，记为 {Cα}, Cα 就是第 α 个相空间元胞。这些元胞不相重叠
且体积固定，记每一个相空间元胞的体积为

ω = Vol(Cα), (2.38)

它对所有的 α 均相同。而且由于是在考察粗粒化时间尺度下的演化，所以不妨把时间也同
时离散化了，记时间步长为 τ(此步长为物理小), 第 i 步的时间为 ti, 从而 ti+1 = ti + τ。所
以根据上面的讲述，我们有

ρti+1(µ) = ρc
ti(g−τ µ). (2.39)

为了得到 ρc
ti+1

, 我们定义

ρc
ti+1

(µ) =
1
ω

∫
Cα

dµ ′ρti+1(µ
′), 对于 µ ∈Cα . (2.40)

即假设在一个元胞内部，ρc
ti+1
取常数，数值为 ρti+1 在此元胞内的平均值，这也就是模糊掉

元胞之内 ρti+1 的相空间精细结构, 如图 (2.2) 所示。联合 (2.39) 式与 (2.40) 式，我们就把

Figure 2.2: 粗粒化的系综态。颜色深浅的不同代表不同的概率取值。

ti 时刻的粗粒化系综态 ρc
ti(µ) 演化到了 ti+1 时刻。迭代这个过程就能得到 ρc

t 在所有宏观

时间尺度上的演化，我们称之为粗粒化演化, 它描述的就是系综态表观上的演化。
实际上，以上定义的粗粒化演化过程相当于相空间上的一部元胞自动机，只是每个元

胞的“状态”(即相应的概率值) 是连续而不是离散的。
下面我们来证明粗粒化演化过程信息并不守恒，相反，它相应的粗粒化熵永远不会减
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少，只可能增加！证明如下

δS(ρc
ti)≡ S(ρc

ti+1
)−S(ρc

ti) = S(ρc
ti+1

)−S(ρti+1)

=−kB

∫
M

dµρc
ti+1

(µ) log
(
ρc

ti+1
(µ)
)
+ kB

∫
M

dµρti+1(µ) log
(
ρti+1(µ)

)
= kB

[
−
∫

M
dµρti+1(µ) log

(
ρc

ti+1
(µ)
)
+
∫

M
dµρti+1(µ) log

(
ρti+1(µ)

)]
= kB

∫
M

dµρti+1(µ) log
(ρti+1(µ)

ρc
ti+1(µ)

)
= S(ρti+1 ||ρc

ti+1
)≥ 0. (2.41)

式中第一行利用了精细化演化过程熵守恒，从而 S(ρc
ti) = S(ρti+1), 第三行代入了 (2.40) 式，

并注意到在单个元胞之内，ρc
ti+1

(µ) 为常数。式中的 S(ρti+1 ||ρc
ti+1

) 就是所谓的相对熵，相对

熵一定是大于等于零的，等于号当且仅当 ρc
ti+1

= ρti+1 时才成立。这个结论说明，系综态的

粗粒化演化是一个不断丢失信息的过程。

但是，上述定义的粗粒化演化过程有一个很大的缺陷，即它依赖于我们的相空间粗粒

化尺度 ω。为了消除这种依赖，严格来说我们需要取 ω → 0的极限。但，很显然，在 ω → 0

的极限下，相空间的粗粒化就消失了，ρc
ti+1
将退回到 ρti+1 , 因此我们定义的粗粒化演化过

程就退回为精细化演化过程，从而也就不能用来描述系综态表观上的演化了。

解决问题的出路在于注意到，统计物理描述的是宏观系统，因此严格来说还要取另一

个极限，即所谓的热力学极限, 它取粒子数目 N → ∞, 系统所占的空间体积 V → ∞, 同时保
持 N/V 固定。因此实际上，最终我们要取两个极限：热力学极限和 ω → 0 的极限。

如果先取 ω → 0 的极限，那正如刚才说过的，粗粒化就消失了，粗粒化演化就退回为

精细化演化。但是，如果先取热力学极限，再取 ω → 0 的极限，而且假设这两个极限不

可交换顺序，那么 ρc
ti+1
就可能不会退回 ρti+1，这是因为在热力学极限下，相空间是无穷维

的，因此元胞内取平均的操作涉及到了无穷重积分，从而使得即使接着再取 ω → 0，ρc
ti+1

也不会退回 ρti+1。这样一来，粗粒化演化过程就会最终保留下来，并且消除了对粗粒化尺

度的依赖，从而就可以真正描写系综态的表观演化。

通常称这种先取热力学极限再取 ω → 0 定义的粗粒化熵为热力学熵，这样一来，上
文的证明就告诉我们：孤立系统的热力学熵永远不会减少，记作

dS(ρc
t )

dt
≡

δS(ρc
ti)

τ
≥ 0. (2.42)

这就是著名的热力学第二定律，也称作熵增加原理。
在实际应用中，为了得到热力学第二定律，我们并不真的需要取 N → ∞, 只需要注意

到，实际中我们对相空间结构的识别总有一个精细尺寸，它可能很小，但不是零 (因为我
们对相空间结构并没有无穷的分辨率)，因此只需要让所考察的系统相对于这个精细尺寸
来说足够大就可以了。比方说，房间会自发地越来越乱，这种表观上的熵增加就是因为，

房间的大小相对于人眼的分辨尺寸来说很大，因此热力学第二定律可以适用。

特别的，如果某 ti 时刻 ρc
ti 取如下形式 (其中 Vol(Dti) 是相空间的某区域)

ρc
ti(µ) =


1

Vol(Dti )
, µ ∈ Dti

0, µ不属于Dti

. (2.43)
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则根据吉布斯熵的定义，不难得到

S(ρc
ti) = kB log

(
Vol(Dti)

)
, (2.44)

正好与玻尔兹曼熵一致。这时候我们这里证明的热力学第二定律大体上就等同于关于相空

间分形结构的讨论中提到的熵增加定律。只不过之前那里是直观的讨论，而现在是更具一

般性也更严格的证明。

热力学第二定律告诉我们，孤立系统任何自发的宏观过程前后，热力学熵的增量 δS ≥
0。如果，δS > 0，那此过程必定不可逆，因为逆过程意味着熵减少，而这是不可能自发进

行的。如果，δS = 0, 那此过程就称作可逆过程。反过来，对于孤立系统的一个过程，假设
记其发生前后系统的宏观状态为 A, B，则如果这个过程可逆，就意味着从 A 可以演化到

B, 反过来也一样，从 B 也可以演化到 A, 那这就意味着这两个宏观状态的粗粒化信息是等
价的，从而其热力学熵就是一样的，从而必有 δS = 0。当然，可逆过程往往是一种理想极

限，现实中的宏观过程都是不可逆的。

热平衡态

如果一个孤立系统的热力学熵随着时间单调递增，并最终达到一个极大值稳定下来，

我们就称这个孤立系统在自发热化，最终的极大熵状态 (宏观状态) 就称之为热平衡态。
(当然，也有一些系统，它的上述两个极限可以交换顺序，从而其热力学熵就等于其精细化
熵，是恒定不变的！这样的系统当然不会自发热化。比方说 N 个相互之间没有任何相互作

用的粒子所组成的孤立系统就是一个这样的不会自发热化的系统。)
一旦孤立系统达到热平衡态，其热力学熵将在极大值上保持不变，除非改变系统所处

的宏观条件。由于热力学熵保持不变，这就意味着热平衡时，粗粒化系综态不再随时间演

化，即 ρc
ti+1

= ρc
ti , 也就是与时间无关，不妨简记为 ρc。给定孤立系统所处的宏观条件 (比

如给定总能量和总体积等等)，一般来说，最终的热平衡态是唯一的，也就是说无论从任
何满足给定宏观条件的初始 ρc

t=0 开始演化，最终得到的都应该是同一个 ρc。这也就是说，

热平衡时的 ρc 应该是在给定宏观条件下，使得泛函 S(ρc)取极大的唯一系综态。因此，ρc

可以通过将泛函 S(ρc) 对 ρc 变分取极大值来确定。特别的，这样的 ρc 当然完全由系统所

处的宏观条件决定。

不仅如此，注意到 ρc
ti 已经粗粒化了，因此直接对它再次粗粒化 (即进行上面定义过

的相格模糊) 结果将依然是它本身。结合粗粒化演化过程的定义，就告诉我们，热平衡时
使得 ρc

ti+1
= ρc

ti 成立的前提是 ρti+1 = ρc
ti。但是，ρti+1 本来就是按照刘维尔方程将 ρc

ti 往前

演化一个时间步的结果，既然热平衡时这一步演化保持了系综态不变，那根据刘维尔方程

(2.32), 即有 {H,ρc
ti}= 0, 也即

{ρc,H}= 0. (2.45)

值得说明的是，精细化系综态是不可能满足 {ρt ,H} = 0 的，因为相空间分形结构的

物理图像讨论告诉我们，精细化系综态永远在演化，产生越来越精细的相空间结构，永远

不会达到稳定。
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由于热平衡态的熵极大，因此，它也就是我们对系统的微观信息缺失得最多的宏观状

态，是我们对系统微观信息最无知的宏观状态。

单位相格

考虑到量子力学以后，相空间元胞的体积 ω 就不能任意小了，而是有一个最小的元
胞，称作单位相格，其体积为 (2π h̄)m，式中 h̄ 为约化的普朗克常数。

为了说清楚这个结果怎么来的，不妨让我们先考察自由度数目 m = 1 的情况。根据海

森堡不确定原理，位置和动量的不确定度满足 δqδ p ≥ h̄/2。这意味着在相空间中，位置和

动量的测量不能同时精确，最小可分辨区域的大小约为 δqδ p ∼ h̄。

进一步，根据玻尔-索末菲量子化条件，对于单自由度的周期系统，相空间中闭合轨道
所围的面积必须是 (2π h̄) 的整数倍，即∮

pdq = n(2π h̄). (2.46)

量子数 n 每增加 1，相应于新增一个量子态。而由于 n 每增加 1，对应的轨道所围面积增
加 (2π h̄), 这暗示每个量子态占据的相空间面积为 (2π h̄)。综合这个结果和上面不确定原理

的考察结果，我们可以得到结论：相空间的最小可分辨区域具有面积 (2π h̄)，称之为单位

相格，它正好可以被一个量子态占据。

推广到多自由度系统，相应的玻尔-索末菲量子化条件为∮
padqa = na(2π h̄), (2.47)

每个自由度独立量子化。从而单位相格的体积就是各自由度贡献的乘积，也就是 (2π h̄)m。

这一讨论带给我们一个额外的成果，即如果将相空间体积元 dµ 的定义修改成

dµ ≡ dmqdm p
(2π h̄)m , (2.48)

那它计算的就是这一体积微元内所包含的单位相格的数目！或者说这一体积微元内占据的

量子态的个数。特别的，这样修改以后的体积元是无量纲的。由于归一化条件为
∫

dµρ(µ)=
1, 所以这样修改以后，相空间概率密度也跟着变成无量纲的了。因此这样修改以后，吉布
斯熵的定义就更自然了 (因为 log 的自变量自动无量纲了)

S(ρ) =−kB

∫
M

dµρ(µ) log
(
ρ(µ)

)
, (2.49)

不仅如此，这样修改以后吉布斯熵才正好是相应量子熵的经典极限。因此，从现在开始，

我们都默认使用这一修改后的体积元定义。

全同粒子

还有一个修正也值得谈一下，即如果系统中的这 N 个粒子都是同一种粒子，也就是

相互之间不可区分的全同粒子。那么在进行相空间积分时还要稍作修改，具体来说，就是

需要将相空间体积元进一步修正成

dµ ≡ 1
N!

d3Nqd3N p
(2π h̄)3N , (2.50)
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即要多除以一个 N!。

修改的原因如下：假设记第 i 个粒子的位置和动量为 (qi,pi), 则如果这些都是全同粒
子，那相点 (q1,q2, ...,qN ,p1,p2, ...,pN)与粒子任意置换以后的相点 (qP(1),qP(2), ...,qP(N),pP(1),pP(2), ...,pP(N))(式
中 P 代表置换操作) 就要等同为同一点，因为由于粒子间不可区分，它们描述同一个微观
状态。由于 N 个粒子共有 N!种不同的置换，所以我们实际上要把 N!个相点进行这样的等

同。如此一样，系统的相空间就不再是原来的M 了，而是进行这样的等同以后的M /SN ,
这里 SN 代表 N! 个不同置换的集合。如此一来，计算相空间积分的时候，就应该是像下

面这样积 ∫
M /SN

dµ[...], (2.51)

[...] 代表被积函数。如果为了方便我们依然将积分区域保持为原来的M，那我们就多算了

N! 倍，从而要额外除以 N!，即∫
M /SN

dµ[...] =
1

N!

∫
M

dµ[...]. (2.52)

当然，等效的观点就是将原来的积分体积元修改成 (2.50), 同时依然将系统相空间取为原
来的 M。

2.5 再谈热平衡态以及温度的概念

根据前面的定义，一个自发热化的孤立系统，其热力学熵达到极大值的宏观状态就是

热平衡态。本节我们系统地研究一下这种热平衡态。

我们常常把孤立系统分成多个宏观部分，每一个部分就是一个子系统，子系统依然是

宏观系统，只是通常并不是孤立系统，因为不同的子系统之间存在相互作用，不过，子系

统中与周围部分发生相互作用的主要是那些在子系统表面附近的粒子，这些粒子的数目与

自子系统中粒子总数的比值随着子系统尺寸的增加而迅速下降。因此，当子系统足够大时

(指在热力学极限下)，它与周围部分相互作用的能量比子系统的内能要小得多，因此可以
说子系统是“准孤立”的。当然，子系统的准孤立性只在不太长的时间间隔内才成立，而
在足够长的时间间隔内，子系统之间的相互作用不管多么微弱，总会表现出来。不仅如此，

整个系统的热力学平衡之所以能建立，归根结底就是靠这些比较微弱的相互作用。

各子系统之间是彼此微弱地相互作用着，这一事实相当于：当子系统足够大时，可以

认为各子系统之间是统计独立的。进而吉布斯熵的可加性告诉我们：在热力学极限下，整

个系统的热力学熵可以认为是各个子部分热力学熵的和。由于整个系统可以分解成的子部

分的数目正比于整个系统的规模，因此一个合理的推论是：在热力学极限下，整个系统的

热力学熵将正比于系统的规模 (也即是正比于粒子数 N)。
在热力学极限下满足正比于系统规模以及可加性这样两个要求的物理量就称作广延

量。因此，热力学熵是一个广延量，很显然，系统的总能量也是一个广延量 (假设子部分
之间的相互作用很微弱，相互作用能相比可以忽略)。其它的广延量还有比如系统的体积，
系统的粒子数等等。
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假设我们的孤立系统在力学上是通过固定 n 个广延量 xi, i = 1,2, ..,n(不妨记作矢量
x = (x1,x2, ...,xn)) 来刻画。也就是说通过施加外力改变 x 的值，我们就可以对系统做功。
固定 x 的值，就是没有外力对系统做功，这当然是孤立系统的一个必然要求。另外，孤立
系统的能量守恒就意味着总能量 E 也是给定的。总之，我们假定孤立系统所处的宏观条

件由 n+1 个状态变量 (E,x) 刻画 (这里先不考虑粒子数目改变的可能性)。
当孤立系统处于热平衡态时，由于其热力学熵 S(ρc) 达到极大值，前文说过，这时相

应的粗粒化系综态 ρc 完全由宏观条件 (E,x) 决定，所以热平衡态时的热力学熵也必然完
全由 (E,x) 决定，可以记作 S(E,x)。所以，热平衡态熵极大告诉我们的第一个推论就是，
热平衡时的热力学熵必然是一个宏观状态函数，完全由系统的宏观条件 (E,x) 决定。
不妨举一个例子，如图 (2.3) 所示，考察一个被分隔成 n 个不同区域的气体系统，各

区域体积是给定的，不同区域之间的分隔壁透热，但是不透物质，最外面把整个系统围起

来的壁则是绝热的。这个系统就是一个孤立系统，其 x = (v1,v2, ...,vn)，其中 vi 是第 i 个

区域的体积。因此根据上面的分析，这个系统达到热平衡时，其热力学熵是一个状态函数

Figure 2.3: 一个孤立系统的例子

S(E,v1,v2, ...,vn)。

回到一般性的讨论。假设我们把所考察的热平衡孤立系统任意分成 A, B 两部分，根

据广延量的可加性，相应即有

E = EA +EB, x = xA +xB. (2.53)

根据子系统的准孤立性，热平衡时 A,B 两部分各自的热力学熵必然分别为 SA(EA,xA),
SB(EB,xB)。虽然总能量 E 是固定的，但是 EA 和 EB 均是变量。热平衡时熵取极大值就意

味着必定有
∂S

∂EA
= 0. (2.54)

利用熵的可加性 S = SA +SB，即有

0 =
∂SA

∂EA
+

∂SB

∂EB

dEB

dEA
=

∂SA

∂EA
− ∂SB

∂EB
. (2.55)

换言之，热平衡时必定有
∂SA

∂EA
=

∂SB

∂EB
. (2.56)
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由于 A,B 两部分是任意分的，这就意味着子系统熵对能量的偏导在整个系统内部处处一

样，通常记这个偏导的结果为 1/T ,

1
T

≡ ∂S
∂E

. (2.57)

因此，热平衡时系统各部分的 T 相同，称之为温度。至于为什么不把 1/T 叫温度，是因

此称 T 为温度比较符合我们对温度的日常直觉。

因此热平衡时系统各部分的温度得一样。这就说明温度这个量必定不具备可加性，并

且其值与系统规模无关，这样的量就称作强度量。但正如熵一样，温度显然也是一个纯粹

统计性质的量，是在宏观系统中涌现出来的，在微观上没有意义。

假设让某个子系统与一个巨大的热库接触，与热库一起构成一个孤立系统，则根据上

面的讲述，热平衡时，这个子系统的温度必定与热库温度达成一致。假设保持子系统的 x
不变，让整个孤立体系经历一个可逆过程，使得子系统的能量增加 dE, 则根据上面关于温
度的定义，必定有

dE = T dS 假如保持 x 不变, (2.58)

由于这个能量增量不是外力做功的结果 (因为 x 固定)，所以它只能是从热库吸收的热量，
记作 Q, 所以在可逆过程中，

dS =
Q
T
, (2.59)

即在可逆过程中系统从热库吸收的热量与温度的比值等于系统熵的增量。当然，如果是放

热，那就是熵减少。

反过来，假设整个孤立体系经历的是一个不可逆过程，结果是使得子系统从热库吸收

热量 Q。也就是说，热库吸热为 −Q(即放热)。由于热库是巨大的，其吸放热过程均可以
看作是在平衡态下进行的，因此是可逆的。从而根据上面的分析，在这个过程中热库熵的

增量 dSR =−Q/T。依然记子系统熵的增量为 dS, 则在这个过程中，整个孤立体系总熵的
增量为 dS+dSR = dS−Q/T , 由于这是一个不可逆过程，所以必定有 dS+dSR > 0, 也即是

dS >
Q
T
. (2.60)

即系统在不可逆过程中熵的增量大于吸热量与温度之比。通常称这为克劳修斯不等式。

现在，让我们考虑 A,B 两个一起组成了孤立系统，但是彼此并没有达成热平衡的物

体。它们的温度分别为 TA,TB。假设把这两个物体相接触，那么随着时间的推移，这两个

物体将逐渐趋于热平衡，它们的温度将逐渐趋于相同。在这个过程中，总熵 S = SA +SB 是

增加的，即

dS
dt

=
dSA

dt
+

dSB

dt
=

∂SA

∂EA

dEA

dt
+

∂SB

∂EB

dEB

dt
> 0. (2.61)

由于总能量保持守恒，所以 dEA
dt + dEB

dt = 0, 因此

dS
dt

=
( ∂SA

∂EA
− ∂SB

∂EB

)dEA

dt
=
( 1

TA
− 1

TB

)dEA

dt
> 0. (2.62)
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假设两个物体温度均为正，且 B 物体的温度比 A 高，TB > TA > 0, 那么即有 dEA
dt > 0, 相应

也有 dEB
dt < 0, 即 B 物体的能量在减少，而 A 物体的能量在增加，也即是说，B 物体在向

A 物体传热。因此，热量总是从高温物体自发传向低温物体，而不是反过来。这是热力学

第二定律的必然推论。但是，如果 B 的温度为负 (是的，负温度虽然不常见，但有时是可
以实现的)，TB < 0, 而 A 的温度为正 TA > 0，那类似的也能得出，B 物体会向 A 物体传热！

看起来就像是，负温度是一个比任何正温度更高的温度。

回到把孤立系统分成 A,B 两部分的讨论。与引入温度概念时的相关推导完全类似，熵

取极大值的要求也必然告诉我们
∂SA

∂xA
=

∂SB

∂xB
热平衡时, (2.63)

即热平衡时系统各部分的熵对本部分力学状态变量 x 的偏导在不同部分之间保持相等。通
常定义这一偏导为

∂S
∂x

≡ J
T
. (2.64)

由于热平衡时温度 T 在各部分之间保持相等，因此这就说明，热平衡时上式定义的量 J
在各部分之间保持相等。很显然，J = (J1,J2, ...,Jn) 和温度一样，是强度量。

以图 (2.3) 中所示的孤立系统为例，这时候 x = (v1,v2, ...,vn), 相应的 J 则是各区域的
压强，即 J = (p1, p2, ..., pn), 上述结论告诉我们，热平衡时各区域内部的压强为常数。

综合 (2.57) 式和 (2.64) 式，即有

dS =
1
T

(
dE +J ·dx

)
. (2.65)

或者也可以重写成

dE = T dS−J ·dx. (2.66)

其中 T dS 是系统吸收的热量 Q，而 −J ·dx 则是通过改变系统力学状态变量而向系统输入
的能量，因此通常称之为外力对系统所做的功, 记作 W =−J ·dx。所以 (2.66) 式的含义就
是，系统能量的增量等于它吸收的热量加上外力对它做的功, 即 dE = Q+W。这也就是热

力学第一定律。

如果我们反解 S = S(E,x)，进而得到 E = E(S,x), 即把 (S,x) 看作基本的宏观状态变
量。则 (2.66) 式告诉我们

T =
∂E
∂S

|x, J =−∂E
∂x

|S. (2.67)

正因为如此，所以通常又把 x 称之为系统的广义坐标，而 J 则称之为广义力。
常常也会定义一个量 F(T,x)

F(T,x) = extremS
[
E(S,x)−T S

]
, (2.68)

式中 extremS 表示对变量 S 求极值。从而由 (2.66) 式即可以得到 dF = dE −SdT −T dS =

−SdT −J ·dx，即

dF =−SdT −J ·dx. (2.69)

后文我们会以一种不同的方式重新推导这一热力学恒等式。
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2.6 微正则系综

通常称孤立系统热平衡时的系综 ρc 为微正则系综，本节我们来具体确定它。确定的

办法前文已经说过，就是利用热平衡时熵极大，也就是将泛函 S(ρc)对 ρc 变分求极值。这

里对 ρc 的约束就是归一化条件。

不过要注意到我们的孤立系统是处于给定宏观条件下的，这些条件包括给定了它的总

能量 E, 也包括力学条件 x(比方说系统的总体积), 这种力学条件通常是通过在系统的边界
加上很强的约束外力来达成的。也即是说，系统的哈密顿量其实是依赖于 x 的，严格来说
要记作 H(µ,x)。
由于能量守恒，而且总能量为 E,所以 ρc 只能分布在相空间的等能量曲面 H(µ,x) = E

上, 不妨记这张等能量曲面为 Σ(E,x)。不过，由于 ρc 是粗粒化系综态，因此实际上它是

分布在 E < H(µ,x) < E + δE 的能量薄层之内，δE 很小，它来自于对等能量曲面的粗粒

化。也即是说，ρc 必定具有如下形式

ρc(µ) =

σ c(µ) 1
δE , µ ∈上述能量薄层

0, µ不属于上述能量薄层
. (2.70)

其中待定的 σ c(µ) 只在等能量曲面 Σ(E,x) 上有定义。
记上述能量薄层的相空间体积元为 dµ = dΩδE，其中 dΩ 为等能量曲面 Σ(E,x) 上的

面积元。则，ρc(µ) 的归一化条件成为∫
M

dµρc(µ) =
∫

E<H(µ)<E+δE
dΩδEσ c(µ)

1
δE

=
∫

Σ(E,x)
dΩσ c(µ) = 1. (2.71)

不妨记 Σ(E,x) 的总面积为 Ω(E,x)，即

Ω(E,x) =
∫

Σ(E,x)
dΩ =

∫
M

dµ δ
(
H(µ,x)−E

)
. (2.72)

这里 δ
(
H(µ,x)−E

)
是狄拉克 δ 函数。Ω(E,x) 也称作等能量曲面 Σ(E,x) 上的总微观态

数目。

类似的，不难算得

S(ρc) =− kB

∫
E<H(µ,x)<E+δE

dµρc(µ) log
(
ρc(µ)

)
=− kB

∫
Σ(E,x)

dΩσ c(µ) log
(
σ c(µ)

)
+ kB log(δE). (2.73)

不妨将这个结果记作 S(ρc) = SG(σ c)+ kB log(δE)。也即是说，在给定宏观条件下求泛函

S(ρc) 的极大值等价于求如下泛函的极大值

SG(σ c) =−kB

∫
Σ(E,x)

dΩσ c(µ) log
(
σ c(µ)

)
. (2.74)

满足的约束条件为 ∫
Σ(E,x)

dΩσ c(µ) = 1. (2.75)



40 Chapter 2. 统计物理的基本原理

不难用拉格朗日乘子法求得，以上变分问题的解为 σ c(µ) 取常数1，进一步根据 σ c 的归一

化条件 (2.71)，可得

σ c(µ) =
1

Ω(E,x)
. (2.78)

代入 SG(σ c) 的表达式可得 SG = kB log
(
Ω(E,x)

)
.

因此，孤立系统热平衡时的系综为

ρc(µ) =


1

Ω(E,x)
1

δE , µ ∈前述能量薄层

0, µ不属于前述能量薄层
. (2.79)

即热平衡时的系综在前述能量薄层内等概率分布，或者更简单地说，热平衡系综在等能量
曲面 Σ(E,x) 上等概率分布。相应的热力学熵为 S(ρc) = kB log

(
Ω(E,x)

)
+kB log(δE)。由于

kB log(δE) 这一项并不正比于 N, 因此在 N 很大的热力学极限下，这一项相比于前面的广

延项可以忽略。因此，我们直接就把 kB log
(
Ω(E,x)

)
当作热平衡时的热力学熵，写作

S(E,x) = kB log
(
Ω(E,x)

)
. (2.80)

很显然，孤立系统热平衡时这个热力学熵公式与玻尔兹曼熵完全一致！

通常称孤立系统热平衡时这种满足等概率分布的系综为微正则系综。它告诉我们，孤
立系统热平衡时所有可能的微观态以相等的概率出现，这也就是所谓的等概率原理。值得
注意的是，等概率原理描述的是粗粒化系综，而不是精细化系综，后者根本就没有热平衡

的概念。

遍历性，以及系综平均等于时间平均

对等概率原理的一个直观解释是：当孤立系统达到热平衡态时，在一个从微观来看足

够长的时间 τ 之内，系统在相空间中的演化路径会遍历等能量曲面 Σ(E,x) 上的每一个点。
换言之，热平衡态时，系统在演化过程中会等概率地访问等能面上所有可能的微观状态。

通常称这一解释为各态历经假说。

当然，以上解释并不是实际发生的情况，因为等概率原理是粗粒化之后才有的结果。

实际的情况很可能是这样的，系统在足够长的时间 τ 内，其相轨迹可以无限接近等能面上

1变分求解过程如下：首先 SG(σ c) 的变分为

δSG =−kB

∫
Σ(E,x)

dΩ
[

log
(
σ c(µ)

)
+1
]
δσ c(µ). (2.76)

进一步对约束条件使用拉格朗日乘子法，即可以得到如下变分求极值的方程 (λ 为拉格朗日乘子)

0 =−kB

∫
Σ(E,x)

dΩ
[

log
(
σ c(µ)

)
+1
]
δσ c(µ)+λ

∫
Σ(E,x)

dΩδσ c(µ)

=−kB

∫
Σ(E,x)

dΩ
[

log
(
σ c(µ)

)
− (λ/kB −1)

]
δσ c(µ)

⇒ log
(
σ c(µ)

)
= (λ/kB −1). (2.77)

这就等价于 σ c(µ) 为常数。
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任何一点。也即是说，系统虽然不会精确地经过每一个点，但它会访问到任意指定点附近

任意小的邻域。这称之为准各态历经性。

根据各态历经假设，我们就能回答前文在引入系综概念时就提出的问题，即为什么系

综概念是有效的 (至少对热平衡态)，或者说为什么对一个物理量求系综平均的结果可以和
实验上对这个物理量的实际测量结果比较？

具体回答是这样的：首先，在哈密顿绘景中一个物理量 Ot(µ0) = O(µt) 的时间平均定

义如下

O(µt)≡ lim
τ→∞

1
τ

∫ τ

0
O(µt)dt. (2.81)

当然，实际中 τ 并不需要真的趋于无穷，只需要相对于微观时间尺度足够长就可以了，甚
至在宏观上看来可以是一个比较短的时间。由于实际测量一个物理量都需要持续测一段宏

观的时间，所以实验中对物理量的测量值实际就是它的时间平均值。其次，当系统在长时

间 τ 内遍历了整个等能面时，计算时间平均 O(µt) 就相当于把系统在每个微观状态 i 上停

留的时间比例 ti/τ 乘以该状态下的物理量值 O(i), 然后对所有状态求和:

O(µt) = ∑
i

ti
τ
O(i). (2.82)

然后，如果系统是各态历经的，那么它在每个允许的微观状态 i上停留的时间比例 ti/τ, 在
τ → ∞ 时，就恰好等于该微观状态在微正则系综中出现的概率 Pi = ρc(i)dµ。因此

O(µt) = lim
τ→∞∑

i

ti
τ
O(i) = ∑

i
PiO(i) =

∫
M

dµρc(µ)O(µ) = ⟨O(µ)⟩ρc . (2.83)

从而时间平均等于系综平均。因此用系综平均算出来的物理量期望值可以和其实验测量值

比较。

当然，除了前面讨论的准各态历经性之外，各态历经假设还有其它的问题。比如数学

上已经证明，绝大多数真实的物理系统并不会严格遍历整个等能面，有时候系统会被限制

在等能面的一个子集内运动。但是通常人们相信，对于自由度非常大 (宏观系统) 且相互
作用足够复杂的系统，在物理上感兴趣的观测时间尺度 τ 之内，系统能够访问到其相空间
(等能面) 中那些对系综平均有显著贡献的绝大部分区域。这使得时间平均和系综平均在物
理观测精度上是不可区分的。实验和模拟结果都强烈支持这种等价性在宏观系统中的有效

性。

最后，以上对时间平均与系综平均等价性的论证虽然只针对孤立系统的热平衡态，也

就是微正则系综。但是，对于与外界环境有能量或粒子交换并达成热平衡的系统，我们可

以把外界环境包括进来，与所考察的系统一起构成一个大的孤立系统，然后从这个大的孤

立系统出发来讨论问题（比如后文将要讨论的正则系综就是这样处理的）。因此时间平均

与系综平均的等价性同样可以延伸到这样的系统。因此，即使对于后文的正则系综，其对

系综平均的计算结果也同样可以和相应实验测量结果比较。

举例：理想气体
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下面研究一个简单而又重要的孤立系统，N 个全同粒子所组成的理想气体系统。所谓

理想气体，指的是这些粒子只在相互碰撞的那一瞬间有相互作用，其余时间都是自由的，

而且假设这种碰撞是完全弹性碰撞。假设把这种理想气体放在一个体积为 V 的盒子里面，

盒子是绝热的，因此这些盒内的气体就构成一个孤立系统。给定气体的总能量为 E, 并让
气体达到热平衡，这就对应一个微正则系综。

由于相互作用是瞬时的，且不该变粒子碰撞前后的总动能，因此在盒子内部 (不包括
边界)，系统的哈密顿量就是

H(µ) =
N

∑
i=1

p2
i

2m
, (2.84)

式中 m 是粒子的质量，pi 是第 i 个粒子的动量。当然我们可以引入 3N 个分量的 pa =

(p1,p2, ...,pN)，并把上述哈密顿量改写成

H(µ) =
1

2m

3N

∑
a=1

p2
a. (2.85)

下面计算等能面上的微观态数目 Ω(E,V ), 根据 (2.72) 式，有

Ω(E,V ) =
∫ 1

N!(2π h̄)3N d3Nqd3N pδ
( 1

2m

3N

∑
a=1

p2
a −E

)
(2.86)

对坐标 q的积分给出 V N。又注意到 δ
( 1

2m ∑3N
a=1 p2

a−E
)
= 2mδ

(
∑3N

a=1 p2
a−2mE

)
。令 ∑3N

a=1 p2
a =

p2, 从而在 3N 维动量空间中引入球坐标，那么 d3N p = dΩ3N p3N−1d p, 式中 dΩ3N 为 3N 维

空间中单位球面的面积微元, 相应的整个单位球面的面积记作 Ω3N。综合这些结果，即有

Ω(E,V ) =
1

N!(2π h̄)3N 2mV N
∫

dΩ3N p3N−1d pδ (p2 −2mE)

=
1

N!(2π h̄)3N mV N 2π3N/2

Γ(3N/2)
(
√

2mE)3N−2

=
3
2

N
E

V N

(2π h̄)3N
(2πmE)3N/2

N!(3N/2)!
(2.87)

式中我们利用了 n 维空间中单位球面的面积公式 Ωn =
2πn/2

Γ(n/2)。

因此，系统的熵 S(E,V ) = kB logΩ(E,V ) 为，

S(E,V ) = NkB log
[ V
(2π h̄)3 (2πmE)3/2]− kB log[N!(3N/2)!]. (2.88)

其中我们忽略了项 kB log
( 3

2
N
E

)
, 因为最终我们需要取 N 很大而 N/E 固定的热力学极限，

这时这一项相比于其它项可以忽略。注意到，当 x 很大时，log(x!) ≈ x logx− x, 从而不难
得到

S(E,V ) =
5
2

NkB +NkB log
[ V

N(2π h̄)3

(4πmE
3N

)3/2
]
. (2.89)

进而根据温度的定义式 (2.57) 可以得到

1
T

=
3
2

kB
N
E

⇔ 3
2

kBT = E/N. (2.90)
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即 3
2 kBT 是每个粒子的平均能量。由于这个平均能量由粒子的平均速度决定，从而也即是

说，温度衡量了粒子的平均运动速度，平均速度越高则温度越高。另外，根据定义式 (2.64),
可以算得系统的压强 P

P
T

=
∂S
∂V

= kB
N
V

⇔ PV = NkBT. (2.91)

这个结果也就是理想气体的物态方程。在历史上，这个物态方程最早是通过实验归纳出来

的，我们这里给出了它的理论推导。

通过对理想气体微正则系综的概率密度函数进行积分，积去除 p1 之外的所有其它

变量，可以求出单个粒子的动量概率分布函数 p(p1)。根据等概率原理，即 (式中我们将
Ω(E,V ) 重记为了 Ω(E,V,N))

p(p1)≡
∫

E<H(µ)<E+δE

1
N!

d3q1
1

(2π h̄)3

N

∏
i=2

d3qid3pi

(2π h̄)3
1

Ω(E,V,N)δE
. (2.92)

不难看出，上述积分的最终结果是

p(p1) =
V
N

1
(2π h̄)3

Ω(E − p2
1

2m ,V,N −1)
Ω(E,V,N)

. (2.93)

代入上面关于 Ω(E,V,N)的计算结果，并取热力学极限，比如注意到 (3N/2)!
(3(N−1)/2)! ≈ (3N/2)3/2,

同时注意到在热力学极限下 p2
1

2m ≪ E, 即有

p(p1) = (
3N
2
)3/2 1

(2πmE)3/2

(
1− p2

1
2mE

)3N/2−1

=
( 3N

4πmE

)3/2 exp
(
− 3N

2
p2

1
2mE

)
. (2.94)

第二行是利用了热力学极限下 N → ∞, 但是 E/N 固定。代入温度的关系式 3
2 kBT = E/N,

即有

p(p1) =
( 1

2πmkBT

)3/2 exp
(
− p2

1/2m
kBT

)
. (2.95)

这就是著名的麦克斯韦-玻尔兹曼分布 (也就是所谓麦克斯韦速度分布律)。在历史上，这
条定律的重要性是怎么强调都不为过的，可以说它是统计物理的真正开始。

推广：比特的统计力学

到现在为止我们所研究的都是微观粒子所构成的孤立系统，微观粒子的状态是连续

的。然而类似的处理也可以推广到状态离散的客体所构成的系统。最典型的就是比特，一

个比特仅有两个离散状态，0 和 1。物理上，0 态可能是某种物质的低能状态，1 态则是高
能状态 (比如通过高低电压实现)，不妨设单个比特 0 态的能量为 0, 1 态的能量为 ε。我们
要研究的就是 N 个比特所构成的一个孤立系统。
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很显然这系统的任何一个状态刚好对应一个 N位的 2进制数，如 (001001100), (101001101)(以
N = 9 为例), 一般地可以记作 (n1n2 · · ·nN), 式中 ni = 0,1。给定系统的总能量 E 就相当于

要求

N

∑
i=1

niε = E. (2.96)

很显然，这个总能量完全由 1 态比特的总数目 ∑N
i=1 ni = N1 ≤ N 决定，E = N1ε。

给定总能量 E, 假设这个 N 比特系统达到了热平衡态，那么根据微正则系综的等概率

原理，所有总能量等于 E 的微观状态将以等概率出现, 很显然这样的微观态的总数为 (相
空间积分换成对离散的状态求和)

Ω(E) = ∑
n1,n2,...,nN |∑i ni=E/ε

1 =
N!

N1!(N −N1)!
. (2.97)

从而系统的热力学熵为

S(E) = kB logΩ(E) = kB[logN!− logN1!− log(N −N1)!]. (2.98)

在 N1,N ≫ 1 的热力学极限下，利用 logN! ≈ N logN −N, 可以得到

S(E) =−NkB
[N1

N
log

N1

N
+

N −N1

N
log

N −N1

N

]
=−NkB

[ E
Nε

log
E

Nε
+
(
1− E

Nε
)

log
(
1− E

Nε
)]
. (2.99)

进而可以算得热平衡时的温度为

1
T

=
∂S
∂E

=−kB
1
ε

log
( E

Nε −E

)
. (2.100)

特别的，我们注意到，当 E < Nε/2 时，温度为正，因为这时随着总能量的增加，微观态

数目也跟着增加！但是，当 E > Nε/2 时, 温度为负！这是因为，这时随着总能量的增加，
微观态数目反而在减少。总之，这个系统可能出现负温度！

反过来，我们也可以将总能量 E 作为温度 T 的函数，结果是

E(T ) =
Nε

exp(ε/kBT )+1
. (2.101)

很显然，当 T > 0 时，E(T ) 是 T 的单调增函数，T = 0 时 E = 0, 之后随着温度的升高，E

也跟着增加，当 T =+∞ 时，E 达到最大值 Nε/2。如果总能量超过这个值，那系统就处

于负温度状态。但是，一旦让负温度系统与周围正温度的环境接触，那它就会向环境传热，

从而失去能量，最终使得能量降到 Nε/2 之下，之后系统温度变为正，并逐渐和环境达成

热平衡。

可以定义这个系统的热容量 C，也就是温度每升高一度能量 E 的增加量。不难算得

C =
dE
dT

= NkB(ε/kBT )2 exp(ε/kBT )
[

exp(ε/kBT )+1
]−2

. (2.102)
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不难看到 T →+∞ 时，C → 0, 对于微观态数作为能量 E 的函数 Ω(E) 有上界的系统，这

是一种典型的现象。另外，也可以注意到 T → 0+ 时，C ∝ exp(−ε/kBT )→ 0, 这是一种最
低能态和最低激发态之间有能隙 (在这里就是 ε) 的系统的典型行为。

同样，可以计算热平衡时，单个比特处于 n1 态的概率 p(n1)，根据等概率原理，即

p(n1) = ∑
n2,...,nN |∑i ni=E/ε

1
Ω(E,N)

=
Ω(E −n1ε,N −1)

Ω(E,N)
. (2.103)

代入 Ω(E,N)(即前面的 Ω(E)) 的表达式，并取热力学极限，不难得到

p(0) =
1

1+ exp(−ε/kBT )
, p(1) =

exp(−ε/kBT )
1+ exp(−ε/kBT )

. (2.104)

2.7 正则系综

从现在开始，除非特别说明，所有我们谈到的系综态都默认是粗粒化系综态，因此可

以把相应的 ρc 简记为 ρ，去掉强调粗粒化的上标 c。

前面我们讨论的都是孤立系统，但实际中大量的系统都是处于一个大的环境中，通常

可以近似认为环境有一个恒定的温度，可以和系统交换热量，因此可以看作是一个热库。

因此有必要研究和一个大的恒温热库相接触的系统，热库和所关心的系统一起构成一个大

系统，这个大系统是孤立系统。

假设所关心的系统由系综态 ρ 描述，ρ 不一定为热平衡态，系统的热力学熵为 S(ρ)，
热库的温度为 T , 则我们可以定义如下量

F(ρ) = E(ρ)−T S(ρ), (2.105)

式中 E(ρ) = ⟨H⟩ρ 为系统能量期望值。F(ρ) 称作系统的自由能，它为什么这么定义，以
及其物理含义是什么，我们马上就会看到。

假设整个大系统经过了某个演化过程 (不一定是可逆过程)，在过程之后子系统的系综
态变成了 ρ ′, 则子系统的熵增为

δS ≡ S(ρ ′)−S(ρ). (2.106)

子系统的能量增量为

δE ≡ E(ρ ′)−E(ρ). (2.107)

假设整个过程子系统从热库吸收的热量为 Q(从而热库吸收的热量为 −Q), 子系统对热库
所做的功为 W , 则根据热力学第一定律

δE = Q−W. (2.108)

记热库在过程中的熵增为 δSR, 则由于热库非常大，其吸放热过程可以看成是可逆的，
从而即有

δSR =−Q/T. (2.109)
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由于整个大系统为孤立系统，根据热力学第二定律，经过这个过程其总熵一定是增加的,
从而即有

δS+δSR = δS−Q/T ≥ 0. (2.110)

代入 δE = Q−W , 即有 −(δE −T δS)≥W。根据对自由能的定义，也即是

−δF ≥W. (2.111)

上面这个结论告诉了我们自由能的含义，即：一个系统自由能的减少可以转换成它向

外做的功，在极限情况下可以完全转换成功，但是，系统永远不能向外做超出自由能减少

量之外的功！换言之：自由能是系统向外做功的潜能，衡量的是系统做功的能力！

注意自由能的定义式为 F = E −T S, 不等于系统的平均能量 E, 而是要减去 T S。也即

是说，系统总能量中由 T S 衡量的这部分能量并不能用来做功，而是一种废能量。由于熵

S 衡量了我们对系统微观信息的无知程度，如果 S 减少，相应的废能量就减少，从而系统

向外做功的能力就增强。换言之，如果我们对系统的微观信息了解得越多，那就可以用它

做更多的功。极限情况下，我们完全了解了系统的微观信息，从而 S = 0，那么系统的总

能量 E 就全部都可以用来做功。

为了理解上述所讲，我们再举一个例子：考虑一个密闭的房间，房间外面的环境温度

是恒定的，房间里面的空气有宏观流动。但是，假设我们对房间状况的了解不够仔细，我

们忽略了空气的宏观流动，而认为房间已经达到了热平衡，那我们就不能利用空气做多少

功。而如果我们对空气的流动了解得很清楚，我们获取了额外的信息，那就可以把风力发

电机放置在空气流动比较快的地方，从而就能利用房间里的空气做更多的功。总之，信息

了解得越多，可以利用的自由能就越多！

回到公式 (2.111)。依然假定系统处在恒温环境之中 (即和一个大的恒温热库接触)，但
是假设系统并不向外做功 (比如保持系统的力学条件 x 不变)，即 W = 0, 那么公式 (2.111)
就变成

δF ≤ 0. (2.112)

也即是说，对于这样的系统，其自发过程只能使得自由能减少。特别的，当自由能自发降

低到极小值，系统就会达成热平衡！也即是说，对于一个与恒温热库接触并且不向外做功

的系统，其热平衡状态对于自由能 F(ρ) 的极小值状态，相应的热平衡系综可以通过将泛
函 F(ρ) 对 ρ 变分取极值来求得。

由于公式 (2.111) 是通过对整个包括热库在内的大系统应用热力学第二定律得到的，
所以自由能自发降低这个结论实际上等价于热力学第二定律 (假设系统不向热库做功)。

下面我们根据自由能极小的条件来求上述这种系统的热平衡系综。为此对泛函 F(ρ)
变分，根据定义式 (2.105), 不难得到

δF(ρ) =
∫

dµH(µ)δρ + kBT
∫

dµ[logρ +1]δρ . (2.113)
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当然，还要考虑到约束条件
∫

dµρ(µ) = 1，进而利用拉格朗日乘子法，即可以得到自由

能极小值对应 ρ =C exp
(
−H/kBT

)
, 其中 C 为常数，由归一化条件确定，常常将 C 写成

1/Z，从而热平衡系综为

ρeq(µ) =
1
Z

exp
[
− H(µ)

kBT

]
. (2.114)

根据归一化条件，有

Z =
∫

M
dµ exp

[
− H(µ)

kBT

]
. (2.115)

通常称这种热平衡系综为正则系综。
当然，由于在过程中系统并不向环境做功，从而其宏观力学条件 x 是固定的，另外，

环境热库的温度 T 又是恒定的，从而 (2.115) 式更准确的写法应该是

Z (T,x) =
∫

M
dµ exp

[
− H(µ,x)

kBT

]
. (2.116)

通常称 Z (T,x) 为系统的配分函数。
另一种证明正则系综对应于自由能极小的办法是计算相对熵 S(ρ ∥ ρeq),

T S(ρ ∥ ρeq) = kBT
∫

dµρ log
(
ρ/ρeq

)
= kBT logZ +F(ρ). (2.117)

利用相对熵大于等于零，即有 kBT logZ +F(ρ)≥ 0, 等于号在 ρ = ρeq 时取到，很显然，这

相应于自由能 F(ρ) 的极小。所以，热平衡态对应自由能的极小，这时

kBT logZ +F(ρeq) = 0 ⇒ F(T,x) =−kBT logZ (T,x), (2.118)

式中 F(T,x)≡ F(ρeq) 为热平衡时的自由能。

值得注意的是，虽然这里考察的系统不是孤立系统，但是由于它和热库的相互作用只

发生在系统的表面，只要所考察的系统足够大，所考察的时间足够短，那么这些来自表面

的相互作用就可以忽略，这也就是前面所谓的“准孤立”性。根据这个准孤立性，所考察
系统的粗粒化系综必然也要满足刘维尔方程。特别的，热平衡时的 ρeq 要满足 (2.45) 式,
也就是

{ρeq,H}= 0. (2.119)

代入 ρeq 的 (2.114) 式，很容易看到，这的确是满足的。

热力学

常常会引入逆温度 β，其定义为

β ≡ 1
kBT

. (2.120)

根据配分函数的定义 (2.115)，不难算得热平衡时系统的平均能量 E(T,x) 为

E(T,x)≡ ⟨H⟩ρeq =− ∂
∂β

logZ . (2.121)
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定义热平衡时系统的熵为 S(T,x)≡ S(ρeq)，则根据自由能的定义式 (2.105)，有

F(T,x) = E(T,x)−T S(T,x)

⇒ S(T,x) = kB
[

logZ +βE(T,x)
]
. (2.122)

第二行代入了 (2.118) 式。同样是根据 (2.118)，并综合上面的结果 (注意 ∂
∂T =−kBβ 2 ∂

∂β )，
可以进一步算得

∂F
∂T

=−S. (2.123)

定义热平衡时的平均广义力 J 为

J ≡−⟨ ∂
∂x

H⟩ρeq = kBT
∂ logZ

∂x
. (2.124)

(注意, 由于 ρeq 也依赖于 x, 所以 J ̸=− ∂E(T,x)
∂x ) 则根据 (2.118) 式可以得到

J =−∂F
∂x

. (2.125)

根据 (2.123) 式和 (2.125) 式，即有

dF =−SdT −J ·dx. (2.126)

正好是我们之前得到过的 (2.69) 式。关于这一热力学恒等式的两种不同推导方法说明，微
正则系综和正则系综在热力学极限下是等价的。

常常定义系统的热容为

Cx ≡
∂E(T,x)

∂T
. (2.127)

其中 Cx 的下标 x 是用来强调相应的升温吸热是在保持 x 固定的前提下进行的。注意，
E(T,x) 是一个广延量，所以在热力学极限下将正比于粒子数 N, 而 T 为一个强度量，在热

力学极限下与 N 无关，所以，根据定义，热容 Cx 也必然为一个广延量，在热力学极限下

将正比于 N。

根据 (2.121) 式，不难得到

−
∂ ⟨H⟩ρeq

∂β
=− ∂

∂β

[ 1
Z

∫
dµH(µ)e−βH(µ)

]
= ⟨H2⟩ρeq +

1
Z 2

∂Z

∂β

∫
dµH(µ)e−βH(µ)

= ⟨H2⟩ρeq +
1
Z

∂Z

∂β
⟨H⟩ρeq

= ⟨H2⟩ρeq −
(
− ∂ logZ

∂β
)
⟨H⟩ρeq = ⟨H2⟩ρeq − (⟨H⟩)2

= ⟨(H −⟨H⟩)2⟩ρeq . (2.128)

另一方面 − ∂ ⟨H⟩ρeq
∂β = kBT 2 ∂ ⟨H⟩ρeq

∂T = kBT 2Cx, 所以综合起来即有

⟨(H −⟨H⟩)2⟩ρeq = kBT 2Cx (2.129)
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这说明两件事情：第一，⟨(H −⟨H⟩)2⟩ρeq 是一个广延量，在热力学极限下正比于 N。而

⟨H⟩本身也是广延量，在热力学极限下也正比于 N。这说明 H的相对误差
√
⟨(H −⟨H⟩)2⟩/⟨H⟩∝

1/
√

N, 因此在热力学极限下趋于零。这说明，在热力学极限之下，正则系综的相空间概率
分布趋于集中在 ⟨H⟩= E 的等能量曲面上，也即是与微正则系综一致。这正好说明了这两

种系综在热力学极限之下的等价性。

第二，由于 (H −⟨H⟩)2 > 0, 从而 ⟨(H −⟨H⟩)2⟩> 0, 所以上面的结果说明

Cx > 0, (2.130)

即热平衡系统的热容一定为正。需要说明的是，的确存在负热容的系统，比如黑洞就是 (根
据黑洞热力学)，但根据我们这里的证明，这样的系统必然无法与环境达成稳定的热平衡。

由于热容 Cx 是在外界没有向系统做功的情况下定义的 (即保持力学条件 x 固定)，所
以 CxdT 就是系统从外界吸收的热量，因此也就等于 T dS, 因此，我们有

dS =
CxdT

T
. (2.131)

Cx 当然只是温度 T 的函数，因此可以将这个式子积分，从绝对零度积到 T 度，即有

S(T )−S(0) =
∫ T

0
dT

Cx

T
. (2.132)

S(0) 是多少呢？根据量子力学，绝对零度时系统只能处在基态上，也就是最低能态上，

如果基态不简并，也即是说，相应的微观态数目 Ω = 1，那么当然就有 S(0) = 0。但是，如

果基态有简并，那 S(0) 就可能不是零，这时候通常称之为剩余熵 (residual entropy)。
另外，你可能担心积分 (2.132) 在 T → 0 的下限处发散。如果真的发散了，那要么

S(T )→+∞, 要么 S(0)→−∞。但是，根据 S = kB logΩ，熵应该是有限的非负数。从而，唯
一的可能即是

当T → 0时 Cx → 0. (2.133)

这个结果也称之为热力学第三定律，或者能斯特定理。其等价的表述是：当 T → 0 时，系

统可逆过程熵的变化也趋于零，即

lim
T→0

∆S = 0. (2.134)

极大熵原理

不难利用拉格朗日乘子法证明：正则系综的 ρeq 使得熵 S(ρ) 在固定系统能量期望值
的约束条件下取极大值。即，ρeq 使得如下泛函在一定的约束下取极大值

S(ρ) =−kB

∫
dµρ(µ) logρ(µ), (2.135)

这里的约束条件为∫
dµH(µ)ρ(µ) = E(T,x) (固定),

∫
dµρ(µ) = 1. (2.136)
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其中的一个拉格朗日乘子最终可以等同为 1/T，具体的变分证明过程我们留给读者自行完

成。

这里简单说一下用相对熵如何证明：根据 S(ρ ∥ ρeq)≥ 0 不难得到

S(ρ) =−kB

∫
dµρ(µ) logρ ≤−kB

∫
dµρ logρeq

不等式右边= kB logZ + kBβ ⟨H⟩ρ = kB
[
Z +βE(T,x)

]
= S(ρeq).

其中倒数第二个等于号用到了能量期望值固定的约束条件，最后一个等于号代入了 (2.122)
式。

以上结论说明，即使对于正则系综，其热平衡态也是某种在给定条件下对系统微观信

息最无知的状态，这里的给定条件就是给定系统宏观能量的期望值。因此，无论是孤立系

统的微正则系综还是与恒温热库接触的正则系综，热平衡态都是某种对微观信息最无知的

状态。人们通常把这个结论推广到一般情况，即：一个系统的热平衡态即是在给定一些物
理量的期望值的前提下，人们对系统微观信息最无知的宏观状态 (也就是熵极大的宏观状
态)。之所以要给定一些物理量的期望值，是因为这些期望值正是我们了解到的系统的宏
观信息。通常称这为极大熵原理。

当然，人们可能会问，为什么不直接从极大熵原理来推导正则系综的热平衡态呢？原

因在于，这种系统并不是孤立系统，因此它本身并没有熵增加原理，因此我们并不能预先

论证热平衡时极大熵为什么成立。相反，我们只能事后验证，热平衡时的 ρeq 刚好使得系

统的熵在给定能量期望值的约束条件下取极大。并且正是基础于这个观察，我们才能归纳

并推广出极大熵原理。

广义能量均分定理

从现在开始，我们默认物理量的期望值均是在热平衡态下求的。

由于相空间为 6N 维，因此 µ 有 6N 个分量，记为 µ i = (q1, ...,q3N , p1, ..., p3N), 则可以
证明:

⟨µ i ∂H
∂ µ j ⟩= δi jkBT. (2.137)

这就是所谓的广义能量均分定理。特别的，如果对于某个分量 µ j, H 只含有它的二次项，

记这个二次项为 H j, 则根据齐次函数的欧拉定理，我们有从而 µ j ∂H
∂ µ j = µ j ∂H j

∂ µ j = 2H j。从

而上面的广义能量均分定理就告诉我们

⟨H j⟩=
1
2

kBT. (2.138)

这就是著名的能量均分定理。

对广义能量均分定理的证明如下：

⟨µ i ∂H
∂ µ j ⟩=

1
Z

∫
dµµ i ∂H

∂ µ j e−βH

=
1
Z

∫ [∫
µ i ∂H

∂ µ j e−βHdµ j
]
dµ̂ j, (2.139)
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式中 dµ̂ j 表示对 dµ 中除 µ j 之外的所有变量积分。另一方面，根据分部积分，有∫
µ i ∂H

∂ µ j e−βHdµ j =− 1
β

∫ ∂
∂ µ j

(
µ ie−βH)dµ j +

1
β

δi j

∫
e−βHdµ j

=− 1
β
(
µ ie−βH)|相空间无穷远处+

1
β

δi j

∫
e−βHdµ j. (2.140)

通常假定相空间无穷远处 H →+∞, 从而 µ ie−βH → 0，从而即有∫
µ i ∂H

∂ µ j e−βHdµ j = kBT δi j

∫
e−βHdµ j. (2.141)

代入 (2.139) 式，即有

⟨µ i ∂H
∂ µ j ⟩= kBT δi j

1
Z

∫
e−βHdµ = kBT δi j. (2.142)

从而就证明了广义能量均分定理。

举例

1. 比特的统计力学：下面我们用正则系综来讨论前面的 N 个比特的统计力学。很显

然系统的微观态为 µ = {ni}, 哈密顿量为 H(µ) = ε ∑N
i=1 ni, 从而，相应的正则系综概率分

布为

p(µ) =
1
Z

exp
[
−βε

N

∑
i=1

ni
]
. (2.143)

相应的配分函数为

Z (T ) = ∑
{ni}

exp
[
−βε

N

∑
i=1

ni
]
=
( 1

∑
n1=0

e−βεn1
)
· · ·
( 1

∑
nN=0

e−βεnN
)

= (1+ e−βε)N . (2.144)

从而可以得到自由能为

F(T ) =−kBT logZ =−NkBT log[1+ e−ε/kBT ]. (2.145)

进而可以算得熵为

S =−∂F
∂T

= NkB log[1+ e−ε/kBT ]+NkBT
( ε

kBT 2

) e−ε/kBT

1+ e−ε/kBT . (2.146)

能量的期望值为

E(T ) =−∂ logZ

∂β
= N

εe−βε

1+ e−βε . (2.147)

另外，由于 p(µ) = ∏N
i=1 pi(ni), 从而容易得到单个比特的概率分布

p1(n1) =
e−βεn1

1+ e−βε . (2.148)
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这个结果以及 E(T ) 的结果都正好与前面微正则系综求出来的相同。这又一次说明了，微

正则系综和正则系综在热力学极限下是等价的。

2. 理想气体：现在把正则系综应用于理想气体。首先，在盒子内部概率分布为 (盒子
外面概率当然为零)

ρ(µ) =
1
Z

exp
[
−β

N

∑
i=1

p2
i

2m

]
. (2.149)

相应的配分函数为 (请注意高斯积分的计算)

Z (T,V ) =
∫ 1

N!

N

∏
i=1

d3qid3pi

(2π h̄)3 exp
[
−β

N

∑
i=1

p2
i

2m

]
=

V N

N!
(mkBT

2π h̄2

)3N/2
. (2.150)

进而可以求出自由能为

F =−kBT logZ =−NkBT
[

log(Ve/N)+
3
2

log
(mkBT

2π h̄2

)]
, (2.151)

这里已经取了热力学极限。进一步可以算得熵为

S =−∂F
∂T

= NkB
[

log(Ve/N)+
3
2

log
(mkBT

2π h̄2

)]
+

3
2

NkB. (2.152)

同样可算得内能的期望值为

E(T ) =−∂ logZ

∂β
=

3
2

NkBT. (2.153)

很明显，由此即有 CV = dE
dT = 3

2 NkB。当 T → 0 时，并没有 CV → 0，可见理想气体并不满

足热力学第三定律。但这只是说明，理想气体这一理论模型在温度很低时是失效的。类似

的，可算得系统的压强为 (根据 J =− ∂F
∂x )

P =−∂F
∂V

=
NkBT

V
⇒ PV = NkBT. (2.154)

这些结果均与前面用微正则系综导出的结果一致。并且同样，这里也可以导出和前面一样

的麦克斯韦-玻尔兹曼分布 (也就是所谓麦克斯韦速度分布律)。

2.8 麦克斯韦妖

1867年 12月 11日麦克斯韦在写给彼得·格思里·泰特（Peter Guthrie Tait）的一封
信中描述了一个著名的思想实验。它再次出现在 1871年写给约翰·威廉·斯特鲁特（John
William Strutt）的一封信中，然后在麦克斯韦 1872 年出版的名为《热论》的热力学著作
中向公众展示。这就是著名的麦克斯韦妖思想实验。

麦克斯韦想象一个容器分为两部分，A 和 B，如图 (2.4) 所示。这两部分在相同的温
度下充满相同的气体，并彼此相邻放置。一个想象中的妖守卫着两部分之间的活板门，并

观察两侧的分子。当 A 中速度超过平均水平的分子飞向活板门时，妖会打开它，分子就会
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从 A 飞到 B。同样，当一个比平均速度慢的分子从 B 飞向活板门时，妖会让它从 B 飞到

A。而其它情况下，妖都会把这扇活板门紧紧关上。因此，B 中分子的平均速度会增加，而

A 中分子的平均速度会减慢。由于平均分子速度对应于温度，因此 A 的温度会自动降低，

而 B 的温度会自动升高，热量自发从 A 传向了 B，这与热力学第二定律相反。

Figure 2.4: 麦克斯韦妖

麦克斯韦描述说：

...... 如果我们设想一个生物，他的官能如此敏锐，以至于他可以跟踪其过程中
的每一个分子，那么这样一个生物，其属性本质上与我们自己的属性一样有限，

但他将能够完成我们不可能的事情。因为我们已经看到，在一个温度均匀的充

满空气的容器中，分子的运动速度绝不是均匀的，尽管它们中任意选择的大量

分子的平均速度几乎是完全均匀的。现在让我们假设这样一个容器被分成两部

分，A 和 B，其中有一个小孔，并且一个可以看到单个分子的存在打开和关闭

这个孔，以便只允许较快的分子从 A 到 B，只允许较慢的分子从 B 到 A。因

此，他将不需要做功，就能提高 B 的温度并降低 A 的温度，这与热力学第二

定律相矛盾。

那么这个思想实验到底是否违反热力学第二定律呢？回答是，并不违反。原来，要确

定是否让分子通过，妖必须获取有关分子状态的信息，并丢弃或储存它。丢弃它会导致信

息熵立即增加，但妖的内存是有限的，它不能无限期地存储这些微观信息。实际上，为了

能持续地获取分子运动状态的信息，妖必须不断地清空其内存。具体来说就是，每经过一

个相对于微观过程来说足够长而相对于宏观过程来说足够短的时间 τ，妖的内存就会满，
就需要清空其内存，也就是擦除掉它之前在内存中记录下来的那些信息。而擦除信息就会

导致信息熵增加，进而也就会导致热力学熵增加。因此，考虑到这部分熵的增量之后，在

宏观的时间尺度上，整个系统的热力学熵一直都是增加的！麦克斯韦妖的存在并不违反热

力学第二定律。实际上，这个思想实验只是说明了，热力学熵在本质上也是一种信息熵！

当然，以上分析是把妖包含在系统之内。如果把妖看成是系统之外的存在，特别的，

由于在系统之外，所以妖可以自带一个来自外面的无限存储空间的“硬盘”，并永不擦除

信息。但如此一来，气体本身就不是孤立系统了，当然就可以熵减少。实际上，它正好说
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明，热力学平衡态是外界对系统微观信息最无知的状态，如果外界能够像妖一样，额外获

取系统的微观信息，那我们就可以逆转热平衡，甚至可以利用这种对热平衡的逆转从系统

中提取额外的功！



3. 相互作用粒子所组成的系统

理想气体这样的系统过于简单了，在真实系统中粒子之间的相互作用往往起到决定性

的作用。本章将以弱相互作用气体和两维伊辛模型为例，讨论如何利用统计物理研究相互

作用粒子所组成的系统，特别是讨论如何计算出这样的系统的配分函数，因为其它热力学

量都可以利用配分函数算出来。本章介绍的办法是进行近似计算，具体来说是微扰展开，

特别是利用图形表示来进行微扰展开。将合适的近似方法应用于各种相互作用粒子系统已

经成为现代统计力学的主要组成部分。

3.1 弱相互作用气体

前面我们用统计物理的原理考察了理想气体系统，也就是哈密顿量中无需包含相互作

用项的粒子体系。但是，更现实的多粒子体系都是粒子间的相互作用项不能忽略的体系，

比如现实中的气体就是这样的体系，正因为有了这些相互作用项，我们才能理解气体转变

成液体的相变现象。有了相互作用项以后配分函数的计算就变得困难起来，往往需要发展

系统的近似办法，本节将对弱相互作用的气体发展这样的一种近似计算办法。所谓的弱相

互作用气体，就是密度很低以至于可以对粒子间的相互作用进行微扰展开的气体。

3.1.1 配分函数

从前面章节中对理想气体的讨论可以看出，统计物理的关键步骤就是计算配分函数，

有了配分函数就能计算出各种热力学量。所以，让我们从计算弱相互作用气体的配分函数

开始。
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首先，写出系统的哈密顿量

H(µ) =
N

∑
i=1

p2
i

2m
+U(r1,r2, · · · ,rN), (3.1)

式中 U 为粒子间的相互作用势能，通常只和粒子的位置坐标 ri 有关。进一步，我们假设

粒子间的相互作用都是两体作用，也就是只发生在粒子对之间 (与其余粒子无关)，具体来
说，即设

U = u1,2 +u1,3 + · · ·+u1,N +u2,3 + · · ·+ · · ·uN−1,N = ∑
对

ui, j, (3.2)

式中 ui, j 表示 i 粒子与 j 粒子这一对粒子间的相互作用势能，即 ui, j =V (ri,r j)。

为了计算系统的配分函数，即是要计算如下积分

Z =
1

N!
1

(2π h̄)3N

∫
d3r1 · · ·d3rNd3p1 · · ·d3pNe−βH(µ). (3.3)

注意到相互作用只和粒子的位置坐标有关，和动量无关，从而对动量坐标的积分其实和理

想气体的情形完全一样。比方说，∫
d3pie−βp2

i /2m = (2πmkBT )3/2. (3.4)

从而即可以将上述配分函数写成

Z = Zideal ·Zc, (3.5)

其中 Zideal 就是理想气体的配分函数，也即是

Zideal =
V N

N!
(mkBT

2π h̄2

)3N/2
. (3.6)

Zc 当然就是对位置坐标积分的部分，具体来说

Zc =
1

V N

∫
d3r1 · · ·d3rNe−βU . (3.7)

通常称 Zc 为位形积分 (configuration integral), 显然，一切的关键都在如何计算这个位
形积分。由于假设粒子间的相互作用都是两体作用，因此代入 (3.2) 式，即可以进一步将
(3.7) 式写成

Zc =
1

V N

∫
d3r1 · · ·d3rN ∏

对
e−βui, j . (3.8)

式中 ∏对 表示对所有不同的 i, j 对的乘积。

从而，系统的自由能就可以分解成理想气体和位形积分两部分的贡献之和

F =−kBT logZ =−kBT logZideal − kBT logZc. (3.9)
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3.1.2 集团展开

为了算出 (3.8) 式，最终当然还需要一个 ui, j 的具体公式。但是现在，我们只需要知

道它随着粒子 i, j 之间距离的变大而变为零就可以了。尤其是对于密度很低的稀薄气体而

言，粒子间的距离都很大，以至于 βui, j ≪ 1, 因此玻尔兹曼因子 e−βui, j 很接近于 1。基于
这一点，不妨将 e−βui, j 与 1 的偏差表示出来，即定义

e−βui, j ≡ 1+ fi, j, (3.10)

式中 fi, j 称作迈耶 f 函数 (Mayer f-function ), 对于稀薄气体而言它是一个小量。从而所
有这些玻尔兹曼因子的乘积就是

∏
对

e−βui, j = ∏
对
(1+ fi, j)

= (1+ f1,2)(1+ f1,3) · · ·(1+ f1,N)(1+ f2,3) · · ·(1+ fN−1,N).

如果我们把等式右边的乘积展开，第一项就是 1，第二项就是所有单个 f 函数的和，第三

项是两个不同 f 函数乘积的求和项，依此类推。即

∏
对

e−βui, j = 1+∑
对

fi, j + ∑
两个不同的对

fi, j fk,l + · · · . (3.11)

代回位形积分的表达式 (3.8) 式，即有

Zc =
1

V N

∫
d3r1 · · ·d3rN

(
1+∑

对
fi, j + ∑

两个不同的对
fi, j fk,l + · · ·

)
. (3.12)

由于 f 是小量，所以我们期望这个展开级数的每一项随着所含 f 的个数越来越多而变得

越来越不重要，甚至在实际应用中往往只需考虑这个展开级数的前一两项就可以了。

上式的第一项不包含 f , 非常简单，位形的积分给出的就是盒子的体积 V , 从而
1

V N

∫
d3r1 · · ·d3rN(1) = 1. (3.13)

第二项是所有单个 f 之和的积分，不妨以 f1,2 的积分为例，因为它只依赖于 r1,r2, 所以

1
V N

∫
d3r1 · · ·d3rN f1,2 =

1
V N V N−2

∫
d3r1d3r2 f1,2 =

1
V 2

∫
d3r1d3r2 f1,2. (3.14)

而由于 f1,2 的两个下标只需要与 d3r1, d3r2 相对应，并不需要真的代表粒子 1, 2. 因此，
所有其它 f 的积分结果与上面完全一样，由于不同 f 的总数目为 N(N −1)/2, 所以 (3.12)
式的第二项其实等于

1
V N

∫
d3r1 · · ·d3rN

(
∑
对

fi, j
)
=

1
2

N(N −1)
V 2

∫
d3r1d3r2 f1,2. (3.15)

在继续之前，我们来为上面这个表达式引入一个图形表示作为缩写，这个缩写也将为

我们提供一个物理上的解释。这个积分对应的图形是一对点，并由一条线相连接，这两个

点分别代表粒子 1 和粒子 2，连线代表这一对粒子间的相互作用：

=
1
2

N(N −1)
V 2

∫
d3r1d3r2 f1,2. (3.16)
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一般来说，将图形表示转换为公式的步骤如下：

1. 点从 1 开始计数，对于第 i 个点，写下表达式 (1/V )
∫

d3ri。第 1 个点乘以 N, 第 2
个点乘以 N −1，第 3 个乘以 N −2，以此类推。

2. 对于连接 i, j 点的线，写下被积函数中的因子 fi, j(注意 fi, j = f j,i)。不同连线对应
的被积因子是相乘的。

3. 除以这个图形的对称因子，即：在不改变对应的 f 函数乘积的情况下对点进行编

号的方式数，也即保持图形不变的点的排列数。比方说上面那个图的对称因子就是 2。
作为示例，不妨进一步考察 (3.12) 式中的第三项，有两个不同 f 函数乘积的求和

项。这些求和中包含了两对粒子有一个公共粒子的情况和没有公共粒子的情况。有一个

公共粒子时，只涉及 3 个粒子，其它粒子的位形积分都是体积 V。这样的项的个数是

N(N −1)(N −2)/2, 即

=
1
2

N(N −1)(N −2)
V 3

∫
d3r1d3r2d3r3 f1,2 f2,3. (3.17)

这个图在物理上表示一个粒子同时和两个不同的粒子相互作用。当没有公共粒子时，涉及

4 个粒子，这时项的个数为 N(N −1)(N −2)(N −3)/8。即( )
=

1
23

N(N −1)(N −2)(N −3)
V 4

∫
d3r1d3r2d3r3d3r4 f1,2 f3,4. (3.18)

这个图在物理上表示两对粒子相互作用而对与对之间没有作用的情况。对于这两个图，上

面的步骤可以准确地给出相应的表达式。

现在应该不难看出，整个位形积分可以写成如下这样一系列图的和：

Zc = 1+ + +
( )

+ + +

+
( )

+
( )

+ · · · . (3.19)

每一个可能的图都刚好在和中出现一次，每一个点至少与另外一个点相连，并且每对相连

的点只能被连接一次。我们不会讨论这个展开的具体证明，但它的确是正确的。位形积分

的这种表示就是所谓的图解微扰级数：第一项 1 表示非相互作用的“理想”气体情况，其
余项表示粒子间的相互作用对这种理想情况的微扰修正。至少对低密度的稀薄气体而言，

我们期望，简单的图比复杂的图更重要，虽然原则上你可以计算任意复杂的图的贡献。

即使对于稀薄气体，我们也不能只保留 Zc 图解展开的前几项。我们马上就要看到，即

使对于最简单的只有两个点相连的图，其求和也远大于 1，即如下级数

1+ +
( )

+
( )

+ · · · (3.20)

直到很靠后的项才会收敛 (当对称因子增长到很大时)。从物理上讲，这是因为相互作用粒
子对的同时作用在 N 很大时其实非常常见。幸好，这个和可以被化简。由于考虑的是 N

很大的热力学极限情况，所以我们可以假设 N = N −1 = N −2 = · · ·。又由于包含 n 个完

全相同子图的图的对称因子为 n!。所以，上面这个序列可以化简成

1+ +
1
2!

( )2
+

1
3!

( )3
+ · · ·= exp

( )
(3.21)
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换句话说，互不相连的同一子图组成的所有图合起来就是该子图的指数函数。

但是，除了两点相连的子图外，我们还需要考虑其它的，诸如 (3.17) 那样的子图的贡
献。然而，在热力学极限下，更复杂的图可以发生相互抵消，最后的结果是 Zc 可以写成

一些图的和的指数函数，这些求和的图是去掉任何一点后剩下的部分仍然连通的图：

Zc = exp
(

1+ + + + + + · · ·
)
. (3.22)

严格来说，这个公式不是特别准确，但在 N → ∞ 而 N/V 固定的热力学极限下，它是准确

的。同样，我们不会给出这个公式的证明。

式 (3.22)中的每一个图都称作一个集团，因为它代表了一种粒子间同时相互作用的集
团。这个公式就称之为位形积分的集团展开。集团展开是一个很好的级数，对于稀薄气体

而言，顶点多的集团总是比顶点少的集团贡献小。

回想一下，系统的自由能是理想气体和位形积分两部分的贡献之和

F =−kBT logZ =−kBT logZideal − kBT logZc. (3.23)

代入集团展开公式 (3.22)，即有

F = Fideal − kBT
(

+ + + · · ·
)

(3.24)

所以，气体的压强就是

P =−∂F
∂V

=
NkBT

V
+ kBT

∂
∂V

(
+ + + · · ·

)
, (3.25)

式中我们代入了理想气体压强公式。很明显，只要我们可以算出一些集团图，那就可以改

进理想气体定律了。

3.1.3 第二维里系数

现在考察最简单的只有两个顶点的图

=
1
2

N2

V 2

∫
d3r1d3r2 f1,2. (3.26)

假设 f 函数只依赖于两个粒子之间的距离，不妨令 r = r2 −r1, 并将对 r2 的积分替换成对

r 的积分，从而即有

=
1
2

N2

V 2

∫
d3r1

∫
d3r f (r) =

1
2

N2

V

∫
d3r f (r). (3.27)

式中 f (r) = e−βu(r)−1，并且最后积掉了对 r1 的积分。

代入压强的计算公式 (3.25), 即有

P =
NkBT

V
+ kBT

∂
∂V

[1
2

N2

V

∫
d3r f (r)

]
+ · · ·

=
NkBT

V
− kBT

[1
2

N2

V 2

∫
d3r f (r)

]
+ · · ·

=
NkBT

V

[
1− 1

2
N
V

∫
d3r f (r)+ · · ·

]
. (3.28)
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通常人们将这个表达式写成如下维里展开的形式

P =
NkBT

V

[
1+

B(T )
(V/N)

+
C(T )
(V/N)2 + · · ·

]
, (3.29)

很显然，其中第二维里系数 B(T ) 为

B(T ) =−1
2

∫
d3r f (r). (3.30)

在实际应用中，粒子往往是没有永久电偶极矩的分子，它们在远距离处有弱吸引力，

而在短距离处有强烈的排斥力。并且，对于没有永久电偶极矩的分子，其长程上的微弱吸

引来自于单个分子偶极矩的涨落，它在另一个分子中诱导出一个偶极矩，然后互相吸引。

可以证明，这样的吸引力随 1/r7 衰减，从而相应的势能随 1/r6 衰减。所以常常可以用如

下包含了一个硬球排斥部分的范德瓦尔斯势来模拟分子间的相互作用势能 u(r)，

u(r) =

+∞ r < r0

−u0(r0/r)6 r ≥ r0

. (3.31)

不妨就以这个势能为例，具体算一下 B(T )。由于 f (r) = e−βu(r)−1, 很显然，当 r < r0 时，

f (r) =−1, 所以 ∫
d3r f (r) = 4π

∫ +∞

0
r2dr f (r)

=4π
∫ r0

0
r2dr(−1)+4π

∫ +∞

r0

r2dr
[
eβu0(r0/r)6 −1

]
. (3.32)

假设温度相对比较高，从而 βu0 ≪ 1, 从而 eβu0(r0/r)6 − 1 ≈ βu0(r0/r)6, 进而可以近似地算
出上面的积分，为 ∫

d3r f (r) =
4πr3

0
3
( u0

kBT
−1
)
= 2
( a

kBT
−b
)
. (3.33)

式中 a =
2πr3

0u0
3 , b =

2πr3
0

3 。代入压强的维里展开公式，即有

P =
NkBT

V

[
1+

(
b− a

kBT

)
(V/N)

+ · · ·
]
. (3.34)

忽略高阶维里系数，并假设 Nb/V ≪ 1(从而 1
(V−Nb) =

1
V (1+

Nb
V )), 进而稍作整理即可得

(
P+

N2

V 2 a
)
(V −Nb) = NkBT. (3.35)

这就是著名的非理想气体的范德瓦尔斯方程。

3.2 铁磁体的伊辛模型

相互作用气体属于系统状态空间 (相空间) 为连续空间的情形。但是，正如第二章中
讲述过的，统计物理也可以推广应用于状态空间为离散空间的情形。本节就是讨论这样的

一种统计物理模型。
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我们的动机是想研究铁磁体的铁磁性。整个铁磁材料是由规则排布的原子构成的，这

种规则排布称之为晶体，每个原子固定在晶体的一个网格 (称这为晶格) 上。每个原子都
可以看作是一个磁偶极子，这些磁偶极子的取向会受外磁场的影响，但是，对于铁磁材料

来说，更重要的是，每一个磁偶极子都会受到它旁边的磁偶极子的影响。如果每个磁偶极

子都趋向于与其相邻的磁偶极子平行地排布，那么整个材料就会有一个很强的磁化强度，

从而呈现出铁磁性。但是随着温度的升高，磁偶极子的取向会随机涨落，那就会破坏铁磁

性。所以，一块铁磁材料宏观上是否表现出铁磁性，主要取决原子间相互作用与温度引起

的随机涨落之间的竞争。

为了进一步简化问题，我们假设材料有一个偏好的磁化轴，并且每个原子磁偶极子只

能平行于或者反平行于该轴，如图所示 (3.1). 记 si = ±1 为第 i 个偶极子的状态，si = 1

Figure 3.1: 10×10 方形网格上二维伊辛模型的一种可能状态

代表偶极子朝上，si = −1 代表偶极子朝下。设一对相邻偶极子的相互作用能为 ±J, 即两
者平行 (都朝上或者都朝下) 则相互作用能为 −J, 反平行则相互作用能为 J。最后，假设

只考虑最近邻的偶极子之间的相互作用。从而整个系统的哈密顿量可以写成

H =−J ∑
<i j>

sis j. (3.36)

式中 < i j > 表示一对邻近的偶极子 i, j。为了研究这个系统的热力学性质，我们需要计算

如下配分函数 (相空间积分换成对所有离散的微观状态求和)

Z = ∑
{si}

e−βH . (3.37)

这样的统计物理模型就称作伊辛模型。

3.2.1 一维伊辛模型

到目前为止，我们还没有指定原子偶极子是如何在空间排列的，也没有指定每一个偶

极子有多少近邻。为了模拟一块真实的铁磁材料，它们应该被排列在一个三维晶格上。但

是，还是让我们先看一种更简单的排列吧：偶极子沿着一维直线规则地排列，如图 (3.2)
所示，这就是所谓的一维伊辛模型，此时系统的配分函数可以严格计算出来。
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Figure 3.2: 拥有 N 个偶极子的一维伊辛模型

对于一维伊辛模型，系统的哈密顿量是

H =−J(s1s2 + s2s3 + s3s4 + · · ·+ sN−1sN). (3.38)

系统的配分函数就可以写成

Z = ∑
s1

∑
s2

· · ·∑
sN

eβJs1s2eβJs2s3 · · ·eβJsN−1sN . (3.39)

式中每一个求和都是取 ±1 两个值。我们注意到最后一个关于 sN 的和其实是

∑
sN

eβJsN−1sN = eβJ + e−βJ = 2coshβJ, (3.40)

这个结果与 sN−1 是 +1 还是 −1 无关。类似的，当这个最内层的求和求完以后，可以接着

求和 sN−1、sN−2 直到 s2, 每次的贡献都是 2coshβJ, 所以总共有 N −1 个 2coshβJ 相乘。

最后对 s1 的求和只给出一个因子 2。所以，最终配分函数为

Z = 2N(coshβJ)N−1 → (2coshβJ)N , (3.41)

最后的结果是取了 N 很大的热力学极限。

有了配分函数，就可以计算能量期望值，为

⟨H⟩=− ∂
∂β

logZ =−NJ tanhβJ. (3.42)

注意到，当 T → 0 时，这个能量期望值趋于 −NJ, 这时所有的偶极子都平行排布。而当
T → ∞ 时，能量期望值趋于 0, 因为偶极子在高温时会随机取向。请注意，当温度降低时，
系统的确变得更有序，然而，有序性是逐渐变高的，⟨H⟩作为温度 T 的函数是完全光滑的，

没有突然的转变。

3.2.2 二维伊辛模型

下面我们再来考虑二维伊辛模型，具体来说是考察原子偶极子排布在如图所示 (3.1)
的二维四方网格上的伊辛模型。实际上，这时候系统的配分函数也可以严格计算出来，不

过，这个计算比较困难，因此我们这里不打算介绍。相反，我们打算在低温和高温两种极

限情况下近似计算配分函数，因为这时候相应的计算办法有更大的普适性。当然，我们要

计算的配分函数是

Z = ∑
{si}

exp
(

βJ ∑
<i j>

sis j

)
. (3.43)
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低温展开

让我们先从温度很低的极限开始。这时候人们常常把系统微观状态按照其能量值 E 进

行分类，同一能量值的微观状态归为一类，它们中的每一个对配分函数的贡献都是 e−βE ,
假设这样的微观状态数目为 Ω(E), 那么整个这一类的贡献就是 Ω(E)e−βE。很明显，在温

度很低时，β 很大，从而能量越高的类对配分函数的贡献越小，因此，我们完全可以按照
能量从低到高的顺序，逐级地计算出配分函数。不妨记最低能量为 E0，次低能量为 E1，依

此类推，则很显然配分函数为

Z =
+∞

∑
n=0

Ω(En)e−βEn . (3.44)

最低能态显然是所有偶极子都平行排列的状态，如图 (3.3) 所示。由于每个偶极子既
可以和水平方向的邻近偶极子配对，又可以和垂直方向的邻近偶极子配对，所以这样的对

有 2N 个，每一对的能量为 −J, 所以最低能态的能量为 E0 =−2NJ。很显然，这样的最低

能态共有两个，分别对应所有偶极子都向上和都向下，所以 Ω(E0) = 2。

Figure 3.3: 最低能态 E0 =−2NJ, Ω(E0) = 2

相对于最低能态来说，次低能态就是有一个偶极子的取向发生了翻转的状态，如图

(3.4) 所示。由于每一个偶极子都有 4 个邻近的偶极子，而这个偶极子取向翻转以后会使
得每一个邻近对的能量增加 2J, 所以次低能态的能量为 E1 = E0 +8J。很明显，单个不同

的偶极子翻转对应的都是同样的次低能，所以 Ω(E1) = 2×N，其中前面的那个 2 倍来自
于同时将所有偶极子都反过来 (向上变向下，向下变向上)。

Figure 3.4: 次低能态 E1 = E0 +8J
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不妨引入一种图形表示方法来表示不同的能量状态。在这种表示方法中，对于每一对

取向相反的邻近偶极子，我们画一条红色的连线。同时，我们将相对于最低能态反生了取

向翻转的偶极子表示成红色的顶点，未发生翻转的则表示为蓝色的顶点。很显然，相对于

最低能态的能量，每一个不同能态的能量完全由红色连线的数目决定，每一条红色连线对

应于能量加 2J。比方说次低能态的图形表示如下

E1 = E0 +8J

Ω(E1) = 2×N
. (3.45)

E2 能态有 6 条红色连线，形如下图

E2 = E0 +12J

Ω(E2) = 2×2N
. (3.46)

Ω(E2) = 2×2N 中的第 2 个 2 来自于这个图形既可以像这样放置，也可以转 90 度竖起来
放置。

E3 能态有 8 条红色连线，它有多种可能的图形。最简单的一种图形如下

E3 = E0 +16J

数目= 2× 1
2

N(N −5)
. (3.47)

在图形的态数目中 N 来自于第一个图的放置方式，N −5 来自于第二个图中翻转偶极子的

放置方式 (即不能放置在第一个图的 5 个顶点上)， 1
2 来自于两个图的置换对称性。

E3 能态还有 3 种不同的可能图形。分别是

E3 = E0 +16J

数目= 2×N
. (3.48)

以及

E3 = E0 +16J

数目= 2×2N
. (3.49)

在图形的态数目中，N 前面多出来的 2 倍来自于图形可以转过 90 度竖直放置。以及最后
还有

E3 = E0 +16J

数目= 2×4N
. (3.50)
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在图形的态数目中，N 前面多出来的 4 倍来自于图形每转过一个 90 度都是一种不同的放
置方式。综上即有

Ω(E3) = 2×
(1

2
N(N −5)+N +2N +4N

)
= 2× 1

2
(N2 +9N). (3.51)

综合上面所有结果，即有配分函数的低温展开

Z = 2e2NβJ
(

1+Ne−8βJ +2Ne−12βJ +
1
2
(N2 +9N)e−16βJ + · · ·

)
. (3.52)

特别的，如果我们计算 logZ , 并利用 βJ ≫ 1 的低温假设，就会发现上式中的 N2 项自动

消去了，最后得到

logZ = log2+2NβJ+Ne−8βJ +2Ne−12βJ +
9
2

Ne−16βJ + · · · (3.53)

幸好 N2 项自动消掉了，这才使得自由能的广延性质得以保持。如果往回追溯的话，人们

就会发现 N2 项来自于 (3.47) 式中非连通图的贡献。这告诉我们，在热力学极限下，配分
函数可以写成连通图之和的指数函数。前面我们在稀薄气体的集团展开中也看到了这个规

律。

佩尔斯液滴 (Peierls droplets)

低温展开对于为什么二维以上的伊辛模型有相变提供了一种富于启发式的论证。为了

解释这个论证，假设背景偶极子都是向上的，在这个背景上翻转一些偶极子的取向，随着

翻转的偶极子越来越多，假设它们在两维平面上连成了一个连通区域，称作一个“液滴”。

很显然，激发这样的“液滴”所需要消耗的能量完全由“液滴”的边界线决定，因为只有

这个边界线两边的偶极子才是反平行的。因此，每单位边界线对应 2J 的能量消耗 (相对
于最低能)，假设“液滴”的周长为 L, 那么产生一个这样的“液滴”需要消耗的能量就是

E ∼ 2JL. (3.54)

那么，同等能量的“液滴”数目有多少呢？为了估算，不妨设想“液滴”的边界是由

两维平面上的随机行走生成的，每一步行走有 4 个可选择的方向，所以，长度为 L 的可能

路径数目为

路径数∼ 4L = eL log4. (3.55)

不过，作为“液滴”的边界，它受到的限制比随机行走要更严格。首先，我们不能原路后

退，所以实际上每一步可供选择的方向只有 3 个。其次，作为区域边界，走完 L 步以后必

须回到起点。最后，边界线不能自相交。考虑到所有这些以后，我们可以估计不同的边界

线数目 (也就是不同的“液滴”数目) 为

Ω(E)∼ eαL, (3.56)

式中 log2 < α < log3。Ω(E) 就是能量为 E(相对最低能) 的“液滴”的微观态数目，其对
数就是熵。
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为了计算配分函数，我们需要对所有这样的“液滴”求和

Z ∼ ∑
L

eαLe−β2JL. (3.57)

注意，“液滴”的能量和熵都正比于 L, 这会导致这两者之间的竞争。在低温时，β 很大，
此时能量的作用超过熵的作用，配分函数是收敛的。这时候只能形成很小的“液滴”，因为

大“液滴”需要耗费的能量太高了，也因为主体偶极子都是平行的，所以这时候整个系统

表现出很强的磁化强度，这就是所谓的铁磁相。然而，随着温度的增加，β 开始减小，熵
的作用越来越重要，特别的，当熵的贡献和能量的贡献相等时，达到临界温度

kBTc ∼ 2J/α. (3.58)

此后，由于熵的作用超过了能量，配分函数将变得发散。这时候所有尺寸的“液滴”都可

能形成，因为耗费的能量代价低于熵的作用，低温时的铁磁相就被摧毁了。由于高温时这

样计算出来的配分函数发散，这说明当 T > Tc 时，低温展开的计算办法失效了。

类似的办法也能告诉我们为什么一维伊辛模型没有相变。因为一维“液滴”的边界永

远只有两个点，无论“液滴”大小是多少，对应的能量耗费永远是 E = 4J。另一方面，由

于“液滴”可以出现在一维直线的任何地方，所以 Ω(E)∼ N。从而创造一个“液滴”需要

的自由能大约为

F ∼ 4J− kBT logN. (3.59)

当 N 很大时，这个自由能总是负的 (无论温度是多少)。这就意味着一维伊辛模型总会趋
向于产生任何长度的“液滴”，从而铁磁相总是会被摧毁。

高温展开

前面说过，当温度高于临界温度 Tc 时，低温展开就失效了。那么这时候该如何计算

二维伊辛模型的配分函数呢？回答是通过高温展开。由于是高温，所以这时候 βJ ≪ 1 是

小量。

首先，写下系统的配分函数

Z = ∑
{si}

exp
(

βJ ∑
<i j>

sis j

)
= ∑

{si}
∏
<i j>

eβJsis j . (3.60)

由于 sis j 只能取 ±1，从而 (sis j)
2 = 1, 从而根据指数函数的泰勒展开不难证明

eβJsis j = coshβJ+ sis j sinhβJ = coshβJ(1+ sis j tanhβJ). (3.61)

代入上面的配分函数，即有

Z = ∑
{si}

∏
<i j>

coshβJ(1+ sis j tanhβJ)

= (coshβJ)2N ∑
{si}

∏
<i j>

(1+ sis j tanhβJ). (3.62)
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由于高温下 βJ ≪ 1, 所以 tanhβJ ≪ 1, 所以我们可以把上式展开成 tanhβJ 的幂级数。

整个过程类似于稀薄气体的集团展开。因此类似的，我们也可以用图形的方式来表示这种

展开。首先，展开的第 0 阶，相应于不包含 tanhβJ 的展开项, 根据 (3.62) 式，这时候有

Z0 = (coshβJ)2N ∑
{si}

1 = 2N(coshβJ)2N . (3.63)

下面考虑微扰修正。当我们展开 (3.62) 式时，很显然，每出现一次 tanhβJ 都必定伴

随着某个近邻对 < i j >, 我们将这表示为如下图形

i j
= sis j tanhβJ . (3.64)

但是，请注意 (3.62) 式中还有一个 ∑{si}, 因此，如果上面的图单独出现，那么由于

∑
si,s j

sis j =+1−1−1+1 = 0, (3.65)

所以最后的贡献必定是零。

如何得到非零的贡献呢？办法是让每一个 si 出现偶数次，因为 s2
i = 1, 这样一来对它

的求和就不会抵消为 0 了！在图形表示上，这就意味着，图中的每一个顶点都必须连上偶
数条线。所以，领头阶的修正项必定如下

1 2

4 3
= (tanhβJ)4 ∑{si} s1s2s2s3s3s4s4s1 = 24(tanhβJ)4 . (3.66)

根据图形左上角的顶点在格点出现的位置不同，这样的图共有 N 个，再考虑到除了这四

个顶点之外，对其余偶极子 si 求和的贡献为 2N−4, 所以整个这幅图对配分函数的贡献为

Z0N(tanhβJ)4. (3.67)

下一阶修正来自于周长为 6 的图，这必定是长方形，可以水平放置或者垂直放置

= Z02N(tanhβJ)6 . (3.68)

和上面不同，这里表示出来的就是这幅图对配分函数的最终贡献，其中 2N 中多出来的 2
倍来自于同一幅图也可以垂直放置。

下面考察周长为 8 的图，这有多种可能性。首先就是如下不连通的可能性

= Z0
1
2 N(N −5)(tanhβJ)8 . (3.69)

最终结果中的 1
2 N(N −5) 因子是这样来的，首先，第一幅子图有 N 个可选的位置，其次，

第二幅子图的右上角不能放在第一幅子图除左下角位置外的任何一个位置，并且也不能放

在第一幅子图右上角再往右一格或者再往上一格的位置，否则两幅子图就会有一条共用的

连线，而这条线连接的两个点都只连出奇数条线 (3 条，请画一画思考一下)，导致最终结
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果为零。所以，第二幅子图只有 N −5 种放置方式。最后还要除以 2，是因为两幅子图可
以进行一个置换。

周长为 8 的其余可能性分别如下：正方形图，

= Z0N(tanhβJ)8 . (3.70)

还有长方形图，它有水平和垂直两种不同放置方式，因此要多出一个 2 倍，

= Z02N(tanhβJ)8 . (3.71)

还有如下图形，

= Z04N(tanhβJ)8 . (3.72)

这幅图的贡献中多出来的 4 倍是因为，将它每旋转 90 度都对应一种不同的放置方式。所
以，周长为 8 的图对配分函数的总贡献为

Z0(tanhβJ)8(
1
2

N(N −5)+N +2N +4N) = Z0
1
2
(N2 +9N)(tanhβJ)8. (3.73)

综合上面所有计算，可写出配分函数的高温展开为

Z =2N(coshβJ)2N[1+N(tanhβJ)4 +2N(tanhβJ)6

+
1
2
(N2 +9N)(tanhβJ)8 + · · ·

]
. (3.74)

与前面低温展开的结果 (3.52) 比较，我们发现一个巨大的巧合，即这两个展开级数基本是
一样的 (成正比)，只需要进行如下替换

e−2βJ ↔ tanhβJ. (3.75)

这其实是二维伊辛模型的一种特殊性质，称作 Kramers-Wannier 对偶，这个结果是可以
严格证明的。不过，由于这个结果的普遍性不够，所以这里就不介绍这个证明了。

前面提到过，两维伊辛模型的配分函数其实可以严格算出来 (虽然计算很困难)，这是
昂萨格 (Lars Onsager) 在 20 世纪 40 年代得到的著名结果。通过这一计算，昂萨格严格
证明了两维伊辛模型的确会发生相变，有一个临界温度。然而，没有人得出过三维伊辛模

型的严格解，这是一个困难得多的挑战。对于三维伊辛模型，通常的处理办法就是进行近

似计算。
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考虑一个与热库接触的有限经典系统。热力学的核心概念是当系统某些外部参数随时

间变化时，对该系统所做的功。（这些参数可代表外场强度、系统的外部力学条件 x 比如
受限空间体积，或更抽象地表示分子动力学模拟过程中开启/关闭的粒子间相互作用。）当
参数沿参数空间中某路径 γ 从初始点 A 无限缓慢地变化至终点 B 时，整个过程就是可逆

的，根据第二章中引入正则系综时的相关分析，这时候系统获得的总功 W 1 等于初末构型

间的自由能差 W = ∆F = FB −FA。相比之下，当参数以有限速率沿 γ 切换时 (从而是不可
逆过程)，W 将取决于系统与热库的微观初始条件，其平均值将超过 ∆F

∆F ≤ ⟨W ⟩. (4.1)

这里 ⟨· · ·⟩ 表示对所有可能的 W 测量结果的平均值，每次测量前需让系统与热库在温度 T

下平衡，这时外参数固定于 A。（从 A 到 B 的路径 γ 及其参数切换速率在各次测量间保持
不变。）差值 ⟨W ⟩−∆F 即为不可逆过程中熵增导致的耗散功。

然而，1996 年，贾金斯基 (C. Jarzynski) 的一个重要结果表明，(4.1) 式可以由不等
式推广为一个等式。这个结果及其推广可以说是统计物理近数十年最重要的进展，也构成

本章将要讲述的核心内容。

1注意，不是系统向外界做的总功，两者差个负号.



70 Chapter 4. 贾金斯基等式及其推广

4.1 贾金斯基等式的推导

4.1.1 信息不守恒的经典力学

如果系统真的满足哈密顿正则方程，那么就有刘维尔定理成立，即 dµt = dµ0，从而

必有

dµt+ε = dµt , (4.2)

式中 ε 为一个无穷小的时间间隔。根据第二章中的相关讨论，对于这样的系统，其精细化
信息必定是守恒的。

但是现实中很多系统与外界之间是存在信息流耦合的，比如我们这里考察与外界热库

之间存在热交换的系统就属于这种情形，因此就需要把哈密顿力学理论推广到这种信息不

守恒情形。

推广到信息不守恒情形，那 (4.2) 式就不能成立了，根据熵与相空间体积的关系，这
时候我们应该有

kB log
(dµt+ε

dµt

)
= δS

(
µt
)
, (4.3)

式中 δS(µ)表示系统在 ε 时间之内熵的增加量，或者说系统增加的不确定性。不妨将这个
熵的增量写成 δS(µt) = kBκ(µt)ε，κ(µt) 为单位时间之内增加的不确定性，从而根据 (4.3)
式，即有

dµt+ε = dµt exp
(
κ(µt)ε

)
. (4.4)

将这个式子沿着相空间的演化轨迹积分，即有

dµτ = dµ0 exp
(∫ τ

0
κ(µt)dt

)
. (4.5)

另一方面，信息不守恒的系统当然不再是哈密顿正则系统，所以我们需要对哈密顿正

则方程进行修正。最简单的修正是给它加上一个反映与外界之间信息耦合的项 κ i(x)(下面
µ i 表示相点 µ 的第 i 个坐标分量)

dµ i

dt
= {µ i,H}+κ i(µ). (4.6)

问题是，加上的这一项和前面的单位时间输入的熵 κ(µ) 之间是什么关系呢？
为了看清这两者的联系，我们根据坐标变换可以写出

dµt+ε = dµt ·det
(∂ µt+ε

∂ µt

)
= dµt

(
1+ ε∂i(µ̇ i)

)
. (4.7)

代入修改以后的演化方程 (4.6)，注意到标准的泊松括号项是满足相体积守恒的 (刘维尔定
理的证明)，从而即有

dµt+ε = dµt
(
1+ ε∂iκ i). (4.8)

与 (4.4) 式相比，即有

∂iκ i(µ) = κ(µ). (4.9)

即是说，给定从系统擦除信息的比特率 κ(µ), 通过求解这个方程，我们就能得出有信息擦
除时哈密顿正则方程的修正项 κ i(µ)。这样，我们就把经典力学推广到了信息不守恒情形。
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4.1.2 信息不守恒与贾金斯基等式

回到我们要考察的置于温度为 T 的恒温热库中的系统，假设把控制系统的外参数笼统

地记作 λ (t),设参数是在 0到 τ 的有限时间之内进行切换的。记系统的哈密顿量为 Hλ (µ)。
通过切换系统的控制参数 λ (t)，使得它在两个热平衡态之间演化。在演化的中间阶段，系
统与热库之间有热量交换，因此这是一个信息不守恒的问题，在演化的中间阶段，其满足

的动力学方程应该是 (4.6)。
令系统在 0 ≤ t ≤ τ 的时间段内从平衡态 A 开始经历参数切换，并最终稳定为平衡态

B，注意平衡态 B不需要是 τ 时刻确立的，而是可以在 τ 时刻系统参数由 λA 切换为 λB 以

后，再保持在这个参数上并经过足够的弛豫时间达成热平衡之后才确立的。在初末态，也

就是 A 态和 B 态，系统可以用正则系综来描述，从而相空间的概率分布函数为 (本章我们
以 p 而不是 ρ 表示相空间概率密度)

peq(µ0,λA) = eβ [FA−HA(µ0)], peq(µτ ,λB) = eβ [FB−HB(µτ )], (4.10)

式中 FA,FB 分别为 A,B 态的自由能，并且我们已经利用了 F =−kBT logZ。

则我们有

peq(µτ ,λB)dµτ = eβ [FB−HB(µτ )]dµτ = eβ [FB−HB(µτ )] exp
(∫ τ

0
κ(µt)dt

)
dµ0

= eβ
[

FB−FA−HB(µτ )+HA(µ0)+kBT (
∫ τ

0 κ(µt)dt)
]

peq(µ0,λA)dµ0. (4.11)

式中第二个等号我们代入了 (4.5) 式。由于 kB
∫ τ

0 κ(xt)dt 是整个演化过程热库向系统输入

的熵，从而

Q = kBT (
∫ τ

0
κ(xt)dt) (4.12)

就是整个过程热库向系统输入的热量。因此

W = HB(µτ)−HA(µ0)− kBT (
∫ τ

0
κ(µt)dt) (4.13)

就是切换参数的过程中，外界对系统所做的功。

从而我们就可以把 (4.11) 式改写成

peq(µτ ,λB)dµτ = eβ∆Fe−βW peq(µ0,λA)dµ0, (4.14)

式中 ∆F = FB −FA 为初末态自由能的增量，这是一个纯粹的宏观状态参量，与微观过程无

关。将上面这个式子两边对相空间积分，利用概率密度的归一化条件，即得

e−β∆F = ⟨e−βW ⟩, (4.15)

式中 ⟨e−βW ⟩ 表示 e−βW 的统计平均值。(4.15) 式就是著名的贾金斯基等式, 它以定量的形
式给出了封闭系统经历不可逆过程前后自由能的改变量与过程中外界对系统所做的功的

统计平均值之间的联系。

注意不等式 (4.1) 可直接由以上贾金斯基等式，通过应用数学恒等式 ⟨ex⟩ ≥ e⟨x⟩ (也就
是指数函数的凸性) 推导得出。这直接从微观的哈密顿量基础确立了不等式 (4.1)，而非通
过熵增原理。
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4.2 反馈控制下的贾金斯基等式

让我们回到不等式

∆F ≤ ⟨W ⟩. (4.16)

当然，它等价于热力学第二定律。然而，正如我们在第二章讨论麦克斯韦妖时看到的，当

系统受到一个“麦克斯韦妖”的反馈控制时，热力学第二定律需要推广。这里“反馈”指

的是控制协议依赖于测量获得的结果，比如麦克斯韦妖对容器中间的活板门的控制是根据

对粒子速度的测量结果。

当然，我们已经看到，(4.16) 式是贾金斯基等式的自然推论。因此，很显然，在反馈
控制存在的情况下，贾金斯基等式也需要进行推广。这就是本节我们想要讨论的问题。本

节的结果最早是 Takahiro Sagawa and Masahito Ueda, 在 Generalized Jarzynski Equality
under Nonequilibrium Feedback Control 一文中得到的。本节将要给出的推导是基于对
Takahiro Sagawa的 Hamiltonian Derivations of the Generalized Jarzynski Equalities under
Feedback Control 一文的改进。

现在，我们记 λt ≡ λ (t), 因此 λA = λ0, λB = λτ , 相应的也有 FA = F0, FB = Fτ。如前所

述，初始时，系统处于如下热平衡系综

peq(µ0,λ0) = eβ [F0−Hλ0
(µ0)]. (4.17)

进而可以根据如下概率守恒定义相应的刘维尔绘景的概率密度 pt(µ)

pt(µt)dµt ≡ peq(µ0,λ0)dµ0. (4.18)

注意，由于系统与热库之间存在信息交换，所以 dµt ̸= dµ0。

我们在中间时刻 tm(0 < tm < τ) 对系统进行测量，获得结果 ν。假设该测量存在由以
下条件概率密度所描述的随机误差

p(ν |µm), (4.19)

即在系统真实状态 µm ≡ µtm 给定的前提下，tm 时刻测得结果 ν 的概率密度。当然，µm 和

ν 的联合概率密度可以表示为

p(µm,ν) = p(ν |µm)ptm(µm). (4.20)

获得结果 ν 的总概率密度，由 p(ν) =
∫

dµm p(µm,ν) 给出。
为了表征状态 µm 与测量结果 ν 之间的信息关联，我们引入互信息 ⟨I⟩, 根据第一章，

其定义为

⟨I⟩ ≡
∫

dµmdν p(µm,ν) log
p(µm,ν)

ptm(µm)p(ν)
. (4.21)

其中我们记

I(µm,ν) = log
p(µm,ν)

ptm(µm)p(ν)
. (4.22)
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如果通过测量，我们获取的信息越多，⟨I⟩ 就越大，反之，如果误差越大，那么 ⟨I⟩ 就越小。
特别的，如果 µm 与 ν 相互独立，即满足 p(µm,ν) = ptm(µm)p(ν), 则有 ⟨I⟩= 0, 它表示测
量无法获得任何真正的信息。注意，I(µm,ν) 依赖于 µm 和 ν , 而 µm 又由初始时的 µ0 决

定，所以，I(µm,ν) 依赖于 µ0 和 ν。
在 tm 时刻进行测量以后，我们对系统实施反馈控制，使得 t 时刻 (t > tm) 对系统参数

λt 的控制协议依赖于 tm 时刻的测量结果 ν , 记为 λt(ν)(t > tm), 因此，t > tm 时刻的系统状

态 µt 也将依赖于 ν , 记为 µt(ν)(t > tm)。特别的，最终的平衡系综 B 也将依赖于 ν , 记为

peq
(
µτ(ν),λτ(ν)

)
= exp

{
β [Fτ(ν)−Hλτ (ν)(µτ(ν))]

}
. (4.23)

与上一节类似，记

∆F ≡ Fτ(ν)−F0. (4.24)

进而，过程中外界对系统所做的功为

W = Hλτ (ν)(µτ(ν))−Hλ0(µ0)− kBT (
∫ τ

0
κ(µt)dt). (4.25)

式中 κ(µt) 满足下式

dµτ(ν) = dµ0 · exp
(∫ τ

0
κ(µt)dt

)
. (4.26)

注意，在 t > tm 时刻，κ(µt) 依赖于 ν。同样，无论 ∆F 也好，还是功 W 也好，均既依赖

于 µ0，又依赖于 ν。
我们将要证明的结论是下面的等式

⟨e−β (W−∆F)−I⟩= 1. (4.27)

式中 ⟨· · ·⟩ 表示对所有可能的 µ0 和中间的测量结果 ν 进行统计平均。这个式子就是反馈
控制下的贾金斯基等式，其关键特征是，等式左边包含测量获得的互信息项。特别的，如

果 I = 0，那它就退回了上一节所讲的贾金斯基等式。

上式的证明如下：首先注意到

e−I =
ptm(µm)p(ν)

p(µm,ν)
=

p(ν)
p(ν |µm)

. (4.28)

因此，

⟨e−β (W−∆F)−I⟩=
∫

dµ0dν
[

peq(µ0,λ0)p(ν |µm)×

e−β [Hλτ (ν)(µτ (ν))−Hλ0
(µ0)−kBT (

∫ τ
0 κ(µt)dt)]eβ (Fτ (ν)−F0)

p(ν)
p(ν |µm)

]
=
∫

dµ0dν
[
eβ (F0−Hλ0

(µ0))e−β [Hλτ (ν)(µτ (ν))−Hλ0
(µ0)−kBT (

∫ τ
0 κ(µt)dt)]

× eβ (Fτ (ν)−F0)p(ν)
]

=
∫

dµ0dνe
∫ τ

0 κ(µt)dteβ [Fτ (ν)−Hλτ (ν)(µτ (ν))]p(ν)

=
∫

dνdµτ(ν)eβ [Fτ (ν)−Hλτ (ν)(µτ (ν))]p(ν) = 1. (4.29)
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其中第一个等于号我们代入了功的定义式，最后一行代入了 (4.26) 式，以及热平衡系综的
归一化条件。(4.27) 式得证！

特别的，根据 (4.27) 式，利用指数函数的凸性，不难得到

⟨∆F −W ⟩ ≤ kBT ⟨I⟩. (4.30)

这就是反馈控制下的广义热力学第二定律。这个不等式表明，通过反馈控制，系统的自由

能增量可能超过外界对系统所做的功，其超出部分与测量所获互信息成正比。

西拉德热机

西拉德热机（Szilard engine）是由匈牙利物理学家利奥·西拉德（Leo Szilard）在 1929
年提出的一个思想实验，其核心目的是探讨信息与热力学第二定律的深层关系，尤其是可
以作为 (4.30) 式的一个应用特例。

在西拉德之前，麦克斯韦曾提出著名的“麦克斯韦妖”思想实验：假设一个绝热容器

被隔板分为两部分，中间有一个“妖”可以控制隔板上的小门。“妖”能观察分子运动速

度，只允许快分子从左到右、慢分子从右到左通过小门，最终使右侧温度升高、左侧温度

降低——这似乎让系统自发熵减，直接挑战了“孤立系统熵永不减少”的热力学第二定律。

西拉德热机的提出，正是为了分析“麦克斯韦妖”中“观察（获取信息）”这一行为的物理

本质：信息是否具有热力学代价？

西拉德热机的核心是一个仅含单个分子的气缸（简化系统以聚焦微观状态），它与温

度为 T 的恒温热库相接触，配合活塞、重物和一个“观察者”（类似麦克斯韦妖）。其工作

循环可分为四步：

1. 初始状态：分子随机分布。气缸内只有一个分子（气体分子），在无规则热运动中
随机处于气缸左侧或右侧（两种可能状态，概率各 50%）。此时系统的熵由分子位置的不

确定性决定：根据玻尔兹曼熵公式 S = kB logΩ（Ω 为微观状态数），这里 Ω = 2，故初始

熵 S1 = kB log2。

2. 测量：获取分子位置信息。观察者（或“妖”）测量分子的位置，确定它具体在左
侧还是右侧（排除不确定性）。这一步的关键是“获取信息”：原本分子有 2 种可能状态，
测量后状态唯一确定（Ω = 1），系统的“信息熵”减少了 kB log2（信息熵的减少等价于获

取了 1 比特信息）。
西拉德假设：测量过程本身可以不消耗能量（理想情况下），但信息的“记录”会暂时

储存在观察者的“记忆”中。

3. 做功：利用信息提取能量。根据测量结果（分子在左或右），观察者在气缸中间插
入一个活塞，将气缸分为两部分（分子所在的一侧为“高压区”，另一侧为“低压区”）。由

于分子的热运动，它会碰撞活塞并推动其移动（膨胀过程），并通过在活塞上挂上重物最

终实现对外做功（例如提升重物）。

单分子膨胀做功的能量可通过热力学计算：对于等温过程，气体对外做功W =
∫ V

V/2 PdV =∫ V
V/2 kBT dV

V = kBT log2(式中 V 为整个气缸的体积，并且我们利用了对于单个分子的理想

气体物态方程 PV = kBT )。此时，分子的运动空间从气缸的一半扩充到整个气缸（活塞移
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动到边缘），也就是和初始状态完全相同，所以与初始状态相比，自由能的增量为零，即

∆F = 0。

因此，以上三步的总体效果就是，通过测量分子的位置信息，我们成功地从系统中提

取了W = kBT log2的功。这个结果完全吻合 (4.30)式，因为我们通过测量提取的互信息为
log2, 而系统向外做的功也正好是 kBT log2，而又有 ∆F = 0, 所以正好是使得不等式 (4.30)
的等号成立的情况。

4. 重置：擦除信息以完成循环为了让热机重复工作，必须重置系统：移除活塞，同时
擦除观察者记忆中关于分子位置的信息（否则记忆会累积信息，无法形成循环）。

这一步是核心：根据后来由兰道尔（Rolf Landauer）在 1961年提出的“兰道尔原理”，
擦除 1比特信息必然会向环境释放至少 kBT log2的热量（即产生至少 kB log2的熵增）。观

察者的这部分熵增恰好补偿了步骤 2 中系统减少的熵（kB log2），使整个孤立系统 (把观察
者包括在内) 的总熵变 ≥ 0，完全符合通常的热力学第二定律。
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[本章中对于 N 个粒子组成的系统，我们将其微观状态 (相点) 记为 µN , 原来的符号 µ
这里要用来表示化学势。]
本章我们再次回到热力学，我们会讨论绝热变换的概念并将之应用于热机效率的探

讨。之后我们引入化学势的概念，并进而对热力学作一个比较系统的阐述。最后，我们将

介绍所谓的巨正则系综。

5.1 绝热变换，热机

前面的章节中说过，孤立系统的热平衡态完全由其总能量 E 以及所处的力学条件 x(比
如总体积) 给定，E 和 x 都是广延量。现在，我们记这个热平衡态为 X = (E,x)。则孤立系
统热平衡时的熵是 X 的函数，记为 S(X)。如果我们将两个系统——分别处于平衡态 X 和

Y——相互接触，让它们构成一个复合系统，就记复合系统的宏观状态为 (X ,Y ), 相应的热
力学熵为 S(X ,Y ), 则熵的可加性告诉我们

S(X ,Y ) = S(X)+S(Y ). (5.1)

进一步，在热力学极限下，熵是广延量，这就意味着如果我们把系统规模扩大 λ > 0 倍，

使宏观态变为 λX , 则相应的热力学熵也将扩大 λ 倍，即有

S(λX) = λS(X). (5.2)
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注意，这个关系式只在热力学极限下才成立。

现在，我们将孤立系统推广到绝热的系统，也即是说，我们允许系统和外界交换力学

功，但是，两者之间不允许交换热量，我们称之为允许对系统进行绝热变换 (可以是可逆
的，也可以不可逆)。可以进一步精确化这句话的意思，所谓的绝热变换，其意思是，允许
系统和外界的辅助装置以及一个重物 (可以看作是质点) 进行相互作用，进而改变系统的
宏观状态，但是，过程结束以后，辅助装置的状态必须完全复原，只允许外界的重物被提

升或者下降。如果我们把系统包括外界辅助装置和重物整个一起看作一个孤立系统，则可

以对这个孤立系统应用热力学第二定律，由于辅助装置的状态复原了，其熵变 (熵的改变
量) 为零，又由于重物可以看作一个质点，其热力学熵是零，因此，整个孤立系统的熵变
其实就是原来系统的熵变，从而热力学第二定律告诉我们：任何系统经历一个绝热变换以
后，其热力学熵都不会减少！

假设通过某个绝热变换把系统从热平衡态 X 变成了热平衡态 Y (中途的过程可以是非
平衡的)，则上述结果告诉我们

S(X)≤ S(Y ). (5.3)

我们可以说，热平衡态 X 先于热平衡态 Y (或者 Y 后于 X), 记作

X ≺ Y, (5.4)

其含义就是，热平衡态 Y 是一个可从 X 出发经过绝热变换到达的热平衡态。如果反过来

也成立，即同时有 Y ≺ X , 就称 X 和 Y 绝热等价，记作

X ∼ Y. (5.5)

很显然，这时候必定有 S(X) = S(Y ), 也即是说，如果两个热平衡态绝热等价，那么将它们
联系起来的绝热变换就是可逆的。反过来，如果 X ≺ Y , 但是两者并不绝热等价，则可以
将两者的关系记作

X ≺≺ Y, (5.6)

很显然，这时候必定严格有 S(X)< S(Y ), 从而将两者联系起来的绝热变换不可逆。
因此，通过绝热变换可以在一个系统的所有热平衡态的集合中引入一个偏序关系 ≺。

值得指出的是，绝热变换不一定是很“温柔”的 (诸如推动一个活塞或者什么的)，它也可
以是很“暴力”的，如图 (5.1) 中所示的那样。

通过系统间的复合运算 (即将两个系统相互接触，让它们构成一个更大的复合系统),
我们可以将上述偏序关系 ≺ 推广到所有系统的所有热平衡态的集合 (当然，所有这些系统
都是热力学极限下的宏观系统)。不难验证，这样的偏序关系满足如下性质：

1. 自反性：即 X ∼ X。

2. 传递性：即如果 X ≺ Y , 且 Y ≺ Z，则必有 X ≺ Z。

3. 相容性：即如果 X ≺ X ′，且 Y ≺ Y ′，则必有 (X ,Y ) ≺ (X ′,Y ′)。这是由于熵的可加

性，即 S(X ,Y ) = S(X)+S(Y )≤ S(X ′)+S(Y ′) = S(X ′,Y ′)。
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Figure 5.1: 通过一个“暴力”的绝热变换连接起来的两个热平衡态 X 和 Y .

4. 标度不变性：即对于 λ > 0, 如果 X ≺ Y , 则必有 λX ≺ λY。这是由于熵的广延性。

5. 分裂与重组：即我们可以把系统 X 分裂成两个子系统的复合 (λX ,(1−λ )X)(0 <

λ < 1), 或者反过来，把这样的两个子系统重组成一个大系统 X。很显然，这样的分裂和

重组可以仅仅是看待整个系统的两种不同观点，所以当然是绝热可逆的，从而必有 X ∼
(λX ,(1−λ )X)(0 < λ < 1)。

从熵的性质上也可以证实这一点，因为 S(λX ,(1 − λ )X) = S(λX) + S((1 − λ )X) =

λS(X)+(1−λ )S(X) = S(X)。

6. 稳定性：如果 (X ,εZ0) ≺ (Y,εZ1) 对于某个 Z0,Z1 和一个趋向于零的 ε 序列成立，
则有 X ≺Y。这条性质的含义就是“一粒灰尘不能影响绝热过程”。这条性质当然可以用熵

的性质来证明。

我们是利用熵的性质 (5.1)、(5.2) 和 (5.3) 证实以上 6 条性质的。有趣的是，E. H.
Lieb 和 J. Yngvason 在文献 A guide to entropy and the second law of thermodynamics.
Notices of the American Mathematical Society, 45:571–581, 1998，以及这篇文献引用的文
献中证明：如果某个偏序关系满足以上 6 条性质，比如作为对绝热变换的直观要求，那么
反过来，必定存在一个几乎唯一确定的状态函数 S(X), 它具有热力学熵的那些性质 (5.1)、
(5.2) 和 (5.3)。

热机

绝热变换概念的一个重要应用是用来研究热机效率。实际上，在历史上，热力学熵的

概念最早就是从卡诺对热机效率的研究中导出来的，反而香农熵的概念才是最后出现的，

虽然从学科逻辑来说，香农熵才是最根本的概念，这也是本书采用的逻辑。

热机的工作原理是从温度为 T1 的高温热库中提取能量，通过某种装置将其中一部分

能量转化为对环境所做的机械功，并将剩余的能量释放到温度为 T2 的低温热库中。该装

置以循环方式运行，也就是说，在整个过程结束时，它回到其初始状态。循环装置包括两

个热库一起，整个复合系统被封闭在一个容器中，该容器只允许系统以纯机械方式与环境

交换能量，例如通过提升或降低一个宏观重物来实现。所以，热机的循环过程就是一种绝
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热变换，因此每个循环完成之后，整个复合系统的熵不减。

由于工作物质是循环使用的，其状态必定会回到初始状态，所以一个循环前后其熵变

为零。换言之，一个循环前后整个系统的熵变完全来源于热库的熵变。假设记循环之前高

温热库的熵为 S1, 循环之后的熵为 S′1, 工作物质从高温热库吸收的热量为 Q1(即高温热库
吸收的热量为 −Q1), 从而即有

S′1 = S1 −
Q1

T1
. (5.7)

类似的，记循环之前低温热库的熵为 S2，循环之后的熵为 S′2，假设工作物质向低温热库

释放的热量为 Q2, 则

S′2 = S2 +
Q2

T2
. (5.8)

利用绝热变换必须满足的

S1 +S2 ≤ S′1 +S′2, (5.9)

立即有

Q1

T1
− Q2

T2
≤ 0. (5.10)

假设每个循环系统向外做功为 W , 从而

Q1 = Q2 +W. (5.11)

定义热机效率 η 为

η ≡ W
Q1

, (5.12)

即每吸收一单位的热量能够向外做的功。不难看到，必有

η =
Q1 −Q2

Q2
= 1− Q2

Q1
≤ 1− T2

T1
. (5.13)

这个式子给出了热机效率的上限，其中等于号对于可逆热机才成立。

5.2 再谈热力学

5.2.1 化学势

此前第二章中都默认系统的总粒子数是固定的，不作为变量。现在我们考虑如果粒子

数是变量会带来什么新知识。

同样，让我们从孤立系统开始，假设系统的总粒子数为 N, 对于孤立系统它和力学条
件 x 一样是固定的，所以平衡态应该由 (E,x,N) 三类宏观参量刻画，记为 X = (E,x,N)。

如果系统包含多种粒子，每一种粒子都有一个粒子数，那就需要进一步将 N 推广成多维

向量 N = (N1,N2, · · ·)。不过，为了表达的简单起见，我们主要以一种粒子的情形为例，如



5.2 再谈热力学 81

何推广到多种粒子情形留给读者自行探讨。总之，热平衡时，孤立系统的熵应该是状态函

数 S(X)≡ S(E,x,N)。

和第二章中的相关处理一样，现在把整个孤立系统任意分成 A, B 两部分，不过，现

在假设这两部分之间可以交换粒子，当然，总粒子数 N 是固定不变的。记 NA,NB 分别为

A,B 部分的粒子数，则和第二章中引入温度时的讨论完全类似，根据热平衡时熵取极大值，

我们有

∂SA

∂NA
=

∂SB

∂NB
. (5.14)

也即是说，热平衡时系统各部分熵对本部分粒子数的偏导处处都一样。因此我们可以定义

∂S
∂N

=−µ
T
, (5.15)

它可以是对系统的任意部分定义的，也可以是对整个系统定义的。则根据刚才的推导，我

们有，热平衡时这样定义的 µ/T 处处都一样，由于热平衡时温度处处一样，因此，热平

衡时，这样定义的 µ 必定在整个系统中处处相同。µ 就称之为系统的化学势！注意，不是
相空间的相点，后者我们将记为 µN。所以，热平衡时系统的化学势处处相同。

结合第二章的相关结果

∂S
∂E

=
1
T
,

∂S
∂x

=
J
T
. (5.16)

我们立即有

dS =
1
T

dE +
1
T

J ·dx− 1
T

µdN. (5.17)

稍微整理一下也可以重写成

dE = T dS−J ·dx+µdN. (5.18)

这样写的时候，我们最好是认为已经通过反解 S = S(E,x,N) 而把能量 E 看成是 S,x,N 的
函数了，记为 E = E(S,x,N). 从这里我们又可以得到

µ =
∂E
∂N

|S,x, (5.19)

也即是说，化学势就是在保持热力学熵以及力学条件 x 不变的前提下，系统每增加一个粒
子其总能量的增量。

考虑两个系统 A,B，其化学势分别为 µA,µB，假设把两者相接触，并允许两者之间的

粒子交换。则由于 A,B 的复合系统可以看作是孤立系统，所以根据熵增加原理，粒子交换

的结果必定使得整个系统的熵增加，从而

δS = δSA +δSB =−µA

TA
δNA −

µB

TB
δNB ≥ 0. (5.20)

由于总粒子数 N = NA +NB 固定，所以必有 δNA =−δNB, 从而上式告诉我们

0 ≤ δS =
(µA

TA
− µB

TB

)
δNB. (5.21)

如果 A,B 的温度一样 TA = TB > 0，但是化学势不一样，假设 µA > µB, 则上式告诉我们
δNB ≥ 0, 从而 δNA ≤ 0, 也即是说，粒子必定从化学势更高的 A 流向化学势较低的 B。
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5.2.2 Gibbs-Duhem 关系式

现在我们将系统能量看作是 S,x,N 的函数，记作 E(S,x,N)，则由于 S,x,N 以及 E 都

是广延量，所以必有 (对于 λ > 0)

E(λS,λx,λN) = λE(S,x,N), (5.22)

也即是说，E 是变量 S,x,N 的齐次函数，齐次度为 1。从而根据齐次函数的欧拉定理，我
们有

S
∂E
∂S

|x,N +x · ∂E
∂x

|S,N +N
∂E
∂N

|S,x= E(S,x,N), (5.23)

利用 ∂E
∂S |x,N= T , ∂E

∂x |S,N=−J(第二章提到过这两个结果)，以及 ∂E
∂N |S,x= µ, 立即有

E = T S−J ·x+µN. (5.24)

通常称这个结果为 Gibbs-Duhem 关系式，注意，由于广延性严格来说需要取热力学极限，
所以这个关系式只在热力学极限下才成立。

特别的，将上式微分，即有

dE = T dS−J ·dx+µdN +SdT −x ·dJ+Ndµ (5.25)

代入前面的 (5.18) 式，即有

SdT −x ·dJ+Ndµ = 0. (5.26)

习惯上，人们常常将这个式子除以 N, 进而得到

dµ = v ·dJ− sdT, (5.27)

式中 v = x/N 是平均每个粒子所分到的力学条件，比如平均每个粒子所占据的体积，s =

S/N 则是平均每个粒子的熵。常常也将 (5.27) 式称作微分 Gibbs-Duhem 关系式。
根据微分 Gibbs-Duhem 关系式，假设我们知道对于某个特定的广义力 J0, 以及对于

所有的温度 T，我们知道 s(J0,T ), 则可以积分上式，得到

µ(J0,T ) = µ(J0,T0)−
∫ T

T0

dT ′s(J0,T ′). (5.28)

热力学关系式 (5.18)有一些等价的形式，比方说，根据 ∂E
∂S |x,N= T 反解出 S作为 T,x,N

的函数，并定义热平衡时的自由能 F(T,x,N)为 F = E −T S, 则由于 dF = dE −T dS−SdT，

代入 (5.18) 式即有

dF =−SdT −J ·dx+µdN. (5.29)

特别的,

µ =
∂F
∂N

|T,x . (5.30)
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类似的，可以定义巨热力学势 Φ(T,µ,x)

Φ ≡ F −µN. (5.31)

则同样不难推导出

dΦ =−SdT −J ·dx−Ndµ. (5.32)

后文将利用所谓的巨正则系综重新推导这个等式。另一方面，利用 Gibbs-Duhem 关系式，
我们也有

Φ =−J ·x. (5.33)

进一步，可以定义 Gibbs 自由能 G(T,J,N)

G ≡ F +J ·x = E −T S+J ·x. (5.34)

则类似的有

dG =−SdT −x ·dJ+µdN. (5.35)

特别的

µ =
∂G
∂N

|T,J . (5.36)

另外一方面，利用 Gibbs-Duhem 关系式，也有

G = µN. (5.37)

注意，以上两个式子表面上看似乎很不同，但在热力学极限下两者其实是等价的。

吉布斯自由能有一个很直观的物理解释，不妨以 x 为系统体积 V，J 为压强 P 的情形

为例说清楚这个解释。这时候，G 为 T,P,N 的函数，所以常常用来描述等温等压的系统。

根据其定义

G = E −T S+PV, (5.38)

我们可以将 G的物理含义解释如下：假设你是一个神，能汇聚能量在真空中创造出一个物

体，比如一只兔子，请问你需要汇聚多少能量？你需要的能量恰好等于这只兔子的内能 E。

但是，如果兔子不在真空中，它还需要排开一些空气，而这需要额外的能量 PV , 因此，为
了创造这只兔子，你需要的总能量是 E +PV , 这有一个专门的名称叫焓。然而，如果兔子
是处于某个恒温环境中，那么你其实可以少提供一些能量，因为兔子可以从恒温环境中吸

热，这部分能量为 T S，它可以由恒温环境提供，所以其实你真正只需提供 G = E−T S+PV

的能量就够了，而这就是吉布斯自由能。
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5.2.3 热平衡稳定性

孤立系统热平衡态对应熵的极大值。而此前我们只用到了热平衡态对应熵的极值，极

大的条件一直还没用。极值条件对应于熵的一阶变分等于零，极大值则进一步对应熵的二

阶变分小于零。后者又称作热平衡态的稳定条件，它会告诉我们，为了保证热平衡态的稳

定性，系统得满足什么条件。

还是让我们考虑由宏观状态 (E,J,N)刻画的孤立系统，相应的强度量记作 (T,J,µ),我
们已经知道，热平衡时这些强度量在系统各部分之间是相等的。同样，我们任意地把系统

分成 A,B 两个部分，它们的广延坐标满足 EA +EB = E, xA +xB = x, 以及 NA +NB = N。现

在，设想 A,B 部分之间发生了很微小的能量以及物质交换，交换之后 A 部分的宏观坐标

变为

(EA +δE,xA +δx,NA +δN)以及(TA +δTA,JA +δJA,µA +δ µA). (5.39)

类似的，B 部分的宏观坐标变换为

(EB −δE,xB −δx,NB −δN)以及(TB +δTB,JB +δJB,µB +δ µB). (5.40)

式中我们注意到了整个系统总的广延坐标是固定的。由于强度坐标都是广延坐标的函数，

所以很显然，在变分的一阶近似上必定有

δTA =−δTB ≡ δT, δJA =−δJB ≡ δJ, δ µA =−δ µB ≡ δ µ . (5.41)

另一方面，利用 Gibbs-Duhem 关系式，可以将整个系统总的熵表达为

S = SA +SB =
(EA

TA
+

JA

TA
·xA −

µA

TA
NA
)
+
(EB

TB
+

JB

TB
·xB −

µB

TB
NB
)
. (5.42)

热平衡时，这个熵的一阶变分等于零，因此只需要考虑二阶变分, 结果是

δ 2S = 2
[
δ
( 1

TA

)
δEA +δ

(JA

TA

)
·δxA −δ

(µA

TA

)
δNA

]
. (5.43)

式中，我们已经利用了热平衡时两部分的强度坐标是相等的，以及利用了 (5.41) 式，由此
而来的结果就是 B 部分的二阶变分和 A 部分的二阶变分相等。简单的推导告诉我们，以

上二阶变分可以写成

δ 2S =− 2
TA

[
δTA

(δEA +JA ·δxA −µAδNA

TA

)
−δJA ·δxA +δ µAδNA

]
=− 2

TA

[
δTAδSA −δJA ·δxA +δ µAδNA

]
. (5.44)

式中第二行我们代入了热力学等式 (5.18)。由二阶变分小于零的条件，立即有

δT δS−δJ ·δx+δ µδN > 0. (5.45)

式中，我们去掉了下标 A, 因为 A,B 部分是任意分的, 所以最后这个不等式对系统的任何
部分都成立，当然对整个系统也成立。这个不等式就称之为热平衡的稳定条件。
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作为上面式子的例子，让我们来考虑一个 x 为体积 V , J 为压强 P 的系统，这时候

(5.45) 式就变成

δT δS−δPδV +δ µδN > 0. (5.46)

特别的，假设我们取系统的宏观状态参量为 T,V,N,并假设 δV = δN = 0,由于 δS = ∂S
∂T |V,N

δT , 从而由上式立即有

∂S
∂T

|V,N (δT )2 > 0. (5.47)

由此即有，系统的定体热容 CV,N > 0, 即

CV,N = T
∂S
∂T

|V,N> 0. (5.48)

依然取宏观状态参量为 T,V,N, 从而根据热力学等式 (5.29)，即有

dF =−SdT −PdV +µdN. (5.49)

由此即有 −S = ∂F
∂T |V,N , −P = ∂F

∂V |T,N , µ = ∂F
∂N |T,V , 根据类似于 ∂x∂y f (x,y) = ∂y∂x f (x,y) 这样

的多元函数求导顺序可交换的规则，即有

∂P
∂N

|T,V =− ∂ 2F
∂N∂V

|T =−∂ µ
∂V

|T,N . (5.50)

通常称类似这样的关系式为麦克斯韦关系式。

现在，取 δT = 0, 从而根据 (5.46) 式，即有

(δV,δN)

(
− ∂P

∂V |T,N − ∂P
∂N |T,V

∂ µ
∂V |T,N

∂ µ
∂N |T,V

)(
δV

δN

)
> 0. (5.51)

这个结果对于任意 (δV,δN) 均成立，从而下面矩阵是一个正定矩阵(
− ∂P

∂V |T,N − ∂P
∂N |T,V

∂ µ
∂V |T,N

∂ µ
∂N |T,V

)
正定, (5.52)

注意，根据上一段的麦克斯韦关系，这也是一个对称矩阵。对称矩阵的正定性就意味着对

角元都大于零，且整个矩阵的行列式也大于零。由对角元大于零，可得

κT,N ≡− 1
V

∂V
∂P

|T,N > 0,
∂N
∂ µ

|T,V > 0. (5.53)

其中 κT,N 就是所谓的等温压缩系数。由行列式大于零，即得

∂P
∂N

|T,V
∂ µ
∂V

|T,N − ∂P
∂V

|T,N
∂ µ
∂N

|T,V > 0. (5.54)
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5.3 巨正则系综

现在，考虑一个系统，让它和一个大的恒温热库相接触，热库的温度为 T ,假设同时允
许这个系统与热库之间交换粒子，热库的化学势为 µ, 那么这个系统就是一个粒子数不固
定的系统。为了用系综的方法描述这样的系统，我们不仅需要考虑给定粒子数下概率在相

空间上的分布，还要考虑概率在不同粒子数上的分布，具体来说，对于任何粒子数 N, 我
们需要引入相空间概率密度 ρN(µN) (这里 µN 为 N 粒子对应的相点)，它满足如下归一化
条件

∑
N

∫
dµNρN(µN) = 1, (5.55)

式中的积分是在 N 粒子相空间上积分。

则系统的能量期望值是

E(ρ)≡ ∑
N

∫
dµNρN(µN)HN(µN), (5.56)

式中 HN 为 N 个粒子总的哈密顿量。粒子数的期望值 N(ρ) 为

N(ρ)≡ ∑
N

∫
dµNNρN(µN). (5.57)

系统相应的熵为

S(ρ)≡−kB ∑
N

∫
dµNρN logρN . (5.58)

注意，这些量均对系统的非平衡态有定义。进而也可以把巨热力学势的概念推广到非平衡

态，为此定义

Φ(ρ)≡ F(ρ)−µN(ρ) = E(ρ)−T S(ρ)−µN(ρ). (5.59)

下面，设想经过某个过程，使得系统的 ρN 演变成了 ρ ′
N , ρN → ρ ′

N , 则演变之后系统的
熵变为

δS ≡ S(ρ ′)−S(ρ). (5.60)

类似的，能量期望值和粒子数期望值的改变量为

δE ≡ E(ρ ′)−E(ρ), δN ≡ N(ρ ′)−N(ρ). (5.61)

其中因为粒子数的改变而引起系统平均能量的改变量当然就是 µδN。

假设整个过程系统与热库之间没有机械功的交换，只有热量和粒子数的交换。假设系

统从热库中吸热为 Q, 则热库的熵变为

δSR =−Q/T. (5.62)
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根据能量守恒，当然有

δE = Q+µδN. (5.63)

由于系统与热库一起构成了一个孤立系统，有熵增加原理，所以必定有

δS+δSR = δS−Q/T ≥ 0. (5.64)

代入上面的 (5.63) 式，即有

1
T

(
T δS−δE +µδN

)
≥ 0. (5.65)

也即是

δΦ ≡ δE −T δS−µδN ≤ 0. (5.66)

也即是说，在非平衡过程中，这样的系统的巨热力学势将自发减少。
当系统与热库达成热平衡时，巨热力学势将减少至极小值。换言之，这种系统的热平

衡态对应于泛函 Φ(ρ)((5.59) 式）的极小值，其中变分的约束条件就是归一化条件 (5.55)。
为了用变分法求出热平衡时的 ρN , 可以计算变分 δΦ(ρ) 如下

δΦ = ∑
N

∫
dµN

(
HN + kBT (logρN +1)−µN

)
δρN . (5.67)

进一步利用拉格朗日乘子法把约束条件 (5.55) 考虑进去，并取最后的变分等于零，即可以
得出热平衡时的 ρN 为

ρN =
1
Ξ

e−β (HN−µN), (5.68)

式中 1/Ξ 是常数，由归一化条件 (5.55) 可得

Ξ = ∑
N

∫
dµNe−β (HN−µN) = ∑

N
zN
∫

dµNe−βHN(µN), (5.69)

式中 z ≡ eβ µ 称作易逸度。(5.68) 式和 (5.69) 式描述的系综就称作巨正则系综。Ξ 就是所
谓的巨配分函数，根据 (5.69) 式的最后一个等于号，它也可以表达成

Ξ = ∑
N

zNZN , (5.70)

ZN 就是 N 粒子正则系综的配分函数。

不难验证，巨正则系综满足第二章中归纳出来的极大熵原理。其中对概率分布的约束

条件就是固定系统的能量期望值和粒子数的期望值，即

∑
N

∫
dµNρNHN = ⟨HN⟩= E(T,µ,x) 固定

∑
N

∫
dµNNρN = ⟨N⟩= N(T,µ,x) 固定.
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有时候会把熵的表达式 (5.58) 写成 −kB logρN 的期望值

S(ρ) =−kB⟨logρN⟩. (5.71)

代入热平衡时的概率分布 (5.68)，即有热平衡时的熵为

S = kB logΞ+ kBβ (⟨HN⟩−µ⟨N⟩)⇒−kBT logΞ = ⟨HN⟩−T S−µ⟨N⟩ (5.72)

注意到 ⟨HN⟩就是热平衡时的平均能量 E(T,µ,x), ⟨N⟩就是热平衡时的平均粒子数 N(T,µ,x)，
所以，−kBT logΞ 就是热平衡时的巨热力学势 Φ(T,µ,x)，即

Φ(T,µ,x) =−kBT logΞ. (5.73)

另外，根据 Ξ 的定义 (5.69), 不难得到

−∂Φ
∂T

= kB logΞ+ kBT
1
Ξ

∂Ξ
∂T

=−Φ/T − kBβ
1
Ξ

∂Ξ
∂β

=− 1
T
(Φ−⟨HN⟩+µ⟨N⟩) =− 1

T
(−T S) = S(T,µ,x). (5.74)

最后的 S(T,µ,x) 表示热平衡时的熵。类似的，不难得到

−∂Φ
∂x

=−⟨∂H
∂x

⟩ ≡ J. (5.75)

以及

−∂Φ
∂ µ

= ⟨N⟩. (5.76)

综合这些结果，即有

dΦ =−SdT −J ·dx−⟨N⟩dµ. (5.77)

这就是之前得到过的热力学等式 (5.32), 虽然之前式子中的粒子数 N 现在应该理解为平均

粒子数 ⟨N⟩。最后这个结果告诉我们，只要算得 Ξ，就可以用 (5.73) 式得到热平衡时的巨
热力学势，进而又可以算得其它的热力学量。所以，在巨正则系综的应用中，关键是算巨

配分函数 Ξ。
由 ⟨N⟩= kBT ∂ logΞ

∂ µ , 可以进一步得到

kBT
∂ ⟨N⟩
∂ µ

= kBT
∂

∂ µ

( 1
Ξ ∑

N
N
∫

dµNe−β (HN−µN)
)

=−kBT
∂ logΞ

∂ µ
1
Ξ ∑

N
N
∫

dµNe−β (HN−µN)+
1
Ξ ∑

N
N2
∫

dµNe−β (HN−µN)

= ⟨N2⟩−⟨N⟩2 = ⟨(N −⟨N⟩)2⟩. (5.78)

由于 ⟨N⟩ 是广延量，µ 是强度量，从而 kBT ∂ ⟨N⟩
∂ µ 必定是广延量，因此这就说明粒子数的涨

落 ⟨(N −⟨N⟩)2⟩ 是广延量，在热力学极限下将正比于 ⟨N⟩, 所以相对误差√
⟨(N −⟨N⟩)2⟩

⟨N⟩
∝

1√
⟨N⟩

. (5.79)
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所以，在热力学极限下，粒子数涨落的相对误差趋于零，系统的粒子数几乎被固定在其平

均值上。这也说明，在热力学极限下，巨正则系综与正则系综是等价的。

理想气体

不妨以理想气体为例说明一下巨正则系综的应用。首先，根据第二章中对理想气体正

则系综配分函数的计算，有

ZN =
V N

N!
(mkBT

2π h̄2

)3N/2
. (5.80)

进而利用 Ξ = ∑N zNZN，即有

Ξ = exp
[
zV
(mkBT

2π h̄2

)3/2
]
. (5.81)

进而可以得到巨热力学势为

Φ =−kBT zV
(mkBT

2π h̄2

)3/2
. (5.82)

进而由 ⟨N⟩=− ∂Φ
∂ µ =−β z ∂Φ

∂ z (式中利用了 z = eβ µ), 即可以算得

⟨N⟩= zV
(mkBT

2π h̄2

)3/2
. (5.83)

也即理想气体系统的化学势为

µ =−kBT log
[ V
⟨N⟩

(mkBT
2π h̄2

)3/2
]
. (5.84)





6. 量子统计的基本原理

本章我们讲述量子统计力学的基本原理，也就是把前面第一章和第二章中为经典统计

力学建立的理论框架推广到量子情形。为了完成这一推广，需要引入密度算符的概念，它

是经典统计中相空间概念密度的量子对应物。此外，还需要把经典吉布斯熵和相对熵的概

念推广到量子情形。最后，还需要把第二章中讨论的粗粒化演化和熵增加原理推广到量子

系统。有了这些准备以后，建立量子系统的三大热平衡系综 (微正则系综、正则系综以及
巨正则系综) 就是一件顺理成章的事情。

6.1 密度算符

6.1.1 期望值以及算符迹

测量与期望值

量子力学告诉我们：对某个物理量 A 多次重复实验测得的平均值 A 等于算符 A 在态

上的期望值，即

A = ⟨ψ|A|ψ⟩, (6.1)

|ψ⟩ 为系统所处的量子态。量子力学原理也告诉我们，物理量 A 的测量值是相应算符 A 的

本征值，在单次实验中，我们测得哪个值是随机的，测得本征值 λi 的概率为 pi = |⟨i|ψ⟩|2,
式中 |i⟩为与本征值 λi 相应的本征态。这样算出来的概率 pi 当然也可以通过重复多次实验
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来检验，因此其计算公式应该也能写成期望值的形式，的确，假如定义投影算符 Pi = |i⟩⟨i|,
则人们很容易验证

pi = ⟨ψ|i⟩⟨i|ψ⟩= ⟨ψ|Pi|ψ⟩. (6.2)

因此，不仅仅物理量的平均值，而且物理量值的概率分布，都可以表达成厄密算符期望值

的形式。

以上讨论告诉我们，在量子力学中一切可以通过重复实验来进行检验的量都可以由一

个适当厄密算符的期望值来计算，假设这个厄密算符是 O，习惯上，人们常将这个期望值

简记为 ⟨O⟩，

⟨O⟩= ⟨ψ|O|ψ⟩. (6.3)

各种厄密算符的期望值就是我们能够从一个量子态中提取的所有信息。

算符求迹

一个矩阵所有对角元的和称为矩阵的迹，在幺正变换下矩阵的迹保持不变，这使得我

们可以将迹的概念推广到线性算符。对于一个线性算符 O, 我们记其迹为 Tr(O), 定义为

Tr(O) = ∑
i
⟨i|O|i⟩, (6.4)

式中 {|i⟩} 为希尔伯特空间的一组正交归一矢量基。虽然为了计算算符的迹我们需要选取
一个特定的表象，但由于不同的表象之间只相差一个幺正变换，所以算符的迹实际上并不

依赖于表象。由此可以知道，一个算符的迹就是它在任何一个表象中表示矩阵的迹，特别

的，对于厄密算符，我们可以将这个表象选为它的本征表象，这时候算符的迹其实就是所

有本征值的和。

假设有两个算符 A 和 B，读者容易证明算符迹满足如下等式

Tr(AB) = Tr(BA). (6.5)

不过，值得说明的是，对于无穷维希尔伯特空间，并非所有算符的迹都是定义良好的，因

此在无穷维希尔伯特空间上应用 (6.5) 式时得特别小心，有时候它并不成立。比方说，对
于坐标算符和动量算符的对易子来说，如果简单地应用这个公式将会得出 Tr([X ,P]) = 0，

但实际上 Tr([X ,P]) = ih̄Tr(1) ̸= 0。在这个例子中，(6.5) 式之所以不成立，正是因为式中
各算符的迹都不是良好定义的。

利用算符的迹，我们可以把算符的期望值公式重写成

⟨ψ|O|ψ⟩= Tr
(
|ψ⟩⟨ψ|O

)
= Tr

(
ρψO

)
. (6.6)

式中投影算符 ρψ = |ψ⟩⟨ψ|。要证明这个式子，我们只需注意到

Tr
(
|ψ⟩⟨ψ|O

)
= ∑

i
⟨i|ψ⟩⟨ψ|O|i⟩= ∑

i
⟨ψ|O|i⟩⟨i|ψ⟩= ⟨ψ|O|ψ⟩.
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可见，为了计算算符的期望值，我们并不需要知道量子态 |ψ⟩，而是只需要知道厄密算符
ρψ。|ψ⟩ 和 ρψ 的一个重要区别是，|ψ⟩ 可以相差一个非物理的整体相位因子，变成 eiθ |ψ⟩,
而 ρψ 在这种相位变换下不变，也即是说，它自动剔除了这一非物理的整体相位信息。

以上讨论告诉我们，从一个量子系统中能够提取出来的所有物理信息都包含在 ρψ =

|ψ⟩⟨ψ| 这一特殊厄密算符中。注意到 ⟨x|ρψ |x⟩= |⟨x|ψ⟩|2 正好是概率密度。即是说，ρψ 在

坐标表象中的对角元对应概率密度，所以人们常常称 ρψ 为纯态密度算符，它和狄拉克符

号 |ψ⟩ 表示的量子态是对应的，这样的态也称为纯态。下面我们就是要将密度算符这一概
念推广到更为一般的情形。

6.1.2 混态

密度算符与系综

上面的密度算符 ρψ 只涉及一个量子态 |ψ⟩。然而，有时候可能有多个量子态 |a⟩,a =

1,2, · · · , 而我们不能确定系统到底处于哪一个态，只知道系统处于 |a⟩ 态的概率是 pa, 这
时候就需要将密度算符推广成如下更一般的形式

ρ = ∑
a

pa|a⟩⟨a|. (6.7)

显然，ρ 满足 Tr
(
ρ
)
= ∑a pa = 1。如果这样的概率不只分布在单个纯态上，那么相应的 ρ

就称作混态密度算符，我们称它描写的系统状态为混态。

总之，一个系统的密度算符 ρ 包含了所有我们能从对这个系统的观测中提取出来的
信息，根据上面的讨论可以知道，密度算符 ρ 应该满足如下性质：

• 它是一个厄密算符。
• 它的本征值都大于等于 0，为正定算符。
• Tr(ρ) = 1。

有了密度算符以后，对任何物理可观测量 O 期望值的计算就可以表达为

⟨O⟩= Tr(ρO). (6.8)

由此可见，密度算符就是第二章中相空间概率密度的量子力学推广，而 Tr 就是相空间积
分的量子力学对应物。

如果一个密度算符能够写成 ρ = |ψ⟩⟨ψ|的形式，就称为纯态密度算符，它描述的系统
状态就是纯态，否则就是混态密度算符，描述的状态就是混态。很显然，纯态密度算符额

外满足

ρ2 = ρ. (6.9)

反过来，如果一个密度算符额外满足上式，则它的本征值必为 0 或 1，由于密度算符所有
本征值的和要等于 1，因此它就必定能写成 ρ = |ψ⟩⟨ψ| 的形式 (|ψ⟩ 为 ρ 的本征态)，从而
必为纯态密度算符。对于纯态密度算符，我们必定有

Tr(ρ2) = Tr(ρ) = 1. (6.10)
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对于一个任意的密度算符 ρ, 我们必可以通过求解它的本征方程将它对角化成如下形
式

ρ = ∑
a

pa|a⟩⟨a|. (6.11)

密度算符的正定性告诉我们 pa ≥ 0, Tr(ρ) = 1的条件则告诉我们 ∑a pa = 1，所以 pa ≤ 1，等

号仅当 ρ 为纯态密度算符时才成立。因此，对于混态密度算符，我们必有 Tr(ρ2) = ∑a p2
a <

∑a pa = 1，即对于混态密度算符，必有

Tr(ρ2)< 1. (6.12)

密度算符的 (6.11) 形式启发我们可以从系综的角度解释密度算符。也即是说，我们
可以认为密度算符描述的是大量系统 (由于对任何物理量期望值的测量都需要多次重复实
验，这相当于引入了大量系统) 的集合，其中每一个系统以概率 pa 处于 |a⟩ 态。这是因为，
这一系综中任何物理量 O 的期望值同样由下式给出

⟨O⟩= ∑
a

pa⟨a|O|a⟩= Tr(ρO). (6.13)

根据系综解释，我们可以将密度算符中出现的概率 pa 看成是源于我们对系统信息的

缺失，它造成了我们对系统的某种无知。总之，密度算符描述中包含了对系统的某种无知，

这种无知来源于对系统的信息缺失，任何信息缺失都可以对应于一个系综，从而给出一个

密度算符。然而，如何量化密度算符中包含的无知呢？这个问题我们后面再来讨论。

Bloch 球

下面我们详细地讨论一下单个量子比特的密度算符 ρ。这时候希尔伯特空间是 2 维
的，为了具体起见我们可以将基矢量 {|0⟩, |1⟩} 表示成

|0⟩=

(
1

0

)
|1⟩=

(
0

1

)
. (6.14)

如此一来，密度算符 ρ 就应该表示成一个 2×2 的厄密矩阵，称为密度矩阵。但是，任何

2×2 的厄密矩阵都可以用 {1,σx,σy,σz} 这四个厄密矩阵展开为 ρ = 1
2(w0 ·1+w · σ⃗), 式中

{w0,w} 均为实数。注意到泡利矩阵的迹为零，则由 Tr(ρ) = 1 可知，w0 = 1, 从而单个量
子比特的密度矩阵 ρ 必定可以表示成如下形式

ρ(w) =
1
2
(
1+w · σ⃗

)
. (6.15)

w 称为量子比特的极化矢量，所以单量子比特的密度矩阵完全由其极化矢量刻画。另外，
容易算出 Tr(ρ2) = 1

2(1+w2), 由 Tr(ρ2)≤ 1 可知

w2 ≤ 1, (6.16)

等号当且仅当 ρ(w) 为一个纯态密度矩阵时才成立。
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由上面的讨论可知，单个量子比特的所有可能密度矩阵一一对应于 3 维极化矢量空间
中的一个单位球体 w2 ≤ 1，称为 Bloch 球，这个球体的表面对应于单量子比特的可能纯
态，球内部分描写的当然就是混态。特别的，在 Bloch球体中心，w = 0处的那个混态，就

是通常所谓的最大混态，很显然，它是

ρ(0) =
1
2
·1 =

1
2
(
|0⟩⟨0|+ |1⟩⟨1|

)
. (6.17)

之所以说 ρ(w) 表达式中的 w 是极化矢量，是因为，假设将单量子比特看成电子自旋，
|0⟩ 态看成自旋向上态，|1⟩ 态看成自旋向下态，则我们可以计算 n 方向泡利算符 (n · σ⃗) 的

期望值，易得

⟨(n · σ⃗)⟩w = Tr((n · σ⃗)ρ(w)) = n ·w. (6.18)

这告诉我们，n 方向自旋期望值是矢量 w 在 n 方向上的投影，可见 w 正好代表自旋极化。
假设在单位球面上取一个单位矢量 n = (sinθ cosϕ ,sinθ sinϕ ,cosθ), n2 = 1，则纯态密

度矩阵就是 ρ(n) = 1
2

(
1+n · σ⃗

)
。假设记相应的纯态为 |ψ(n)⟩，即 ρ(n) = |ψ(n)⟩⟨ψ(n)|，则

由于 (n · σ⃗)ρ(n) = ρ(n)(n · σ⃗) = ρ(n)，容易看出，|ψ(n)⟩ 必为 (n · σ⃗) 的本征值为 1 的本征
态。

利用 3 个泡利矩阵的表达式，并将单位矢量 n 的分量形式代入 ρ(n)，容易得到

ρ(n) =

(
cos2(θ/2) cos(θ/2)sin(θ/2)e−iϕ

cos(θ/2)sin(θ/2)eiϕ sin2(θ/2)

)
. (6.19)

由此可以得到

|ψ(n)⟩=

(
cos(θ/2)e−iϕ/2

sin(θ/2)eiϕ/2

)
. (6.20)

假设有两个密度矩阵 ρ(w1) 和 ρ(w2), 则对于任意 0 ≤ t ≤ 1 均有

tρ(w1)+(1− t)ρ(w2) = ρ(tw1 +(1− t)w2), (6.21)

也即是说，两个密度矩阵按照 tρ(w1)+(1− t)ρ(w2) 的形式组合以后结果依然是一个密度

矩阵，而且这个密度矩阵的极化矢量刚好是 tw1 +(1− t)w2。实际上，假设将 0 ≤ t ≤ 1 看

成可变参数，那方程 tw1 +(1− t)w2 描写的就是 w1 与 w2 的连线线段，这条线段当然依

然在 3 维空间的单位球体之内，因此连线上的每一点当然都对应一个密度矩阵。

6.2 再谈密度算符与系综

这一节我们主要是推广系综的概念。

密度算符集合的凸性

首先我们定义一下什么是向量空间的凸子集。对于向量空间的某个子集，如果它满足

集合中任意两个点的连线段完全处于集合内部，那么这个集合就是向量空间的一个凸子
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Figure 6.1: 两维实向量空间的一个凸子集，A,B,C,D,E 为极端点。

集。比如图 (6.1) 所示的多边形就是两维平面的凸子集。如果凸子集中的某点永远不能处
在子集内连线段内，而只能处于连线段的端点，那这个点就称为极端点。比如图 (6.1) 中
的 A,B,C,D,E 点就是极端点。

另外，由于任何两个厄密算符的实系数线性组合依然是厄密算符。所以一个量子系统

所有厄密算符的集合构成了一个实向量空间，系统每一个可能的厄密算符都对应这个实向

量空间里的一个向量。

之所以讨论以上两个概念，是因为，一个量子系统的所有可能密度算符的集合构成了

厄密算符向量空间的一个凸子集。具体来说，假设 ρ1,ρ2, ...,ρN 是系统 N 个可能的密度算

符，则下式给出的 ρ 也必定是系统可能的密度算符

ρ = p1ρ1 + p2ρ2 + ...+ pNρN , (6.22)

式中，0 ≤ pi ≤ 1, 且 ∑N
i=1 pi = 1。要证明 ρ 是密度算符，只需验证它满足密度算符必须满

足的 3 条性质。根据所给条件，ρ 的厄密性以及 Tr(ρ) = 1 这两条都很明显，唯一需要说

明的是 ρ 的正定性。对于一个厄密算符的正定性，我们有两种等价的判定方法，1. 所有
本征值大于等于 0; 2. 这个算符在任何量子态 |ψ⟩ 上的期望值都大于等于 0。根据第 2 种
判定正定性的方法，(6.22) 式给出来的厄密算符 ρ 的正定性也是显然的 (注意我们已知每
一个 ρi 都正定)。

上一段我们刻画了密度算符集合的凸性，实际上更符合凸子集定义的刻画方法是: 假
设 ρ1,ρ2 为系统两个可能的密度算符，则这两者的连线段 ρ(t) = tρ1 +(1− t)ρ2 上每一个

密度算符 ρ(t) 也必为系统可能的密度算符，这里 0 ≤ t ≤ 1。这种刻画凸性的方式不仅是

上一段给出来的刻画方式的特例，而且从它出发通过使用数学归纳法我们也能反过来导出

上一段的刻画方式。所以对凸性的这两种刻画方式实际上是等价的。

不仅如此，我们还可以证明，纯态密度矩阵相应于这个密度算符凸子集的极端点。为

此，我们假设 ρ = |ψ⟩⟨ψ|,我们用反证法，设存在密度算符 ρ1 和 ρ2，使得 ρ = tρ1+(1−t)ρ2,
0 < t < 1。任意取一个与 |ψ⟩ 正交的 |ψ⊥⟩ 态，它满足 ⟨ψ|ψ⊥⟩= 0, 则有 0 = ⟨ψ⊥|ρ|ψ⊥⟩=
t⟨ψ⊥|ρ1|ψ⊥⟩+(1−t)⟨ψ⊥|ρ2|ψ⊥⟩。进一步根据密度算符的正定性，必有 ⟨ψ⊥|ρ1|ψ⊥⟩= ⟨ψ⊥|ρ2|ψ⊥⟩=
0。但是 |ψ⊥⟩ 是任意与 |ψ⟩ 正交的态，因此刚才的结果就意味着 ρ1 = ρ2 = |ψ⟩⟨ψ|= ρ。这
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就证明了纯态必为极端点。反过来，对于混态密度算符 ρ，由于总有 ρ = ∑a pa|a⟩⟨a|，式
中 |a⟩⟨a|= ρa 均为纯态密度算符，这就说明混态密度算符必定不是极端点。这就完成了密

度算符凸子集的极端点与纯态一一对应的证明。

比方说对前面讨论过的单量子比特密度算符 Bloch 球体的例子，整个 Bloch 球体就
是一个凸子集，球体表面的每一个点都是这个凸子集的极端点，因此必定相应于纯态。这

正好是我们前面已经知道的结论。不过，Bloch 球体是一个特例，它的边界点和极端点是
一回事，但是，图 (6.1) 告诉我们，对于一般的凸子集，它的极端点必定是边界点，但是
反过来，它的边界点却不一定是极端点。具有 3 维以上希尔伯特空间的量子系统的密度算
符凸子集也是这样，它的边界点并不都是极端点。

系综概念的推广

根据凸性，假设某个密度算符 ρ 可以写成 ρ = ∑i piρi, ∑i pi = 1。则很显然

⟨O⟩= Tr(ρO) = ∑
i

piTr(ρiO) = ∑
i

pi⟨O⟩i. (6.23)

这就意味着，对于一个量子系统，假设我们能够制备出所有的 ρi 态，则我们就可以制备

一个系综，让这个系综中的每个系统以 pi 的概率处在 ρi 态，而这个系综就可以由密度算

符 ρ = ∑i piρi 描述。密度算符 ρ 既可以看成是描述一个系统的量子态，也可以看成是描
述刚才所说的系综，等式 (6.23) 告诉我们，在物理上我们并不能区分这两者。
很明显，除了纯态以外，任何一个密度算符 ρ 都有多种办法分解成 ρ = ∑i piρi, ∑i pi =

1。因此与密度算符 ρ 所对应的系综远不是唯一的，而是有无穷多的可能性。比方说，对
于单量子比特 Bloch 球体内部的任何一点 (对应密度算符 ρ)，我们都可以作无数条过这一
点的线段与球面上的两点 (对应于两个纯态密度算符) 相交，每一根这样的线段都意味着
我们可以将密度算符 ρ 表示成球面上的这两个纯态密度算符的线性组合，而 ρ 就可以看
成是描述了相应的纯态系综，由于这样的线段有无数条，所以 ρ 可以描述无数多个不同的
纯态系综，在物理上这些纯态系综不可区分。比方说，对于 Bloch 球心的那个最大混态密
度算符 ρ = 1

2 ·1，我们就有无数种表达它的方式，比如下面的两种

ρ =
1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1|= 1

2
|+⟩⟨+|+ 1

2
|−⟩⟨−|. (6.24)

式中

|+⟩= 1√
2
(|0⟩+ |1⟩), |−⟩= 1√

2
(|0⟩− |1⟩). (6.25)

6.3 量子熵

6.3.1 冯诺伊曼熵

前面我们说过，混态密度算符可以写成 ρ = ∑a pa|a⟩⟨a| 的形式，pa 可以看成概率，是

一种不确定性，它反映了我们对系统的某种无知。然而如何衡量这种无知呢？

一个自然的想法是将这种无知定义成某个算符的期望值，不妨称这个算符为“无知算

符”，下面我们就是要找到它的表达式。由于我们的无知反映在系统的密度算符 ρ 中，所
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以这个“无知算符”应该依赖于 ρ(而通常的物理量算符是与态 ρ 无关的)。而且，如果 ρ
是一个纯态密度算符，那它就没有任何不确定性，从而相应的“无知算符”应该为零。

另外，从直观上我们知道，如果两个系统 S1 和 S2 相互独立，那我们对它们的无知应

该是相加的，或者说相应的“无知算符”应该是相加的。另一方面，假设我们记 S1 的密度

算符为 ρS1，记 S2 的密度算符为 ρS2 , 则由于这两个系统相互独立，所以两者整体的密度
算符应该是 ρS1 和 ρS2 的乘积，不过，ρS1 只作用在 S1 的希尔伯特空间 HS1 上，ρS2 只作

用在 S2 的希尔伯特空间 HS2 上，为了强调这一点我们常将这个乘积写成如下形式

ρS1ρS2 = ρS1 ⊗ρS2 , (6.26)

它作用在两者整体的希尔伯特空间 HS1 ⊗HS2 上。为了将密度算符的这种相乘关系转化为

相加关系，我们定义与密度算符 ρ 相应的“无知算符”如下

− log(ρ). (6.27)

额外加上的负号是为了使得这个算符为一个正定算符1。显然，这样定义的“无知算符”的

确是相加的，满足 − log(ρS1ρS2) =− log(ρS1)− log(ρS2)。

很容易验证，对于纯态密度算符的确有 − log(ρ) = 0。这是因为，纯态密度算符满足

ρ2 = ρ，从而 ρ 的任何幂次都依然等于 ρ。从而对于任何一个幂级数函数 f (x)，必有

f (ρ) = f (1)ρ。现在我们按照 − log(x) =− log(1+ x−1) 关于 x−1 的泰勒展开级数来定义

算符函数 − log(ρ), 从而当然就有 − log(ρ) =− log(1)ρ = 0。

下面我们可以将密度算符 ρ 中包含的无知定义为“无知算符”的期望值，称作冯诺伊
曼熵，简称熵，记为 S(ρ)，则

S(ρ) = kB⟨− logρ⟩=−kBTr
(
ρ logρ

)
. (6.28)

从根本上说式中玻尔兹曼常数 kB 的引入完全是单位选取上的约定俗成，当然既然在经典

吉布斯熵中引入了 kB, 那这里为了和经典熵能对应上，kB 就是必须的。显然，S(ρ) 也是所
有 −ρ logρ 本征值之和，从而也有

S(ρ) =−kB ∑
a

pa log(pa). (6.29)

这正好是香农关于经典概率分布 {pa} 信息熵的表达式，经典信息熵衡量的是获取信息以
后能够消除的不确定性，换言之，信息熵衡量的正是获取具体信息之前我们对它的无知，

所以冯诺伊曼熵 S(ρ) 的确衡量的是无知。很明显，

S(ρ)≥ 0, (6.30)

等于号仅当 ρ 为纯态密度算符时才能取到。
另外，假设系统的希尔伯特空间为 D 维，即 (6.29) 式中的指标 a = 1,2,3, ...,D。则由

(6.29) 式可以证明，

S(ρ)≤ kB logD. (6.31)
1因为 ρ 的本征值 0 ≤ pa ≤ 1, 所以恒有 − log(ρ) 的本征值 − log(pa)≥ 0。
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等于号当且仅当 pa = 1/D 时成立，这时候的密度算符为

ρ =
1
D ∑

a
|a⟩⟨a|= 1

D
·1. (6.32)

这当然是一个混态密度算符，相应的混态称之为最大混态。

凹性

前面我们说过，一个系统所有可能密度算符的集合是一个凸集，因此冯诺伊曼熵 S(ρ)
就是这个凸集上的函数，实际上，它是一个凹函数。为了证明这一点，任取两个不同的密

度算符 ρ1, ρ2，然后构造 ρ(t) = tρ1 +(1− t)ρ2, 0 ≤ t ≤ 1，我们要证明的是 d2

dt2 S(ρ(t))≤ 0。

为此，我们首先注意到

d
dt

S(ρ(t)) =−kBTr
(
ρ̇ logρ

)
. (6.33)

又注意到

logρ =
∫ ∞

0
ds
( 1

s+1
− 1

s+ρ(t)
)
. (6.34)

再注意到 ρ̈(t) = 0，则有

d2

dt2 S(ρ(t)) =−kB

∫ ∞

0
dsTr

(
ρ̇

1
s+ρ(t)

ρ̇
1

s+ρ(t)

)
. (6.35)

注意这个积分式的被积函数具有 Tr(A2) 的形式，式中 A = (s+ρ(t))−1/2ρ̇(s+ρ(t))−1/2 为

厄密算符，所以 A2 必定是正定算符，从而 Tr(A2)≥ 0，从而即有 d2

dt2 S(ρ(t))≤ 0。

由凹函数的熟知性质，我们有

∑
i

piS(ρi)≤ S(∑
i

piρi). (6.36)

式中 0 ≤ pi ≤ 1, 且 ∑i pi = 1。即是说，将多个密度算符“混”起来会增加冯诺伊曼熵。这

个熵的增量通常称作 Holevo 信息，记作 χ

χ = S(∑
i

piρi)−∑
i

piS(ρi). (6.37)

6.3.2 相对熵

相对熵和互信息

假设一个量子系统实际由密度算符 ρ 描写，但是我们不知道，我们猜测了一个描写它
的密度算符 σ , 那我们这个猜测中额外包含的无知就应该是

S(ρ ∥ σ) = kB⟨− logσ⟩− kB⟨− logρ⟩= kBTr(ρ logρ −ρ logσ). (6.38)
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式中 ⟨− logσ⟩ = −Trρ logσ 为我们的猜测中总共包含的无知，⟨− logρ⟩ 为系统密度算符
中原本包含的信息缺失，S(ρ ∥ σ) 也称作 σ 和 ρ 的量子相对熵。可以想见，量子相对熵
S(ρ ∥ σ) 这种额外的无知一定大于等于零 (等号当且仅当 σ = ρ 时才成立)，即

S(ρ ∥ σ)≥ 0, (6.39)

事实也的确如此，证明并不复杂，不过证明过程和我们将要进行的讨论关系不大，因此我

们推荐感兴趣的读者去阅读文献2。

特别的，假设我们考虑一个由 A 和 B 两个子系统组成的复合系统 AB，记 AB 的密

度算符为 ρAB, 记 ρA = TrB(ρAB) 为子系统 A 的约化密度算符 (式中 TrB 表示在子系统 B

的希尔伯特空间上求迹)，它只作用在子系统 A 的希尔伯特空间上，ρB = TrA(ρAB) 为子系

统 B 的约化密度算符 (TrA 表示在子系统 A 的希尔伯特空间上求迹)，它只作用在子系统
B 的希尔伯特空间上。当然，一般来说，由于相互作用，A 和 B 之间会存在关联，因此

ρAB ̸= ρA ⊗ρB。但是假设我们误以为 A 和 B 没有关联，并将 ρA ⊗ρB 猜测为 AB 的密度算

符 σAB

σAB = ρA ⊗ρB. (6.40)

则我们这一猜测的额外无知为 (注意 TrAB = TrATrB = TrBTrA)

S(ρAB ∥ σAB) = kBTrAB
(
ρAB logρAB −ρAB logσAB

)
= kBTrAB

(
ρAB logρAB −ρAB logρA −ρAB logρB

)
= SA +SB −SAB. (6.41)

式中 SA = S(ρA) 为 A 的熵, SB = S(ρB) 为 B 的熵, 而 SAB = S(ρAB) 为 AB 的熵。类似这样

的记号我们后面还会用，将不再进行说明。人们通常称 SA +SB −SAB 为 A 和 B 的量子互

信息，记为

I(A,B) = SA +SB −SAB. (6.42)

则 S(ρAB ∥ σAB)≥ 0 就意味着量子互信息总是大于等于零的，即

I(A,B) = SA +SB −SAB ≥ 0. (6.43)

不过，值得说明的是，量子互信息这个概念完全是类比于经典信息论中的互信息概念

而引入的，但它其实并没有经典互信息的内涵。另外，不等式 (6.43) 有时候也称之为熵的
次可加性 (subadditivity)。

6.4 海森堡绘景与薛定谔绘景

在量子力学中，刻画一个量子系综需要一组物理量算符以及描述系综量子态的一个密

度算符，不妨记其中一个任意的物理量算符为 O, 记系综的密度算符为 ρ，则实验可观测

2A Mini-Introduction To Information Theory, Edward Witten，arXiv:1805.11965[hep-th]
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的量总是由某物理量算符 O 在 ρ 上的期望值 ⟨O⟩ρ 给出，其中

⟨O⟩ρ ≡ Tr(ρO). (6.44)

当然，量子系统会随着时间演化，这种演化由系统的哈密顿量 H 决定, 它反映为期望
值 ⟨O⟩ρ 会随着时间演化。但是关于 ⟨O⟩ρ 随时间的演化是由物理量算符 O 的演化引起还

是由密度算符 ρ 的演化引起，我们有两种常用的不同观点，分别称之为，海森堡绘景和薛
定谔绘景。

海森堡绘景

让我们先来看海森堡绘景，它认为是物理量算符在随时间演化，而密度算符则是不变

的。为了讲得更清楚具体一点，我们定义时间演化算符 U(t)

U(t) = exp
(
− iHt/h̄

)
. (6.45)

显然，它满足

U(0) = 1, U(t)U(s) =U(t + s). (6.46)

换言之，U(t) 构成一个阿贝尔群。将 U(t) 对时间 t 求导，可以得到其满足的微分方程，为

ih̄
d
dt

U(t) = HU(t). (6.47)

海森堡绘景认为：描述量子态的密度算符 ρ 从不随时间演化, 随时间演化的是物理量
算符，它其实应该为如下 Ot ,

Ot ≡U†(t)OU(t), (6.48)

注意，式中 O 是不随时间演化的，但它只是 t = 0 时刻的物理量算符，即 O0 ≡ Ot=0 = O。

根据 Ot 的定义和方程 (6.47), 不难得到如下海森堡运动方程

ih̄
d
dt

Ot = [Ot ,H]. (6.49)

这个微分方程的初始条件为

O0 = O. (6.50)

进而物理量的期望值应该表达为

⟨Ot⟩ρ ≡ Tr(ρOt). (6.51)

薛定谔绘景

如果我们将 Ot 的定义 (6.48) 代入期望值公式 (6.51)，即有

Tr(ρOt) = Tr(ρU†(t)OU(t)) = Tr(U(t)ρU†(t)O). (6.52)
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由此，我们也完全可以把时间演化算符与态的密度算符结合起来，而不是和物理量算符结

合起来，即可以定义随时间演化的态 ρt

ρt ≡U(t)ρU†(t). (6.53)

从而即可以将上面的期望值公式重写成

⟨Ot⟩ρ ≡ Tr(ρOt) = Tr(ρtO)≡ ⟨O⟩ρt . (6.54)

也即是说，我们可以完全等价地认为是量子态在按照 ρt 随时间演化，而物理量算符是不

随时间演化的，永远为 O。

以上这种等价观点就是薛定谔绘景。根据 ρt 的定义不难看出，它满足如下薛定谔方

程

ih̄
d
dt

ρt = [H,ρt ]. (6.55)

这个微分方程的初始条件为

ρ0 = ρ. (6.56)

很显然，海森堡绘景是经典哈密顿绘景的量子力学对应物，薛定谔绘景则是经典刘维

尔绘景的量子对应物。而 ρt 所满足的薛定谔方程其实就是经典刘维尔方程的量子版本。

根据 (6.53) 式，以及 U†U = 1 从而 f (UρU†) =U f (ρ)U†，不难有

S(ρt) =−kBTrρt logρt =−kBTr[U(ρ logρ)U†]

=−kBTr[U†U(ρ logρ)] =−kBTr[ρ logρ] = S(ρ). (6.57)

式中第二行利用了 Tr(AB) = Tr(BA). 以上结果告诉我们，一个量子系统的冯诺依曼熵并不
随着时间演化。当然这里考虑的冯诺依曼熵是一种精细熵，所以这个结论就是量子系统的

精细熵不随时间演化。

6.5 粗粒化演化与热力学第二定律

量子系统的精细化熵不随时间演化，但是粗粒化熵却不是这样。不过为了讨论量子系

统的粗粒化熵，我们需要把第二章《统计物理的基本原理》中的粗粒化演化的概念推广到

量子情形。

同样，我们把时间离散化成步长为 τ 的离散时间步，因此 ti+1 = ti + τ, 这里 ti 为第 i

步的时间。我们记 ρc
ti 为第 i 步的粗粒化密度算符，则可以定义第 i+1 步在粗粒化之前的

密度算符为

ρti+1 ≡U(τ)ρc
tiU

†(τ). (6.58)

根据关于精细化熵不变的讨论，很显然，这一步是保持冯诺依曼熵不变的，即有

S(ρti+1) = S(ρc
ti). (6.59)
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为了定义粗粒化之后的 ρc
ti+1

, 我们把系统的希尔伯特空间 H 分解成若干小的希尔伯

特子空间 Hα 的直和，即 H ≡⊕αHα , 并假设每个子空间 Hα 的维数均为 d, 即

d = dim
(
Hα
)
= TrHα 1. (6.60)

进而可以定义

ρc
ti+1

|Hα ≡ 1Hα

d
·TrHα (ρti+1 |Hα ), (6.61)

式中 ρc
ti+1

|Hα 表示将算符 ρc
ti+1
限制在子空间 Hα 上，等式右边的 1Hα 表示子空间 Hα 上

的单位算符。迭代上面的离散时间步，就完成了对粗粒化演化的定义。

根据上面的定义，不难有 TrHα ρc
ti+1

|Hα = TrHα (ρti+1 |Hα ), 进而有

TrHα

[
ρc

ti+1
|Hα log

(
ρc

ti+1
|Hα

)]
= TrHα

[
ρc

ti+1
|Hα log

(
ρc

ti+1
|Hα

)]
= TrHα

[
ρti+1 |Hα log

(
ρc

ti+1
|Hα

)]
, (6.62)

这里我们注意到 ρc
ti+1

|Hα 是一个常数算符。通过利用上式两边对 α 求和的结果，进而即有

δS ≡ S(ρc
ti+1

)−S(ρc
ti) = S(ρc

ti+1
)−S(ρti+1)

= kB
[
−Trρc

ti+1
logρc

ti+1
+Trρti+1 logρti+1

]
= kB

[
−Trρti+1 logρc

ti+1
+Trρti+1 logρti+1

]
= S(ρti+1 ∥ ρc

ti+1
)≥ 0. (6.63)

由此可见，粗粒化演化过程是熵增加的！所有的处理和推导都完全平行于第二章中关于粗

粒化演化的处理。因此，类似于第二章，取热力学极限之后就有量子系统的热力学第二定

律，或者说熵增加原理。

有了孤立系统的熵增加原理之后，接下来的讨论就完全和第二章中的相关讨论一样

了。比方说，同样可以把孤立系统的热平衡态定义为给定宏观条件下的极大熵状态。

6.6 三大热平衡系综

微正则系综

不妨先考察孤立系统的热平衡态，也就是所谓的微正则系综。记能量本征值为 E 的本

征子空间为 HE , 则由于孤立系统的能量守恒，我们所考察的密度算符应该限制在这个本
征子空间之内。考虑到在热力学极限下，一个典型量子系统的能谱通常来说为连续谱，所

以，在粗粒化之后，我们就需要考虑本征值在 [E,E + δE] 区间之内的本征子空间，其中

δE 为小量。由于能量守恒，所考察的密度算符只在这样的本征子空间之内才非零。因此，

我们可以设系统的密度算符 ρ 为

ρ =

σ 1
δE , 能量本征值落在 [E,E +δE] 区间之内

0, 否则
(6.64)
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式中 σ 为某个厄密算符，它只作用在本征子空间 HE 上。

根据密度算符的归一化条件，有

Trρ = TrHE (σ) ·δN(E)/δE = 1. (6.65)

式中 δN(E)表示本征值在 [E,E+δE]区间之内的能量本征态的数目. 不妨记 δN(E)/δE ≡
Ω(E) 为态密度，则以上结果可以重写成

TrHE (σ) =
1

Ω(E)
. (6.66)

相应的冯诺依曼熵为

S(ρ) =−kB
δN(E)

δE
TrHE [σ log(σ/δE)]

=−kBΩ(E)TrHE (σ logσ)+ kB logδE. (6.67)

其中 kB logδE 项的贡献是非广延的，因此在热力学极限下相比于前面的广延项它可以忽

略。如此一来，极大化 S(ρ) 就等价于极大化如下泛函

SG(σ) =−kBΩ(E)TrHE (σ logσ), (6.68)

相应的约束条件就是上面的 (6.66) 式。对 σ 进行变分并利用拉格朗日乘子法，不难得到
极大值对应如下方程

Ω(E)TrHE

[(
− kB(logσ +1)+λ

)
δσ
]
= 0, (6.69)

式中 λ 为拉格朗日乘子。进而不难得到相应的 σ 必定为常数算符，代入归一化条件 (6.66)，
立即有 (不妨设 HE 本身的简并度为 1)

σ ≡ 1HE

Ω(E)
. (6.70)

这时候，相应的熵为

S = kB logΩ(E). (6.71)

这两个结果就确立了微正则系综的等概率原理和玻尔兹曼熵公式。很显然，这些结论与经

典情形是完全对应的。

正则系综以及巨正则系综

与经典版本相比，正则系综的量子版本几乎没有什么新的东西。同样是先引入自由能

泛函

F(ρ)≡ E(ρ)−T S(ρ) = ⟨H⟩ρ −T S(ρ), (6.72)
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这里与经典版本相比唯一的不同在于，这里的 ρ 是密度算符，这里的 S(ρ) 是冯诺依曼熵。
完全类似的，我们也有恒温系统的自发过程必定导致自由能减少 (假设系统与外界之间没
有力学功的交换)，进而恒温系统的热平衡态就对应自由能泛函 F(ρ) 的极小。

为了求出自由能泛函 F(ρ) 的极小，需要对密度算符 ρ 进行变分，并要通过拉格朗日
乘子法考虑到 ρ 的归一化条件，最终可以得到正则系综的密度算符为

ρ =
1
Z

e−βH , (6.73)

很显然，这里的一切都和经典情形完全一样，区别只在于现在哈密顿量 H 是算符，从而 ρ
也是算符。归一化条件 Trρ = 1 告诉我们

Z = Tr
(
e−βH), (6.74)

其它各热力学量的求法均与经典情形完全一致，这里不再赘述。

量子版本的巨正则系综甚至比经典版本更为简单，因为现在不必对每一不同粒子数的

情形都分别引入一个概率密度，只需对系统 (无论其粒子数为多少) 笼统地引入一个粒子
数算符 N(注意，现在是厄密算符了)，以及笼统地引入描写量子态的密度算符 ρ。系统的
巨热力学势泛函可以定义为

Φ(ρ)≡ ⟨H⟩ρ −T S(ρ)−µ⟨N⟩ρ , (6.75)

式中 T,µ 分别为热库的温度以及化学势。完全类似的，热平衡态相应于 Φ(ρ) 的极小值。
通过变分不难求出巨正则系综的密度算符为

ρ =
1
Ξ

e−β (H−µN). (6.76)

利用归一化条件，有

Ξ = Tr
(
e−β (H−µN)

)
. (6.77)

不过，值得注意的是，由于现在 H 和 N 都是厄密算符，所以这里涉及到这两个算符

作用顺序的问题。通常人们要求这两个算符可交换顺序，即 [H,N] = 0，因为只有这样才

能满足 [ρ,H] = 0 (这是热平衡的要求之一，相应于经典统计里的 {ρ,H}= 0)。换言之，要
求粒子数算符是系统的守恒量。直观上这是因为，在巨正则系综的考察中，粒子并没有凭

空消失或产生，它们只是和粒子源之间产生了交换。

在量子场论的应用中，粒子数常常不是守恒量，成为守恒量的是诸如电荷量这样的量。

那这时候就不能用粒子数算符来定义巨正则系综了，而应该相应地用电荷算符。具体的定

义和粒子数算符情形完全类似，这里不再赘述。





7. 再谈量子统计

本章要考察的是多个全同粒子所构成的系统的量子统计力学。结果表明，这样的全同

粒子可以分成两类，一类是所谓的玻色子，一类是所谓的费米子，这两类粒子遵循不同的

统计力学。另外，本章还会讲述这两种统计力学的一些应用，其中包括黑体辐射、固体热

容、电子简并压，以及玻色-爱因斯坦凝聚等等。

7.1 玻色子与费米子的统计力学

两全同粒子情形

记单粒子希尔伯特空间的一组正交归一基矢量为 |ui⟩, 满足

⟨ui|u j⟩= δi j. (7.1)

下面先来讨论两个全同粒子的情形。将这两个粒子标记为 1,2，记相应的两粒子希尔

伯特空间为 H , 则 H 的矢量基为 |ui(1),u j(2)⟩。由于我们讨论的是两个不可区分的全同
粒子，我们现在非物理地将这两个粒子分别标记为 1,2，但实际在物理上，1,2 是不可区分

的，这就意味着，如果我们将这两个粒子相互置换一下，在物理上系统将不会发生任何改

变。这有两层含义，第一，置换前后系统的物理状态不会改变。第二，这样的置换操作不

会引起任何物理可观测量的改变。这两点实际上就意味着，这样的置换操作是这两个全同

粒子体系的一种特殊对称性。
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我们定义两粒子的置换算符 P12 如下，

P12|ui(1),u j(2)⟩= |ui(2),u j(1)⟩= |u j(1),ui(2)⟩, (7.2)

上式的最后一个等号来源于习惯上我们常常将标记为第 1 个粒子的量子态写在狄拉克符
号的第 1 个位置。读者很容易验证，这样定义的置换算符是一个幺正算符 (保持态的内积
不变)。且对于希尔伯特空间 H 里的任意量子态 |ψ⟩= ∑i, j ψi, j|ui(1),u j(2)⟩, 我们有

P12|ψ⟩= ∑
i, j

ψi, j|u j(1),ui(2)⟩= ∑
i, j

ψ j,i|ui(1),u j(2)⟩ (7.3)

上式的最后一个等号来自于求和指标的重命名。很显然，对于两粒子的置换，结果相当于

将叠加系数 ψi, j 的两个下标互换，即 ψi, j → ψ j,i。很明显，连续进行两次置换相当于不进

行任何操作，即有 P2
12 = 1。

现在，对于两个全同粒子的情形，由于置换操作不会改变系统的物理状态，所以必有

P12|ψ⟩= e−iφ |ψ⟩, (7.4)

即置换算符作用之后的量子态只能和原来的量子态相差一个相位。又由于 P2
12 = 1，从而

有 (e−iφ)2 = 1, 所以这个相位只有两种可能性，要么取 +1，要么取 −1。对于 +1 的情形，

我们就说这两个全同粒子为全同玻色子，对于 −1 的情形，我们就说这两个粒子为全同费

米子。另外，根据上一段的讨论我们又知道，用量子态的展开系数来说，P12 的作用相当

于 P12 : ψi, j → ψ j,i。因此对于全同玻色子，我们必有 ψi, j = ψ j,i，而对于全同费米子则必有，

ψ j,i =−ψi, j。人们常常称这个结果为：全同玻色子的波函数必定为对称波函数，全同费米

子的波函数必定为反对称波函数。

两粒子希尔伯特空间 H 中，所有对称波函数所构成的希尔伯特子空间，为全同玻色

子的对称态空间 HS，而所有反对称波函数所构成的希尔伯特子空间，为全同费米子的反

对称态空间 HA。读者容易验证，HS 的基矢量可以取为

|ui,u j⟩S =
1
2

(
|ui(1),u j(2)⟩+ |ui(2),u j(1)⟩

)
=

1
2
(1+P12)|ui(1),u j(2)⟩, (7.5)

因为 |ui,u j⟩S的任意线性叠加态 ∑i, j ci, j|ui,u j⟩S =∑i, j ci, j|ui(1),u j(2)⟩/2+∑i, j ci, j|ui(2),u j(1)⟩/2=

∑i, j
1
2(ci, j + c j,i)|ui(1),u j(2)⟩，因此在原来的希尔伯特空间 H 中来看，这样的态当然都是

对称态，因为很明显 1
2(ci, j +c j,i) = ψi, j 是一个对称波函数。类似的，两全同费米子反对称

态空间 HA 的基矢量可以取为

|ui,u j⟩A =
1
2
(1−P12)|ui(1),u j(2)⟩. (7.6)

关于两全同费米子的反对称态，有一个特别重要的情形值得单独考察。这情形就是，

假如我们在公式 (7.6) 中令 i = j，很显然，结果必然是 |ui,ui⟩A = 0。也即是说，对于全同

费米子系统，两个粒子不能处在同一个单粒子态上。这其实就是著名的泡利不相容原理。

N 个全同粒子的情形
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以上关于两全同粒子体系置换对称性的讨论当然可以推广到任意 N 个全同粒子情形，

我们任意地将这 N 个全同粒子标记为 1,2,3, ...,N。则对这 N 个粒子的置换就表现为对这

N 个数的置换，我们记在置换操作 g 的作用下，粒子 n 将被置换成粒子 g(n), 则 g 本身就

唯一由其在 N 个粒子上的作用 g : {1,2,3, ....,N}→ {g(1),g(2), ...,g(N)} 决定。最简单的置
换操作当然就是恒等置换，也就是不做任何置换，可以把相应的 g 简单记为 1。另外我们

可以定义两个置换操作 g1 和 g2 的乘积 g2g1 为，先对 N 个粒子进行置换操作 g1，之后再

在 g1 置换结果的基础上再进行置换操作 g2，很显然，按照这个置换乘法的定义，g2g1 仍

然是一个置换操作。由此可见，N 个全同粒子的所有可能置换的集合 SN 在置换乘法下是

封闭的，而且恒等置换 1 显然在这个集合之内。不仅如此，我们可以将任何置换过程逆转
过来，从而得到任意置换操作 g 的逆置换操作 g−1，它满足 g−1g = gg−1 = 1。也即是说，

SN 的每一个元素都可逆。满足这些性质的集合 SN 就称之为一个群，元素 g 就是称作一个

群元，SN 就是 N 个粒子的置换群，简单的排列组合可以告诉我们，SN 共有 N! 个群元。

置换操作中最简单的就是两粒子对换，通常记 i, j 两粒子的对换操作为 (i j)，很明显

任何对换都满足 (i j)2 = 1。数学上不难证明，N 粒子的任意置换群元 g 均可以写成一系列

的两两对换的乘积。如果 g 对应于偶数个对换相乘，我们就称 g 为偶置换，如果 g 相应于

奇数个对换相乘，我们就称之为奇置换。很容易证明偶置换的逆依然是偶置换，奇置换的

逆依然是奇置换，比方说偶置换 g = (13)(12) 的逆 g−1 = (12)(13) 显然依旧是偶置换。

对于 N 个全同粒子系统，我们可以首先忽略其全同性，得到 N 个粒子的希尔伯特空

间 H，其基矢量可以选为 |ui1(1),ui2(2), ...,uiN (N)⟩, 式中 |ui⟩ 是单粒子希尔伯特空间的正
交归一基矢量。仿照两粒子情形，我们可以将对 N 个粒子的置换算符 Pg 定义成

Pg|ui1(1),ui2(2), ...,uiN (N)⟩= |ui1(g(1)),ui2(g(2)), ...,uiN (g(N))⟩

=|uig−1(1)
(1),uig−1(2)

(2), ...,uig−1(N)
(N)⟩. (7.7)

上式的最后一个等号是将多粒子态重新排列一下，使得第 1 个粒子的态排在狄拉克符号的
第 1 个位置，以此类推。读者可以验证，这样定义出来的置换算符必定是一个幺正算符。

另外，根据上面的定义，读者很容易验证

Pg2Pg1 |ui1(1),ui2(2), ...,uiN (N)⟩

=|ui1(g2g1(1)),ui2(g2g1(2)), ...,uiN (g2g1(N))⟩

=Pg2g1 |ui1(1),ui2(2), ...,uiN (N)⟩. (7.8)

也即是说，置换算符满足如下关系

Pg2Pg1 = Pg2g1 . (7.9)

这一代数关系的实质就在于，它告诉我们置换算符会保持置换操作的乘法关系，两个置换

操作的乘积对应于两个相应置换算符的乘积。数学家称这种保持乘法关系的从置换群 SN

到希尔伯特空间幺正算符的对应关系为置换群的幺正表示。也即是说，我们定义的置换算

符刚好构成了相应置换群的幺正表示。特别的，幺正表示满足

P†
g = P−1

g = Pg−1 . (7.10)
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考虑到粒子的全同性则有，置换算符的作用不会改变系统的物理状态，即置换算符作

用以后的量子态和原来的量子态只能相差一个相位。因此，N 个全同粒子的物理态空间不

是 N 粒子希尔伯特空间 H，而是它的一个子空间，这个子空间的态额外满足下面的约束

条件

Pg|ψ⟩= e−iφ(g)|ψ⟩. (7.11)

虽然我们现在考虑的是 N 个全同粒子，但是由于 Pg 得构成置换群的幺正表示，所以这个

方程的解其实和两全同粒子类似，即只有两个不同的解。其中一个解描述全同玻色子，这

时候对于任意 g，恒有 e−iφ(g) = 1。另一个解描述全同费米子，这时候 e−iφ(g) = ε(g)，记
号 ε(g) 对于偶置换取 1, 对于奇置换取 −1。

这个一般性结论的证明其实并不难，关键点就在于要注意到：(1) 任意置换 g 总能写

成一系列两粒子对换的乘积. (2) 由于 Pg 是置换群的表示，所以它也可以写成一系列两粒

子对换的乘积。注意到这两点以后，人们就可以轻易地将 N 个全同粒子的分析约化为对

两全同粒子的分析。另外，根据置换的奇偶性，人们不难证明 ε(g) 满足如下关系

ε(g2)ε(g1) = ε(g2g1), ε(g−1) = ε(g). (7.12)

与两全同粒子类似，假如我们将 |ψ⟩ 用基矢量 |ui1(1),ui2(2), ...,uiN (N)⟩ 展开成

|ψ⟩= ∑
i1,i2,...,iN

ψi1,i2,...,iN |ui1(1),ui2(2), ...,uiN (N)⟩. (7.13)

则对于全同玻色子体系，叠加系数 (波函数) 将满足，ψi1,i2,...,iN 对于 N 个指标的任意置换

都对称不变，这种波函数简称对称波函数，或者称为全对称波函数。而对于全同费米子体

系，ψi1,i2,...,iN 对于任意两个指标的对换都反对称，比方说 ψi2,i1,...,iN =−ψi1,i2,...,iN , 这种波函
数称作反对称波函数，或者称作全反对称波函数。玻色子的物理态空间称作对称态子空间，

记为 HS，费米子的物理态空间称作反对称态子空间，记作 HA。因此，对称态子空间 HS

其实就是所有对称波函数的空间，而反对称态子空间 HA 则是所有反对称波函数的子空

间。

与两全同粒子情形类似，对称态空间 HS 的基矢量可以按照如下方法构造

|ui1 ,ui2 , ...,uiN ⟩S =
1

N! ∑
g

Pg|ui1(1),ui2(2), ...,uiN (N)⟩. (7.14)

证明其实非常简单，假如将某个置换算符 Pg1 作用在这样的基矢量上，则由于 Pg1 ∑g Pg =

∑g Pg1Pg = ∑g Pg1g = ∑g′ Pg′(最后一个等号是令 g1g = g′，并将对 g 的求和替换成对 g′ 的求

和得到），由此不难得到这样的基矢量在任何置换算符的作用下都保持不变，因此是对称

态空间的基矢量。

而反对称态空间 HA 的基矢量的构造方法则是

|ui1 ,ui2 , ...,uiN ⟩A =
1

N! ∑
g

ε(g)Pg|ui1(1),ui2(2), ...,uiN (N)⟩. (7.15)
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要证明它是反对称态空间的基矢量，只需要注意到

Pg1

(
∑
g

ε(g)Pg
)
= ε(g1)

(
∑
g′

ε(g′)Pg′
)
, (7.16)

具体的证明细节我们留给读者自己练习。

全同费米子体系反对称态基矢量的构建公式 (7.15) 还可以写成一种更常见的行列式
形式

|ui1 ,ui2 , ...,uiN ⟩A =
1

N! ∑
g

ε(g)|ui1(g(1)),ui2(g(2)), ...,uiN (g(N))⟩.

=
1

N! ∑
g

ε(g)|ui1(g(1))⟩|ui2(g(2))⟩...|uiN (g(N))⟩.

=
1

N!
det


|ui1(1)⟩ |ui1(2)⟩ ... |ui1(N)⟩
|ui2(1)⟩ |ui2(2)⟩ ... |ui2(N)⟩

... ... ... ...

|uiN (1)⟩ |uiN (2)⟩ ... |uiN (N)⟩

 (7.17)

在最后的行列式中，我们看到，每个单粒子态相应于行列式的一行，每个被标记的粒子相

应于行列式的一列。很明显，将任意两个粒子对换相应于交换行列式的两列，因此当然是

反对称的。这就再一次证明了，最终的行列式的确能够成反对称态空间的基矢量。另外，

从最终的行列式中还可以轻易看出另一个重要结果，即一个单粒子态上不可能出现两个和

两个以上的全同费米子，否则的话，这个行列式就会有两行或者更多行是完全一样的，但

是线性代数的知识告诉我们，这样的行列式必定为零。这个结果就是我们前面提到过的泡

利不相容原理。

对于全同粒子体系，置换算符的作用不仅不能改变系统的物理状态，而且置换算符的

作用效果应该是无法观测的，因为对于全同粒子体系而言，将粒子作一个任意置换对于物

理结果不应该有任何影响。因此，这就意味着，置换算符必须得和任意物理可观测量 O 均

对易，即

PgO = OPg. (7.18)

特别的，置换算符得和全同粒子哈密顿量对易。从而置换操作是全同粒子体系的一种特殊

对称性。

根据以上的讲述可以知道，自然界中的粒子可以分成玻色子和费米子两类。量子场论

中有一个重要的定理告诉我们，所有整数自旋的粒子都是玻色子，比如光子 (自旋是 1)，
而所有半整数自旋的粒子都是费米子，比如电子 (自旋是 1/2)。

全对称投影与全反对称投影

习惯上人们常常定义如下算符

S =
1

N! ∑
g

Pg, A =
1

N! ∑
g

ε(g)Pg. (7.19)
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不难验证，这两个都是厄密算符，比如 (利用 (7.10) 式)

S† =
1

N! ∑
g

P†
g =

1
N! ∑

g
Pg−1 =

1
N! ∑

g−1

Pg−1 = S. (7.20)

类似的也有 A† = A。另外，不难得到

PgS = SPg = S, PgA = APg = ε(g)A. (7.21)

进而可以导出

S2 = S, A2 = A. (7.22)

以后者为例

A2 =
1

N! ∑
g

ε(g)PgA =
1

N! ∑
g
(ε(g))2A =

1
N! ∑

g
A = A. (7.23)

(7.22) 式告诉我们，S 和 A 均为投影算符，S 的作用是将量子态投影到全对称子空间 HS,
而 A 的作用是投影到全反对称子空间 HA。类似的，不难有

SA = AS = 0. (7.24)

因为 AS = 1
N! ∑g ε(g)PgS = 1

N! ∑g ε(g)S = 0 (因为奇偶置换各占一半)。
利用这两个投影算符，我们可以把 HS 和 HA 上的基矢量分别写成

|ui1 ,ui2 , ...,uiN ⟩S = S|ui1 ,ui2 , ...,uiN ⟩, |ui1 ,ui2 , ...,uiN ⟩A = A|ui1 ,ui2 , ...,uiN ⟩.

不妨取 ζ = +1 对应全同玻色子情形 (即对应下标为 S 的全对称态)，ζ = −1 对应全同费

米子情形 (即对应下标为 A 的反对称态)。则可以证明，在全对称或全反对称子空间 Hζ

上，有如下完备性关系式

∑
i1,i2,··· ,iN

|ui1 ,ui2 , ...,uiN ⟩ζ ζ ⟨ui1 ,ui2 , ...,uiN |= 1. (7.25)

证明其实不难，以全对称的情况为例

∑
i1,i2,··· ,iN

|ui1 ,ui2 , ...,uiN ⟩S S⟨ui1 ,ui2 , ...,uiN |

= ∑
i1,i2,··· ,iN

S|ui1 ,ui2 , ...,uiN ⟩⟨ui1 ,ui2 , ...,uiN |S

=S2 = S. (7.26)

第三行用了空间 H 上的完备性关系 ∑i1,i2,··· ,iN |ui1 ,ui2 , ...,uiN ⟩⟨ui1 ,ui2 , ...,uiN |= 1。但是，由

于现在限制于全对称子空间 HS，而这个子空间本来就是由 S 投影出来的，所以 S 在这个

子空间上的作用就相当于恒等算符 1, 从而即有 (7.25) 式。
特别的，系统的配分函数为

Z = TrHζ (e
−βH) = ∑

i1,i2,··· ,iN
ζ ⟨ui1 ,ui2 , ...,uiN |e−βH |ui1 ,ui2 , ...,uiN ⟩ζ . (7.27)
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不难证明，这个结果可以进一步写成

Z =
1

N! ∑
P

ζ P ∑
i1,i2,··· ,iN

⟨uiP1 ,uiP2 , ...,uiPN |e−βH |ui1 ,ui2 , ...,uiN ⟩. (7.28)

式中为了符号的简略起见，我们直接以 P 代表置换了！ζ P 对奇置换取 ζ , 而对偶置换取
1。

不妨以 ζ =−1 的全同费米子情形证明最后的这个结果：首先，根据 (7.27) 式，

Z = ∑
i1,i2,··· ,iN

A⟨ui1 ,ui2 , ...,uiN |e−βH |ui1 ,ui2 , ...,uiN ⟩A

= ∑
i1,i2,··· ,iN

⟨ui1 ,ui2 , ...,uiN |Ae−βHA|ui1 ,ui2 , ...,uiN ⟩

= ∑
i1,i2,··· ,iN

⟨ui1 ,ui2 , ...,uiN |A2e−βH |ui1 ,ui2 , ...,uiN ⟩

= ∑
i1,i2,··· ,iN

⟨ui1 ,ui2 , ...,uiN |Ae−βH |ui1 ,ui2 , ...,uiN ⟩

=
1

N! ∑
P
(−)P ∑

i1,i2,··· ,iN
⟨uiP1 ,uiP2 , ...,uiPN |e−βH |ui1 ,ui2 , ...,uiN ⟩. (7.29)

式中第三行是利用了 [P,H] = 0, 从而 [A,H] = 0，最后一行是把投影算符 A 往左作用在左

矢上了。

最终的结果可以很漂亮地归纳为

TrHS

(
e−βH)= TrH

(
Se−βH), TrHA

(
e−βH)= TrH

(
Ae−βH). (7.30)

即在对称子空间或者全对称子空间上算配分函数，就相当于在原来的计算中插入相应的投

影算符。读者如果觉得最终的这个结论更好理解，那前面关于完备性的相关讨论和推导就

不需要管了。

7.2 理想玻色气体

本节是将上一节的理论应用于理想玻色气体，具体来说也就是自旋为零的自由玻色子

气体。(当然，类似的处理也可以应用于理想费米子气体。) 在涉及到多个粒子的统计复杂
性之前，让我们先来计算一下单个自由粒子的配分函数，这时不涉及到多粒子统计的问题。

我们以 x 这样的符号来代表粒子的三维位置矢量，因此
∫

dx · · · 这样的积分实际上是三重
积分。同样，以 P 这样的符号代表粒子的三维动量算符，因此

∫
d p · · · 这样的积分实际上

也是三重积分。

对于单个粒子，在坐标表象下可以定义传播子 Kβ (x′,x) = ⟨x′|exp(−βH)|x⟩ (多粒子传
播子定义是类似的)，β 表示传播的“时长”。从而单粒子配分函数为

Z1(β ) =
∫

dxKβ (x,x)

根据 ⟨x′|e−(β1+β2)H |x⟩=
∫

dy⟨x′|e−β2H |y⟩⟨y|e−β1H |x⟩, 显然我们有关系式∫
dyKβ2(x

′,y)Kβ1(y,x) = Kβ1+β2(x
′,x). (7.31)
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对于单个自由粒子，H = P2

2m，此时坐标表象的传播子可以直接算出来，它是

Kβ (x
′,x) = ⟨x′|e−βP2/2m|x⟩=

∫
d p⟨x′|p⟩⟨p|e−βP2/2m|x⟩

=
∫

d pe−β p2/2m⟨x′|p⟩⟨p|x⟩=
∫

d pe−β p2/2m 1
(2π h̄)3 eip·(x′−x)/h̄

=

(
m

2πβ h̄2

)3/2

exp
(
−1

2
m
(x′− x)2

β h̄2

)
. (7.32)

因此对于单个自由粒子，我们有配分函数

Z1(β ) =V
(

m
2πβ h̄2

)3/2

=V/λ 3
T 其中λT = h̄/

√
m

2πβ
∝ h̄
√

β .

从上面单个自由粒子的传播子公式我们可以得到逆温度 β 的直观物理意义，逆温度
的平方根乘以 h̄ 就是热力学波长 λT，它大概反映的是相干长度的一个衡量，当两点的距

离比 λT 远时，热力学涨落会将这两点之间的任何量子相干性去掉。假定有一个粒子处于

某个量子态，其波长为 λ，假设 λ > λT，此时如果将此粒子置于温度为 1/β 的热源中，则
热力学涨落会起到一个退相干的作用，最后使得粒子能保持相干性的长度不是波长 λ 而
是热波长 λT。这时候它的量子性基本丧失了，剩下的相干性可以解释成经典的热力学关

联，因此热波长也是体系热力学关联的尺度，是体系热力学涨落的典型尺度。反之，假设

λ < λT，则热源的退相干效应几乎对处于此态的粒子不起作用，这时候它依然能将其相干

性大致保持在波长的范围内，这种情况下，粒子的量子性依然保持。

这是一个很重要也很有用的物理图象，它还有另一种等效的解释，那就是说，对一个

频率为 ω 的物理自由度或物理态，对它的能量有来自于两方面的贡献，一方面是量子涨
落贡献的 h̄ω，另一方面是热力学涨落贡献的 kBT，当 h̄ω < kBT 时，热力学涨落占据了主

导地位，此时粒子的行为就是经典的统计行为。反之，当 h̄ω > kBT 时，量子涨落占据了

主导地位，此时粒子的行为必须要用量子统计来描述。

下面我们从一个稍微不同的角度来讨论自由玻色气体的量子统计，这个角度的出发点

在于前文推导的单个自由粒子的传播子。由于粒子间没有相互作用，故粒子气的传播子应

是每个粒子的贡献乘起来，并计及全同粒子统计，换句话说，就是先将每个粒子单独的传

播子乘起来，再对末态位形的各种排列平均。比如，设想有 N 个粒子，则根据 (7.28) 式

ZN(β ) =
1

N! ∑
P

∫
dx1dx2 · · ·dxNKβ (xP1,xP2, · · · ,xPN ;x1,x2, · · · ,xN).

N 的任何一个置换 P 均可以写成轮换结构，设置换 P 中长度为 n 的轮换有 Cn 个，即

∑n nCn = N。另外我们注意到任意一个长度为 n 的轮换贡献的传播子因子相当于传播“时

长”为 nβ 并最终回到起点的传播子,∫
dx1dx2 . . .dxnKβ (x2,x3, · · · ,x1;x1,x2, · · · ,xn)

=
∫

dx1dx2 . . .dxnKβ (x1,xn) · · ·Kβ (x3,x2)Kβ (x2,x1)

=
∫

dx1Knβ (x1,x1) =V
(

m
2πnβ h̄2

)3/2

. (7.33)
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式中最后一行利用了 (7.31) 式。
因此，所有长度相同的轮换对配分函数的贡献都是相同的，对各个置换求和就换成了

对所有可能的轮换分解 {Cn} 进行求和，

ZN(β ) =
1

N! ∑
{Cn}

N({Cn})∏
n

(
V
(

m
2πnβ h̄2

)3/2
)Cn

,

式中 N({Cn}) 表示有 {Cn} 这样的轮换结构的置换数目，不难想明白它是

N({Cn}) =
N!

∏nCn!nCn
,

其中，分母中的因子 n 来自于轮换的对称性，Cn! 来自于置换 Cn 个轮换的位置。

现在，考虑巨配分函数 Ξ(β ) = ∑N zNZN(β )，由上面的式子不难知道它等于

Ξ(β ) = exp

(
V
(

m
2πβ h̄2

)3/2 ∞

∑
n=1

1
n5/2 zn

)
. (7.34)

后文我们会通过不同方法再次得到这一结果。

7.3 光子气与声子气

本节依然是讨论量子理想气体，不过和上一节不同，本节将讨论的是粒子数不守恒的

量子理想气体。具体来说，本节将讨论大量光子所组成的光子气，以及固体里面的声子气，

在物理学史上，对这两种量子理想气体的研究都是爱因斯坦先开始的。

首先，让我们考察单个量子粒子约束在一个边长为 L 的立方盒子里，盒子的体积为

V = L3。这样的粒子当然要由一个波函数来描述，假设我们给盒子加上周期性边界条件 (即
将盒子的各对边进行等同)，那么一个自由粒子的本征波函数就是如下平面波

ψ =
1√
V

eik·r, (7.35)

式中 k = (k1,k2,k3) 为平面波的波矢量，周期性边界条件要求它量子化为

k = (
2πn1

L
,
2πn2

L
,
2πn3

L
), 其中ni ∈ Z. (7.36)

所以不同的单粒子态由 (n1,n2,n3)这三个量子数标记。后文常常需要涉及对单粒子态求和，

因此也就是对这三个量子数求和，∑n1,n2,n3。但实际中考察的往往是盒子很大的情形，即

L ≫ λ , λ 为上述平面波的波长，这也就是量子数 ni 很大的情形。这时候 ni 的增减相对于

其本身来说就很小，因此我们可以近似地用积分来代替求和

∑
n1,n2,n3

≈
∫

d3n =
V

(2π)3

∫
d3k =

4πV
(2π)3

∫ ∞

0
dkk2, (7.37)

式中 k = |k|, 这里我们已经假设了没有写出来的被积函数是球对称的，因此可以将角度部
分的 4π 先积出来。
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7.3.1 光子气：黑体辐射

假设这个约束在盒子中的粒子是光子，其能量为 h̄ω(k) = h̄ck，这里我们利用了光波

的色散关系，其中 c 为光速。那么整个光子气系统的哈密顿量为

H = ∑
(n1,n2,n3)

h̄ω(k)N̂(k), (7.38)

这里的 N̂(k) 为波矢量 k 的光子的粒子数算符。所以系统的能量本征态 (我们称之为系统
态，以区分于单粒子态) 也就是 N̂(k) 的本征态，记本征值为 n(k)(为非负整数), 即

N̂(k)|...n(k)...⟩= n(k)|...n(k)...⟩. (7.39)

这里涉及到了粒子数算符，所以严格来讲我们应该用巨正则系综。但是，考虑到光子

数 N 不守恒，所以热平衡时它将取使得自由能最小的值，也就是

∂F
∂N

|T,V = 0 ⇒光子化学势µ = 0. (7.40)

所以光子的化学势其实为零。所以我们要算的巨配分函数就成为

Ξ = Tre−βH = Trexp
(
−β ∑

(n1,n2,n3)

h̄ω(k)N̂(k)
)

= ∑
{n(k)}

exp
(
−β ∑

(n1,n2,n3)

h̄ω(k)n(k)
)
= ∏

(n1,n2,n3)
∑
n(k)

e−β h̄ω(k)n(k)

= ∏
(n1,n2,n3)

[
1+ e−β h̄ω(k)+ e−2β h̄ω(k)+ e−3β h̄ω(k)+ · · ·

]
= ∏

(n1,n2,n3)

1
1− e−β h̄ω(k) . (7.41)

或者也可以写成

logΞ =− ∑
(n1,n2,n3)

log(1− e−β h̄ω(k)) =− V
(2π)3

∫
d3k log(1− e−β h̄ω(k)), (7.42)

式中最后一个等于号我们已经将对单粒子态的求和换成了积分。

代入 V
(2π)3

∫
d3k = 4πV

(2π)3

∫ ∞
0 dkk2, 以及 ω = ck, 容易把上面的结果重写成

Ξ =− V
π2c3

∫ ∞

0
dωω2 log(1− e−β h̄ω), (7.43)

值得注意的是，上式右边已经额外乘上了一个因子 2，这是因为光子有两种极化模式。当
然，这个因子 2 其实一开始在哈密顿量的表达式中就应该考虑到，这里只是作为一种补
救。

进而可以算得其它热力学量，比如光子气的平均能量 E 为

E =− ∂
∂β

logΞ =
V h̄

π2c3

∫ ∞

0
dω

ω3

eβ h̄ω −1
. (7.44)
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常常通过 E =
∫

dωE(ω)dω 定义单位频率区间的能量 E(ω), 则很显然

E(ω) =
V h̄

π2c3
ω3

eβ h̄ω −1
. (7.45)

这就是所谓的普朗克分布函数。注意，每给定一个温度，都有一条相应的普朗克分布曲线，

每一条分布曲线都有一个峰值，其位置可以通过求解 dE(ω)/dω = 0 确定，它大约是

ωmax = 2.822
kBT

h̄
, (7.46)

也即是说，温度越高，峰值频率也越高，这就是所谓的维恩位移定律。

为了计算出光子气的总能量 E, 我们在 (7.44) 式中作变量代换 x = β h̄ω, 从而

E =
V

π2c3
(kBT )4

h̄3

∫ ∞

0
dx

x3

ex −1
. (7.47)

所以关键在于算出积分 I =
∫ ∞

0 dx x3

ex−1 , 后文会更仔细地考察这一类积分，现在我们只需要
知道结果，I = Γ(4)ζ (4) = π4/15。所以最终可以得到光子气的能量密度 E ≡ E/V 为

E =
π2k4

B

15h̄3c3
T 4. (7.48)

为了计算其它热力学量，让我们先来计算光子气的巨热力学势 Φ,

Φ =−kBT logΞ =
V kBT
π2c3

∫ ∞

0
dωω2 log

(
1− e−β h̄ω). (7.49)

通过分部积分可以去掉对数，结果是

Φ =− V h̄
3π2c3

∫ ∞

0
dω

ω3e−β h̄ω

1− e−β h̄ω

=− V
3π2c3

(kBT )4

h̄3

∫ ∞

0
dx

x3

ex −1

=−V π2k4
B

45h̄3c3
T 4. (7.50)

进而即有光子气的压强为

P =−∂Φ
∂V

|T =
π2k4

B

45h̄3c3
T 4 =

1
3
E =

E
3V

⇒ PV =
1
3

E. (7.51)

进一步还可以算得光子气的熵和热容，分别为

S =−∂Φ
∂T

|V =
4V π2k4

B

45h̄3c3
T 3, CV =

∂E
∂T

|V =
4V π2k4

B

15h̄3c3
T 3. (7.52)

7.3.2 声子气

很难想象有什么物质能比气体和固体之间的差异更大。然而，令人相当惊讶的是，我

们可以利用对气体的研究来准确理解固体的某些特性。请看图 (7.1) 中所示的原子晶体：
单个原子被牢牢固定在晶格位置——它们显然不会像气体那样运动。但这些原子的振动

（即声波）却可以采用与光子相同的理论框架进行处理。
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Figure 7.1: 固体的晶格结构

声波很类似于真空中的电磁波，电磁波的量子是光子，声波的量子就叫声子，声波和

电磁波的类似性使得我们想到，类似于光子气，声子也会在固体中形成声子气。然而，声

波和电磁波也有一些不同：首先，声波的传播速度比光波慢得多，其速度取决于材料的刚

度和密度，这里我们将忽略声速可以依赖于波长和方向的事实，把声速记作 cs，看作常数。

其次，光波必须横向极化，而声波也可以纵向极化，所以声波有 3 个独立的极化 (两个横
向加一个纵向) 而不是 2 个。简单起见，我们将假设这三个极化有相同的声速。最后，光
波的波长可以任意短，但是声波波长不可能短过固体中相邻原子的间距。

为了考察声子气，首先要考察单声子态的数目。问题是，固体声波到底有多少单粒子

态呢？为了回答这个问题，我们来数一下固体的自由度数目，假设固体总共有 N 个原子，

那么由于每个原子有 3个自由度，所以固体总的自由度数目就是 3N。注意，所谓自由度数

目，就是我们可以变动固体的独立方式的数目。现在，假设我们通过弹性波 (也就是声波)
的方式变动固体，在量子力学的意义上，也就是通过激发声子的方式来变动固体。我们可

以激发一个声子到单粒子的第一激发态、或者第二激发态等等，所以变动固体的方式数目

就是我们可以如何激发单个声子 (也就是把声子激发到哪个单粒子态上) 的方式数，显然，
这个数目正是声子的单粒子态数目。从而单声子态的总数目就是 3N。

另一方面，正如前文说过的，单粒子态的总数目近似由积分 V
(2π)3

∫
d3k给出。当然，对于

声波，由于其波长 λ 最短也只能到固体中相邻原子间距的程度，因此对波矢量 |k|= 2π/λ
的积分是有上限的。实际上，固体物理的知识告诉我们，由于晶格的周期性，这个积分只

能限制在所谓的第一布里渊区 BZ (至于什么是第一布里渊区，限于篇幅请读者参阅固体
物理书，或者问 AI), 另外，由于声子有 3 个独立的极化，所以最终的结果还要乘以 3 倍。
总之，固体的单粒子态数目将由 3 V

(2π)3

∫
BZ d3k 给出，也即是说，单粒子态的数目由第一布

里渊区的体积决定。综合这两段的论证，我们可以得出，

3N = 3
V

(2π)3

∫
BZ

d3k. (7.53)

为了估算积分 3 V
(2π)3

∫
BZ d3k, 我们设想给声子频率引入一个上限 ωD(称作德拜频率)，
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并代入色散关系 ω = csk, 用相应的球坐标积分代替真正的布里渊区积分，从而即有

3
V

(2π)3

∫
BZ

d3k =
3V

2π2c3
s

∫ ωD

0
dωω2 =

V ω3
D

2π2c3
s
. (7.54)

由于单声子态的总数目为 3N, 所以 ωD 由下式决定

3N =
V ω3

D
2π2c3

s
. (7.55)

与德拜频率相应的，通常还会引入一个德拜温度 TD, 它也就是最高频率 ωD 的声子开始被

激发的温度，定义是

TD ≡ h̄ωD/kB. (7.56)

德拜温度的范围从软质材料（如铅）的约 100K，到硬质材料（如金刚石）的 2000K 不等。
大多数材料的德拜温度都在室温附近（±100K 左右）。

完全类似于光子气，声子气的巨配分函数为

logΞ =−3
V

(2π)3

∫
BZ

d3k log(1− e−β h̄ω(k))

=− 3V
2π2c3

s

∫ ωD

0
dωω2 log(1− e−β h̄ω). (7.57)

类似的，可以得到声子气的总能量 E 为

E =− ∂
∂β

logΞ =
3V h̄

2π2c3
s

∫ ωD

0
dω

ω3

eβ h̄ω −1
. (7.58)

在上述积分中作 x = β h̄ω 的变量代换，并注意到积分上限变为 xD = TD/T , 则有

E =
3V

2π2(h̄cs)3 (kBT )4
∫ TD/T

0
dx

x3

ex −1
. (7.59)

上述积分并不能解析地积出来，为了得到一些有用的结果，我们考虑两个极限情况：

首先，T ≪ TD 的低温极限，这个时候积分上限可以近似为正无穷，相应的结果我们在光

子气的相关讨论中见过了。这时候可以算出热容正比于 T 3,

CV =
∂E
∂T

=
2π2V k4

B

5h̄3c3
s

T 3, (T ≪ TD). (7.60)

代入德拜温度的相关公式，即有

CV = NkB
12π4

5
( T

TD

)3
. (7.61)

其次，考虑 T ≫ TD 的高温极限，这时候可以将下面的积分近似成∫ TD/T

0
dx

x3

ex −1
=
∫ TD/T

0
dx(x2 + · · ·) = 1

3
(TD

T

)3
+ · · · . (7.62)

代入 (7.59) 式，可以算得这时候的热容为

CV =
V k4

BT 3
D

2π2h̄3c3
s
= 3NkB, (T ≫ TD). (7.63)
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对这个结果的物理解释是，在高温时，固体原子近似可以看作是相互独立的振子，按照能

量均分定理，每个振子自由度贡献的热能是 kBT (一半是动能，一半是弹性势能)，3N 个振

子自由度的热能就是 3NkBT，相应的热容就是 3NkB。不过，高温时固体的这个热容结果

是人们早就知道的，声子气模型真正的成功之处在于预言了低温时固体的热容正比于 T 3。

这里需要注意的就是，低温时固体的热容主要由声子贡献，当然，对于金属导体，相应的

热容还要加上传导电子的贡献，稍后我们会讨论这一贡献。

7.4 玻色-爱因斯坦统计

光子气和声子气都是理想玻色气体，但是它们的粒子数都不守恒，从而化学势为零。

本节我们考察粒子数守恒的 (从而化学势不为零) 的理想玻色气体。

7.4.1 理想玻色气体的统计力学

假设单个玻色粒子的能量为 ε(k,σ), 式中 σ 是此玻色子的自旋量子数 (也就是其自旋
z 分量的本征值)，当系统处于一个外界磁场中时，由于自旋与外界磁场的耦合，单粒子态
的能量本征值可以依赖于 σ。记相应的粒子数算符为 N̂(k,σ), 其本征值为 n(k,σ), 并记 µ
为化学势。则很显然

H −µN̂ = ∑
k,σ

(
ε(k,σ)−µ

)
N̂(k,σ). (7.64)

完全类似于前面对光子气的讨论，可以得到此玻色气体的巨配分函数为

Ξ = Tr(e−β (H−µN̂)) = ∏
k,σ

1
1− e−β (ε(k,σ)−µ) . (7.65)

或者也可以写成

logΞ =−∑
σ

V
(2π)3

∫
d3k log(1− ze−βε(k,σ)), (7.66)

式中 z = eβ µ , 而且我们已经把对 k 的求和近似成积分了。
特别的，如果没有外场，而且玻色子是非相对论的，则这时候

ε(k,σ) =
p2

2m
, (7.67)

式中 p = h̄k 为粒子的动量。代入上面的式子，即有

logΞ =−(2s+1)
V

(2π h̄)3

∫
d3p log(1− ze−βp2/2m)

=−(2s+1)
4πV
(2π h̄)3

∫ ∞

0
p2d p log(1− ze−β p2/2m), (7.68)

式中 s 是粒子自旋，由于是玻色子，所以 s 应该是整数。不妨进行 x = (β p2/2m) 的变量

代换，则上式成为

logΞ =−(2s+1)
4πV
(2π h̄)3

1
2
(2m/β )3/2

∫ ∞

0
x1/2dx log(1− ze−x). (7.69)
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下面处理上式中的积分

I ≡
∫ ∞

0
x1/2dx log(1− ze−x) =−

∫ ∞

0
x1/2dx

+∞

∑
n=1

zn

n
e−nx

=−∑
n

zn

n5/2

∫ ∞

0
x1/2e−xdx =−

√
π

2 ∑
n

zn

n5/2 . (7.70)

代入 (7.69) 式，并整理得

logΞ = (2s+1)V
( m

2πβ h̄2

)3/2 ∑
n

zn

n5/2 . (7.71)

正与前文用不同方法算出来的结果 (7.34) 完全吻合 (取 s = 0)!
将 logΞ 对化学势求偏导可以求出系统热平衡时的平均粒子数 (依然记为 N), 具体来

说是

N = z
∂ logΞ

∂ z
. (7.72)

根据 (7.66) 式，不难得到

N = ∑
σ

V
(2π)3

∫
d3k

1
z−1eβε(k,σ)−1

. (7.73)

很显然，式中

⟨N̂(k,σ)⟩= 1
z−1eβε(k,σ)−1

(7.74)

就是单粒子态 (k,σ) 上占据的平均粒子数。

特别的，单粒子基态 ε(k,σ) = 0 上的占据粒子数为

N0 = 1/(z−1 −1) = z/(1− z), (7.75)

物理上，单粒子基态上的玻色子数目当然大于等于零，因此必有

0 < z ≤ 1 ⇒ µ < 0. (7.76)

注意，玻色气体的化学势是负的，这意味着当我们向体系加入一个新的粒子时，体系的自

由能反而会减少。这个初看起来反直觉的结果其实是因为，每给系统增加一个玻色子，其

内能的增加很少 (因为这个粒子可以和能量较低的那些粒子占据同一个单粒子态)，然而由
于增加了一个物理自由度，故而使得体系的熵增加了一，当这个粒子与其他粒子平衡以后

它就将体系总内能中的一份 kBT 转化为热运动能量，因此总的效应是使得体系的自由能

减少了！

另一方面，根据更特殊一点的 (7.71) 式，不难得到这种情况下的平均粒子数 N 为

N = (2s+1)V
( m

2πβ h̄2

)3/2 ∑
n

zn

n3/2 . (7.77)

但是，归根结底，(7.77) 式是通过算 (7.69) 式的积分算出来的，积分的数学定义要求，
被积的每一个单粒子态对结果的贡献都小到可以忽略积分才有意义，但是，我们已经看到，
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基态 ε = 0 贡献的粒子占据数是 z/(1− z)，尤其当 z → 1 时，并不是一个小到可以忽略的

值。所以，我们要将积分下限 ε = 0 处的这个贡献手动地加上去 (原来的积分可以看作是
从 ε = 0+ 开始的)，进而把粒子数写成

N = (2s+1)
[ z

1− z
+V

( m
2πβ h̄2

)3/2 ∑
n

zn

n3/2

]
. (7.78)

式中右边的第二项是激发态上的粒子总数，可记作 Nex。

为了联系关于平均粒子数的这两个式子 (7.73) 式和 (7.77) 式。我们定义如下函数

ϕα(z)≡
1

Γ(α)

∫ ∞

0
dx

xα−1

z−1ex −1
. (7.79)

不难进行如下推导

ϕα(z) =
1

Γ(α)

∫ ∞

0
dx

zxα−1e−x

1− ze−x

=
1

Γ(α)
z
∫

dxxα−1e−x
∞

∑
n=0

zne−nx

=
1

Γ(α)

∞

∑
n=1

zn
∫

dxxα−1e−nx = ∑
n

zn

nα . (7.80)

特别的，ϕα(1) = ζ (α), ζ (α) 是黎曼 Zeta 函数。
利用上面函数 ϕα(z), 显然可以将 (7.71) 式和 (7.78) 式分别重写为

logΞ = (2s+1)
V
λ 3

T
ϕ5/2(z), N = (2s+1)

[ z
1− z

+
V
λ 3

T
ϕ3/2(z)

]
. (7.81)

式中 λT = 1/
√

m
2πβ h̄2 是所谓的热力学波长。注意到 −kBT logΞ = Φ =−PV , 最后的等于号

是用了 Gibbs-Duhem 关系式，P 为玻色气体的压强，进而由 (7.81) 式，有

P = (2s+1)kBT
1

λ 3
T

ϕ5/2(z). (7.82)

当单粒子能量不依赖于 σ 时，人们常常把对 k 的积分转换成对单粒子能量 ε 的积分，
转换办法是定义

(2s+1)
V

(2π)3

∫
d3k =

∫ ∞

0
g(ε)dε, (7.83)

式中 g(ε) 称为单粒子态的态密度, 不难看出对于 ε(k) = p2/2m 的情形，g(ε)∼ ε1/2。利用

这个办法就可以把 (7.66) 式改写成

logΞ =−
∫ ∞

0
dεg(ε) log(1− ze−βε). (7.84)

注意到 g(ε)∼ ε1/2，进而 dεg(ε) = 2
3 d(εg(ε)), 进而可以对上面这个式子分部积分，并得到

logΞ =
2
3

β
∫

dε
εg(ε)

z−1eβε −1
. (7.85)
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注意到 kBT logΞ = PV，所以，

PV = kBT logΞ =
2
3

∫
dε

εg(ε)
z−1eβε −1

. (7.86)

另一方面，系统的平均能量 E 为 (利用 (7.84) 式)

E =− ∂
∂β

logΞ =
∫

dε
εg(ε)

z−1eβε −1
. (7.87)

很显然

PV =
2
3

E. (7.88)

注意，这个结果与光子气的 PV = 1
3 E 明显不同，因为光子气是极端相对论性的，而这里的

玻色气体是非相对论性的。

7.4.2 玻色-爱因斯坦凝聚

为了简单起见，本节仅以 s = 0 的玻色气体为例进行讨论。

根据 (7.78) 式
Nex/V =

1
λ 3

T
ϕ3/2(z),

很显然，Nex 与体积 V 成正比，而基态的占据粒子数为 N0 = z/(1− z) 与体积 V 无关，所

以只要 z 不趋于 1, 那么与 Nex 相比 N0 就可以忽略，这时近似就有 Nex = N。另外，给定

总粒子数 N, 假设让温度从一个很高的值开始降低，则随着温度的降低，热波长 λT ∼ h̄
√

β
就会逐渐增加，则由上式可知，z(从而 ϕ3/2(z)) 也必然要逐渐增加，但是 z 的取值范围为

0 < z ≤ 1，所以必然有一个临界的低温值 Tc, 它相应于 z = 1。

现在，假设我们有一团玻色气体，其粒子数密度为 n = N/V，因此粒子间的平均距离

为 1/ 3
√

n，这些粒子分别处于动量为 p 的量子态，并与热源保持着热平衡。则由

n =
1

λ 3
T

ϕ3/2(z),

可以反解出体系的化学势。此外，我们还应注意到，p < h̄ 3
√

n 的那一部分态，其波函数是

有相互交叠的，当考虑到热力学涨落的退相干效应时，这些相互交叠的相干性可能被抹平，

也可能没有被抹平，这主要取决于热波长 λT 的大小，也就是取决于温度的大小。

让我们先从比较高的温度开始，它相应于 z ∼ 0 的极限 (前面说过 z 随温度的降低而

增加)，此时，只要 3
√

n > λT , 则，所有的量子力学相干性都被热力学涨落抹平了，因此是
一种遵循经典统计的气体。另外，此时还有 n ≈ 1

λ 3
T

z，或者写成

1
n
/λ 3

T ≈ 1
z
.

因此 z ∼ 0 意味着上式左边很大。这个式子的物理意义是说，在经典极限下，每个粒子所

占据的平均距离远远大于热力学波长，这正是我们期望的图象。另外，由于热力学波长就

是系统典型的热力学涨落的尺度，因此，经典极限说的就是，相比粒子的间距而言，热力
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学涨落局域得很好，他消去了任何两个粒子波函数间的交叠，同时使得它们之间的热力学

关联均较小。

而随着我们慢慢地降低温度，热力学波长开始渐渐增加，而 z 也开始慢慢的增大，化

学势也随之而改变，当热波长 λT 变得与粒子间距 1/ 3
√

n 相当时（若认为前面 z ∼ 0 极限

下得到的关于 z 的式子依然可以定性的说明问题的话，这就相当于 z ∼ 1），此时那些波长

大于粒子间距，即 h̄/p > 1/ 3
√

n，的粒子态之间的波函数交叠开始不能被热力学涨落所抹

平了，这时这些能级比较低的态间的波函数交叠就变得重要。这些态，而尤其是 p = 0 的

基态，波函数开始重叠得厉害，而这种相干叠加就使得基态上的占据的粒子越来越多

N0 =
z

1− z
.

这个相干叠加的过程是链式的，因此玻色-爱因斯坦凝聚就在瞬间发生了，总的粒子中有一
个很大的份额 N0 都凝聚到基态上去了 (从而这时 Nex 与粒子总数 N 有明显差别)，N0 是

如此之大，使得 z 基本就是 1，z = 1。我们可以由此得出临界温度 Tc，

N =

(
m

2πβch̄2

)3/2

ϕ3/2(1).

假如我们继续降低温度，热波长越来越长，远远地超过粒子的平均间距，热力学涨落

引起的退相干效应越来越弱，所有波长大于粒子间距，即 h̄/p > 1/ 3
√

n，的粒子态的波函数

交叠均得到保持，基态上凝聚的粒子数持续增加，而 z 越来越精确地等于 1，因此，凝聚
发生以后 (即对 T < Tc)，激发态上的粒子数随着温度的变化规律为

Nex =V
(

m
2πβ h̄2

)3/2

ϕ3/2(1) = N
(

T
Tc

)3/2

.

因此凝聚量对温度的依赖关系为

N0 = N −Nex = N

[
1−
(

T
Tc

)3/2
]
.

在临界温度 Tc 之上，基态上凝聚的粒子数可以忽略，根据 (7.82) 式，这时玻色气体
的压强为

P = kBT
1

λ 3
T

ϕ5/2(z). (7.89)

然而，当 T < Tc 时，z = 1, 从而压强变成

P =
kBT
λ 3

T
ϕ5/2(1)∼ T 5/2, (7.90)

特别的，这时候的压强与粒子数密度 N/V 没有关系。

如果，我们研究热容曲线，则会发现，玻色-爱因斯坦凝聚有点类似于液氮超流相变，
由于热容曲线的形状、液氮超流的那种相变被称之为 λ 相变。

玻色-爱因斯坦凝聚体（常简写为 BEC）终于在 1995 年得以实现，距离其理论预言约
70 年。首批实现的 BEC 由铷、钠或锂原子构成，原子数在 N ∼ 104 → 107 之间。形成这
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类凝聚体所需的相变温度极低，约为 Tc ∼ 10−7K。图 (7.2) 展示了揭示凝聚体存在的标志
性伪彩色分布图：将原子囚禁于磁阱后关闭磁场，经过短暂时间 t，当原子移动 h̄kt/m 距

离时拍摄原子云图像。通过原子扩散情况可推知原子云的动量分布，如图 (7.2) 所示。最
后两幅图中出现的尖峰证实确有大量原子处于动量基态（由于有限势阱与海森堡不确定关

系，该状态并非 k = 0 态）。BEC 的发现者——博尔德的埃里克·康奈尔、卡尔·维曼与
MIT 的沃尔夫冈·克特勒共同获得了 2001 年诺贝尔物理学奖。

Figure 7.2: 这是取自麻省理工学院 Ketterle实验室的铷原子速度分布图。左图显示的是温
度高于临界温度（T > Tc）时、凝聚体即将形成前的情况；中图和右图则都显示出玻色-爱
因斯坦凝聚体（Bose-Einstein condensate）的存在。

7.5 费米-狄拉克统计

那么如果是化学势不为零的费米子理想气体，它满足的统计力学又应该是怎样的呢？

为此，假设单个费米子的能量本征值为 ε(k,σ)，依然记单粒子态 (k,σ)上占据的费米

子数目为 n(k,σ), 由于泡利不相容原理，同一个单粒子态最多只能被一个费米子占据，所
以与玻色子不同，这里 n(k,σ) = 0,1。进而即有费米气体的巨配分函数为

Ξ = Tr(e−β (H−µN̂)) = ∏
k,σ

(1+ e−β (ε(k,σ)−µ)). (7.91)

或者也可以写成

logΞ = ∑
σ

V
(2π)3

∫
d3k log(1+ ze−βε(k,σ)). (7.92)

类似玻色气体情形，也可以求出系统热平衡时的平均粒子数 N

N = z
∂ logΞ

∂ z
= ∑

σ

V
(2π)3

∫
d3k

1
z−1eβε(k,σ)+1

. (7.93)

很显然，式中

⟨N̂(k,σ)⟩= 1
z−1eβε(k,σ)+1

(7.94)
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就是单粒子态 (k,σ) 上占据的平均粒子数。

如果 ε(k) 不依赖于自旋量子数 σ , 那和玻色气体类似，也可以引入态密度 g(ε)，进而
把 (7.92) 式写成

logΞ =
∫ ∞

0
dεg(ε) log(1+ ze−βε). (7.95)

由于是费米子，所以这里态密度中的 s 为半整数。和玻色气体的相关推导完全类似，可以

导出

E =
∫ ∞

0
dε

εg(ε)
z−1eβε +1

. (7.96)

当然，依然有 kBT logΞ = PV，而且，对于 ε(k) = p2/2m 的非相对论情形，也可以类似地

导出 PV = 2
3 E。

类似于玻色气体的相关处理，对于 ε(k) = p2/2m 的非相对论情形，也可以引入 x =

βp2/2m 的变量代换, 进而把 (7.92) 式写成

logΞ = (2s+1)
4πV
(2π h̄)3

1
2
(2m/β )3/2

∫ ∞

0
x1/2dx log(1+ ze−x). (7.97)

类似地处理上式中的积分

I ≡
∫ ∞

0
x1/2dx log(1+ ze−x) =−

∫ ∞

0
x1/2dx

+∞

∑
n=1

(−z)n

n
e−nx

=−∑
n

(−z)n

n5/2

∫ ∞

0
x1/2e−xdx =−

√
π

2 ∑
n

(−z)n

n5/2 =−
√

π
2

ϕ5/2(−z). (7.98)

其中，根据 ϕα(z) 的定义，有

−ϕα(−z) =−
∞

∑
n=1

(−z)n

nα =
1

Γ(α)

∫ ∞

0
dx

xα−1

z−1ex +1
. (7.99)

将积分 I 的结果代入 (7.97) 式，并整理得

logΞ = (2s+1)V
( m

2πβ h̄2

)3/2
(−)ϕ5/2(−z). (7.100)

由此立即有

N = z
∂ logΞ

∂ z
= (2s+1)V

( m
2πβ h̄2

)3/2
(−)ϕ3/2(−z). (7.101)

费米能

根据单粒子态上平均占据的粒子数公式 (7.94) 可知，当温度 T → 0 时，一个单粒子

态要么被占据要么就是空的，即

1
eβ (ε−µ)+1

→

1 对于ε < µ

0 对于ε > µ
(7.102)



7.5 费米-狄拉克统计 127

换言之，在 T = 0 时，如果我们往系统中加入费米子，那它会从最低单粒子能态开始占

据起，随着加入的费米子越来越多，占据的单粒子能态也越来越高，直到单粒子能级达到

µ(T = 0) 为止。通常称最后被占据的这个能级为费米能 εF

µ(T = 0)≡ εF . (7.103)

也即是说，T = 0 时，费米能级以下的所有单粒子能级都被占据，而费米能级以上的单粒

子能态都是空的。

假设我们考虑的是满足 ε(k) = p2/2m 的非相对论费米子系统，那么很显然，费米能

级对应的费米波数 kF 是 h̄kF = (2mεF)
1/2。T = 0 时，所有波矢量满足 |k| ≤ kF 的单粒子

态都被占据，这些被占据的单粒子态构成了波矢量空间的一个半径为 kF 的球体，称作费

米球，其表面就称作费米面，也就是满足 |k|= kF 的球面。

为了决定费米能 εF , 我们注意到总粒子数为 N，从而

N = ∑
σ

V
(2π)3

∫
|k|≤kF

d3k = (2s+1)
V

(2π)3
4
3

πk3
F = (2s+1)

V
6π2

(2m
h̄2

)3/2ε3/2
F .

或者说

εF =
h̄2

2m

( 6π2

2s+1
N
V

)2/3
. (7.104)

费米能为费米子系统设定了一个能标。相应的，我们也可以定义费米温度 TF ≡ εF/kB，这

设定了低温和高温的界限，T ≪ TF 就是低温，T ≫ TF 就是高温。对于金属中的自由电子

气而言，TF ∼ 104K, 而对于白矮星中的电子而言，TF > 107K。

也可以计算 T = 0 时系统的平均总能量 E, 为

E = ∑
σ

V
(2π)3

∫
|k|≤kF

d3kε(k) =
3
5

NεF . (7.105)

根据公式 PV = 2
3 E 即可以得到这时候费米气的压强

PV =
2
5

NεF . (7.106)

也即是说，即使在零温时，费米气体也有非零的压强，称作简并压！因为这种压强并非来

自于费米子的热运动，而是来自于泡利不相容原理，是因为不同费米子不能处于同一个单

粒子态而导致的结果。零温时简并压的存在是费米气体与玻色气体的典型不同，也是费米

气体与经典气体的典型不同。正是因为电子简并压抵抗了自引力作用，所以白矮星才能稳

定存在。类似的，正是因为中子简并压抵抗了自引力作用，所以才能形成中子星。

低温时的费米气体
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Figure 7.3: 单粒子态上占据的费米子平均数目。左图是 T = 0 时的情况，右图是 T ≪ TF

的低温时的情况。右图粒子数的分布只在 εF 附近约 kBT 的范围内才和左图有明显不同。

现在考虑 T ≪ TF 时的低温费米气体，其单粒子态上占据的平均粒子数如图 (7.3) 的
右图所示。我们注意到这个粒子数分布只在 εF 附近约 kBT 的范围内才和 T = 0 时的情况

有明显不同。写出总粒子数和总能量的公式

N =
∫ ∞

0
dε

g(ε)
z−1eβε +1

, E =
∫ ∞

0
dε

εg(ε)
z−1eβε +1

. (7.107)

式中态密度 g(ε)∼ ε1/2。

总粒子数 N 当然不依赖于温度 T , 现在，我们宣称这意味着
dµ
dT

|T=0 = 0. (7.108)

为了证明这一点，我们把 N 对 T 求导，则有
dN
dT

=
d

dT

∫ ∞

0
dε

g(ε)
eβ (ε−µ)+1

=
∫ ∞

0
dεg(ε)

d
dT

( 1
eβ (ε−µ)+1

)
≈ g(εF)

∫ ∞

0
dε

d
dT

( 1
eβ (ε−εF )+1

)
. (7.109)

其中从第二行到第三行我们用到了两点：第一点是，低温时粒子数分布函数只在 εF 附近

有明显的变化，这意味着第二行的积分中被积项只在 εF 附近才有非零的贡献，因此我们

可以把这一行中的 g(ε) 近似为 g(εF)。第二点是，我们利用了 dµ
dT |T=0 = 0, 进而在第三行

中将 µ 替换成了零温时的 εF。

显式算出上面最后一行中对 T 的求导，即有
dN
dT

≈ g(εF)
∫ ∞

0
dε
(ε − εF

kBT 2

) 1
4cosh2(β (ε − εF)/2)

≈ 0. (7.110)

积分的最后结果近似为零是因为 ε −εF 在 εF 附近是奇函数，而 cosh 则是偶函数，而且这

个积分仅仅在 εF 附近才有非零贡献 (从而积分下限可以替换成 −∞)。
下面我们来说，低温时能量 E 对 T 的导数，也就是热容 CV。利用和上面类似的近似，

我们有

CV =
∂E
∂T

=
∫ ∞

0
dεεg(ε)

∂
∂T

( 1
eβ (ε−µ)+1

)
≈
∫ ∞

0
dε
[
εFg(εF)+

3
2

g(εF)(ε − εF)
] ∂

∂T

( 1
eβ (ε−εF )+1

)
. (7.111)
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式中中括号里的项是对 εg(ε) 进行了泰勒展开, 并注意到 εg(ε)∼ ε3/2。同样的奇偶性论证

告诉我们，中括号里 εFg(εF) 项最后对积分的贡献是零，但是 (ε − εF) 项的贡献非零。

令 x = β (ε − εF), 则可以看出上式最后的积分等于

CV ≈ 3
2

g(εF)k2
BT
∫ ∞

−∞
dx

x2

4cosh2(x/2)
. (7.112)

式中的积分当然只是一个数值因子，因此

CV ∼ k2
BT g(εF). (7.113)

这个结果有非常直观的物理解释：低温时，仅仅 εF 附近大约 kBT 能量范围的费米子才会

参与物理，这样的费米子数目约为 g(εF)kBT，其中每一个对热能的贡献是 kBT，因此总热

能是 g(εF)(kBT )2, 从而热容就是上面给出的结果。
根据 (7.104) 式，N ∼ ε3/2

F , 而 g(εF)∼ ε1/2
F ，所以也可以将上述关于热容的结果改写成

CV ∼ NkB
( T

TF

)
. (7.114)

我们可以将上述理论应用到一个非常重要的领域——金属。我们可以尝试将传导电子

——即那些可以在晶格中自由移动的电子——视为一种理想气体。乍一看，这种做法似乎

不太可能奏效，因为我们忽略了电子之间的库仑相互作用。然而，事实证明，将金属中的

传导电子近似为理想气体的做法效果出奇地好。

根据本节所学内容，我们预期金属的热容会由两个部分贡献组成：晶格振动产生的声

子贡献，其随温度变化的关系为 T 3（参见公式 (7.61)）；如果传导电子表现为理想气体，则
根据 (7.114) 式，它们应贡献一个线性项。因此，低温下金属的热容可以表示为：

CV = γT +αT 3. (7.115)

实验数据通常以 CV/T 对 T 2 作图，因为这样会得到一条看起来很规整的直线。该直线与

CV/T 轴的截距告诉我们电子部分的贡献。

我们可以大致估算出声子与电子对热容的贡献何时相当。比较式 (7.61) 与式 (7.114)，
可得出当 T 2 ∼ T 3

D/TF 时两者贡献相等。典型数值 TD ∼ 102K 与 TF ∼ 104K 表明，需要将
温度降至 1K 左右才能观测到电子贡献。

多数金属的线性热容系数 γ 与理想气体值相当接近（偏差通常在 20% 以内）。然而金
属中的电子远非自由粒子：其库仑相互作用能至少与动能同等重要。为何理想气体近似仍

能如此准确？这一问题由朗道在 1950 年代作出解释，由此发展的理论——通常称为朗道
费米液体理论——构成了现代电子系统研究的理论基础。

索末菲展开

下面我们发展一种更严谨更系统的方式来处理低温费米气。首先我们把粒子数的公式

(7.101) 重写如下

N = (2s+1)
V
λ 3

T
(−)ϕ3/2(−z). (7.116)
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以及由 kBT logΞ = PV = 2
3 E 和 (7.100) 式得出的总能量 E 的公式

E =
3
2
(2s+1)kBT

V
λ 3

T
(−)ϕ5/2(−z). (7.117)

在这两个式子中

−ϕα(−z) =
1

Γ(α)

∫ ∞

0
dx

xα−1

z−1ex +1
. (7.118)

由于化学势 µ > 0, 所以低温对应于大 z, 低温展开相应于大 z 展开。为此我们推导函

数 −ϕα(−z) 的一种大 z 展开，称作索末菲展开。首先我们把 −ϕα(−z) 的积分分裂成两部

分

−Γ(α)ϕα(−z) =
∫ logz

0
dx

xα−1

z−1ex +1
+
∫ ∞

logz
dx

xα−1

z−1ex +1

=
∫ logz

0
dxxα−1(1− 1

1+ ze−x

)
+
∫ ∞

logz
dx

xα−1

z−1ex +1

=
1
α
(logz)α −

∫ logz

0
dx

xα−1

1+ ze−x +
∫ ∞

logz
dx

xα−1

z−1ex +1
. (7.119)

对最后一行中的第一个积分我们进行变量代换 η1 = logz− x，而对第二个积分我们进行变

量代换 η2 = x− logz

−Γ(α)ϕα(−z) =
1
α
(logz)α −

∫ logz

0
dη1

(logz−η1)
α−1

1+ eη1
+
∫ ∞

0
dη2

(logz+η2)
α−1

1+ eη2
.

注意到 logz ≫ 1, 又注意到这个式子中的第一个积分被分母的 eη1 压低了，因此如果我们

把这第一积分的上限改成 +∞, 那么多算的部分将大约是 e− logz = z−1 量级，在大 z 展开下

我们将忽略这个量级的修正，从而即有

−Γ(α)ϕα(−z)≈ 1
α
(logz)α +

∫ ∞

0
dη

(logz+η)α−1 − (logz−η)α−1

1+ eη .

将其中的分子部分进行泰勒展开

(logz+η)α−1 − (logz−η)α−1 = (logz)α−1[(1+ η
logz

)α−1 − (1− η
logz

)α−1]
=(logz)α−1[1+(α −1)η/ logz+ ...−1+(α −1)η/ logz+ ...

]
=2(α −1)(logz)α−2η + ... (7.120)

代进上面的积分，进而即有

−Γ(α)ϕα(−z)≈ 1
α
(logz)α +2(α −1)(logz)α−2

∫ ∞

0
dη

η
1+ eη .

对于式中的积分，我们有∫ ∞

0
dη

η
1+ eη =

∫ ∞

0
dη

ηe−η

1+ e−η

=
∫ ∞

0
dηηe−η

∞

∑
m=0

(−)me−mη

=
∞

∑
m=1

(−1)m−1

m2

∫ ∞

0
duue−u =

∞

∑
m=1

(−1)m−1

m2 . (7.121)
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对于式中的求和，我们有

1− 1
22 +

1
32 −

1
42 + · · ·=

(
1+

1
22 +

1
32 +

1
42 + · · ·

)
−2
( 1

22 +
1
42 +

1
62 + · · ·

)
=
(
1− 2

22

)(
1+

1
22 +

1
32 +

1
42 + · · ·

)
=

1
2

ζ (2) =
π2

12
.

因此，将上面所有的结果综合在一起，最终我们有

−ϕα(−z)≈ (logz)α

Γ(α +1)
(
1+

π2

6
α(α −1)
(logz)2 + · · ·

)
.

将这个结果代入前面的 (7.116) 式和 (7.117) 式，即有

N
V

=
(2s+1)
6π2h̄3 (2mµ)3/2

(
1+

π2

8
(kBT

µ
)2

+ · · ·
)
. (7.122)

以及

E
V

=
(2s+1)
10π2h̄3 (2m)3/2µ5/2

(
1+

5π2

8
(kBT

µ
)2

+ · · ·
)
. (7.123)

根据 (7.122) 式，我们可以把化学势对温度的依赖关系反解出来，经过一些代数运算，
并利用费米能 εF 的表达式 (7.104)，可以得到结果为

µ = εF

(
1− π2

12
(kBT

εF

)2
+ · · ·

)
(7.124)

注意，µ 对温度的领头阶依赖是二次的，这与之前宣称的 dµ
dT |T=0 = 0 完全吻合。

但，我们真正想算的是热容的公式，为此我们用 (7.123) 式除以 (7.122) 式，并代入上
面关于化学势的结果，即有

E
N

=
3
5

εF

(
1+

5π2

12
(kBT

εF

)2
+ · · ·

)
. (7.125)

由此立即可以得到低温时的热容

CV =
∂E
∂T

|N = NkB
π2

2
T
TF

. (7.126)

与之前估算的结果 (7.114) 完全一致。

7.6 附录：从量子统计到经典统计

前面的章节我们讲了经典统计力学，也讲了量子统计力学。实际上，经典统计力学可

以作为量子统计力学在 h̄ → 0 时的经典极限。为了说清楚这个问题，不妨以单自由度系统

的正则系综为例。

这时候系统的哈密顿算符为

Ĥ =
p̂2

2m
+V (q̂), (7.127)
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这里为了强调算符与普通函数的区别，我们给算符上面加上了一个尖帽子 ̂。系统的配分
函数为

Z = Tr(e−β Ĥ) =
∫

dq⟨q|e−β Ĥ |q⟩, (7.128)

式中 |q⟩ 为位置算符 q̂ 的本征态，满足 ⟨q′|q⟩= δ (q′−q)。问题是，算符 Ĥ 中既包含了仅

依赖于位置算符 q̂ 的项，但也同时包含仅依赖于动量算符 p̂ 的项，而且由于这两种项不

对易，所以我们不能直接将它们因式分解。

不过，利用算符公式

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂]+···, (7.129)

并注意到 [q̂, p̂] = ih̄，我们有

e−β Ĥ = e−β p̂2/2me−βV (q̂)+O(h̄). (7.130)

式中 O(h̄) 表示与 h̄ 同阶的修正项，在 h̄ → 0 的经典极限下，这些修正项可以忽略。

因此，在 h̄ → 0 的经典极限下，我们有

Z =
∫

dq⟨q|e−β Ĥ |q⟩=
∫

dq⟨q|e−β p̂2/2me−βV (q̂)|q⟩

=
∫

dqe−βV (q)⟨q|e−β p̂2/2m|q⟩

=
∫

dq
∫

d pe−βV (q)⟨q|p⟩⟨p|e−β p̂2/2m|q⟩

=
∫

dq
∫

d pe−βH(q,p)|⟨q|p⟩|2 =
∫ dqd p

2π h̄
e−βH(q,p). (7.131)

式中最后一个等于号利用了

⟨q|p⟩= 1
(2π h̄)1/2 eipq/h̄ ⇒ |⟨q|p⟩|2 = 1

2π h̄
. (7.132)

上面的推导告诉我们，在经典极限下，量子的求迹就变成经典的相空间积分，对单自

由度系统，积分体积元为 dqd p
2π h̄ 。很明显，将这样的推导推广到任意的 m 自由度系统，对应

的相空间积分体积元就是

dµ =
dq1 · · ·dqmd p1 · · ·d pm

(2π h̄)m . (7.133)

正是本书第二章中通过最小相格的方式猜测出来的结果。



8. 物质的相与相变

人们常说物质有三种状态 (三种相)：固态、液态和气态。中国古代哲学则有五行学说，
大致是说物质有五种状态：金、木、水、火、土，这在今天已经被认为是一种迷信。

稍微了解一点科普的人可能知道，至少还有一种“等离子体”态，它构成了恒星的大

部分。最初的那三种状态，如今已演变成了众多类型。从重要且精确的意义上说，磁体是

一种独特的物质形态。金属与绝缘体不同。超导体和超流体则是引人注目的新物质状态。

你电脑的液晶屏幕是众多不同液晶物质状态中的一种（向列相、胆甾相、蓝相 �、蓝相 � 和
蓝雾相、近晶相 A、B、C、C*、D、I 等）。存在超过 200 种具有质的差异的晶体类型，更
不用说还有准晶体了。还有像自旋玻璃这样的无序物质状态，以及像分数量子霍尔效应这

样具有电荷为 e/3 的激发态 (类似夸克) 的物质状态。
当只有三种物质状态时，我们可以逐一了解它们。这时候人们关注的重点在于这三种

相是如何相互转变的，也就是相变。理解物质三态之间的相变是本章的第一个主要目标。

然而，如今物质状态多种多样，我们就必须建立一套体系，它要能一般性地分类物质

的不同相，正确描述不同相的不同物理性质，甚至还要能描述不同相之间的相变。这个理

解物态的体系主要是由朗道建立起来的。介绍朗道的这个体系是本章的第二个主要目标。

不过，朗道这个体系并不能解释诸如分数量子霍尔效应这样的新物态，这些新物态的

发现曾经令人们大伤脑筋，虽然最终人们弄明白了它们为何会有那样的表现，并且由此拓

展了我们理解物态的体系。但是，如果你想进一步理解这些新的拓展，那就需要在本书之

外进一步去接触科研的前沿了。

未来也许还不断有新的物质相被发现，而这些新相可能又不符合原有的框架，因此我

们描述物态的框架也就需要不断拓展和完善。
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8.1 相变简介

8.1.1 相变的概念

水可以凝固成冰，也可以气化成水蒸气，气、水、冰本质都是由 H2O 分子组成的物

质，然而它们的物理性质截然不同。这种在环境变化无穷小时，物质的物理性质发生的不

连续的改变，就是相变。气、水、冰就是宏观数量的 H2O 分子的三种不同形态，或者说不

同的相 (phase)。这里值得注意的是，相变不是组成物质的分子的微观改变，也不是少量
分子的改变，而是宏观数量的分子宏观物理性质的改变。

通常有不止一个变量可以影响物质的相。例如可以通过降低温度或者增加压强来使

得蒸气凝结。我们使用相图来显示平衡相与温度和压强的关系 (注意压强的单位，1bar =

105Pa, Pa表示帕斯卡，1bar大约就是一个标准大气压 (atm),实际上 1atm约为 1.01325bar)。

Figure 8.1: H2O 的相图。右边的表格给出了蒸气压和摩尔潜热，前三行描述固气相变，余

下几行描述液气相变。

图 (8.1) 显示了 H2O 的定性相图，以及相变发生时的一些定量数据。从相图中可以清

楚地看到三个区，对应气、水、冰三相，每个区的内部都是单独的一种相，两个区的交界

线是两相共存的地方，例如冰和水可以在 0 摄氏度和 1 个标准大气压下稳定地共存，图中
的三相点则是气、水、冰三相共存的地方，在三相点处 T = 0.01摄氏度，P = 0.006bar。在

比三相点更低的压强下，液态水不能存在，此时冰会直接升华成蒸气。在高压下，冰事实

上会展现出好多种不同的相，它们拥有不同的晶体结构和物理性质，不过，冰的这些不同

相这幅图中并没有标示。值得注意的是，图中标示的这三相都是指稳定的相，实际上“亚

稳”相也是可以持续存在的，例如，水可以“过冷”，即在冰点下依然保持液态并维持一段

时间。

为了确定相图，19世纪人们就对气液相变进行了系统的研究。其中一种办法是将一定
量的液体 (如水、乙醚) 封在容器中，缓慢加热，测定压力随温度的变化曲线。只要容器中
同时存在液体和它的蒸气，气液两相就在共存，因此这样测得的 P−T 曲线，就是气液的

相界线，它也叫气化线。
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如图 (8.2) 所示，如果保持压强为 P0, 由液相开始加热，状态将从图中的 L 点沿水平

线向右移动，与气化线交于 Q 点，一部分液体开始气化，这时尽管在继续加热，温度却不

会升高，一直保持在 Q 点的 T0 值，加热的热量全部被吸收来用于气化了。这种在相变时

才表现出来的气化热，是一种相变潜热。日常生活中，手上沾了水会有清凉感，就是因为

水气化时从手里吸收了潜热。

液体全部气化之后，温度才继续沿着图中的 QG 线继续升高。值得注意的是，沿着

LQG 线做实验，为了保持压强不变，要不断改变系统的体积，因此这样的实验不能用前面

提到的密封容器来做。

Figure 8.2: P−T 相图上的气液相界线

一个自然的问题是，气化线是会随着温度和压强的不断增加而无限延伸，还是会有一

个截止的端点？1869 年英国物理学家安德鲁斯作了一个题为“论物质液态和气态的连续
性”的报告，明确地回答了这个问题。他精确地测量了二氧化碳在液态与气态时的密度差，

发现在 31 摄氏度附近，两者的差别消失了！这意味着气液相界线有一个明确的终点，安
德鲁斯称之为“临界点”。其他物理学家也观察到这个现象，发现在这个点，相变潜热等
于零！

这其实不难理解，关键是要注意到液气相界线总是有正的斜率，因此对于共存的液相

和气相，如果要提高温度，就必须同时施加更高的压强，然而，随着压强的增加，气体将

变得更加稠密，因此液体和气体之间的密度差会逐渐缩小，直至消失，也就是达到临界点。

对于 H2O，这个临界点在 Tc =374 摄氏度、Pc =221bar。在临界点上，就不再有任何不连
续的从液相到气相的变化了。

由于临界点的存在，液相其实可以连续地变成气相，而不需要经过任何不连续的相变。

方法是沿着图 (8.2)b 中所示的虚线变化温度和压强。
那么，固液相界线有没有临界点呢？回答是没有，固液相界线会无限延伸。这是因为，

固体和液体存在定性的差别，固态有晶格结构，而液态则是随机排列的分子，这两者有不

同的对称性！而这个对称性的差异是无法消失的，它不是一个程度问题，而是类似于一种

有和无之间的问题。
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除了温度和压强，改变其他变量也会引起相变。图 (8.3) 显示了两个不同磁性系统的
相图，它们都是改变外磁场和温度引起的相变。左图是第一类超导体的相图，超导相的电

阻为零，仅在外磁场和温度都足够低时才出现。右图是诸如铁之类的铁磁体的相图。分为

朝上和朝下两个磁化相，具体处于哪个相取决于外磁场的方向 (是向上还是向下)。当施加
的外磁场为零时，两个方向的磁化相可以共存。然而，随着温度的升高，两个相的磁化强

度都会减小，最后，在居里温度时，磁化完全消失，因此两相的相界线终止于一个临界点。

Figure 8.3: 左图为第一类超导体的相图。右图为铁磁体的相图，假设外磁场的方向和磁化
的方向都是竖直方向。

8.1.2 克劳修斯-克拉珀龙关系

为了明晰起见，暂时限制于讨论 P−T 相图，显然，这相应于等温等压的系统。问题

是，给定一个压强和温度，如何判断系统会处于哪个相呢？

为了回答这个问题，考虑某个和温度为 T 的热库接触，体积可变，但是压强与热库

一样为 P 的系统。假设经过某个过程，系统的体积发生了改变，同时从热库中吸收了热量

Q，由于热库很大，其放热过程可以看作是可逆的，因此热库的熵变为 dSR =−Q/T。假设

系统的熵变为 dS，则系统和热库一起的总熵变就是 dS+dSR, 由于这两者一起构成了一个
大的孤立系统，所以根据熵增加原理，必有

dS+dSR ≥ 0. (8.1)

对系统应用热力学第一定律，即有 Q = dE +PdV , dE 是上述过程中系统的能量增加

量，dV 是其体积增加量，从而即有

dS+dSR = dS− 1
T
(dE +PdV ) =− 1

T
(dE −T dS+PdV ) =− 1

T
dG ≥ 0. (8.2)

式中 G = E −T S+PV 为系统的吉布斯自由能。因此熵增加原理告诉我们，等温等压系统

的任何自发过程都必然会导致吉布斯自由能减少，即

dG ≤ 0. (8.3)

特别的，当系统达至热平衡时，吉布斯自由能取极小值。
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将上述原理用到相变问题上，即有：在给定的温度和压强下，稳定的相永远是拥有更

低吉布斯自由能的相！其自然推论是，在两相共存的相界线上，两个相的吉布斯自由能必

定相等！

简单起见，这里只讨论液体和气体的相界线，类似的讨论当然也适用于任何相界线。

我们考虑一定量的物质，比如 1mol。我们已经知道，在相界线上，液体和气体的吉布斯自
由能 (分别记为 Gl 和 Gg) 必定相等，即

Gl = Gg. (在相界线上) (8.4)

现在，设想沿着相界线，把温度升高 dT , 压强增加 dP, 由于是沿着相界线，吉布斯自由能
将保持相等，从而即有

dGl = dGg. (沿着相界线) (8.5)

利用热力学关系式 dG =−SdT +V dP+µdN, 即有 (假设系统粒子数保持不变)

−SldT +VldP =−SgdT +VgdP. (8.6)

进而即可以得到相界线的斜率为

dP
dT

=
Sg −Sl

Vg −Vl
. (8.7)

从这个式子可以看出，如果两相熵的差异巨大，则温度的微小变化就需要巨大的压强变化

来补偿，从而相界线也就越陡峭。反过来，如果两相体积的差异巨大，那么压强的微小变

化就需要巨大的温度变化来补偿，从而相界线也就越平。

通常会把两相熵的差 Sg − Sl 写成 L/T , 其中 L 是把这些物质从液态转化为气态所需

的潜热。这样一来，上式就可以重写为

dP
dT

=
L

T ∆V
, 其中∆V =Vg −Vl. (8.8)

这个结果就称作克劳修斯-克拉珀龙关系。它不仅适用于液体到气体的相变，也可以推广
到 P−T 图上的任何相界线。液体相变成气体时要吸收潜热，因此 L > 0, 另外，气态的体
积大于液态，从而 ∆V > 0, 因此对于液气相界线，其斜率 dP

dT 总是正的。但是冰和水之间

的相界线就不是这样，冰转化为水需要吸收潜热，L > 0，但是，水的体积比相应冰的体积

要小，从而冰转化为水 ∆V < 0, 从而冰水相界线的斜率为负。
沿着相界线吉布斯自由能保持相等的结论也可以说成是：沿着相界线，两相的化学势

相等。因为根据 Gibbs-Duhem 关系式有 G = µN, 而不管物质处于哪一相，其粒子数肯定
是一样的，所以吉布斯自由能相等就等价于化学势相等，即

µl = µg. (8.9)

通常称这个条件为相平衡条件，它也可以用另一种方法来得到，即考虑共存的两相，把它
们看成一个孤立系统的两个子系统，两相热平衡的必然推论就是：两相的温度相等；两相
的压强相等；同时，两相的化学势也相等。
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由于相变前后，吉布斯自由能保持相等，也就是吉布斯自由能在相变前后是连续的。

但是，由于相变前后熵和体积都发生了不连续的突变，而熵和体积都是吉布斯自由能的一

阶偏导 (分别对 T 和 P)，所以这就说明，相变前后吉布斯自由能的一阶偏导是不连续的！
像这样的相变就称之为一级相变，也就是吉布斯自由能连续但是其一阶偏导不连续的相
变。

另外，对于临界点来说，沿着相界线从趋于临界点到越过临界点，系统当然也发生了

相变。但是，前面说过，如果沿着相界线趋于临界点，那么相变潜热将趋于零，换言之，

对于临界点处的这种相变，不仅吉布斯自由能是连续的，熵也是连续的，类似的体积也是

连续的。像这样的，不仅吉布斯自由能连续，而且其一阶偏导也连续的相变就称作连续相
变。因此，临界点处的相变就是连续相变。值得注意的是，连续相变也会产生物理量的不
连续或者无穷尖峰的奇异行为，但是这些物理量都是吉布斯自由能的二阶以上的偏导，是

诸如压缩率、磁化率这样的物理量。

8.1.3 吉布斯相律

前面考虑的是只有一种组元 (如 H2O) 的物质，现在推广到有 k 种组元的物质。考虑

一个 k 组元 σ 个不同相的系统，注意，相是一种宏观表现，同一相中可能有多种不同的
物质组元。假设处于 α 相的物质中第 j 组元物质所占的百分比为 xα

j，很显然

k

∑
j=1

xα
j = 1. (8.10)

由于不同相的温度相等，压强也相等，所以整个系统由以下状态参量刻画

T, P, xα
1 ,x

α
2 , · · · ,xα

k , (8.11)

总共 kσ +2 个参数，但是，其中 xα
j 要满足约束条件 (8.10), 很显然，这样的约束条件共

σ 个，所以，独立的状态参量个数为

kσ +2−σ = (k−1)σ +2. (8.12)

但是，每一种物质组元还要满足相平衡条件 (即化学势相等的条件，它对任意两不同
相都要满足)，给定物质组元，这样的相平衡条件有 σ −1 个，k 种组元就有 k(σ −1) 个条

件。所以，系统最后真正自由的状态参量个数 f 为

f = (k−1)σ +2− k(σ −1) = k−σ +2. (8.13)

这就是所谓的吉布斯相律。
对于单元系来说，k = 1,从而 f = 3−σ。如果整个系统处于同一个相，σ = 1，则 f = 2,

即系统仅有两个自由参量，比如理想气体仅有 T,P 两个自由参量。如果系统处于两相共

存，则 f = 1，系统将仅由一个自由参量刻画，正因为如此，在单元系的相图中，两相共存

的状态只能落在一条一维的曲线上，也就是落在相界线上。如果三相共存，那么 f = 0, 这
就是前面提过的三相共存点。单元系不可能出现 4 相共存的情况。
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如果所考察的系统是二元系，则 k = 2, 那么 f = 4−σ。若这样的系统仅出现一个相，
就需要 3 个自由参量来描述其状态，例如可以选 T,P 再加上其中一种组分的粒子数百分

比 x。若系统处于两相共存，则只能有两个自由参量。如果三相共存，那么依然有一个自

由参量。由于最一般的单相状态需要 3 个自由参量刻画，所以二元系的相图严格来说要画
成三维立体的。不过，实际应用中，人们常常会把压强先固定，然后只考虑剩余的两个参

量 T 和 x 的相图，这样的相图称为定压相图。

8.2 范德瓦尔斯模型

1873年，荷兰青年范德瓦尔斯利用当时刚刚发展起来的分子运动论观念，对安德鲁斯
关于临界点的实验结果提出了理论解释。他的论文题目与安德鲁斯的报告类似，也叫“论

气态和液态的连续性”。

为了描写气液相变，范德瓦尔斯建议计入气体分子间的两种相互作用：第一，每个分

子具有一定的体积 b(在小于 b 的范围之内，气体分子间会非常强烈地相互排斥), 因此气
体活动的有效体积缩小为 V −Nb。第二，气体分子间在较远的距离上有微弱的相互吸引

力，相当于补充了一点“内压力”，使 P 增加到 P+a
(N

V

)2。这里“内压力”之所以能写成

a
(N

V

)2, 是因为，首先它来自于分子之间的微弱吸引，既然是分子之间的，那就应该正比于
N ×N = N2。其次，作为压强，“内压力”应该是强度量，所以就只能正比于

(N
V

)2 了。根

据这些考虑，于是范德瓦尔斯把理想气体的物态方程 PV = NkBT 修改为(
P+a(

N
V
)2)(V −Nb) = NkBT. (8.14)

这就是本书第三章曾经推导过的著名的范德瓦尔斯方程，当然范德瓦尔斯可不是像我们在

第三章中做的那样推导出来的，范德瓦尔斯的时代也没有那样成熟的统计物理理论可用，

相反，他是猜出来的，本段介绍的就是范德瓦尔斯非常简单但是非常漂亮的思路。

我们可以在 P−V 图上画出范德瓦尔斯方程方程的等温线，如图 (8.4)所示。在足够高
的温度下，减小体积会导致压强平稳地上升到无穷，同时体积逼近 Nb。然而，在较低的温

度下，等温线的行为要复杂得多，随着 V 的减小，等温线上升，下降，然后再次上升。似乎

暗示着，对于某些状态来说，压缩液体会导致压强下降，即等温压缩系数 κT ≡− 1
V

∂V
∂P |T < 0,

但是，前面第五章我们已经证明过了，κT 一定是大于零的。这就说明，为了正确地描写液

气相变，范德瓦尔斯方程还需要一些修正。

为了搞清楚该如何修正范德瓦尔斯方程，我们从热力学关系式 dG = −SdT +V dP+

µdN 出发。给定物质的数量不变，且固定温度，则有 dG =V dP, 两边同时除以 dV，可得

∂G
∂V

|N,T =V
∂P
∂V

|N,T , (8.15)

等式的右边可以直接从范德瓦尔斯方程计算出，结果为

∂G
∂V

|N,T =− NkBTV
(V −Nb)2 +2a

N2

V 2 , (8.16)

将等式右边第一项中的 V 写成 (V −Nb)+(Nb), 然后对每一部分分别积分，有

G =−NkBT log(V −Nb)+
(NkBT )(Nb)

V −Nb
−2a

N2

V
+ c(T ), (8.17)
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Figure 8.4: 范德瓦尔斯方程的等温线。

式中 c(T ) 是积分常数，对于我们当前的目的来说，它其实无关紧要。这个公式使得我们

可以画出给定温度下的吉布斯自由能曲线。

相较于将 G 绘制为 V 的函数，我们将 V 当作参数，把参数方程 G(V ) 绘制到纵轴、

P(V ) 绘制到横轴，进而得到 G 作为 P 的曲线反而更有用。图 (8.5) 给出了一个示例，其
中等温线与 G−P 图并排显示。虽然范德瓦耳斯方程在某些压强下存在多个对应的体积，

但是 G−P 图中的这一部分三角形环对应的态是不稳定的 (点 2-3-4-5-6), 因为热力学稳定
态一定具有最低的吉布斯自由能。当压强逐渐增加时，系统将直接从点 2 跳到点 6，同时
伴随体积突然减小，也就是相变。在点 2 处，我们应该将流体称为气体, 因为其体积随压
强增加迅速减小。在点 6 处，我们应该将流体称为液体，因为它的体积在压强大幅增加的
情况下，仅略微下降。在这些点之间的体积，热力学稳定态实际上是部分气体和部分液体

的组合，仍保持在转变压强，如 P−V 图上的水平直线所示。等温线被这条直线所截的弯

曲部分并不描述真正的稳定态。

Figure 8.5: 在 T = 0.9Tc 时，范德瓦尔斯流体的吉布斯自由能与压强的关系。此时对应的

等温线如右图所示，在 2-3-4-5-6 之间的状态是不稳定的
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从 G−P 图上，我们可以读出 2 到 6 的相变对应的压强。但是有一种巧妙的方法可以
直接从 P−V 图中读取到它，从而不需要画出吉布斯自由能的曲线。为此我们注意到，当

围绕三角形循环 (2-3-4-5-6) 一圈时，G 的变化为零：

0 =
∫
一圈

dG =
∫
一圈

∂G
∂P

|T dP =
∫
一圈

V dP, (8.18)

最后一个等于号告诉我们，这个积分可以从 P−V 图中计算。我们可以把 P−V 图旋转成

V −P 图。从点 2 到点 3 的积分是 V −P 曲线下这一部分的面积，但是点 3 到点 4 的积
分抵消了一部分，最后只剩下相应的阴影区域。同样，从点 4 到点 6 的积分也只剩下相应
的阴影部分面积，而且是负的这个面积。所以最后一圈的积分就是这两块阴影部分面积相

减。而结果等于零，就说明我们要合适地调节水平直线的位置，使得这两块阴影部分的面

积相等！这就确定了水平直线的压强。这个方法叫做麦克斯韦构造法。

图 (8.6) 给出了在不同温度下重复麦克斯韦构造法得到的结果。对于每个温度，都有
一个确定的压强 (对应阴影部分的水平直线)，称为蒸气压，在该温度和压强下会发生液气
转变。绘制这个压强和温度的关系就可以得到 P−T 图上的液气相界线。

Figure 8.6: 范德瓦尔斯模型预测的相图。阴影部分的稳定态是两相共存。

但是，为什么高温下的等温线随着 V 的减小而单调上升呢？对于这些温度，没有从低

密度态到高密度态的突然转变，也即没有相变。因此，在一定温度以上，液气相边界会消

失，这个温度就称作临界温度 Tc, 相应的蒸气压就称为临界压强 Pc, 其对应的体积称为临
界体积 Vc。这些临界值所定义的，正是临界点。

根据麦克斯韦构造法不难看出，临界点对应的情况是，P−V 图上代表两相共存的水

平直线刚好与等温线相切的情况。也即是等温线的拐点，即等温线的一、二阶导数都等于

零的地方

∂P
∂V

|T = 0,
∂ 2P
∂V 2 |T = 0. (8.19)
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代入范德瓦尔斯方程求出这些偏导，最后就能得到

Tc =
8a

27bkB
, Pc =

a
27b2 , Vc = 3Nb. (8.20)

有趣的是，如果用 Tc,Pc,Vc 分别作为测量温度、压强和体积的单位，进而引入三个没

有量纲的量 (称为约化量)

t =
T
Tc
, p =

P
Pc
, v =

V
Vc

. (8.21)

代回范德瓦尔斯方程，就可以得到

(p+
3
v2 )(3v−1) = 8t. (8.22)

通常称之为约化的范德瓦尔斯方程，注意，它不含有任何与具体物质有关的参数 (如 a 和

b), 一切气体似乎都遵循这同一个方程 (当然还要加上麦克斯韦构造法给出的修正)。这反
映了临界点附近物理规律的普适性！

临界指数

现在我们来进一步研究物质在临界点附近的行为。我们主要关心当我们趋近临界点时

各物理量是如何变化的？当然，可以研究的物理量很多，这里只举比较有代表性的几个为

例。注意，用约化量来看，临界点对应 tc = pc = vc = 1。

我们首先关心沿着 p− t 图上的液气共存线趋于临界点时，两相密度差的逆如何变化，

也就是 vgas − vliquid 如何变化？共存线当然满足 t < 1，此时给定共存线上的一个约化压强

p(也就是 p− v 图上的一条水平直线), 它和约化范德瓦尔斯方程的等温线有两个交点，分
别对应液态和气态，相应的约化体积记为 vliquid 和 vgas, 根据约化的范德瓦尔斯方程，有

p =
8t

3vliquid −1
− 3

v2
liquid

=
8t

3vgas −1
− 3

v2
gas

, (8.23)

从中可以解出相应的温度 t 为

t =
(3vliquid −1)(3vgas −1)(vliquid + vgas)

8v2
liquidv2

gas
. (8.24)

注意，趋于临界点时 vliquid → 1, vgas → 1, 而且上面这个 t 的表达式关于 vliquid 和 vgas 对

称。所以我们令 vgas = 1+ε/2, vliquid = 1−ε/2(从而 vgas−vliquid = ε)，代入上面 t 的表达

式，并保留到 ε 的领头阶，不难得到

t ≈ 1− 1
16

(vgas − vliquid)
2. (8.25)

从而立即可以得到，当我们沿着液气相界线趋于临界点时

vgas − vliquid ∼ (tc − t)1/2, (8.26)

注意 tc = 1。
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我们的第二个问题是：当我们沿着临界温度所在的等温线趋于临界点时，压强如何随

着体积变化？这个问题其实很好回答，因为前面我们说过，临界点处 ∂ p
∂v |tc =

∂ 2 p
∂v2 |tc = 0, 而

给定温度 tc，函数 p(v, tc) 是由约化的范德瓦尔斯方程唯一确定的，所以将这个函数泰勒展

开到 3 阶项 (泰勒展开的前两阶都是零)，即有

p− pc ∼ (v− vc)
3. (8.27)

最后，我们来关心约化的等温压缩率，定义是

κt =−1
v

∂v
∂ p

|t . (8.28)

我们知道对于 t < tc 的两相共存区，范德瓦尔斯方程给出的等温压缩率常常是负的，从

而是错的 (所以才要进行麦克斯韦构造法的修正), 所以这次我们关心从 t > tc 的一侧趋向

tc 时，κt 如何变化？回答也不难，注意在临界点附近，压强并没有不连续的突变，而且
∂ p
∂v |tc = 0, 所以在 tc 附近将 ∂ p

∂v |t,v=vc 对变量 t 泰勒展开到一阶，即有

∂ p
∂v

|t,v=vc ∼ (t − tc)+ · · · . (8.29)

由此即知

κt ∼ (t − tc)−1. (8.30)

也即是说，趋于临界点时，等温压缩率是发散的！

以上我们得到了三个有趣的结果，(8.26) 式、(8.27) 式、以及 (8.30) 式。那么，它们
与实验吻合吗？这个问题关系着我们关于相变的范德瓦尔斯方程是否能描写液气相变临界

点附近的行为。结果表明，定性上是吻合的，定量上却不吻合。

的确，实验表明以上涉及到的三个量在趋于临界点时的行为和我们上面得出的结果一

样有普适性，也就是不依赖于物质的具体组成。但是定量上，我们上面用范德瓦尔斯方程

计算出来的标度行为却是错的。实验得出来的结果是：当我们沿着液气共存线趋于临界点

时

vgas − vliquid ∼ (tc − t)β 其中β ≈ 0.32,而不是1/2. (8.31)

而当我们沿着等温线趋于临界点时

p− pc ∼ (v− vc)
δ 其中δ ≈ 4.8,而不是3. (8.32)

最后，当我们从高温趋于临界点时

κt ∼ (t − tc)−γ 其中γ ≈ 1.2,而不是1. (8.33)

以上式子中的三个指数 β ,δ ,γ 是所谓的临界指数的例子。很显然实验测出来的这三个临界
指数与我们用范德瓦尔斯方程算出来的都不同！
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8.3 朗道范式

8.3.1 朗道的平均场理论

关于临界点处的连续相变，朗道发展了一个重要而又优雅的理论。为了讲清楚朗道的

理论，我们还是举铁磁相变为例。铁磁体的相图如图 (8.7) 所示。这里为了简单起见，我
们同样假设铁磁体只沿着竖直轴磁化，外磁场也只沿着竖直轴。

Figure 8.7: 铁磁体的相图

微观上看，铁磁体是由宏观数量相互作用的自旋规则地排布而成的，这些自旋排布成

规则的晶格，每个格点上有一个自旋，相邻格点上的自旋会有相互作用，这种作用趋向于

使得相邻自旋的取向相同，具体细节与我们关系不大。按照前面的简单假设，这些自旋只

能取向上和向下两种朝向。如果没有外磁场，那么向上和向下对于系统来说是等价的，我

们说系统的微观相互作用有 Z2 对称性，Z2 就是 {+1,−1} 两种可能性 (按照通常的乘法
进行运算)，可以分别指代自旋向上和自旋向下。另外，这些自旋磁矩在宏观局部上的平均
值，就是磁化强度，记作 m(x)。

假设外磁场为零，只调节系统的温度，也就是只关心相图 (8.7) 中水平轴上的情况。
在高温时，热运动的能量远远超过相邻自旋之间相互作用的能量，因此，这些自旋各自为

政，每个自旋的取向都在向上和向下之间疯狂而随机地改变，自旋向上和自旋向下完全对

称，整个系统是向上和向下对称而且无序的。这时候平均来说，每个自旋的自旋磁矩都是

零，因此宏观上的磁化强度 m(x) 也是零。我们说这时候系统处于具有 Z2 对称性的相，也

就是系统的宏观表现有 Z2 对称性，它以之前微观相互作用的 Z2 对称性为基础，但不是

一回事。高温相的对称性是微观相互作用所能允许在宏观上表现出来的最大对称性。

当温度降到临界点以下时，自旋之间的相互作用效应开始超过无规则热运动的效应，

这时候会发生一件神奇的事情：这些自旋开始自发且协调一致地行动，形成一种要么都向

上 (总体上)、要么都向下 (总体上) 的宏观模式。换言之，系统从无序的热运动中自发产
生了有序。这种“有序的程度”，正好可以用磁化强度 m 来刻画。由于各自旋协调一致地

要么都向上、要么都向下，这时候磁化强度当然就不是零，而是一个非零常数，系统出现

了自发磁化，这就是临界点处铁磁相变的物理本质。由于磁化强度为零对应无序的高温相，
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而磁化强度非零对应有序的铁磁相，所以朗道就把这里的磁化强度称之为序参量。

由于自发磁化选取了向上或者选取了向下，因此在铁磁相，原来高温相的 Z2 对称性

就没有了，通常称这为 Z2 对称性破缺了。但是，由于向上磁化还是向下磁化原则上是机
会均等的，系统只是随机地选取了其中一个方向，所以也称这种对称性破缺为对称性自发
破缺。

为了给上述物理图像建立物理模型，朗道假设系统自由能是序参量的解析函数 (假定
序参量不依赖于空间点 x)，因此可以把自由能密度 f = F/V (注意自由能是广延量) 泰勒
展开成如下形式

f (m) = a(t)+
1
2

b(t)m2 +
1
4

c(t)m4 + · · · (8.34)

式中 t = (T −Tc)/Tc 是约化温度 (和之前范德瓦尔斯模型中的约化温度的定义略有差异)。
由于微观相互作用有 Z2 对称性，自由能作为 m 的函数必定会保持这种对称性，因此我们

已经要求 f (m) 在 m →−m 的 Z2 变换下保持不变了，这也就相当于要求 f (m) 是 m 的偶

函数, 所以上述展开式中没有 m 的奇次项。上述表达式忽略了高于四次的泰勒展开项，因

为在临界点附近，自化磁化的 m 其实是小量，四次以上的项太小而可以忽略，而且，正如

我们马上会看到的，保留到四次项已经足以解释连续相变的临界行为了。

在上述自由能泰勒展开的表达式中，m 是待定的变量。定 m 的办法也很简单，只要注

意到热平衡时自由能取极小值，根据极小值条件

∂ f
∂m

= 0 ⇒ [b(t)+ c(t)m2]m = 0. (8.35)

注意到临界温度以上, 即 t > 0 时，没有自发磁化，物理上序参量只能取 m = 0, 且这个
m = 0 要使 f (m) 取极小值，因此朗道假设 t > 0 时，b(t)> 0,c(t)> 0，否则要么 m = 0 不

是极小，要么上述方程还存在 m ̸= 0 的解。同样，t < 0 时，物理上要求 m ̸= 0, 因此上述
m = 0 的解必定不是 f (m) 的极小值，这就要求 t < 0 时，b(t)< 0，进一步要求上述方程存

在 m ̸= 0 的解，因此必定还有 t < 0 时，c(t)> 0。此时这个非零的 m 解为

m =±m0 其中m0 =

√
−b(t)

c(t)
, (8.36)

± 号表示这时候向上磁化和向下磁化均有可能，虽然实际的物理系统只会随机取其中一种
磁化。b(t)> 0 时，自由能密度 f (m) 的函数图像如图 (8.8) 所示，而 b(t)< 0 时，自由能

密度 f (m) 的函数图像如图 (8.9) 所示.
朗道理论清楚地把序参量由零变成非零的过程与对称性自发破缺联系了起来。首先，

理论本身具有 Z2 对称性，因为自由能函数在 m →−m的 Z2 变换下保持不变。其次，t > 0

时，自由能函数只有 m = 0 这一个极小值，它本身就是 Z2 不变的。但是，t < 0 时，m = 0

不再是极小值，而是局部极大值，相反，这时候极小值分裂成了两个, 分别在 ±m0。虽然

这两个极小值是 Z2 对称的，但是，只看其中一个的话，每一个都没有 Z2 对称性，而真实

的系统只能选取两个极小值中的一个，但只要选取了一个，那么 Z2 对称性就自发破缺了。
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Figure 8.8: b(t)> 0 时，自由能密度 f (m) 的函数图像

Figure 8.9: b(t)< 0 时，自由能密度 f (m) 的函数图像

综合以上分析 (特别要注意 b(t) 在 t > 0 和 t < 0 时要改变正负号而 c(t) 则不变号)，
朗道假设在临界点附近，参量 a(t),b(t),c(t) 可以泰勒展开成

a(t) = a0 +a1t + · · ·

b(t) = b0t + · · · 其中b0 > 0

c(t) = c0 + c1t + · · · 其中c0 > 0 (8.37)

由此立即可以得到沿着相界线趋于临界点时磁化强度 m(t) 的临界行为

m(t) = m0 ∼ (−t)1/2. (8.38)

注意这个临界行为与前面范德瓦尔斯模型中计算出来的临界行为 (8.26)完全一样，指数都
是 1/2。

请注意，我们并未在自由能中引入任何不连续性。函数 f (m, t) 中的所有项都是光滑

且良好的。当进行泰勒展开时，它仅包含 m 和 t 的整数次幂。然而，正如上面 m(t) 的表

达式所示，自由能的极小值却表现出非解析的行为。



8.3 朗道范式 147

为了进一步和范德瓦尔斯模型中计算出来的临界行为比。我们引入外磁场 B，由于外

磁场和自旋磁矩的耦合，此时自由能密度将成为

f (m) = a(t)−Bm+
1
2

b(t)m2 +
1
4

c(t)m4 + · · · (8.39)

自由能极小的条件将告诉我们

B = [b(t)+ c(t)m2]m. (8.40)

当我们从高温趋于临界点时，前面已经看到，磁化强度一直是零，这一点当外磁场很

弱时只有很弱的修正，因此可以忽略 (8.40) 式中的 m3 次方项，进而可以计算磁化率 χ(t)
如下

B ≈ b(t)m ⇒ χ(t)≡ ∂m
∂B

∼ 1/b(t)∼ t−1. (8.41)

很显然，这个磁化率的临界行为也和前面范德瓦尔斯模型中计算的压缩率的临界行为

(8.30) 式一样，在临界点附近两者都发散，且指数都是 −1。

为了研究沿着 t = 0 的等温线趋于临界点时的行为，我们注意到此时 b(t) ≈ 0, 因此
(8.40) 式可以近似成

B ≈ c0m3. (8.42)

很显然，这个临界行为也和范德瓦尔斯模型中计算出来的临界行为 (8.27) 式相同，指数都
是 3！

以上比较说明，在临界点附近，朗道的这个平均场论其实和范德瓦尔斯模型有完全一

样的普适性，两者的差别只在于由物理情境的不同而导致的物理变量名称不同，而这些变

量之间在临界点附近的关系则是一样的。

但是，我们也说过，范德瓦尔斯模型算出来的这些临界指数与实验并不吻合，同样，

朗道理论给出来的这些临界指数也与实验不吻合。问题出在，在朗道理论中，我们是把序

参量当成一个整体的均匀的平均场，而忽略了在不同的空间局部上，序参量可以有涨落。

换言之，实际上，序参量不是常量，而是随空间位置变化的动力学场 m(x) (x 表示空间位
置矢量)，尤其在临界点附近，序参量的涨落将变得非常强，而且长程关联，平均场近似此
时是失效的。不过，如何系统地考虑序参量的涨落并不是一件简单的事情。这个困难最终

是威尔逊通过他的重整化群理论解决的，不过，这有点超出本书的范围了。

8.3.2 朗道-金兹堡理论

朗道平均场理论是物理学上罕见的优雅理论，优雅就优雅在它极为简单，和范德瓦尔

斯的模型一样简单，但是，有点过于简单了。比方说，它没有考虑序参量的涨落。朝着这

个方向走的第一步是朗道-金兹堡理论，它的想法也很简单，就是考虑到涨落，需要把序参
量变成一个随空间位置改变的场 m(x)。

现在自由能 F 就变成了场 m(x) 的泛函 F [m(x)]。朗道-金兹堡同样假设这个泛函可以
解析地进行泰勒展开，不过，现在由于 m(x) 可以随空间变化，所以我们要在展开中包含
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m(x) 的空间梯度项, 忽略无关的常数项 a(t)，这个展开即是

F [m(x)] =
∫

d3x
[1

2
b(t)m2(x)+

1
4

c(t)m4(x)+
1
2

d(t)
(
∇m(x)

)2
+ · · ·

]
(8.43)

同样，我们假设没有外磁场，并要求自由能具有 Z2 不变性，当然，此外还要求它具有空

间平移和空间旋转不变性。

自由能极小的条件现在变成了泛函 F [m(x)] 对 m(x) 的变分求极小。不难求出

δF =
∫

d3x
[
b(t)m(x)δm(x)+ c(t)m3(x)δm(x)+d(t)∇m(x) ·∇δm(x)+ · · ·

]
=
∫

d3x
[
b(t)m(x)+ c(t)m3(x)−d(t)∇2m(x)+ · · ·

]
δm(x). (8.44)

式中第二行是进行了分部积分，并丢掉了边界项 (假设边界上的变分 δm(x) 为零)。由
δF = 0，即可以得

b(t)m(x)+ c(t)m3(x)−d(t)∇2m(x) = 0. (8.45)

这个方程当然不止一个解，其中最简单的解是 m(x) 取常数，这时候就退回了上一小节平
均场理论中的方程。因此上一小节所有关于序参量如何从零变成非零，以及如何对称性自

发破缺的所有讨论在这里依然成立。

而朗道-金兹堡理论最重要的应用之一，是理解系统在空间不同点上涨落之间的关联。
具体来说，假设我们在空间某点——比如说 x = 0 的原点处——加上一个无限尖锐的外磁

场 B(x) = εδ 3(x) (式中 ε 为小量，δ 3(x) 为三维 delta 函数) 来扰动它，以激发起当地的磁
化强度，我们想知道这对别处的磁化强度会产生什么影响？加了这样的一个外磁场扰动以

后，原来的自由能泛函就要多加上一项，即
∫

d3x[−m(x)B(x)] =
∫

d3x[−m(x)εδ 3(x)]。进而
变分求自由能极小时对应的方程就是

b(t)m(x)+ c(t)m3(x)−d(t)∇2m(x) = εδ 3(x). (8.46)

假设温度低于临界值，即 t < 0，且扰动前系统原本处在 m(x) = m0 =
√
− b(t)

c(t) 的极小

值处，外磁场把系统扰动到了

m(x) = m0 +δm(x), (8.47)

式中扰动 δm(x) 是小量。代入 (8.46) 式，并保留到扰动 δm(x) 的线性阶，即有

(b(t)+3c(t)m2
0)δm(x)−d(t)∇2δm(x) = εδ 3(x)

⇒−2b(t)δm(x)−d(t)∇2δm(x) = εδ 3(x). (8.48)

这个方程的解是

δm(x) =
ε

4πd(t)
e−|x|/ξ (t)

|x|
(8.49)

式中 ξ (t) 为

ξ (t) =

√
d(t)

−2b(t)
. (8.50)
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ξ (t) 的含义是，原点处外磁场扰动的效应在离原点远大于 ξ (t) 的距离上会迅速衰减为零，
因此通常称 ξ (t) 为关联长度。

朗道假设，在临界点附近 d(t)≈ d0 > 0, 从而不难看到，沿着相界线趋于临界点时，关
联长度的临界行为是

ξ (t)∼ (−t)−1/2, (8.51)

特别的，这意味着，在临界点附近，关联长度会发散。换言之，在临界点附近，序参量的

涨落会在长程上保持关联。正是因为这种长程关联，使得气液相变临界点时对光的散射会

增强，从而使得原来透明的气体或者液体，在接近临界点时变得浑浊起来，呈现一片乳白

色，这就是气液临界点附近的临界乳光现象。

不过，和朗道平均场理论一样，朗道-金兹堡理论给出的这个关联长度的临界指数也与
实验值在定量上不吻合。更正确地计算临界指数需要用到前面提到过的威尔逊重整化群理

论。

那么，和统计物理有什么关系？

允许序参量依赖于空间的主要动机是为了考虑涨落效应。要理解我们如何做到这一

点，首先需要更深入地思考泛函 F [m(x)] 的含义以及我们可以用它来做什么。为了理解这
一点，最好还是回到最基本的概念。我们知道，系统的真实自由能可以等同于配分函数的

对数。我们通常将系统的真实自由能称为 F。然而，我们现在已经把朗道-金兹堡泛函称为
F [m(x)]，虽然它与真实自由能有密切关系，但并不完全相同，这一点我们很快就会看到。
而系统的真实自由能永远是 −kBT logZ , 其中 Z 为系统的配分函数，我们将其表示为：

Z = ∑
n

e−βEn . (8.52)

我们希望在这个框架下正确地理解泛函 F [m(x)] 的意义。这里我们按照 David Tong 讲义
的讲解方式，给出一个启发式的、较为粗略的论证。更完整的处理方式会涉及到重整化群

的思想。

其基本思想是：系统的每一个微观态 |n⟩ 都可以与某个特定的、空间变化的序参量函
数 m(x) 相联系。为了说明这一点，我们将使用伊辛模型的语言进行讨论，尽管该讨论可
以推广到任何系统。在伊辛模型中，我们可以考虑通过对某点附近一个物理小 (所谓物理
小就是宏观上看足够小，但是微观上看依然包含了许多的格点在内) 的区域内的所有自旋
取平均，来为这个物理小的区域赋予一个磁化强度 m(x)。显然，这样定义的磁化强度在宏
观上可以近似看作是平滑的连续函数，这些函数在小于晶格间距的距离尺度上基本上是常

数。通过这种方式，我们就得到了从微观态空间到磁化强度函数的一个映射：|n⟩ → m(x)。
但这个映射并不是一一对应的。例如，由于平均过程是在足够多的格点上进行的，那么仅

仅翻转某一个格点的自旋，不太可能对平均值产生显著影响。因此，许多微观态会映射到

同一个磁化强度函数上。仅对这些微观态求和，就可以从第一性原理构造出 F [m(x)]：

e−βF [m(x)] = ∑
n|m(x)

e−βEn . (8.53)
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当然，我们实际上并没有通过这样的步骤得到朗道-金兹堡理论中具体展开出来的那个
F [m(x)]：我们只是写下了临界点附近最一般的形式，并引入了一些未知系数 b(t),c(t),d(t)。

但如果我们愿意接受挑战，上述过程告诉我们如何从第一性原理出发推导出这些函数。更

重要的是，它也告诉我们应该如何处理朗道-金兹堡自由能。
因为在公式 (8.53) 中，我们只对那些对应于特定 m(x) 的微观态进行了求和。而要计

算完整的配分函数，我们需要对所有微观态求和。但我们可以通过对所有可能的 m(x) 值
求和来实现这一点。换句话说：

Z =
∫

Dm(x)e−βF [m(x)]. (8.54)

等式右边是一个棘手的对象：它是一个泛函积分。我们是在对所有可能的函数 m(x) 进行
积分，这相当于进行无限多重积分。当然，实际上，由于序参量 m(x) 源自底层的晶格结
构，并且在短距离尺度上是足够平滑的，所以这个问题有所缓解。

(8.54)式在物理上非常优美。它意味着我们应该将朗道-金兹堡自由能视为一个关于连
续变量 m(x) 的新有效哈密顿量。它是通过对配分函数的大部分微观信息进行求和而得到
的，但最终仍然留下了一个对这些微观信息的平均量（即序参量）的涨落进行求和或积分

的过程。

要完整解决这个问题，我们需要计算这个泛函积分 (8.54)。这很难。这里的“难”意
味着理论物理学中大多数未解决的问题都可以归结为计算这种类型的积分。然而，它很难

这一点不应让我们气馁，因为这一泛函积分中隐藏着大量丰富而美妙的物理，包括“普适

性”背后的深刻原因。为了理解这些，读者应该进一步去学习统计场论的相关知识。

8.3.3 连续对称性自发破缺

还是接着讲铁磁相变，为简单起见本节默认没有外磁场。不过，现在我们注意到真实

的自旋并不是只有向上和向下两种取向，而是一个三维空间矢量。在不加外磁场的时候，

真实铁磁体的微观相互作用不是具有 Z2 对称性，而是具有作用在自旋上的三维空间旋转

对称性，通常称之为 O(3) 对称性。在临界温度以上，格点上每一个自旋因为热运动都随

机地取向，看起来并没有哪个方向显得比较特殊，系统是无序而对称的，我们称系统处于

具有 O(3) 对称性的相。再次强调一下，要区分相的对称性和微观相互作用的对称性，微

观相互作用的对称性表现在系统的微观哈密顿量上，而相的对称性则表现在系统的具体宏

观行为上。

当然，我们也可以将自旋磁矩在物理小的局部区域上取平均，进而定义磁化强度，现

在它同样是三维矢量, 记作 m(x)。m(x) 是空间上的矢量场，可以想象成是每个空间点上
放上一个小箭头 (表示 m 的方向和大小)，只不过，每一点上的小箭头方向都可以进行任
意的三维旋转。在那个高温的具有 O(3) 对称性的相，由于每一个自旋都随机取向，因此

m 的取值为零，没有哪个方向特殊。
在临界温度以下，每一个空间点附近的物理小区域内的自旋就会因为相互作用而协调

起来，进而都指向某一个特定的方向，产生了宏观上的秩序，这种秩序就表现为磁化强度

m(x) 不再是零了，系统出现了自发磁化！因此 m(x) 从取值为零变成非零就标志着系统从
高温无序相转变成了低温铁磁相，因此 m(x) 就是序参量。
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人们完全可以仿照朗道的办法，将自由能对序参量进行泰勒展开，进行建立上述铁磁

相变的物理模型。很显然，在 T > Tc 的高温相，自由能的极小要求 m = 0。而和前面 Z2

对称模型一样的讨论可知，在 T < Tc 的低温相，自由能的极小要求 m(x) 为常矢量，且

|m(x)|= m0, (8.55)

式中 m0 > 0 是常数。也即是说，在临界温度以下，相互作用会协调空间每一点上的小箭

头，使得它们长度都为 m0，且方向都一样。

我们已经看到，如果不考虑序参量的涨落，那么临界温度以下，空间点上这些长度一

样的小箭头就会同步地选取一个特定的空间指向 n (这里 n 是一个不依赖于空间点 x 的单
位矢量，满足 |n| = 1)，进而破缺掉三维旋转对称性。换言之，在临界温度之下，序参量
可以写成 m(x) = m0n。当然，小箭头们具体选哪个指向是随机的，任何一个方向都同样可
能。因此在临界温度以下，O(3) 对称性自发破缺了！不过，破缺之后其实还剩余一种对称

性，那就是，选定了空间指向的小箭头们还可以绕着各自的轴线旋转任意一个角度，通常

称这为 O(2) 对称性，也就是两维平面绕着某个竖直轴的旋转对称性。所以，在临界温度

以下，铁磁体的 O(3) 对称性自发破缺到了 O(2) 对称性。

所有不同指向但是地位平等的单位向量 n 的集合构成了三维空间中的两维单位球面
S2。在绕 n 自身轴旋转的 O(2) 对称性的作用下，这个 S2 上的点是保持不动的，但在模

去 O(2) 的 O(3) 旋转作用下，n 会改变方向，从而会把 S2 上的一点变换到另一点。正是

在这个意义上，我们说这个 S2 可以等同于破缺前的对称性 O(3) 模去破缺后剩余的对称性

O(2)，记作

S2 = O(3)/O(2). (8.56)

由于空间旋转可以连续地进行，是所谓的连续对称性，不同于之前的 Z2 对称性，Z2

是离散的，所以现在的这种对称性自发破缺叫做连续对称性的自发破缺，与离散对称性自
发破缺相比，它有一些新的物理效应。

依然假定在临界温度之下。不过，如果考虑到序参量的涨落，那方向 n 就可以依赖于
空间点 x, 也即是说不同点的小箭头可以指向不同的方向了。这时候的序参量就是一个不
均匀的场分布 m(x) = m0n(x), |n(x)|= 1。很显然，n(x) 定义了一个三维空间到 S2 的连续

映射，

n(x) : R3 → S2, (8.57)

这个映射决定了临界温度之下序参量场 m(x) 的空间分布。低温铁磁相的物理性质显然由
这些序参量的涨落决定。

为了决定低温铁磁相的物理性质，我们需要弄清楚在临界温度之下序参量的涨落对自

由能泛函 (或者正如前面说过的，系统有效哈密顿量) 具体有什么样的贡献。注意，这不同
于朗道-金兹堡理论中考察的自由能泛函，那是在临界点附近的，而现在是在临界温度之
下的，是有序的铁磁相的自由能泛函。不妨将这个自由能泛函记作 He[m(x)]。我们可以设
所有的小箭头都同步指向某个特定方向时 He = 0。但是，由于所有的方向都是等价的，所
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以如果把这些指向某个特定方向的小箭头同步地转过一个任意的方向，结果能量将依然为

零，即依然有 He = 0。由此我们可以推断，He 的非零贡献只能来自于 m(x) 随不同空间点
的变化 (因为同步的方向变化不贡献能量)，也就是依赖于 m(x) 的空间梯度，进而也就是
依赖于 n(x) 的空间梯度。

由于 n(x) 就是一个 R3 → S2 的连续映射，如果想把这个映射写得更清楚的话，就

需要在 S2 上引入局部坐标系，比如球坐标。这里的要点是，S2 上的局部坐标完全是人

为的，因此不止可以取球坐标，实际上是可以有无数多种局部坐标，但是，自由能泛函

He[m(x)] 当然不依赖于 S2 上局部坐标的选取方式。因此，为了写出自由能泛函，我们首

先得问，S2 上什么东西是不依赖于局部坐标的，回答可能很多，但最简单的一定是，两

个无限靠近的点在 S2 上的距离平方不依赖于局部坐标的选取！这个距离平方很显然是

ds2 = (dnx)
2 +(dny)

2 +(dnz)
2, 其中 n = (nx,ny,nz), 且满足约束 n2

x +n2
y +n2

z = 1。

出于一些纯数学上的方便，可以在 S2 上引入复的局部坐标 (ϕ ,ϕ)(ϕ 表示 ϕ 的复数共
轭), 其定义如下

nx + iny =
2ϕ

1+ |ϕ |2
, nx − iny =

2ϕ
1+ |ϕ 2|

, nz =
1−|ϕ |2

1+ |ϕ 2|
. (8.58)

利用这个局部坐标，经过一番计算即可以将 S2 上的 ds2 写成

ds2 =
4dϕdϕ

(1+ |ϕ |2)2 . (8.59)

注意这个式子虽然是在特定局部坐标下写出来的，但 ds2 本身实际上并不依赖于局部坐标

的选取。

R3 → S2 的连续映射当然也可以看作是由 ϕ(x) 和 ϕ(x) 决定。而自由能泛函 He 只依

赖于 n(x) 的空间梯度也就是只依赖于 ϕ(x) 和 ϕ(x) 的空间梯度。结合 He 不依赖于 S2 上

局部坐标的具体选取的要求 (因此由 S2 上的 ds2 决定)，可知，对 He 的最简单贡献必定

可以写成

He =
∫

d3xρs
4∇ϕ ·∇ϕ
(1+ |ϕ |2)2 + · · · , (8.60)

式中比例系数 ρs 为某个常数。式中这一项是 (∇ϕ)2 阶项，省略号表示诸如 (∇ϕ)4 这样的

具有更多个偏导的高阶修正项。这些更多偏导的项之所以能被忽略，是因为我们主要考察

随空间变化比较平缓的序参量涨落，它的空间偏导是很小的，因此某项中包含的偏导个数

越多就越能够被忽略，这个论证也适用于后文的相关地方，之后我们不再重复。

很显然，这个有效哈密顿量说明，在对称性破缺的铁磁相，序参量涨落的能量可以任

意地小，只需要让序参量场足够平滑，随空间的变化足够缓慢就可以了。这个结论，有时

候人们称之为戈德斯通定理。

很显然，这个有效哈密顿量是场变量 ϕ(x)和 ϕ(x)的泛函，而且不是平方类型的泛函，
而是真正非线性的，所以它也称作非线性西格玛模型。注意，它描写的是低温铁磁相的物

理。这样的非线性西格玛模型有效哈密顿量在离散对称性自发破缺中是不存在的，它是连

续对称性自发破缺特有的物理。
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自旋波

一个自然的问题是研究场 ϕ 和 ϕ 如何随时间 t 演化的动力学 (注意，这里 t 是时间，

不是约化温度)。为此我们就需要一个有效作用量。注意到在经典力学中相空间作用量由
S =

∫
dt[pq̇−H] 给出，推广到场论是类似的。这里我们有了一个有效哈密顿量 He，因此原

则上可以类似地写出一个相空间作用量，关键是前面的 Θ =
∫

dt pq̇ 项该怎么写。需要注意

的是，磁化强度来源于自旋，而自旋是量子的，因此在我们这里这样一项原则上是可以用

量子力学方法推导出来的。不过，一般情况下的推导有点繁琐，也超出了本书的范围，下

面我们仅就一种简化的但是物理上人们最关心的情况给出这一项。

我们关心的简化情况是，假设磁化强度的小箭头原本都指向 z 方向，即 (nx,ny,nz) =

(0,0,1), 如图 (8.10)A所示，序参量是在这个方向附近涨落，也就是考虑 nz ≈ 1, 同时 nx,ny

都很小的情形。从 (8.58) 式不难看出，这相应于 ϕ 和 ϕ 是小量。由此立即有 He 可以近

Figure 8.10: 自旋波，C 是从上往下俯视

似成

He =
∫

d3x4ρs∇ϕ ·∇ϕ + · · · , (8.61)

式中我们忽略了 |ϕ |2 的高阶项。推导表明，这时候相应于经典力学 Θ =
∫

dt pq̇ 项的是

Θ = κ
∫

dtd3xiϕϕ̇ , 其中 κ 是某个比例常数，式中出现虚数单位 i 其实是为了保证这一项为

实数，因为通过分部积分并丢掉边界项，我们有

Θ = κ
∫

dtd3xiϕϕ̇ =−κ
∫

dtd3xiϕ̇ϕ = Θ, (8.62)

Θ 表示 Θ 的复共轭。从而因为有了一个 i, Θ =
∫

dtd3xκiϕϕ̇ 的确是实的。最后归纳起来，
就可以得到如下有效作用量 Se[ϕ ,ϕ ]

Se[ϕ ,ϕ ] = Θ−
∫

dtHe =
∫

dtd3x
[
iκϕ∂tϕ −4ρs∇ϕ ·∇ϕ + · · ·

]
. (8.63)

将 Se[ϕ ,ϕ ] 对 ϕ 变分，并利用最小作用量原理，不难得到

iκ∂tϕ +4ρs∇2ϕ = 0. (8.64)
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这是一个波动方程，它描写的是磁化强度的波动，而磁化强度来源于自旋，所以也称之为

自旋波的波动方程。特别的，假设这种自旋波是平面波 ϕ ∼ e−iωt+ik·x，代入上述方程，即

有

ω = 4
ρs

κ
k2. (8.65)

如图 (8.10)B,C 所示。可见，铁磁体自旋波的色散关系与一个非相对论性自由粒子完全类
似。将这种自旋波进行量子化得到的粒子称之为磁振子，它是一种玻色子，色散关系由上

式给出。

很显然，当温度很低时，由于序参量的涨落，铁磁体内部充满了这种磁振子的气体，

它们决定了铁磁体在低温时的热容。利用第七章对玻色气体进行的统计物理方法，不难算

出，这些磁振子气体的热容 CV 为

CV ∼ T 3/2. (8.66)

注意这个热容不同于光子气和声子气在低温时的热容 CV ∼ T 3, 这是因为磁振子的色散关
系是 ω ∼ k2, 而不是像光子气或声子气那样的 ω ∼ |k|。

拓扑缺陷

在铁磁相，序参量是 R3 → S2 的映射。通常这个映射可能就如水面上的小涟漪，比如

自旋波就是这样。但是，有时候也可以出现更奇特的映射。比如如图 (8.11) 所示的那样，
磁化强度从一点向四周发散出去，形成类似于刺猬那样的序参量场位形。这样的场位形是

所谓拓扑缺陷的一种。所谓拓扑缺陷，是指在某些物理系统中，由于整体结构的“拓扑性
质”限制，而无法通过平滑连续的微小变化消除的、稳定的不规则性或者“瑕疵”。

Figure 8.11: 铁磁相刺猬形的拓扑缺陷

那么限制如图 (8.11)所示刺猬形拓扑缺陷的整体结构是什么呢？为了回答这个这个问
题，不妨设想取一个两维球面包围刺猬中心的那一个点，因为刺猬的每一根刺都对应序参
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量空间 S2 上的一个点，因此这球面上的那些“刺”就定义了一个 S2 → S2 的连续映射，后

一个 S2 表示的是序参量空间，也就是 O(3)/O(2)。而且，具体对于图 (8.11) 中画的刺猬，
很显然，这个映射正好是用前一个 S2 包裹后一个 S2 一次。这种包裹当然无法通过连续的

微小变化消除，因此是限制刺猬形拓扑缺陷的整体结构。

然而，人们也可以想象映射 S2 → S2 不止包裹后者一次，而是可以包裹任意整数次，

其中负整数表示内外翻转的包裹。很显然，不同的包裹次数之间不能连续地过渡，因此包

裹次数的不同就表示不同的拓扑缺陷，包裹次数分类了铁磁相的刺猬形拓扑缺陷。包裹次

数只能是整数，称作刺猬形拓扑缺陷的拓扑量子数。所有不同次数的包裹集合在一起就构
成整数集 Z, 数学家通常称之为序参量空间 O(3)/O(2) 的第二同伦群，记作

π2
(
O(3)/O(2)

)
= π2(S2) = Z. (8.67)

也即是说，铁磁相的刺猬形拓扑缺陷由 π2
(
O(3)/O(2)

)
分类。

假设把两个拓扑量子数分别为 n1 和 n2 的刺猬形拓扑缺陷相互靠近，最终它们就可能

结合成一个“更大”的刺猬形拓扑缺陷，这个“更大”的刺猬形拓扑缺陷的拓扑量子数必

定是 n1 +n2。也即是说，在拓扑缺陷的结合过程前后，其拓扑量子数是守恒的。同样，一

个“大”的刺猬形拓扑缺陷也可能分裂成两个“小”的拓扑缺陷，分裂前后拓扑量子数也

是守恒的。特别的，假设取一个拓扑量子数为 n 的拓扑缺陷，和一个拓扑量子数为 −n 的

拓扑缺陷，让它们结合，结果就会得到拓扑量子数 0, 也就是不存在拓扑缺陷了，也即是
说，这样的两个拓扑缺陷相互湮灭了！这就和正反粒子对会相互湮灭一样。

值得注意的是，虽然自旋波的能量可以任意小，但拓扑缺陷的能量一定是有限的，不

能任意小。因此，你用很小的能量就可以在铁磁相中激发出自旋波，但却必须耗费一定的

有限的能量才能激发出拓扑缺陷。

8.3.4 朗道范式总结

朗道天才地引入了对称性自发破缺的概念，并把它和相变联系起来，这给了我们一个

一般性地理解物质的相和相变的范式，称作朗道范式。下面对朗道范式进行一个总结。

给定一块宏观物质，它是由大量原子组成的，可以设想这些原子的微观相互作用具有

某种对称性 G, 为了明确起见，不妨假设 G 是一种连续对称性，比如前面铁磁材料例子中

的 O(3) 对称性。高温时，各原子近乎独立地做热运动，系统处于无序相，这种无序相常

常具有微观相互作用允许的最高对称性，也就是具有对称性 G。

随着温度降低到临界温度以下，相互作用就会把大量原子的行为协调起来，表现出宏

观上有序的运动模式，从而使得系统转变为有序相。根据朗道的思想，为了描述这种无序

到有序的相变，可以引入一种描述整个系统集体行为宏观量，称作序参量，它在高温无序

相取零，在低温有序相非零。比如在铁磁相变中，磁化强度可以作为序参量，而在液气相

变中，液态和气态的密度差可以作为序参量。值得强调的是，序参量和对称性是有关系的，

具体来说即是，在微观对称性 G 的作用下，序参量的值要跟着变换。比如铁磁体的序参量

磁化强度是一个三维矢量，在微观对称性 O(3) 的作用下，也就是在三维旋转之下，它的

方向要跟着变。用数学的话来说即是，序参量构成了微观对称性 G 的线性表示。
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在高温时，序参量的取值为零，因此它相对于微观对称性 G 完全对称，所以高温无

序相具有最高对称性 G。但是，在临界温度之下，序参量选取了一个确定的值和“方向”，

原来的对称性 G 就破缺了。不过，这时候系统可能还会有剩余的对称性，也就是 G 中那

些能够保持序参量的选取“方向”不变的对称性，不妨记这一剩余对称性为 H(注意，这
不是哈密顿量)。比方说铁磁体中保持磁化方向不变的 O(2) 旋转。当然，相变时序参量选

取哪个“方向”完全是随机的，我们完全也可以用 G 的作用让它变一个“方向”，而这和

原来的“方向”完全平等。相变以后，序参量所有可以选取的“方向”的集合就构成空间

G/H，比方说铁磁相变中的 O(3)/O(2) = S2。

临界温度之下，如果不考虑序参量的涨落，那它总要在全空间选取一个上面所述的

“方向”，从而把对称性从高温相的 G 自发破缺到低温相的 H。破缺以后，如果考虑到序参

量的“方向”可以在整个空间 G/H 上涨落，那低温有序相的序参量实际上就是从三维空

间到 G/H 上的映射，即

R3 → G/H. (8.68)

低温有序相的物理性质就取决于序参量的这种涨落。所以为了描述低温有序相，就需

要写出低温时自由能作为序参量场的泛函，或者说有效哈密顿量，记作 He。不过，由于序

参量的“方向”作一个整体的改变结果在物理上完全等价，也即是说，序参量“方向”的

整体改变完全没有物理效应，从而可以知道，He 必定只依赖于序参量场随空间的变化情

况，也就是序参量场的空间梯度。这里的一个推论是，序参量场涨落的能量可以任意地小，

只需要让序参量场足够平滑，随空间的变化足够缓慢。这个推论被称为戈德斯通定理。

另外，He 当然不依赖于空间 G/H 的局部坐标选取。因此对 He 最简单的贡献只能由

G/H 空间上两临近点的距离平方 ds2 决定。但是，为了写出 ds2 的表达式，我们需要在

G/H 上选取一个局部坐标，不妨记为 ϕ i, 指标 i = 1,2, ...,m, m 为空间 G/H 的维数。假设

在此局部坐标下, 一般地有

ds2 = ∑
i, j

gi j(ϕ)dϕ idϕ j. (8.69)

ϕ i(x) 作为序参量场就定义了映射 R3 → G/H。那么结合这两段的讨论可以知道，有效哈

密顿量的最低阶贡献必定可以写成

He =
∫

d3xρs ∑
i, j

gi j(ϕ)∇ϕ i ·∇ϕ j + ... (8.70)

这就是描写低温有序相物理的非线性西格玛模型。

利用低温时的这个有效哈密顿量，我们就可以计算低温时系统的配分函数，公式是

Z =
∫

Dϕ(x)e−βHe[ϕ(x)], (8.71)

式中 ϕ(x) 示意性地指代所有 ϕ i(x)。当然，计算这个泛函积分并不是一件简单的事情，感
兴趣的读者请自行阅读统计场论的相关书籍。
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如果输入的能量足够，那么就有可能在低温有序相中激发起拓扑缺陷，比方说类似于

铁磁体情形的那种刺猬状拓扑缺陷，类比于铁磁体情形的相关讨论可以知道，这种拓扑缺

陷由 G/H 的二阶同伦群分类，也即由下式分类

π2(G/H). (8.72)

不过，在有些例子中，由于对称性 G 和 H 不够凑巧，导致 π2(G/H) = 0, 那就说明在这些
例子中不存在这种刺猬状拓扑缺陷。

8.3.5 应用举例：固体的弹性理论

固体的弹性

作为朗道范式的一个应用，我们可以用它来理解固体的弹性。严格按照朗道范式来的

话，这需要从固液相变开始讲起，虽然固液相变不是连续相变，但是朗道关于对称性自发

破缺的物理图像在这里依然可以用。给定压强下，液态就属于高温相，固态就属于低温相。

在高温的液相，组成物质的分子位置并不固定，而是在作无规则的热运动，因此处于

液相的系统可以进行任意的空间平移而不改变系统的宏观状态，也即使说，液相具有空间

平移对称性，记作 G = R3, 这里 R3 就代表所有空间平移的集合。

但是，在低温的固态，分子的位置会规则地排列，形成晶格，如图 (8.12) 所示，图中
虚线所画的小圆圈就代表那些规则排列的分子，当然图中画的是两维晶格，但是其显示的

物理图像是一般性的。为了简单起见，假设这种晶格是立方形晶格，记晶格的分子间距为

ai = (a1,a2,a3), 分别代表长、宽、高方向相邻分子的间距。

Figure 8.12: 固体晶格以及位移场

很显然，形成晶格以后，任意的空间平移就不再是系统的对称性了，换言之，平移对

称性自发破缺了。不过，晶格依然有一些剩余的平移对称性，那就是它可以往三个方向任

意平移整数个格间距而不改变固体的宏观状态。显然，任意这样的平移都对应于某个平移
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矢量 (n1a1,n2a2,n3a3), 其中 ni 为整数。换言之，晶格允许的平移与整数组 (n1,n2,n3) 一一

对应，因此可以把所有这些晶格平移的集合记作 H = Z3, 它就是固体剩余的空间平移对称
性。

那么平移对称性自发破缺对应的序参量涨落是什么呢？回答是，对应于晶格上的每个

分子偏离其理想晶格位置的位移，通常可以记作 ui(x) =
(
u1(x),u2(x),u3(x)

)
, ui(x) 表示在

理想晶格位置 x 处的分子发生的位移，如图 (8.12) 所示。不过，很显然，如果这个位移刚
好是把晶格进行了一个允许的对称平移，那就相当于什么也没发生，因此，我们要对位移

变量 ui 进行如下周期性等同

ui ∼ ui +niai. (8.73)

不难想明白，等同之后序参量 ui 的取值空间就变成了三维环面 T3, 这也就是

T3 = R3/Z3. (8.74)

而序参量的涨落就由物理空间 R3 到 T3 上的一个映射来描述

ui(x) : R3 → T3. (8.75)

作为低温相的固体的物理性质就由这个序参量的涨落来描述。

和前面关于朗道范式的一般总结中论证的一样，固体的自由能泛函 (或者说有效哈密
顿量) 只能依赖于序参量场随空间的变化情况，也就是只能依赖于 ∂iu j, 式中 ∂i 表示对位

置坐标的 i 分量进行偏导。通常人们会把 ∂iu j 分解成对称部分和反对称部分，分别是

1
2
(∂iu j +∂ jui),

1
2
(∂iu j −∂ jui). (8.76)

其中对称部分描写了固体的形变，拉伸挤压等等，而反对称部分描写的是固体的旋转。直

观上我们知道，固体的旋转并不影响其内能 (因为旋转并不会改变分子间的距离，从而也就
不会影响固体的内能)。因此，固体的有效哈密顿量 He 只能依赖于对称部分 1

2(∂iu j +∂ jui),
通常会把这个对称部分记作 εi j, 称作应变张量

εi j =
1
2
(∂iu j +∂ jui). (8.77)

εi j 当然可以看成是 3×3 的对称矩阵，通常就把这个矩阵抽象地记为 ε。He 只能取决

于用 εi j 形成的标量，如果固体是各向同性的，那最简单的这样的标量只有两个，分别是

Tr(ε2), (Trε)2 (8.78)

后者之所以要平方，是因为要保证在 ui →−ui 的变换下也是标量。所以，我们可以把各向

同性固体的有效哈密顿量写成

He[ε] =
∫

d3x
[1

2
λ (Trε)2 +µTr(ε2)

]
, (8.79)

式中 λ ,µ 是所谓的拉梅常数, 它们刻画的是固体的刚性，因为它们越大，那形变对应的能
量就越高。
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但是，以上分析默认了没有对固体施加外力！如果有一个应力施加在固体上，那就要

在有效哈密顿量中增加一项 ∫
d3x−∑

i, j
σi jεi j, (8.80)

这一项类似于外磁场与磁化强度的耦合项，其中 σi j 是所谓的应力张量。当热平衡时，根

据自由能泛函极小的条件将自由能泛函 He 对 εi j 进行变分，就能得到

σi j = λ (Trε)δi j +2µεi j, (8.81)

这就是著名的胡克定律，也就是所谓的应力与应变成正比，通常称这样的固体为线弹性固

体。

如果我们要研究位移场随时间的动力学演化，也就是研究固体中的弹性波，那么就需

要注意到有效哈密顿量 (8.79)写出来的只是弹性势能，动力学演化的位移场当然还会有一
个动能，它是

∫
d3x 1

2 ρ ∑i(∂tui)
2, 式中 ρ 为固体的质量密度，通常可以看作是常数。为了讨

论位移场的动力学演化，我们需要写出其有效作用量，它是 (注意拉格朗日量是动能减势
能)

Se[ui] =
∫

dtd3x
[1

2
ρ ∑

i
(∂tui)

2 − 1
2

λ (Trε)2 −µTr(ε2)
]
. (8.82)

对位移场 ui(x, t) 进行变分，并利用最小作用量原理，可得

ρ∂ 2
t ui = λ∂i(Trε)+2µ ∑

j
∂ jεi j. (8.83)

如果记 u = (u1,u2,u3), 那么这个方程也可以重写成

ρ∂ 2
t u = (λ +µ)∇(∇ ·u)+µ∇2u. (8.84)

这就是线弹性各向同性固体中弹性波的波动方程。

如果把弹性波分解成额外满足 ∇ ·u = 0 的剪切波和额外满足 ∇×u = 0 的压缩波，那

么上述方程就可以分解成

ρ∂ 2
t u = µ∇2u 对于剪切波 (8.85)

ρ∂ 2
t u = (λ +2µ)∇2u 对于压缩波 (8.86)

额外满足的条件告诉我们，剪切波是横波而压缩波是纵波，它们各自的波动方程又告诉我

们，剪切波的波速是 cs =
√

µ/ρ, 而压缩波的波速是 cp =
√
(λ +2µ)/ρ。可见，作为纵波

的压缩波比作为横波的剪切波传播速度快，这就是为什么地震时，人们总是先感觉到上下

起伏然后才感觉到水平方向的左右晃动。

位错

固体同样有拓扑缺陷，但不是刺猬状拓扑缺陷。为了讲清楚固体的拓扑缺陷，我们先

从两维固体开始，也就是从一张厚度可以忽略的固体薄片开始。假设相应的晶格为两维四
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方晶格，因此现在位移场 ui(x), i = 1,2 就应该是 R2 → T2 的映射，两维环面 T2 为序参量

的取值空间。

缺陷是序参量场中的一道裂痕。拓扑缺陷则是无法被修复的裂痕。请看图 (8.13) 中所
示的那片二维晶体：从图中所示区域的中心开始，多出了一排原子（这被称为位错）。但在

远离中心的位置，晶体在局部看起来仍然是良好的：虽然略有畸变，但我们仍能清晰地看

出正方形晶格，并可以定义一个序参量。那么，我们是否可以通过重新排列那排多出的原

子起始处周围小区域内的原子，来“修补”这个缺陷呢？

Figure 8.13: 位错

不行。问题在于，我们不用靠近这个缺陷的中心区域，就能判断出存在一排多余的原

子。传统的方法是沿着一条围绕该缺陷的大环路行进，并统计路径上所穿过的净行数。在

图 (8.14) 所示路径中，有两条晶格行向上走，而三条向下走：无论我们将路径设置得离中
心多远，右边总会多出一排原子——这是固有的现象。

如何将这一基本思想推广到具有破缺对称性的一般问题中？回想一下，二维方形晶体

的序参量空间是一个环面 T2。某一点的序参量表示将理想方形晶格与该点变形晶格对齐

所需的平移量。那么，在缺陷左侧远处（a 点）与右侧远处（d 点）的序参量有何不同？显
然，右侧晶格在垂直方向上移动了半个晶格常数：序参量绕环面移动了半周。如图 (8.14)
所示，沿顺时针回路上半部分时，序参量（原胞内原子位置）向上移动，而下半部分同样

向上移动。总体而言，序参量绕环面完整环绕一次。绕环面的卷绕数即为围绕缺陷一周时

序参量环绕环面的净次数。

这就是它们被称为拓扑缺陷的原因。任何未环绕环面的序参量场，无论其如何扭曲，

均可平滑恢复至均匀状态。但若沿某回路中序参量绕环面孔洞或穿过孔洞的净次数不为

零，则该回路内必存在无法通过平滑连续变形消除的缺陷——因为整数卷绕数无法通过连

续变化改变。

对于二维方形晶体的缺陷分类，存在两个整数：绕中心孔洞的次数与穿过孔洞的次数，

分别记为 n1,n2。传统描述中，这恰好对应我们经过的额外原子行和列的数量。也即是说，

绕着环绕缺陷的回路 L 形走一周，我们有∮
L
∑

j
dx j∂ jui = niai, (8.87)
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Figure 8.14: 用一条回路围绕位错, 其中第二幅图是将序参量空间的环面切开成一个长方
形，第三幅图是把这个长方形左右等同起来形成柱面，第四幅图是进一步把上下边也等同

起来，以恢复成环面

式中 x j = x = (x1,x2) 为空间位置矢量，ai 为两个晶格常数。我们称这两个卷绕数所构成的

集合为环面的第一同伦群，记为

π1(T2) = Z2. (8.88)

从而，位错拓扑缺陷由 π1(T2) 分类。

推广到三维固体，那位错中心就不是一个点了，而是沿着垂直于屏幕方向的一条线。

在真正的三维固体中，这条位错线当然不必是直线，它是可以弯曲的。大多数金属，尤其

是铜，会表现出所谓的加工硬化现象。铜管很容易弯曲，但要把它弯回原状却出奇地难。

原始柔软的铜相对来说几乎没有缺陷。要使铜管弯曲，晶体必须产生大量线位错，这些位

错移动从而产生弯曲。这些线缺陷会相互缠绕，阻碍新缺陷的产生。所以，当你试图把铜

管再弯回去时，金属就会变得硬得多。

最后，我们要说，类似于本小节的方法也可以用来构建液晶的弹性理论，包括其拓扑

缺陷。限于篇幅，具体内容这里就不展开了。读者可以自己问一下 DeepSeek 等人工智能。
更详细的内容可以参阅朗道理论物理教程第七卷《弹性理论》。

8.4 附录：化学反应的热力学

8.4.1 化学平衡条件

多元单相系的化学平衡条件

考虑一个含有 k 种不同物质粒子，每种粒子的数目为 Ni 的多元系。如果不同物质成

分之间可以相互转化，就称这种转化为化学反应。对于多元系的平衡过程，我们可以把涉
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及吉布斯自由能的热力学关系式推广为

dG =−SdT +V dP+
k

∑
i=1

µidNi. (8.89)

假设系统处于恒温恒压的条件下，那么就有 dG = ∑k
i=1 µidNi。由于化学反应的粒子数变化

属于系统内部的变化，因此化学平衡时对于整个系统必定有自由能取极小值，即 dG = 0,
从而即可以得到化学平衡条件

k

∑
i=1

µidNi = 0. (8.90)

将系统中各种物质的分子式简记为 Ai, 化学反应的方程可以抽象地写为

∑
i

νiAi = 0. (8.91)

其中，νi 表示反应方程中的配平系数，νi > 0 则表示相应的 i 物质为反应生成物，νi < 0

则表示是反应物。由于化学反应方程是齐次方程，系数 νi 的选择不是唯一的，可以相差一

个共同的倍数。为了唯一确定 νi, 我们规定：在反应方程中，当我们主要关心某种物质成
分的变化时，就将该物质成分分子式前的系数的绝对值取为 1。

显然，在化学反应中，各物质成分粒子数的改变量 dNi 应该正比于 νi, 因此就可以把
化学平衡条件改写为

∑
i

µiνi = 0. (8.92)

如果化学反应平衡被打破，这时系统就会朝着吉布斯自由能减少的方向演化，直至达成新

的化学平衡。因此，化学反应进行的方向由下式决定

∑
i

µiνi ≤ 0. (8.93)

多元多相系的平衡条件

如果考虑的系统是多元多相系，那么在反应方程中，不仅要对不同的组元求和，同时

还要对不同的相求和，因此多元多相系的相变-反应方程可以写成

∑
i,α

νiαAiα = 0. (8.94)

式中指标 α 是用来区分不同的相。很显然这时候平衡条件就应该写成

∑
i,α

µiανiα = 0. (8.95)

平衡被打破时，系统的演化方向由下式决定

∑
i,α

µiανiα ≤ 0. (8.96)
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8.4.2 质量作用定律

现在假设我们考虑的是单相化学反应，假定系统中各组元均处于气相，而且可以看作

是理想气体。由于理想气体的各组元可以看成是相互独立的，因此可以对每一组元分别用

第五章中谈到的微分 Gibbs-Duhem 关系式，对于等温过程有

dµi =
V
Ni

dPi, (8.97)

式中 Pi 为组元 i 的分压 (根据道尔顿分压定律，系统的总压强等于各组元分压之和). 代入
理想气体物态方程 PiV = NikBT , 即有

dµi = kBT
dPi

Pi
, (8.98)

对上式进行积分，即有

µi = µi0 + kBT log
( Pi

Pi0

)
, (8.99)

式中 µi0 为该组元在参考压强 Pi0 时的化学势。将这个式子代入 (8.93) 式，即有

∑
i

νi
[ µi0

kBT
+ log

( Pi

Pi0

)]
≤ 0. (8.100)

取指数，即有

∏
i

( Pi

Pi0

)νi ≤ KP, (8.101)

式中 KP = ∏i
[
e−

µi0νi
kBT
]
是温度的函数。假设 i 组元粒子数所占的百分比为 xi, 系统的总压强

为 P, 那么即有

Pi = Pxi. (8.102)

从而即可以将 (8.101) 式改写为

∏
i
(xi)

νi ≤ K, K = KP ∏
i

(Pi0

P

)νi . (8.103)

(8.101) 式和 (8.103) 式统称为质量作用定律。通过改变外界条件来控制 KP 和 K, 可
以控制化学反应进行的方向和反应程度。例如，假设系统中的化学反应已经达到平衡，这

时若通过改变环境温度使得 K 的值变大，那么系统中的化学反应将重新开始向正向演化，

直至新的平衡被建立。相反，如果通过控制条件使得 K 变小，反向将向逆向进行。





9. 玻尔兹曼方程

在前面的章节中，我们主要关心的是热平衡态的统计物理。然而，系统是怎么演化到

热平衡态的呢？这显然是一个重要且有意思的问题，为了回答这个问题，原则上我们首先

需要求解描述相空间概率分布动力学演化的刘维尔方程，然后再对结果进行相空间粗粒

化。然而对于一个宏观系统，由于其包含了天文数目的微观粒子 (1023 级别)，从而刘维尔
方程是一个自变量个数为天文数字的偏微分方程，这使得这种求解实际上是不可能的。更

何况，刘维尔方程描述的是系统微观状态的精细演化，这实际上与我们真正关心的系统的

宏观表现不直接相关，换句话来说，刘维尔方程包含了太多不相关的信息，为了从中提取

出相关的信息，前面我们介绍的办法是进行相空间粗粒化。然而，如果我们研究的系统是

稀薄气体，那么玻尔兹曼还曾经提出过另一个著名的办法，它不仅可以大大约化刘维尔方

程的自变量数目，而且能够有效提取出系统宏观演化的相关信息。这就是著名的玻尔兹曼
方程。介绍这个主题将是本章的核心内容。

玻尔兹曼想象大量气体分子在相互碰撞，热平衡时气体分子的速度分布满足麦克斯韦

速度分布律，也就是麦克斯韦-玻尔兹曼分布 (第二章中我们用系综理论导出过这个分布)。
然而，碰撞是会改变分子速度的，所以玻尔兹曼问：热平衡时，气体分子之间的碰撞为什

么不会破坏麦克斯韦-玻尔兹曼分布？以及，假设从一个任意的速度分布出发，分子间的碰
撞是如何使得系统最终趋于热平衡时的麦克斯韦-玻尔兹曼分布的？为了回答这两个问题，
玻尔兹曼在 1872 年导出了他著名的方程，并证明了著名的 H 定理。

玻尔兹曼方程是气体动理论的一座高峰。气体动理论的历史始于 17 世纪，当时托里
切利、帕斯卡和波义耳首次确立了空气的物理性质。通过实验和理论推理，他们说服其他

科学家：地球被一片“空气之海”所包围，这种空气像水一样施加压力 [堪称伟大的科学
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想象]，并且空气压力是许多先前被归因于“自然厌恶真空”现象的原因。这一关于空气压
力概念的发展最终导致人们认识到空气是由大量分子组成的，空气的物理性质可以从微观

分子的运动和碰撞来理解。这种观念转变最终导致了以伽利略、波义耳、牛顿等人为代表

的“机械-微粒论”自然观的形成。

9.1 玻尔兹曼方程的导出

9.1.1 约化的分布函数

考察 N个全同粒子所构成的系统，记其刘维尔绘景下的相空间概率密度为 ρt(q1,p1,q2,p2, ...,qN ,pN),
式中 qi 为第 i 个粒子的位置矢量，pi 为其动量。全同粒子的性质告诉我们，在 N 个粒子

的任意重排操作之下，相空间概率密度 ρt 保持不变。ρt 包含了整个系统所有的微观状态

信息，然而对于有些目的而言，其实我们用不到这么多信息，为了提取出真正相关的信息，

我们引入下面的一些定义。

首先，单粒子密度是指 t 时刻在位置 q 和动量 p 处发现 N 个粒子中任何一个的期望

值，它由下式给出

f1(q,p, t) = ⟨
N

∑
i=1

δ 3(q−qi)δ 3(p−pi)⟩ρt

=
∫

dµN−1ρt(q,p,q2,p2, ...,qN ,pN), (9.1)

式中 dµN−1 ≡ 1
(N−1)! ∏N

i=2
d3qid3pi
(2π h̄)3 ，注意，对于全同粒子系统，整个相空间的体积元为 dµN =

1
N! ∏N

i=1
d3qid3pi
(2π h̄)3 。上式第二行利用到了相空间概率密度在粒子的任意重排之下保持不变。利

用 ρt 的归一化条件，不难看出 f1(q,p, t) 的归一化条件为∫
dµ1 f1(q,p, t) = N. (9.2)

也即是说 f1(q,p, t) 描述的是：在空间 q 点统计到的动量为 p 的粒子数的相空间密度。特
别的，麦克斯韦速度分布函数就是这样的一个单粒子密度。

类似的，也可以定义两粒子密度，为

f2(q1,p1,q2,p2, t) =
∫

dµN−2ρt(q1,p1,q2,p2, ...,qN ,pN). (9.3)

其归一化条件为 ∫
dµ2 f2(q1,p1,q2,p2, t) =

N!
2!(N −2)!

. (9.4)

相比于单粒子密度，两粒子密度包含了两个粒子之间的关联！依此类推，可以定义任意 n

粒子密度，这里不再赘述。

系统的动力学演化完全由哈密顿量决定，假设这个哈密顿量为

H(µN) =
N

∑
i=1

H1(qi,pi)+∑
i< j

U(qi −q j), (9.5)
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式中 H1(q,p) = p2

2m +V (q) 为单体哈密顿量，V (q) 为外势场 (它同等地作用在所有粒子上)，
U(qi −q j) 为两体相互作用势能，为了简单起见，我们假定粒子之间的相互作用均为两体

作用。

根据 ρt 所满足的刘维尔方程
∂ρt
∂ t = {H,ρt} 原则上我们能够推导出任意 n 粒子密度所

满足的动力学方程，结果表明，这是一组级联方程组，也就是单粒子密度的演化依赖于两

粒子密度，而两粒子密度的演化又依赖于三粒子密度，依此类推。这就是所谓的 BBGKY
级联方程组 (Bogoliubov、Born、Green、Kirkwood and Yvon hierarchy)。不过，由于粒
子数 N 是一个宏观天文数字，所以解这样的级联方程组显然是不现实的，因此我们这里

就不具体讲述这个推导过程了，至于结果读者也很容易查到，比如问人工智能。真正有意

思的是，如果将这个级联方程组适当地截断，使得单粒子密度成为一个自决定的方程，那

就可以求解了。这样做的结果就会得到著名的玻尔兹曼方程。不过，玻尔兹曼本人并不是
通过这种绕了一大圈的办法得到其方程的，同样，由于我们也没有具体推导 BBGKY 级
联方程组，所以我们也不采用这种办法来导出玻尔兹曼方程，这里只是提一下，关心这种

推导方式的读者请自行参阅相关材料。

9.1.2 玻尔兹曼方程的导出

现在我们主要关心单粒子密度 f1(q,p, t), 我们想在某些近似条件下得到关于它的一个
封闭的方程。首先，我们注意到如果忽略粒子间的相互作用势能，那么很显然， f1(q,p, t)
作为单体分布当然会按照单体哈密顿量 H1 所决定的刘维尔方程进行演化。我们可以把粒

子间的相互作用看作是对这种单体演化的修正，进而有

∂
∂ t

f1 = {H1, f1}+
(∂ f1

∂ t

)
coll

, (9.6)

等式右边第一项是单体演化，第二项
(

∂ f1
∂ t

)
coll
代表粒子间的相互作用对单体演化的修正。

对于稀薄气体系统，我们注意到三个或者三个以上粒子同时发生碰撞的概率是非常低

的，因此可以近似认为粒子间的碰撞都是两体碰撞，其碰撞截面完全由两体相互作用势能

决定。同时，我们注意到有两个时间尺度：第一个尺度是粒子在相邻两次碰撞间的飞行时

间 τ，也称作弛豫时间；第二个尺度为两粒子碰撞过程的有效时间 τcoll。现在，对于稀薄

气体我们有

τ ≫ τcoll. (9.7)

因此，单粒子密度 f1 主要在进行单体演化，只是偶尔地被粒子间的碰撞所扰动，这种两

体间的散射就体现在修正项
(

∂ f1
∂ t

)
coll
上。

假设一个位于单体相空间 (q,p1)点的粒子与一个位于 (q,p2)点的粒子发生碰撞，为了

简单起见，我们假设宏观上看起来粒子的大小可以忽略，而且两粒子间的相互作用力是一

种微观短程力，以至于宏观上看起来，这种碰撞局域性地发生在空间点 q。由于两粒子的碰
撞过程是微观的，不妨设想可以用量子力学的散射过程来理解。假设单位时间之内这两个

粒子发生散射并跃迁到动量分别为 p′
1 和 p′

2 的末态的概率为 ω(p1,p2 → p′
1,p′

2)
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ,
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其中 d3p′
1

(2π h̄)3
d3p′

2
(2π h̄)3 为末态态密度。则单位时间之内位于 (q,p1) 点的粒子发生这种两体碰撞

的次数就由这个概率乘上符合碰撞条件的粒子对数目决定，从而可以写成

ω(p1,p2 → p′
1,p

′
2) f2(q,p1,q,p2, t)

d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 . (9.8)

我们称这种碰撞为正散射，因为它会导致位于 (q,p1) 点的粒子数减少，很显然，正散射导

致的单位时间之内 (q,p1) 点粒子数的变化率为

−
∫

ω(p1,p2 → p′
1,p

′
2) f2(q,p1,q,p2, t)

d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 , (9.9)

之所以要积分，是因为我们要把所有能导致 (q,p1) 点粒子数减少的正散射都考虑进来。

但是，与此同时，还存在 p′
1,p′

2 → p1,p2 的逆散射，而它会导致 (q,p1) 点的粒子数增

加。完全类似的考虑告诉我们，逆散射导致的单位时间之内 (q,p1) 点粒子数的变化率为

+
∫

ω(p′
1,p

′
2 → p1,p2) f2(q,p′

1,q,p
′
2, t)

d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 . (9.10)

进一步，我们假设散射过程满足时间反演不变性和空间反演不变性。在时间反演之下，

p →−p, 同时，时间反演会把初态变成末态，末态变成初态，从而时间反演不变性意味着

ω(p1,p2 → p′
1,p

′
2) = ω(−p′

1,−p′
2 →−p1,−p2). (9.11)

而在空间反演之下，(q,p)→ (−q,−p), 所以空间反演不变性意味着

ω(p1,p2 → p′
1,p

′
2) = ω(−p1,−p2 →−p′

1,−p′
2). (9.12)

两种对称性联合起来，即有

ω(p1,p2 → p′
1,p

′
2) = ω(p′

1,p
′
2 → p1,p2), (9.13)

不妨记最后的结果为 ω(p′
1,p′

2 | p1,p2)。(注意，这里我们默认了散射概率不依赖于空间方
向，从而 q 处的散射概率与 −q 处的一样)

综合上述结果，即有(∂ f1

∂ t

)
coll

(q,p1) =
∫ d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

f2(q,p′
1,q,p

′
2, t)− f2(q,p1,q,p2, t)

]
. (9.14)

显然，由此而来的关于 f1 的方程依赖于 f2，从而不封闭。为了得到一个仅仅只关于 f1 的

封闭的方程，我们假定碰撞之前的两粒子之间没有关联，即假定

f2(q,p1,q,p2, t) = f1(q,p1, t) f1(q,p2, t). (9.15)

这一假设有时被称为” 分子混沌”（molecular chaos）假设，它看起来是合理的：可以想象
在碰撞过程中，两个粒子的速度会产生关联。但随后会有一个时长为 τ 的间隔期，在此期



9.1 玻尔兹曼方程的导出 169

间其中一个粒子才会经历下一次碰撞。而且通常这次碰撞是与完全不同的另一个粒子发生

的，因此新粒子的速度与第一个粒子的速度毫无关联就是非常合理的。然而关键在于，我

们假设的是碰撞前而非碰撞后速度互不相关——这个看似狡猾的设定，实则悄然引入了时

间之箭。其深远影响将在后文推导 H 定理时显现。

把分子混沌假设应用于 (9.14) 式，即可以得到如下方程
∂
∂ t

f1(q,p1, t)+{ f1,H1}q,p1 =
∫ d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

f1(q,p′
1, t) f1(q,p′

2, t)− f1(q,p1, t) f1(q,p2, t)
]
. (9.16)

这就是著名的玻尔兹曼方程！这个方程左边涉及到 f1 的微分，而右边则涉及到它的积分，

而且右边是非线性的，因此是一个关于 f1 的非线性微分-积分方程。当然，这样一个方程
肯定是很难求解的。

由于假定碰撞局域地发生在空间点 q, 因此碰撞过程外势场 V (q) 的变化可以忽略，也
即是说，碰撞过程中，粒子受到的外力可以忽略，从而必然有碰撞前后动量守恒，能量也

守恒，即有

p1 +p2 = p′
1 +p′

2, H1(q,p1)+H1(q,p2) = H1(q,p′
1)+H1(q,p′

2). (9.17)

这当然是对跃迁概率 ω(p′
1,p′

2 | p1,p2) 的约束，为了满足这两个约束，ω(p′
1,p′

2 | p1,p2) 中

必然包含一个反映动量守恒的 δ 函数因子 δ 3(p′
1 +p′

2 −p1 −p2) 以及一个反映能量守恒的

因子 δ
(
H1(q,p′

1)+H1(q,p′
2)−H1(q,p1)−H1(q,p2)

)
，一共是四重 δ 函数因子。注意到，玻

尔兹曼方程 (9.16)右边的积分是九重积分，但是这四重 δ 函数因子可以去掉四重积分，所
以最后真正有效的积分是五重。实际上，可以把这五重积分表达成对微分散射截面的积分

(两重) 以及对 p2 的积分 (三重)，不过这一点我们实际上用不到，所以这里从略。

9.1.3 细致平衡与平衡

我们已经看到，玻尔兹曼方程的散射项是由正、逆散射共同决定的。如果在某一给定

时刻，逆散射的贡献大于正散射的贡献，那么处于 (q,p1) 相点的粒子就会增多，而这将促

使正散射的贡献随之增加。反过来，如果正散射的贡献超过逆散射，则处于 (q,p1) 相点的

粒子就会减少，这又会使得正散射的贡献随之减少。因此，从一个相对长的时间尺度来看，

正、逆散射的贡献会趋于相等，从而相互抵消，通常人们称这为达成了细致平衡。
从 (9.16) 式不难看出，细致平衡的条件是

f1(q,p′
1, t) f1(q,p′

2, t) = f1(q,p1, t) f1(q,p2, t). (9.18)

两边取对数，也就是

log f1(q,p′
1, t)+ log f1(q,p′

2, t) = log f1(q,p1, t)+ log f1(q,p2, t). (9.19)

也即是说，log f1 可以表达成关于散射的守恒量的线性组合。因此即有，达成细致平衡时

log f1(q,p, t) = β (q, t)
[
µ(q, t)−H1(q,p)+p0(q, t) ·p/m

]
= β (q, t)

[
µ(q, t)−

(
p−p0(q, t)

)2

2m
−V (q)

]
, (9.20)
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式中 β (q, t),µ(q, t) 以及 p0(q, t) 均为组合系数，式中第二个等于号是代入了 H1(q,p) =
p2

2m +V (q)。这个结果也即是

f local
1 (q,p, t) = exp

[
−β (q, t)

((p−p0(q, t)
)2

2m
+V (q)−µ(q, t)

)]
. (9.21)

这可以看成是某种局域的麦克斯韦-玻尔兹曼分布，β (q, t)可以看作局域的逆温度，p0(q, t)
可以看作局域的平均动量，而 µ(q, t) 则是局域的化学势。从这里我们可以看出，细致平衡
是一种比整体的热平衡要弱的平衡，因为它对应的是局域麦克斯韦-玻尔兹曼分布，而不是
真正的热平衡麦克斯韦-玻尔兹曼分布。

如果在细致平衡的基础上，我们进一步要求玻尔兹曼方程中单体演化项的贡献也为

零，即 {H1, f1} = 0, 当然这个时候必然也要有 ∂
∂ t f1 = 0(否则玻尔兹曼方程不会成立)，那

么：1. 如果这个时候外势场 V (q)没有空间平移对称性，从而 {H1,p} ̸= 0,则必定有 p0 = 0,
β (q, t) = β 为常数，同时 µ(q, t) = µ 也为常数，相应的局域麦克斯韦-玻尔兹曼分布就成
为真正的麦克斯韦-玻尔兹曼分布，即

f1(q,p, t) = f eq
1 (q,p) = exp

[
−β

( p2

2m
+V (q)−µ

)]
. (9.22)

2. 另一种情况是，如果外势场等于零 V (q) = 0，从而 {H1,p} = 0, 那么这时候必定有
β (q, t) = β 为常数，同时 p0(q, t) = p0、µ(q, t) = µ 也均为常数，从而局域麦克斯韦-玻尔
兹曼分布就成为

f1(q,p, t) = f eq
1 (p) = exp

[
−β

((p−p0)
2

2m
−µ

)]
. (9.23)

同样是一种真正的麦克斯韦-玻尔兹曼分布。归纳一下就是，如果在细致平衡的基础上进一
步要求单体演化项的贡献也为零，那么系统就会达成真正的热平衡。

9.1.4 量子玻尔兹曼方程

前面我们用量子力学来描述两粒子的散射过程，但是，分布函数本身依然是经典的，

也即是说，我们考虑的统计依然是经典统计，也因此，最后平衡时我们得到的是完全经典

的麦克斯韦-玻尔兹曼分布。一个自然的问题是，如果考虑量子统计会怎么样？首先，如果
真是完全量子的话，那分布函数 f1(q,p, t) 本身就不存在，因为量子力学不确定关系告诉
我们，位置 q 和动量 p 不可能同时确定。所以我们并不是要考虑纯量子的分布函数，因
为根本就没有这种东西。我们要考虑的是一种半经典的分布函数，它依然由相空间密度

f1(q,p, t) 描述，但是要考虑到全同粒子之间的量子统计效应，比方说，对于费米子我们要
考虑到泡利不相容原理，也就是 (q,p) 微观态上占据的粒子数不能超过一，即 0 ≤ f1 ≤ 1。

当然全同玻色子没有这么直观的规则，所以下面我们是先考察全同费米子情形，然后再将

结果类推到全同玻色子。

对于全同费米子，玻尔兹曼方程的单体演化项完全与经典全同粒子一样，受费米统计

影响的只有两体碰撞项。具体来说，在计算动量分别为 p1,p2 的两个粒子散射到 p′
1,p′

2 时，

除了前面已有的因子 f1(p1) f1(p2) 之外，还需要乘以要求两个末态均没有被粒子占据的因
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子 (1− f1(p′
1))(1− f1(p′

2)),因为否则就违背泡利不相容原理了。注意，为了记号的简洁，这
里我们把 f1(q,p, t) 简记为 f1(p) 了！同样，逆散射也要考虑类似的修正。因此最后就有(∂ f1

∂ t

)
coll

(q,p1) =
∫ d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

f1(p′
1) f1(p′

2)(1− f1(p1))(1− f1(p2))− f1(p1) f1(p2)(1− f1(p′
1))(1− f1(p′

2))
]
.

由此即可以得到全同费米子体系的玻尔兹曼方程。

对于全同玻色子，并没有直观的理由告诉我们如何考虑玻色统计，但是，前面第七章

我们已经看到，玻色统计和费米统计其实只差一个正负号，基于此我们把前面全同费米子

方程中反映统计效应的 (1− f1) 通通改成 (1+ f1), 由此即有(∂ f1

∂ t

)
coll

(q,p1) =
∫ d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

f1(p′
1) f1(p′

2)(1+ f1(p1))(1+ f1(p2))− f1(p1) f1(p2)(1+ f1(p′
1))(1+ f1(p′

2))
]
.

相应的，也可以得到全同玻色子系统的玻尔兹曼方程。

通常把全同费米子体系和全同玻色子体系的玻尔兹曼方程统称为量子玻尔兹曼方程，

也称为尤林-乌伦贝克 (Uehling-Uhlenbeck) 方程。
很显然，量子玻尔兹曼方程的细致平衡条件对应于

f1(p′
1) f1(p′

2)(1± f1(p1))(1± f1(p2)) = f1(p1) f1(p2)(1± f1(p′
1))(1± f1(p′

2)),

式中的 ± 号，+ 号对应全同玻色子，− 号对应全同费米子。不难看出，这个细致平衡条
件也可以写作

log
( f1(p1)

1± f1(p1)

)
+ log

( f1(p2)

1± f1(p2)

)
= log

( f1(p′
1)

1± f1(p′
1)

)
+ log

( f1(p′
2)

1± f1(p′
2)

)
.

完全类似于经典全同粒子的相关讨论一样，由此我们可以得到量子全同粒子细致平衡时的

分布，为

f local
1 (q,p, t) =

1

e
[

β (q,t)
(

(p−p0(q,t))2
2m +V (q)−µ(q,t)

)]
∓1

. (9.24)

其中 ∓ 号的 − 号所对应的，就是全同玻色子的局域玻色-爱因斯坦分布，而 + 号所对应

的，就是全同费米子的局域费米-狄拉克分布。如果进一步要求单体演化项的贡献也为零，
也就是要求达到真正的热平衡，相应的就会得到真正的玻色-爱因斯坦分布和费米-狄拉克
分布。

9.2 H 定理

通常我们认为只要等待的时间足够长，一个热力学系统总能达到热平衡状态。但这一

观点的背后默认了热力学系统的时间演化有一个确定的方向，总是从不平衡到趋向平衡，

未来和过去是截然不同的，热力学系统有一个时间箭头。然而，另一方面，我们也知道，
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微观的哈密顿力学是时间反演不变的，过去和未来完全平等。本书第二章中，我们一般性

地论证过，这种时间箭头是由于我们对系统的微观信息进行了粗粒化，忽略了一些无关的

微观信息，只将注意力集中于相关信息，由此导致了熵增加原理，熵增加的方向就是时间

之箭的方向。另一方面，对于稀薄气体系统，本章的玻尔兹曼方程是一种不同的提取相关

信息的方式，那么玻尔兹曼方程是如何确保时间有一个箭头的呢？比方说，它如何确保气

体分子之间的碰撞最终一定会趋于热平衡呢？

实际上，正如前文提到过的，在我们使用分子混沌假设的时候，时间箭头就进来了，

不过为了看清楚这一点，还需要一点辛苦的工作。这个工作就是最早由玻尔兹曼提出并证

明的著名的 H 定理。

首先玻尔兹曼引入了如下量 H

H(t)≡
∫

dµ1 f1(q,p, t) log
(

f1(q,p, t)
)
. (9.25)

请注意, 这里的 H 并不是哈密顿量，请千万不要搞混了。所谓 H 定理，说的就是：这个量

在 f1 随玻尔兹曼方程的演化之下随时间单调递减！从而 H 减少的方向就是时间的方向。

下面我们来证明这个定理。首先，
dH
dt

=
∫

dµ1(log f1 +1)
∂ f1

∂ t
=
∫

dµ1 log f1
∂ f1

∂ t
, (9.26)

其中第二个等于号去掉 +1 项的原因是
∫

dµ1 f1 = N 是固定的，从而
∫

dµ1
∂ f1
∂ t = 0。在上式

中代入玻尔兹曼方程，即有
dH
dt

=
∫

dµ1 log f1
[
{H1, f1}+

(∂ f1

∂ t

)
coll
]

=
∫

dµ1{H1, f1 log f1}+
∫

dµ1 log f1
(∂ f1

∂ t

)
coll, (9.27)

第二行的第一项需要注意到
∫

dµ1{H1, f1}= 0(为了看出这一点，请把泊松括号展开，然后
分部积分并注意到边界项为零，因为假设了在相空间无穷远处 f1 趋于零)，同样的道理当
然也有

∫
dµ1{H1, f1 log f1}= 0。所以最后我们有

dH
dt

=
∫

dµ1 log( f1)
(∂ f1

∂ t

)
coll

=
∫

d3q
∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×

log
(

f1(p1)
)[

f1(p′
1) f1(p′

2)− f1(p1) f1(p2)
]
.

现在，交换粒子 1,2 的标记 1 ↔ 2, 上面的结果当然不变，从而也有
dH
dt

=
∫

d3q
∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×

log
(

f1(p2)
)[

f1(p′
1) f1(p′

2)− f1(p1) f1(p2)
]
.

把上面两个式子加起来除以 2，即有
dH
dt

=
1
2

∫
d3q

∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×

log
(

f1(p1) f1(p2)
)[

f1(p′
1) f1(p′

2)− f1(p1) f1(p2)
]
.
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交换动量上加撇和不加撇的标记，并注意到 ω(p′
1,p′

2 | p1,p2) = ω(p1,p2 | p′
1,p′

2)，从而又有

dH
dt

=− 1
2

∫
d3q

∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×

log
(

f1(p′
1) f1(p′

2)
)[

f1(p′
1) f1(p′

2)− f1(p1) f1(p2)
]
.

再把上面两个式子加起来除以 2，即有

dH
dt

=−1
4

∫
d3q

∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

log
(

f1(p′
1) f1(p′

2)
)
− log

(
f1(p1) f1(p2)

)][
f1(p′

1) f1(p′
2)− f1(p1) f1(p2)

]
. (9.28)

注意到最后一行是一个形如 [logx− logy][x− y] 的函数，不难证明，对于任何 x,y, 这个函
数都是正的。另外，跃迁概率 ω(p′

1,p′
2 | p1,p2) 当然也是正的，从而上式告诉我们

dH
dt

≤ 0. (9.29)

H 定理得证！

看起来似乎是，从一个完全时间反演对称的微观哈密顿力学出发，自动出现了一个宏

观的时间箭头！然而，这怎么可能呢？问题就出在分子混沌假设上，因为关于玻尔兹曼方

程的其他一切推导都可以严格按照哈密顿力学进行 (因此都是时间反演对称的)，只有这个
地方额外引入了新的假设，从而也就只可能是这个假设破坏了时间方向的对称性。实际上，

分子混沌假设是假设碰撞之前 (而不是碰撞之后) f2 ∼ f1 f1，如果与之相反，我们假设碰撞

之后 f2 ∼ f1 f1，那么最后导出来的就是 H 随时间单调增加。

另外，从 (9.28) 式不难看出，如果细致平衡达成，即 f1(p′
1) f1(p′

2) = f1(p1) f1(p2), 那
么就会有

dH
dt

= 0, (9.30)

正如前文分析过的，这时候单体分布函数将取局域平衡分布的形式。特别的，如果整个系

统达成了整体的热平衡，那当然也有 dH
dt = 0, 这说明，热平衡时 H 取极小值，由于 H 单

调减小，所以系统的演化才是从不平衡到趋于平衡。

熵

H 的单调减小不由得让我们想起熵增加原理，基于此，玻尔兹曼提出将 −kBH 定义为

系统的熵，称作玻尔兹曼熵，通常记作

SB(t)≡−kBH(t). (9.31)

由于 H 定理，这样定义的玻尔兹曼熵当然满足熵增加原理。

但在另一方面，给定系统完整的相空间密度 ρt(µN), 原本就可以自动定义一个吉布斯
熵

S =−kB

∫
dµNρt(µN) log

(
ρt(µN)

)
. (9.32)
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H 的定义式 (9.25) 使得 SB 看起来很像吉布斯熵，但其实不是，因为 H 的定义式中用的

是单粒子密度分布，而不是完整的 N 粒子密度分布 ρt(µN)。再有就是，如果 ρt(µN) 精确

满足刘维尔方程，那上述吉布斯熵实际上就是一种精细化熵，本书第二章曾经证明过，这

种精细化熵是守恒的，并没有什么熵增加原理。

难道上述吉布斯熵与玻尔兹曼熵 SB 之间就毫无联系了吗？也不是！实际上，正如马

上我们将演示的，在一定的条件下，这两种熵的定义是吻合的。

为了看清楚这一点，我们需要推广分子混沌假设。注意到 ρt(µN)= ρt(q1,p1, ...,qN ,pN , t)

实际上就是 N体密度分布，假设它也满足分子混沌假设的话，那就应该有 ρt(q1,p1,q2,p2...,qN ,pN , t)∝

∏N
i=1 f1(qi,pi, t)。为了确定这里的比例系数，我们注意到 N 体密度的归一化条件为∫ 1

N!

N

∏
i=1

d3qid3pi

(2π h̄)3 ρt(q1,p1, ...,qN ,pN , t) = 1, (9.33)

而单体密度的归一化条件为

1
N

∫ d3qd3p
(2π h̄)3 f1(q,p, t) = 1, (9.34)

所以为了使得两边的归一化能对得上，我们可以确定 N 体密度的分子混沌假设应该写成

1
N!

ρt(q1,p1, ...,qN ,pN , t) =
1

NN

N

∏
i=1

f1(qi,pi, t). (9.35)

将 (9.35) 式代入吉布斯熵的定义式，即有

S =−kB

∫ 1
N!

N

∏
i=1

d3qid3pi

(2π h̄)3 ρt(µN) log
(
ρt(µN)

)
=−kB

∫ 1
NN

N

∏
i=1

d3qid3pi

(2π h̄)3

N

∏
j=1

f1(q j,p j, t)
[ N

∑
k=1

log f1(qk,pk, t)+ log
( N!

NN

)]
=−kB

∫ 1
NN

N

∏
i=1

[d3qid3pi

(2π h̄)3 f1(qi,pi, t)
][ N

∑
k=1

log f1(qk,pk, t)−N
]
, (9.36)

最后一行我们利用了 logN! ≈ N logN−N。式中 −N 项最后积分出来总的贡献是 kBN(利用
单体密度的归一化条件)，所以上式又可以写成

S =−kB

N

∑
k=1

∫ 1
NN

N

∏
i=1

[d3qid3pi

(2π h̄)3 f1(qi,pi, t)
]

log f1(qk,pk, t)+ kBN

=−kB

N

∑
k=1

∫ 1
N

d3qkd3pk

(2π h̄)3 f1(qk,pk, t) log f1(qk,pk, t)+ kBN

=−kB

∫ d3qd3p
(2π h̄)3 f1(q,p, t) log f1(q,p, t)+ kBN

=−kBH(t)+ kBN = SB(t)+ kBN. (9.37)

可见，在分子混沌假设下，吉布斯熵与玻尔兹曼熵只相差一个不重要的常数 kBN。

以上结果说明，分子混沌假设可以看成是某种粗粒化，因为只有粗粒化的吉布斯熵才

满足熵增加原理。这其实也不难理解，因为分子混沌假设本身就是忽略粒子之间的关联信
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息，相当于把这些关联信息粗粒化掉了。另一方面，本书第二章讲到过，严格来说熵增加

原理只在先取 N → ∞的热力学极限，再取粗粒化尺度趋于零的极限下才成立。这又反过来
暗示我们，分子混沌假设严格来说也只在这两个极限下才可能成立。最近 Yu Deng等人的
证明似乎是符合这一点的，具体文章是 Long time derivation of the Boltzmann equation
from hard sphere dynamics, arXiv:2408.07818. 严格证明分子混沌假设是一个非常困难的
问题，Yu Deng 等人的工作也许是一个突破性进展。

9.3 从玻尔兹曼方程到流体力学

从宏观上看，气体当然是一种流体，要满足流体力学规律，比如满足 Navier-Stokes方
程。另一方面，前文已经看到了，稀薄气体满足玻尔兹曼方程，一个自然的问题是，稀薄

气体的流体力学规律和玻尔兹曼方程有没有关系呢？回答是肯定的，稀薄气体的流体力学

方程可以从玻尔兹曼方程中推导出来！完成这个推导就是本章剩余部分的核心课题。

从微观层面看，稀薄气体是由大量分子组成的，这些分子满足的是牛顿运动定律 (或
者等价的哈密顿力学)，然而要从这 3N(N 为粒子数) 耦合的二阶微分方程组出发，直接
推导出描述宏观流体行为的偏微分方程组 (如欧拉方程和纳维-斯托克斯方程) 是极其困难
的。玻尔兹曼方程提供了一个中间步骤。它将复杂的多体问题降维到了对单粒子分布函数

的描述，从而摆脱了对所有粒子轨迹的纠缠。这个介于微观和宏观之间的理论层次被称为

介观。

所以，玻尔兹曼方程至少联系着三个最深刻的物理结论，第一，由玻尔兹曼方程证明

的 H 定理紧密联系着熵增加原理。第二，玻尔兹曼方程解释了为什么会有麦克斯韦-玻尔
兹曼分布。这一点我们已经讲述过了。第三，玻尔兹曼方程能导出流体力学方程，这也是

我们即将讲解的内容。

9.3.1 矩方法

流体力学主要关心一些随空间和时间相对来说缓慢变化的宏观物理量，诸如粒子数密

度分布 n(q, t)、质量密度分布 ρ(q, t) = mn(q, t)，诸如温度场 T (q, t),以及诸如速度场 u(q, t)
等等。因此为了推导流体力学方程，我们要解决的第一个问题就是，这些物理量与玻尔兹

曼方程的单粒子相空间密度 f1(q,p, t) 的关系是什么？

首先注意到， f1(q,p, t) 的相空间积分为总粒子数 N,
∫ d3qd3p

(2π h̄)3 f1(q,p, t) = N, 因此如果
不对空间位置积分只对动量积分，那给出来的就应该是粒子数密度的空间分布 n(q, t), 所
以我们有

n(q, t)≡
∫ d3p

(2π h̄)3 f1(q,p, t). (9.38)

类似的，对于任何一个单粒子物理量 O(q,p)，我们定义其对动量分布的平均值为

⟨O(q,p)⟩ ≡

∫ d3p
(2π h̄)3 O(q,p) f1(q,p, t)∫ d3p

(2π h̄)3 f1(q,p, t)
=

1
n(q, t)

∫ d3p
(2π h̄)3 O(q,p) f1(q,p, t).
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注意，与前面章节中的用法不同，这里符号 ⟨⟩ 不是表示在整个相空间中求平均，而是仅仅
对动量求平均，平均之后的结果当然仅仅只是 (q, t) 的函数。由此我们定义速度场 u(q, t)
为分子速度 v 的平均值，即

u(q, t) = ⟨v⟩= ⟨ p
m
⟩. (9.39)

正因为上面平均中的积分仅仅只对动量进行，所以很显然

⟨n(q, t)O(q,p)⟩= n(q, t)⟨O(q,p)⟩, (9.40)

因为物理量 n(q, t) 本身就不依赖于动量。
注意到玻尔兹曼方程中单体演化的时间尺度 τ 远远大于两体碰撞的时间尺度 τcoll, 也

即是说，玻尔兹曼方程中的散射项 (碰撞项) 相对来说是一个快速变化的项。因此我们不
妨仅仅考虑这样的物理量 O(q,p)，它乘上碰撞项以后对动量的积分等于零，即∫ d3p

(2π h̄)3 O(q,p)
(∂ f1

∂ t

)
coll = 0. (9.41)

代入碰撞积分项的公式，即∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 O(q,p1)ω(p′
1,p

′
2 | p1,p2)×[

f1(q,p′
1) f1(q,p′

2)− f1(q,p1) f1(q,p2)
]
= 0. (9.42)

完全类似于证明 H 定理时的操作，通过交换 1,2 标记，以及交换加撇和不加撇的动量标

记，并两次加起来除以 2，可以看到上式等价于∫ d3p1

(2π h̄)3
d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

f1(q,p′
1) f1(q,p′

2)− f1(q,p1) f1(q,p2)
]
×[

O(q,p1)+O(q,p2)−O(q,p′
1)−O(q,p′

2)
]
= 0. (9.43)

很明显，如果 O 满足下面等式，则上式自动成立

O(q,p1)+O(q,p2) = O(q,p′
1)+O(q,p′

2). (9.44)

满足这个式子的物理量称作碰撞不变量，它也就是碰撞前后守恒的物理量。比如说动量 p
和单粒子哈密顿量 H1(q,p) 都是这样的碰撞不变量，当然，由于碰撞发生在固定空间点 q，
所以单粒子动能 p2/2m 也是碰撞不变量。但是，最简单的碰撞不变量无疑是 O(q,p) = 1。

总之，下面假设将注意力集中在碰撞不变量上。

结合玻尔兹曼方程和碰撞不变量所满足的性质 (9.41), 对于碰撞不变量，显然有∫ d3p
(2π h̄)3 O(q,p)

[∂ f1

∂ t
+{ f1,H1}

]
= 0. (9.45)

算出式子中的泊松括号，即有∫ d3p
(2π h̄)3 O(q,p)

[ ∂
∂ t

+
p
m
· ∂

∂q
+F · ∂

∂p
]

f1(q,p, t) = 0, (9.46)
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式中 F = − ∂V (q)
∂q 为外力，注意它只依赖于空间坐标 q 不依赖于动量。注意到 O(q,p) 不

依赖于 t, 因此上式中的 ∂
∂ t 可以直接提到积分号的外面。

∂
∂p 项可以分部积分并丢掉边界项

(假设 f1 在动量空间无穷远处趋于零)， ∂
∂q 项可以用求导的莱布尼兹法则来改写。最后即

有

∂
∂ t

∫ d3p
(2π h̄)3 O f1+

∂
∂q

·
∫ d3p

(2π h̄)3
p
m

O f1 −
∫ d3p

(2π h̄)3 f1
p
m
· ∂O

∂q

−
∫ d3p

(2π h̄)3 F · ∂O

∂p
f1 = 0. (9.47)

根据取平均的定义，可以将这个式子改写成

∂
∂ t

⟨nO⟩+ ∂
∂q

· ⟨nvO⟩−n⟨v · ∂O

∂q
⟩−n⟨F · ∂O

∂p
⟩= 0. (9.48)

这就是我们关于碰撞不变量的核心方程。下面就是看一些具体的例子。

连续性方程

首先，在 (9.48) 式中取碰撞不变量 O = 1, 显然有

∂n
∂ t

+
∂

∂q
· (nu) = 0, (9.49)

式中 u = ⟨v⟩ 为速度场。将这个式子乘上分子质量 m，即有关于质量密度的连续性方程

∂ρ
∂ t

+
∂

∂q
· (ρu) = 0. (9.50)

但这个方程并不是一个封闭的方程，因为我们还需要知道速度场 u(q, t) 如何演化。

速度场的方程

取碰撞不变量 O = p = mv 代入 (9.48) 式，即有

∂
∂ t

(ρui)+
∂

∂q j
⟨ρv jvi⟩−⟨ρFi⟩/m = 0. (9.51)

式中我们采用了分量形式，每个表达式中重复出现的分量指标默认要求和, 下文同。不妨
对中间那项进行如下操作

⟨v jvi⟩= ⟨(v j −u j)(vi −ui)⟩+u j⟨vi⟩+ui⟨v j⟩−uiu j

= ⟨(v j −u j)(vi −ui)⟩+uiu j. (9.52)

下面定义一个叫做压力张量的量为

Pi j = Pji = ρ⟨(v j −u j)(vi −ui)⟩, (9.53)
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很显然这个量计算的是 i 方向的动量密度在 j 方向上的流量，这对应的是动量密度随时间

的变化率，从而结果就等于压力 (实际上是压强)，这就是为什么称之为压力张量。利用这
个定义，结合连续性方程 (9.50), 就可以把 (9.51) 式改写为

ρ
( ∂

∂ t
+u j

∂
∂q j

)
ui =

ρ
m

Fi −
∂

∂q j
Pi j. (9.54)

通常人们会定义

Dt =
∂
∂ t

+u j
∂

∂q j
=

∂
∂ t

+u ·∇, (9.55)

称之为随体导数，也就是跟着流线流动的观察者看到的时间变化率。所以上面的方程就可

以写成

ρDtui =
ρ
m

Fi −
∂

∂q j
Pi j. (9.56)

这个方程其实就是牛顿第二定律，方程左边是加速度项，方程右边的第一项为外力，第二

项为流体内部的压强梯度。然而这个方程也不是一个关于速度场的封闭方程，因为我们还

需要知道压力张量。

温度场的方程

最后注意到动能 1
2 mv2 是碰撞不变量，动量 mv也是碰撞不变量，所以 O = 1

2 m(v−u)2

也是碰撞不变量。取这个碰撞不变量代入 (9.48) 式1，即有 (注意到涉及外力的项由于
⟨(v−u)⟩= 0 而为零)

1
2

∂
∂ t

⟨ρ(v−u)2⟩+ 1
2

∂
∂qi

⟨ρvi(v−u)2⟩− 1
2

ρ⟨vi
∂

∂qi
(v−u)2⟩= 0. (9.57)

定义温度场为 (请读者想想为什么这样定义)

3
2

kBT (q, t)≡ ⟨1
2

m(v−u)2⟩. (9.58)

再定义热流场 Q 为

Q ≡ 1
2

mρ⟨(v−u)(v−u)2⟩. (9.59)

从而即有

1
2

mρ⟨vi(v−u)2⟩= 1
2

mρ⟨(vi −ui)(v−u)2⟩+ 1
2

mρui⟨(v−u)2⟩

= Qi +
3
2

kBT ρui (9.60)

1这里其实有一个微妙之处。在推导核心方程时，我们假设物理量 O 不显含时间，但上面定义的 O 实际上

通过 u(q, t) 具有显含的时间依赖性。尽管如此，可以验证 (9.48) 式仍然成立，本质上是因为时间依赖带来的
额外项为 ∼ ⟨(v−u) · ∂u

∂ t ⟩= ⟨(v−u)⟩ · ∂u
∂ t = 0。
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以及

ρ⟨vi(v j −u j)⟩= ρ⟨(vi −ui)(v j −u j)⟩+ρui⟨(v j −u j)⟩= Pi j. (9.61)

把这些结果代入 (9.57) 式，即有

3
2

∂
∂ t

(ρkBT )+
∂Qi

∂qi
+

3
2

∂
∂qi

(ρkBTui)+mPi j
∂u j

∂qi
= 0. (9.62)

由于 Pi j = Pji，所以

mPi j
∂u j

∂qi
= Pi j

m
2
(∂u j

∂qi
+

∂ui

∂q j

)
= mPi jΛi j, (9.63)

式中 Λi j ≡ 1
2

( ∂u j
∂qi

+ ∂ui
∂q j

)
。由此整理一下 (9.62) 式，即得

ρDt(kBT )+
2
3

∇ ·Q =−m
2
3

Λi jPi j. (9.64)

这就是温度场所满足的方程。

即使加上温度场的这个方程，我们的方程也依然没有封闭，因为除了前面需要知道的

Pi j 之外，这里又出现了一个新的需要知道的量 Q, 为了算出这两个量，我们需要求助于具
体的分布函数 f1，虽然前面导出的这些方程对任何 f1 都成立。但是，为了得到一个具体

的 f1，就需要求解玻尔兹曼方程，而这非常难，所以我们得想一些近似办法。

9.3.2 零阶近似

首先，考虑达成了细致平衡条件的近似，我们称之为零阶近似。根据前面的相关讲

述可以知道，这时候分布函数 f1(q,p.t) 必然是局域麦克斯韦-玻尔兹曼分布，这里记作
f (0)1 (q,p, t)

f (0)1 (q,p, t) = exp
[
−β (q, t)

((p−p0(q, t)
)2

2m
+V (q)−µ(q, t)

)]
. (9.65)

值得说明的是，这个分布不一定是玻尔兹曼方程的解，因为它只是使得玻尔兹曼方程中

的碰撞积分项等于零。不过，考虑到碰撞积分项才是使得分布函数快速变化的项，所以

f (0)1 (q,p, t) 可以作为分布函数很好的零阶近似，后文我们再考虑对它的修正。因此下面各
量的平均值都是相对于 f (0)1 (q,p, t) 来说的。

首先，不难算出

u(q, t) = ⟨ p
m
⟩= p0(q, t)/m. (9.66)

这就说明 f (0)1 (q,p, t) 可以重写为

f (0)1 (q,p, t) = exp
[
−β (q, t)

(1
2

m
(
v−u(q, t)

)2
+V (q)−µ(q, t)

)]
. (9.67)

其次，根据温度场的定义，不难通过高斯积分算出

kBT (q, t)≡ 1
3
⟨m(v−u)2⟩= 1/β (q, t). (9.68)
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这个结果验证了关于温度场的定义是有道理的。为了下面的计算，不妨把 f (0)1 (q,p, t) 写作
f (0)1 (q,p, t) =C(q, t)exp

[
− 1

2 m
(
v−u

)2
/kBT

]
。

不难算得零阶近似下的热流为

Q(0) ≡ 1
2

mρ
n

∫ d3p
(2π h̄)3 (v−u)(v−u)2C(q, t)exp

[
− 1

2
m
(
v−u

)2
/kBT

]
=

1
2

m2C(q, t)
m3

(2π h̄)3

∫
d3VVV2 exp

[
− 1

2
mV2/kBT

]
= 0. (9.69)

式中 V = v−u。类似的，可以计算压力张量

P(0)
i j =

1
n

ρC(q, t)
∫ d3p

(2π h̄)3 (vi −ui)(v j −u j)exp
[
− 1

2
m
(
v−u

)2
/kBT

]
=

1
n

ρC(q, t)
∫ d3p

(2π h̄)3ViVj exp
[
− 1

2
mV2/kBT

]
= δi jP, (9.70)

式中

P =
1
3

1
n

ρC(q, t)
∫ d3p

(2π h̄)3 V2 exp
[
− 1

2
mV2/kBT

]
=

1
3

ρ
∫

d3VV2 exp
[
− 1

2
mV2/kBT

]
/
∫

d3Vexp
[
− 1

2
mV2/kBT

]
= n(q, t)kBT (q, t). (9.71)

很显然，这个结果就是局域化的理想气体压强公式。

将以上结果代入 (9.56) 式，即有即有

Dtu =
F
m
− 1

ρ
∇P. (9.72)

这就是著名的欧拉方程。将上一段的结果代入 (9.64) 式，注意到 Λi jPi j = ΛiiP = P∇ ·u =

nkBT ∇ ·u, 即有

Dt(kBT ) =−2
3

kBT ∇ ·u. (9.73)

以上两个方程，再加上连续性方程，就构成非粘滞性流体 (也就是理想流体) 的流体力学
方程。

9.3.3 一阶近似

下面考虑一阶修正。假设记 f1(q,p, t) 为满足玻尔兹曼方程的精确分布函数，记

g(q,p, t)≡ f1(q,p, t)− f (0)1 (q,p, t), (9.74)

则由于前面说过的， f (0)1 已经是对分布函数的很好的近似，所以可见 g(q,p, t) 应该是一个
微小的修正，换言之 g 是小量。代入玻尔兹曼方程，注意到 f (0)1 正好使得碰撞积分等于零

并保留到一阶小量，从而(∂ f1

∂ t

)
coll

(q,p1) =
∫ d3p2

(2π h̄)3
d3p′

1
(2π h̄)3

d3p′
2

(2π h̄)3 ω(p′
1,p

′
2 | p1,p2)×[

g(p′
1) f (0)1 (p′

2)+ f (0)1 (p′
1)g(p

′
2)−g(p1) f (0)1 (p2)− f (0)1 (p1)g(p2)

]
.
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很显然，它具有某个特定线性算子作用在 g上的形式。接下来的处理可以用所谓的 Chapman-
Enskog 展开的方法来进行，不过，这里采用一种更简便的处理，即将上式替换成如下形
式 (∂ f1

∂ t

)
coll

=−g
τ
, (9.75)

这种处理方法称作弛豫时间近似，式中的 τ 就是所谓的弛豫时间，一般来说它可以依赖于
动量 p, 不过，为了简单起见，我们将把它当作常数。

作了弛豫时间近似以后，就可以把玻尔兹曼方程写成

∂ f1

∂ t
−{H1, f1}=−g

τ
, (9.76)

注意到 g ≪ f (0)1 , 所以又可以忽略等式左边包含的 g, 从而有

g =−τ
[∂ f (0)1

∂ t
−{H1, f (0)1 }

]
=−τ

[ ∂
∂ t

+v ·∇q +
F
m
·∇v
]

f (0)1 . (9.77)

这里值得注意的是，等式右边也是小量，因为其中涉及的偏导都是慢变的 (玻尔兹曼方程
中只有碰撞积分项是快变的)。

注意到 f (0)1 (q,p, t) = C(q, t)exp
[
− 1

2 m
(
v−u

)2
/kBT

]
, 并且

∫ d3p
(2π h̄)3 f (0)1 = n(q, t)，算出

这个积分即可以得到

f (0)1 (q,p, t) = n(2π h̄)3( 1
2πmkBT

)3/2 exp
[
− 1

2
m
(
v−u

)2
/kBT

]
. (9.78)

显然， f (0)1 是通过 n,T,u 而对变量 q, t 产生依赖。所以，为了计算出 (9.77) 式右边，我们
可以先进行如下计算

∂ f (0)1
∂ρ

=
f (0)1
ρ

∂ f (0)1
∂T

=
1
T

( m
2kBT

V2 − 3
2
)

f (0)1

∂ f (0)1
∂u

=
m

kBT
V f (0)1

∂ f (0)1
∂v

=− m
kBT

V f (0)1 . (9.79)

利用这些结果，再根据 (9.77) 式，即有

g =−τ f (0)1

[ D̃(ρ)
ρ

+
1
T

( m
2kBT

V2 − 3
2
)
D̃(T )+

m
kBT

ViD̃(ui)−
1

kBT
F ·V

]
(9.80)

其中

D̃(X) =
( ∂

∂ t
+v ·∇q

)
X . (9.81)
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利用上一小节得到的零阶流体力学方程，可以得到

D̃(ρ) =−ρ(∇ ·u)+V ·∇ρ

D̃(T ) =−2
3

T ∇ ·u+V ·∇T

D̃(u j) =− 1
ρ

∂P
∂q j

+
Fj

m
+Vi

∂u j

∂qi
. (9.82)

其中 P = nkBT = ρkBT/m。将这些结果代入 (9.80) 式，即得

g =−τ f (0)1

[
− (∇ ·u)+V · ∇ρ

ρ
+

1
T

( m
2kBT

V2 − 3
2
)(

− 2
3

T ∇ ·u+V ·∇T
)

+
m

kBT

(
−V · ∇P

ρ
+V · F

m
+ViVj

∂u j

∂qi

)
− 1

kBT
F ·V

]
.

通过代入 P = ρkBT/m 消去一些项，并整理得

g =−τ
[ 1

T
∇T ·V

( m
2kBT

V2 − 5
2
)
+

m
kBT

Λi j(ViVj −
1
3

δi jV2)
]

f (0)1 . (9.83)

有了分布函数修正项的这个表达式以后，我们就可以计算对热流以及压力张量的修

正。注意到零阶的热流为零，所以考虑到 g 的修正以后，热流的公式为

Q =
mρ
2n

∫ d3p
(2π h̄)3 (v−u)(v−u)2g. (9.84)

注意到 (9.83) 式右边的第二项对这个积分的贡献是零，从而即有

Q =− τm5

2(2π h̄)3

∫
d3VVV2( m

2kBT
V2 − 5

2
) 1

T
V ·∇T f (0)1 =−K∇(kBT ). (9.85)

式中

K =
τm5

6kBT (2π h̄)3

∫
d3VV4( m

2kBT
V2 − 5

2
)

f (0)1 =
5
2

τkBT n. (9.86)

它也就是所谓的热传导系数。

反过来，对于压力张量 Pi j, (9.83) 式右边仅仅只有第二项才有贡献，从而

Pi j =
ρ
n

∫ d3p
(2π h̄)3 (vi −ui)(v j −u j)( f (0)1 +g) = δi jP+P′

i j, (9.87)

式中 P = ρkBT/m, 而 P′
i j 是 g 带来的修正

P′
i j =− τρm4

kBT n(2π h̄)3 Λkl

∫
d3VViVj(VkVl −

1
3

δklV2) f (0)1 . (9.88)

为了计算出结果，我们注意到 P′
i j 是一个对称无迹张量，也就是 P′

ii = 0(注意对 i 是默认求

和的)，而且它线性地依赖于对称张量 Λi j, 所以 P′
i j 必定具有如下形式

P′
i j =−2µ

(
Λi j −

1
3

δi jΛkk
)
=−µ

(
∂iu j +∂ jui −

2
3

∇ ·u
)
, (9.89)



9.3 从玻尔兹曼方程到流体力学 183

式中 ∂i ≡ ∂
∂qi

, µ 是一个常数，称作粘滞系数，请注意把它和化学势区分开来。
为了计算出粘滞系数 µ, 我们仅仅需要计算 P′

i j 的一个具体分量，比如说 P′
12, 它是

P′
12 =− τρm4

kBT n(2π h̄)3 Λkl

∫
d3VV1V2(VkVl −

1
3

δklV2) f (0)1

=−2
τm5

kBT (2π h̄)3 Λ12

∫
d3VV 2

1 V 2
2 f (0)1 . (9.90)

从而

µ =
τm5

kBT (2π h̄)3

∫
d3VV 2

1 V 2
2 f (0)1 = τnkBT. (9.91)

注意 K/µ = 5
2。

将以上修正以后的 Q 和 Pi j 的结果代入 (9.56) 式和 (9.64) 式，就可以得到修正以后
的流体力学方程。为此我们需要做如下计算

∇ ·Q =−kB∇ · (K∇T ) =−K∇2(kBT )−∇K ·∇(kBT ) (9.92)

∂ jPi j = ∂iP−µ
[
∇2ui +

1
3

∂i(∇ ·u)
]
− (∂ jµ)

(
∂iu j +∂ jui −

2
3

∇ ·u
)

(9.93)

Pi jΛi j = P(∇ ·u)−2µΛi jΛi j +
2
3

µ(∇ ·u)2. (9.94)

对于式中的 Λi jΛi j =
1
4(∂iu j +∂ jui)(∂iu j +∂ jui) =

1
2(∂iu j)(∂iu j +∂ jui), 注意到

(∂iu j)(∂iu j) = ∂i(u j∂iu j)−u j∇2u j =
1
2

∇2(u2)−u ·∇2u. (9.95)

而

(∂iu j)(∂ jui) =−1
2
(∂iu j −∂ jui)(∂iu j −∂ jui)+(∂iu j)(∂iu j)

=−(∇×u)2 +(∂iu j)(∂iu j) (9.96)

所以，最终有

Λi jΛi j =
1
2
[
∇2(u2)−2u ·∇2u− (∇×u)2]. (9.97)

把以上结果代入 (9.56) 式和 (9.64) 式，即有

ρDtu =
F
m
−∇

(
P− µ

3
∇ ·u

)
+µ∇2u+R. (9.98)

ρDt(kBT ) =
2
3

K∇2(kBT )+
2
3

∇K ·∇(kBT )−

2
3

[
mρ(∇ ·u)+ 2

3
µm(∇ ·u)2 −µm

[
∇2(u2)−2u ·∇2u− (∇×u)2]]. (9.99)

式中 R 的分量形式是

Ri = (∂ jµ)
(
∂iu j +∂ jui −

2
3

∇ ·u
)
. (9.100)
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在这些方程中，一阶小量是 µ,K, 以及 ρ,kBT 和 u 的偏导项 (因为我们假设了这些量
是缓变的)。如果我们仅仅保留一阶小量，则可以忽略上式方程中 µ,K 的导数项以及 (9.99)
式中的最后四项。由此即可以得到一阶修正后的流体力学方程

∂ρ
∂ t

+∇ · (ρu) = 0, (9.101)

Dtu =
F
m
− 1

ρ
∇
(
P− µ

3
∇ ·u

)
+

µ
ρ

∇2u. (9.102)

Dt(kBT ) =−2
3
(∇ ·u)(kBT )+

2
3

K
ρ

∇2(kBT ). (9.103)

其中我们加上了连续性方程，第二个方程就是著名的 Navier-Stokes 方程，第三个方程是
热传导方程。

以上就完成了对流体力学方程的推导。不过，对于稀薄气体，玻尔兹曼方程包含的信

息是比连续介质近似下的流体力学方程更多的。玻尔兹曼方程之所以强大，是因为它能够

在一个统一的框架下，无缝地连接起从连续介质到完全稀薄气体的各个流动区域，为理解

和预测各种复杂的非平衡流动现象提供了强有力的理论和计算工具。相对于流体力学方

程，玻尔兹曼方程的核心优势在于能够捕捉到流体力学方程所忽略的非平衡效应，如速度

滑移、温度跳跃、剪切流和热流耦合等，这在低密度、高温度梯度或高速流动等极端条件

下尤为重要。这些优势使得玻尔兹曼方程的应用贯穿了从宏观航空航天到微观芯片制造的

广阔领域。
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