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为了考察宏观系统的物理行为，前面两章我们初步引入了概率统计的

思想，并引入了玻尔兹曼熵的概念。同时，我们也定义了热平衡态及其温

度。本章我们将进一步系统地引进概率统计思想，并考察如何利用这一思

想计算出系统的各种宏观物理量。

1 等等等概概概率率率假假假设设设

让我们从考察孤立系统的宏观演化开始。记某时刻系统的宏观状态为M，

假设系统演化了一段物理小的时间τ。τ在宏观上看来如此短，以至于在这

段时间之内系统的宏观态还来不及发生明显的改变，但是，τ相对于系统

微观过程的典型时间尺度却又要足够大。为了看清楚τ在微观上到底要多

大，我们注意到由于系统很大，它在相空间上的微观演化是极为混沌，而

且表面上看起来是极为随机的。因此可以想见，在时间段τ之内，系统应

该看起来就像是在相空间集合M(等同于宏观态)内随机地跑动，虽然不能

说在这段时间内，系统能够遍历M内的每一个微观态，但至少，τ应该长

到使得在这个时段之内，系统跑过的那些微观态要相当于对集合M进行了

一个良好的抽样。当然，由于观测的精度总是有限的，每一个抽样出来的

微观态Xi我们都只能确定到其附近的一个小邻域。

假设在时段τ之内，系统处于Xi邻域的总时长为τi, 则由于系统的微观演

化足够随机，我们就可以放弃追踪具体的相空间演化轨道，而只说，Xi邻

域内的微观态以概率pi = τi/τ随机出现。由于这些微观态是对集合M的

良好抽样，所以，这样的办法足以给每一个X ∈ M的微观态赋予一个概
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率(实际上是概率密度)p(X)，以使得p(Xi)dX = pi。有了这个概率以后，

我们就可以不再追踪系统具体的相空间轨道，而只说：在物理小时段τ之

内，系统以概率p(X)随机出现在微观态X ∈ M。

不妨称上面定义的p(X)为处于宏观态M的系统的微微微观观观系系系综综综，为了清晰

起见，也可以记作p(X|M)。上一段给出的就是p(X|M)的定义，但是，想

从理论上确定p(X|M)的表达式却很难。好在，玻尔兹曼熵的定义可以给我

们足够的启发，让我们对p(X|M)作出一个假设。

根据p(X|M)的定义不难看出，对于任何物理量O(X)，其在时段τ之内

的时间平均值O为

O ≡ 1

τ

∑
i

Oiτi =
∑
i

Oipi =

∫
M

dXO(X)p(X|M) = ⟨O⟩M . (1)

式中
∫
M
表示在集合M上积分。通常称⟨O⟩M =

∫
M
dXO(X)p(X|M)为宏观

态M上的系综平均，因此上面的结果说的就是，物物物理理理量量量的的的时时时间间间平平平均均均等等等于于于系系系

综综综平平平均均均。注意，时间平均就是我们实际测物理量O时测到的值，因为任何
实际的宏观测量都要持续一段物理小的时间。因此，这也就是说，只要我

们能确定微观系综p(X|M), 那我们就能通过计算系综平均⟨O⟩M来预测物理
量的测量值。

另一方面，根据玻尔兹曼熵公式，SB(M) = kB log(Vol(M)), 也即是

说，玻尔兹曼熵完全由宏观态M的相空间体积决定，每一个微观态的贡献

都是平等的！由此我们可以进一步假设，对于孤立系统，一个宏观态的所

有微观态的出现概率是均等的，即p(X|M) = c为常数，进而根据归一化条

件
∫
M
dXp(X|M) = 1，即有

p(X|M) =
1

Vol(M)
. (2)

我们称这为孤立系统的等概率假设。请注意，这里M不必是热平衡态，而

可以是一个随时间演化的非平衡宏观态。

特别的，对于由宏观条件(E, a)确定的热平衡态Meq(E, a)，我们有

peq(X) =
1

Vol(E, a)
, (3)

式中Vol(E, a) = Vol(Meq)。通常统计物理的教科书只会涉及这个热平衡态

时的等概率假设，因为通常的统计物理教科书只会在热平衡态时应用玻尔
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兹曼熵公式。至于对更一般的非平衡宏观态的等概率假设是否合理，那就

要看玻尔兹曼熵公式延展到这种情况是否合理了，当然，你可以怀疑对于

非平衡态玻尔兹曼熵定义的合理性，但是这种定义至少能给出熵增加原

理。

有了等概率假设以后，系综平均的计算就成为了

⟨O⟩M =
1

Vol(M)

∫
M

dXO(X). (4)

看起来似乎一切原则上的问题都解决了，只剩下具体计算了。但其实并

没有，因为给定一个宏观态，确定与其等同的相空间集合M本身就是一

件极其困难的事情，只在热平衡态时这个问题才得到了一般性的解决。

对于孤立系统的热平衡态，由于能量守恒，所以热平衡态对应于相空间

由H(X) = E刻画的等能量曲面，更准确地说，是对应于这张等能量曲面

附近的一个小薄层。之所以要考虑等能量曲面的很小很小的厚度，是因为

实验观测的精度总是有限的，我们并不能绝对精确地确定系统的能量。

不妨以理想气体的热平衡态为例。所谓理想气体，就是由一些除了

相互碰撞的那一瞬间之外不存在相互作用的自由粒子所构成的系统。假

设这样的理想气体密封在一个绝热盒子中，那么其热平衡态就由宏观条

件(E, V )决定，其中V是盒子的体积。我们想考察的就是熵作为体积V的函

数S(V )。假设初始时我们用绝热的隔板将气体隔在体积为V0的区域内，盒

子在这个区域之外的部分是真空，然后撤掉隔板，让气体绝热自由膨胀，

充满整个盒子，并最终达成热平衡。很显然，整个过程中，气体没有做

功，也没有吸收热量(因为绝热)，所以其内能E保持不变。注意到相空间

体积的计算需要对每一个粒子占据的空间体积进行积分，而理想气体不同

粒子之间又是自由的，所以不难有

Vol(E, V )

Vol(E, V0)
=

( V
V0

)N
, (5)

式中N为粒子数目。进而根据玻尔兹曼熵公式，即有

S(V )− S(V0) = kB log
(Vol(E, V )

Vol(E, V0)

)
= NkB log

( V
V0

)
. (6)

进而根据压强P的定义式 ∂S
∂V

= P
T
(来自于公式∂S

∂a
= J

T
)，立即有

PV = NkBT. (7)

这就是著名的理想气体物态方程。
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2 正正正则则则系系系综综综

上一节考察的是孤立系统，现在我们考察与巨大的恒温热库R相接触的系

统，记此系统为S, 整个复合系统可以看作孤立系统，记为S × R。为了明

确起见，本节我们只考察热平衡态。

记系统S的微观态为XS, 热库R的微观态为XR, 整个复合系统的总能量

为Etot, Etot 当然是守恒的。由于整个复合系统是孤立系统，所以根据等概

率假设，必定有

p(XS ×XR) =
1

VolS×R(Etot)
, (8)

式中VolS×R表示整个复合系统热平衡态的相空间体积。

现在我们想知道，忽略热库，只关心系统S, 它处在微观态XS的概率是

多少？假设XS对应的能量为H(XS), 则此时热库的能量必为Etot −H(XS),

所谓忽略热库，也就是将p(XS ×XR)对热库的相空间进行积分，从而有

p(XS) =
VolR(Etot −H(XS))

VolS×R(Etot)
∝ VolR(Etot −H(XS)). (9)

注意到，热库是巨大的，从而系统S的能量相比于热库的能量来说肯定

是一个小量，从而相比于Etot来说，H(XS)是一个小量。从而我们可以

将VolR(Etot −H(XS)) 对H(XS)进行泰勒展开，进而即有

VolR(Etot −H(XS)) = VolR(Etot)−
∂VolR(Etot)

∂Etot

H(XS) + · · · (10)

但是，考虑到VolR(Etot)为dNR的量级，其中d为某个大于1的数，NR为热库

的粒子数，而Etot作为广延量将正比于NR, 所以上述泰勒展开一阶项的系

数必定为如下量级

∂VolR(Etot)

∂Etot

∼ dNR

NR

, (11)

考虑到热库是巨大的，NR非常大(≫ 1023)，所以这个一阶项的系数其实非

常巨大。如此一来，即使H(XS)相对小，也无法保证泰勒展开一阶项的修

正是小的。所以，上述展开办法实际上没法用。
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为了得到VolR(Etot −H(XS))的一个真正良好的近似，我们利用玻尔兹

曼熵公式，从而即有

VolR(Etot −H(XS)) = eS(Etot−H(XS))/kB , (12)

然后将S(Etot −H(XS))对H(XS)进行泰勒展开，并注意到
∂S(Etot)
∂Etot

= 1
T
是有

限的，式中T为热库的温度。从而即有

VolR(Etot −H(XS)) = eS(Etot−H(XS))/kB = eS(Etot)/kBe
−H(XS)

kBT ∝ e
−H(XS)

kBT . (13)

代入(9)式，即有

p(XS) ∝ e−H(XS)/kBT , (14)

比例系数可以通过归一化条件确定，不妨记为1/Z, 从而即有

p(XS) =
1

Z
e−H(XS)/kBT . (15)

通过归一化条件
∫
p(XS)dXS = 1，不难确定

Z =

∫
dXe−H(X)/kBT . (16)

通常称(15)式给出的系统S在与热库达成热平衡时的微观系综为正正正

则则则系系系综综综，并称(16)式给出的Z为系统S热平衡时的配分函数。人们通常

记1/(kBT ) = β，称之为逆温度。现在，不妨把系统S的微观态简记为X,

并注意到S的哈密顿量H(X)一般来说还依赖于系统所处的宏观力学条件a,

则S的正则系综可以写成

p(X) =
1

Z
e−βH(X|a). (17)

很显然，Z依赖于温度T，同时还依赖于力学条件a,因此可以记为Z(T, a)。

进而可以给出任意物理量O的系综平均

⟨O⟩ ≡ 1

Z

∫
dXO(X)e−βH(X|a). (18)

特别的，根据配分函数的定义，有能量平均值E(T, a)为

E ≡ ⟨H⟩ = − 1

Z
∂

∂β
Z = − ∂

∂β
logZ. (19)
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系统S与恒温热库之间有能量交换(热量交换)，因此其能量并不是一个固定

的值，虽然能量的平均值是固定的，但是能量一般来说会围绕着这个平均

值涨落。不难得到能量的均方差涨落为

σ2
E ≡ ⟨H2⟩ − ⟨H⟩2 = ∂2

∂β2
logZ = −∂E(T, a)

∂β
= kBT

2∂E(T, a)

∂T
= kBT

2Ca.

式中Ca ≡ ∂E(T,a)
∂T
为系统的热容。

由于能量E是广延量，在热力学极限下正比于系统的粒子数N , 而温

度是强度量，与N无关，所以热容Ca也是广延量，同样，能量的均方

差涨落σ2
E也是广延量，正比于N , 从而σE ∝

√
N。所以能量的相对涨

落σE/E ∝ 1/
√
N , 在热力学极限下趋于零。换言之，对于一个N ∼ 1023的

宏观系统，其能量的相对涨落非常小，系统的能量差不多完全固定在平均

值附近。正因为如此，这样的系统虽然与热库保持接触，但可以看作是准

孤立的。

配配配分分分函函函数数数与与与自自自由由由能能能

配分函数也是对相空间的积分，只是权重不是1，而是e−βH , 因此它是

一个类似于微观状态数ΓM(也就是Vol(M))的量，是微观状态数在固定温度

而不是固定能量下的对应物。因此，类似于熵增加原理，我们也期待配分

函数的对数也是一个倾向于增加的量。但是，在恒温热库的情况下，我们

已经知道了一个倾向于减少的量，即自由能F , 因此我们猜测，配分函数的

对数应该正比于−F。考虑到自由能是能量量纲，而配分函数无量纲，所

以最终我们猜测有

F (T, a) = −kBT logZ(T, a) 或者 Z = e−βF . (20)

确实，这个公式是正确的，但是我们还需要一个证明。

首先回忆自由能F的定义

F = E − TS, (21)

以及方程dF = −SdT − J · da, 从而

∂F

∂T
|a = −S =

F − E

T
. (22)
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这是一个在固定宏观力学条件a下F (T )的微分方程。为了证明(20), 我们将

会证明−kBT logZ满足同样的微分方程，并且在T = 0时的“初始条件”

也相同。

不妨记−kBT logZ = F̃ , 下面我们来求它对T的偏导

∂F̃

∂T
=

∂

∂T
(−kBT logZ) = −kB logZ − kBT

∂

∂T
logZ. (23)

使用求导的链式法则把第二项中的导数用逆温度β重写为

∂

∂T
logZ = − 1

kBT 2

∂

∂β
logZ = − 1

kBT 2

1

Z
∂

∂β
Z =

E

kBT 2
, (24)

最后一个等式中的E其实是哈密顿量的系综平均，也就是平均能量，这是

对于恒温的大系统，我们常常省略表示平均的符号。把上面这个结果代

回(23)式，我们得到

∂F̃

∂T
= −kB logZ − kBT

E

kBT 2
=

F̃ − E

T
. (25)

可见，F̃满足的微分方程与F的完全一样。

为了完整地证明F̃ = F，我们只需要证明，在T = 0的初始值处，F̃ (0) =

F (0)。根据F的定义，F (0) = E(0), 也即等于系统在零温下的能量，

这个能量一定是最低的可能能量，不妨记为E0, 所以F (0) = E0。因为

在T = 0时，所有更高能量的状态对配分函数的贡献相对于最低能量的贡

献都压低了e−∆E/kBT , 结果是无穷小。所以，T = 0时，我们只需考虑E0状

态对配分函数的贡献，也即是说，这时Z(0) = e−βE0。从而

F̃ (0) = −kBT logZ(0) = E0 = F (0), (26)

这样我们就完成了对(20)式的完整证明。

(20)式的用处在于可以结合

dF = −SdT − J · da, (27)

因此，一旦我们计算出了配分函数，就得到了自由能函数F (T, a)，进而即

可以根据下式得到其它热力学函数的值

S = −∂F

∂T
|a, J = −∂F

∂a
|T . (28)
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广广广义义义能能能量量量均均均分分分定定定理理理

由于相空间为6N维，因此相空间坐标X有6N个分量，记为X i =

(q1, ..., q3N , p1, ..., p3N), 则可以证明:

⟨X i ∂H

∂Xj
⟩ = δijkBT. (29)

这就是所谓的广广广义义义能能能量量量均均均分分分定定定理理理。特别的，如果对于某个分量Xj, H只含

有它的二次项，记这个二次项为Hj, 则根据齐次函数的欧拉定理，我们有

从而Xj ∂H
∂Xj = Xj ∂Hj

∂Xj = 2Hj。从而上面的广义能量均分定理就告诉我们

⟨Hj⟩ =
1

2
kBT. (30)

这就是著名的能量均分定理。

对广义能量均分定理的证明如下：首先

1

β

∫
∂

∂Xj

(
X ie−βH

)
dXj = 0, (31)

这里我们假定相空间无穷远处H → +∞, 从而X ie−βH → 0. 另一方面

1

β

∫
∂

∂Xj

(
X ie−βH

)
dXj =

1

β
δij

∫
e−βHdXj −

∫
X i ∂H

∂Xj
e−βHdXj. (32)

综合以上两个结果，即有∫
X i ∂H

∂Xj
e−βHdXj = kBTδij

∫
e−βHdXj. (33)

另外，根据物理量期望值的定义，

⟨X i ∂H

∂Xj
⟩ = 1

Z

∫
dXX i ∂H

∂Xj
e−βH

=
1

Z

∫ [ ∫
X i ∂H

∂Xj
e−βHdXj

]
dX̂j, (34)

式中dX̂j表示对dX中除Xj之外的所有变量积分。代入上一段的结果，即有

⟨X i ∂H

∂Xj
⟩ = kBTδij

1

Z

∫
e−βHdX = kBTδij. (35)

从而就证明了广义能量均分定理。
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3 举举举例例例

1. 理想气体：

现在把正则系综应用于封在体积为V的盒子中的理想气体，假设盒子并

不绝热，而是与外界温度为T的恒温环境相接触。由于组成理想气体的粒

子之间的相互作用只发生在碰撞的那一瞬间，且不该变粒子碰撞前后的总

动能，因此在盒子内部(不包括边界)，系统的哈密顿量就是

H(X) =
N∑
i=1

p2
i

2m
, (36)

式中m是粒子的质量，pi是第i个粒子的动量。

因此，作为正则系综，盒子内部的概率分布为(盒子外面概率当然为零)

p(X) =
1

Z
exp

[
− β

N∑
i=1

p2
i

2m

]
. (37)

相应的配分函数为(对于这里积分的计算过程，请参考附录关于高斯积分的

计算。)

Z(T, V ) =

∫ N∏
i=1

d3xid
3pi

(2π~)3
exp

[
− β

N∑
i=1

p2
i

2m

]
= V N

(mkBT

2π~2
)3N/2

. (38)

进而可以求出自由能为

F = −kBT logZ = −NkBT
[
log(V ) +

3

2
log

(mkBT

2π~2
)]
, (39)

这里已经取了热力学极限。进一步可以算得熵为

S = −∂F

∂T
= NkB

[
log(V ) +

3

2
log

(mkBT

2π~2
)]

+
3

2
NkB. (40)

同样可算得内能的期望值为

E(T ) = −∂ logZ
∂β

=
3

2
NkBT. (41)
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很明显，由此即有CV = dE
dT

= 3
2
NkB。类似的，可算得系统的压强为(根

据J = −∂F
∂a
)

P = −∂F

∂V
=

NkBT

V
⇒ PV = NkBT. (42)

这个结果与前面导出的结果一致。

很显然，由于各粒子之间是相互独立的，p(X)可以分解成p(X) =

p(p1)p(p2) · · · p(pN)的形式，其中

p(p1) =
1

Z1

exp
[
− β

p2
1

2m

]
, (43)

式中Z1由p(p1)的归一化条件确定。这个结果告诉我们，一个理想气体分子

的动量为p1的概率，这也就是所谓的麦克斯韦速度分布律。在历史上，速

度分布律的提出标志着统计物理真正的开端。

2. 比特的统计力学：

到现在为止我们所研究的都是微观粒子所构成的系统，微观粒子的状态

是连续的。然而类似的处理也可以推广到状态离散的客体所构成的系统。

最典型的就是比特，一个比特仅有两个离散状态，0和1。物理上，0态可能

是某种物质的低能状态，1态则是高能状态(比如通过高低电压实现)，不妨

设单个比特0态的能量为0, 1态的能量为ϵ。我们要研究的就是N个比特所构

成的系统。

很显然这系统的任何一个状态刚好对应一个N位的2进制数，如(001001100),

(101001101)(以N = 9为例), 一般地可以记作(n1n2 · · ·nN), 式中ni = 0, 1。

系统的总能量由
∑N

i=1 niϵ给出。很显然，这个总能量完全由1态比特的总数

目
∑N

i=1 ni = N1 ≤ N决定。

下面我们用正则系综来讨论这N个比特的统计力学。很显然系统的微观

态为X = {ni}, 哈密顿量为H(X) = ϵ
∑N

i=1 ni, 从而，相应的正则系综概率

分布为

p(X) =
1

Z
exp

[
− βϵ

N∑
i=1

ni

]
. (44)
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特别的，由于p(X) =
∏N

i=1 pi(ni), 从而容易得到单个比特的概率分布

p1(n1) =
e−βϵn1

1 + e−βϵ
. (45)

对于离散的微观态，相空间积分就应该替换成对离散态的求和。因此整

个系统相应的配分函数为

Z(T ) =
∑
{ni}

exp
[
− βϵ

N∑
i=1

ni

]
=

( 1∑
n1=0

e−βϵn1
)
· · ·

( 1∑
nN=0

e−βϵnN
)

= (1 + e−βϵ)N . (46)

从而可以得到自由能为

F (T ) = −kBT logZ = −NkBT log[1 + e−ϵ/kBT ]. (47)

进而可以算得熵为

S = −∂F

∂T
= NkB log[1 + e−ϵ/kBT ] +NkBT

( ϵ

kBT 2

) e−ϵ/kBT

1 + e−ϵ/kBT
. (48)

能量的期望值为

E(T ) = −∂ logZ
∂β

= N
ϵe−βϵ

1 + e−βϵ
= N

ϵ

eϵ/kBT + 1
. (49)

很显然，当T > 0时，E(T )是T的单调增函数，T = 0时E = 0, 之后随着温

度的升高，E也跟着增加，当T = +∞时，E达到最大值Nϵ/2。如果总能

量超过这个值，那系统就处于负温度状态。但是，一旦让负温度系统与周

围正温度的环境接触，那它就会向环境传热，从而失去能量，最终使得能

量降到Nϵ/2之下，之后系统温度变为正，并逐渐和环境达成热平衡。

可以定义这个系统的热容量C，也就是温度每升高一度能量E的增加

量。不难算得

C =
dE

dT
= NkB(ϵ/kBT )

2 exp(ϵ/kBT )
[
exp(ϵ/kBT ) + 1

]−2
. (50)

不难看到T → +∞时，C → 0。另外，也可以注意到T → 0+时，C ∝
exp(−ϵ/kBT ) → 0, 这是一种最低能态和最低激发态之间有能隙(在这里就

是ϵ)的系统的典型行为。
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4 数数数学学学附附附录录录

高斯积分是指以下积分： ∫ ∞

−∞
e−x2

dx =
√
π

下面给出一个常见的推导方法，利用二重积分和极坐标变换。

推导步骤：

1. 定义积分：令I =
∫∞
−∞ e−x2

dx。由于被积函数是偶函数，有时也考虑

从0 到无穷的积分，但这里我们处理整个实数轴。

2. 考虑二重积分：计算I2：

I2 =

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2dy

)
=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

这是一个在整个xy-平面上的二重积分。

3. 转换为极坐标：因此，

I2 =

∫ 2π

0

∫ ∞

0

e−r2rdrdθ = 2π

∫ ∞

0

e−r2rdr = 2π
1

2

∫ ∞

0

e−r2d(r2) = π

4. 得出结论：

I2 = π ⇒ I =
√
π

所以， ∫ ∞

−∞
e−x2

dx =
√
π
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