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玻尔兹曼的洞见是：系统的一个宏观状态，对应着数量巨大的微观状

态。微观状态的定义是清楚的，一个微观状态就是相空间的一个点。宏观

状态的定义则是，它是我们在宏观上观测到的系统状态，比如说我们所拍

的一张快照。这个定义有含糊之处，因为和我们的宏观观测手段有一定的

关系。玻尔兹曼的洞见意味着，我们可以把宏观态等等等同同同于于于相空间的某个子

区域，记作M , M内的相点就是这个宏观态所包含的所有微观态。进而我

们可以把宏观态M所包含的微观态数目ΓM定义成M的相空间体积，

ΓM ≡ Vol(M). (1)

玻尔兹曼进一步指出，系统的玻尔兹曼熵正比于微观态数目的对数，也

就是

SB(M) = kB log(ΓM), (2)

式中kB是所谓的玻尔兹曼常数，引入这个常数作为比例系数完全是因为

历史的原因，可以看作是某种约定俗成吧。因此，玻尔兹曼熵的量纲就

是kB的量纲，如果温度和通常一样以开尔文(K)为单位，那么kB数值上约

为1.380649× 10−23J/K，当然我们现在还没有定义温度概念。

当我们只观测到系统所处的宏观态时，我们对其确切的微观态是无知

的，这种无知的程度就是玻尔兹曼熵。注意，玻尔兹曼熵是对宏观态定义

的，原则上并不需要宏观态是所谓的热平衡态。

我们可以把两个系统相互接触形成一个大的系统，假设两个子系统

只在界面附近发生相对微弱的相互作用，假设记子系统的宏观状态分别
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为M1和M2, 则由于两个子系统的微观状态相互独立(描述两个子系统的正

则变量相互独立)，整个大系统的宏观状态M必定是M1和M2的笛卡尔积，

记作

M = M1 ×M2. (3)

很显然，Vol(M1×M2) = Vol(M1) ·Vol(M2), 从而大系统的微观态数等于子

系统微观态数目的乘积，即

ΓM1×M2 = ΓM1 · ΓM2 . (4)

进而即有

SB(M1 ×M2) = SB(M1) + SB(M2). (5)

也即是说，玻尔兹曼熵是可加的！实际上，正是为了满足可加性，所以玻

尔兹曼才把熵定义成微观态数目的对数，因为对数才可以把乘法运算变成

加法运算。

任给一个系统，我们可以把它切分成若干个小系统，假设我们考察的时

间足够短，那么这些小系统之间的相互作用总可以看成是只发生在界面附

近的。因此，整个系统的宏观态是各子系统宏观态的笛卡尔积。进而根据

可加性，整个系统的玻尔兹曼熵应该等于各子系统玻尔兹曼熵之和。

所谓熵增加原理，说的是：孤立系统宏观态的演化方向大概率是朝着熵

不减少的方向进行，而反过来，熵减少的演化出现的概率极低。特别的，

在热力学极限之下，孤立系统的熵严格地不减少！具体来说，在热力学极

限之下，假设孤立系统从宏观态M演化到宏观态M ′, 即M → M ′, 则必有

δSB ≡ SB(M
′)− SB(M) ≥ 0. (6)

这就是我们上一章所讨论的核心内容。特别的，如果δSB = 0，则M →
M ′的演化过程就是一个可逆过程。而，如果δSB > 0, 则M → M ′就是不可

逆过程。

从现在开始，我我我们们们默默默认认认是是是在在在热热热力力力学学学极极极限限限下下下考考考察察察问问问题题题。所谓的热力学极

限，就是粒子数N → ∞, 系统空间体积V → ∞，但同时保持N/V固定的极

限。热力学极限是对宏观系统的一种理想化近似。
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1 热热热平平平衡衡衡态态态，，，温温温度度度的的的概概概念念念

给定孤立系统所处的宏观条件，比如给定它所处的力学条件ai, i =

1, 2, .., n(不妨记作矢量a = (a1, a2, ..., an))，所谓力学条件，也就是说通

过施加外力改变a的值，我们就可以对这个孤立系统做功。另外，孤立系

统的能量守恒就意味着总能量E也是给定的。总之，我们假定孤立系统所

处的宏观条件由n + 1个状态变量(E, a)刻画(这里先不考虑粒子数目改变的

可能性)。

对于一个孤立的宏观系统，假设给定宏观条件(E, a)，根据熵增加原

理，随着时间的推移，其宏观态会朝着玻尔兹曼熵增加的方向演化，

最终玻尔兹曼熵会到达一个极大值，这时相应的宏观态就称之为热热热平平平

衡衡衡态态态。一般来说，这个热平衡态由宏观条件(E, a)唯一确定，不妨记

为Meq(E, a), 这里的下标eq表示的就是热平衡态(equilibrium state)。我们

也常常将Meq(E, a)简称为热平衡态(E, a), 因为它由(E, a)唯一确定。

记热平态时的玻尔兹曼熵为S(E, a)，

S(E, a) ≡ SB(Meq), (7)

称之为热平衡态(E, a)的热力学熵。所以，热平衡态熵极大告诉我们的第

一个推论就是，热平衡时的熵必然是一个宏观状态函数，完全由系统的宏

观条件(E, a)决定。

不妨举一个例子，如图(1)所示，考察一个被分隔成n个不同区域的

气体系统，各区域体积是给定的，不同区域之间的分隔壁透热，但是

不透物质，最外面把整个系统围起来的壁则是绝热的。这个系统就是

一个孤立系统，其a = (v1, v2, ..., vn)，其中vi是第i个区域的体积。 因此

根据上面的分析，这个系统达到热平衡时，其热力学熵是一个状态函

数S(E, v1, v2, ..., vn)。

我们常常把孤立系统分成多个宏观部分，每一个部分就是一个子系统，

子系统依然是宏观系统，只是通常并不是孤立系统，因为不同的子系统之

间存在相互作用，不过，子系统中与周围部分发生相互作用的主要是那些

在子系统表面附近的粒子，这些粒子的数目与子系统中粒子总数的比值随

着子系统尺寸的增加而迅速下降。因此，当子系统足够大时(指在热力学极

限下)，它与周围部分相互作用的能量比子系统的内能要小得多，因此可以
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Figure 1: 一个孤立系统的例子

说子系统是“准准准孤孤孤立立立”的。当然，子系统的准孤立性只在不太长的时间间

隔内才成立，而在足够长的时间间隔内，子系统之间的相互作用不管多么

微弱，总会表现出来。不仅如此，整个系统的热力学平衡之所以能建立，

归根结底就是靠这些比较微弱的相互作用。

各子系统之间是彼此微弱地相互作用着，这一事实相当于：当子系统足

够大时，可以认为各子系统之间是相互独立的。进而玻尔兹曼熵的可加性

告诉我们：在热力学极限下，整个系统的热力学熵可以认为是各个子部分

热力学熵的和。由于整个系统可以分解成的子部分的数目正比于整个系统

的规模，因此一个合理的推论是：在热力学极限下，整个系统的热力学熵

将正比于系统的规模(也即是正比于粒子数N)。

在热力学极限下满足正比于系统规模以及可加性这样两个要求的物理量

就称作广广广延延延量量量。因此，热力学熵是一个广延量，很显然，系统的总能量也

是一个广延量(假设子部分之间的相互作用很微弱，相互作用能相比可以忽

略)。其它的广延量还有比如系统的体积，系统的粒子数等等，特别的，一

般来说宏观力学条件a都是广延量。

假设我们把所考察的热平衡孤立系统任意分成1, 2两部分，根据广延量

的可加性，相应即有

E = E1 + E2, a = a1 + a2. (8)

根据子系统的准孤立性，热平衡时1, 2两部分各自的热力学熵必然分别

为S1(E1, a1), S2(E2, a2)。虽然总能量E是固定的，但是E1和E2均是变量。
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热平衡时熵取极大值就意味着必定有

∂S

∂E1

= 0. (9)

利用熵的可加性S = S1 + S2，即有

0 =
∂S1

∂E1

+
∂S2

∂E2

dE2

dE1

=
∂S1

∂E1

− ∂S2

∂E2

. (10)

换言之，热平衡时必定有

∂S1

∂E1

=
∂S2

∂E2

. (11)

由于1, 2两部分是任意分的，这就意味着子系统熵对能量的偏导在整个系统

内部处处一样，通常记这个偏导的结果为1/T ,

1

T
≡ ∂S

∂E
. (12)

因此，热平衡时系统各部分的T相同，称之为温温温度度度。至于为什么不把1/T叫

温度，是因此称T为温度比较符合我们对温度的日常直觉。

由于S以kB为量纲，所以上面关于温度的定义告诉我们，kBT必定具有

能量量纲(也就是TS具有能量量纲)。这告诉我们，温度的本质是热运动的

某种能量，温度越高表示热运动越剧烈。这正与我们日常对温度的直觉相

一致。

因此热平衡时系统各部分的温度得一样。这就说明温度这个量必定不

具备可加性，并且其值与系统规模无关，这样的量就称作强强强度度度量量量。但正如

熵一样，温度显然也是一个纯粹统计性质的量，是在宏观系统中涌现出来

的，在微观上没有意义。

假设让某个子系统与一个巨大的热库接触，与热库一起构成一个孤立系

统，则根据上面的讲述，热平衡时，这个子系统的温度必定与热库温度达

成一致。假设保持子系统的a不变，让整个孤立体系经历一个可逆过程，

使得子系统的能量增加dE, 则根据上面关于温度的定义，必定有

dE = TdS 假如保持a不变, (13)

由于这个能量增量不是外力做功的结果(因为a固定)，所以它只能是从热库

吸收的热量，记作Q, 所以在可逆过程中，

dS =
Q

T
, (14)
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即在可逆过程中系统从热库吸收的热量与温度的比值等于系统熵的增量。

当然，如果是放热，那就是熵减少。

反过来，假设整个孤立体系经历的是一个不可逆过程，结果是使得子系

统从热库吸收热量Q。也就是说，热库吸热为−Q(即放热)。由于热库是巨

大的，其吸放热过程均可以看作是在平衡态下进行的，因此是可逆的。从

而根据上面的分析，在这个过程中热库熵的增量dSR = −Q/T。依然记子

系统熵的增量为dS (由于子系统不是保持在平衡态，所以子系统的这个熵

应该理解为一般性的玻尔兹曼熵), 则在这个过程中，整个孤立体系总熵的

增量为dS + dSR = dS −Q/T , 由于这是一个不可逆过程，总的玻尔兹曼熵

必定要增加，所以必定有dS + dSR > 0, 也即是

dS >
Q

T
. (15)

即系统在不可逆过程中熵的增量大于吸热量与温度之比。通常称这为克劳

修斯不等式。

现在，让我们考虑A,B两个一起组成了孤立系统，但是彼此并没有达成

热平衡的物体。它们的温度分别为TA, TB。假设把这两个物体相接触，那

么随着时间的推移，这两个物体将逐渐趋于热平衡，它们的温度将逐渐趋

于相同。在这个过程中，总熵S = SA + SB是增加的(这里的熵同样应该理

解成一般性的玻尔兹曼熵)，即

δS = δSA + δSB =
∂SA

∂EA

δEA +
∂SB

∂EB

δEB > 0. (16)

由于总能量保持守恒，所以δEA + δEB = 0, 因此

δS =
( ∂SA

∂EA

− ∂SB

∂EB

)
δEA =

( 1

TA

− 1

TB

)
δEA > 0. (17)

假设两个物体温度均为正，且B物体的温度比A高，TB > TA > 0, 那么

即有δEA > 0, 相应也有δEB < 0, 即B物体的能量在减少，而A物体的能

量在增加，也即是说，B物体在向A物体传热。因此，热量总是从高温

物体自发传向低温物体，而不是反过来。这是熵增加原理的必然推论。

但是，如果B的温度为负(是的，负温度虽然不常见，但有时是可以实现

的)，TB < 0, 而A的温度为正TA > 0，那类似的也能得出，B物体会向A物

体传热！看起来就像是，负温度是一个比任何正温度更高的温度。
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回到把孤立系统分成1, 2两部分的讨论。与引入温度概念时的相关推导

完全类似，熵取极大值的要求也必然告诉我们

∂S1

∂a1

=
∂S2

∂a2

热平衡时, (18)

即热平衡时系统各部分的熵对本部分力学状态变量a的偏导在不同部分之

间保持相等。通常定义这一偏导为

∂S

∂a
≡ J

T
. (19)

由于热平衡时温度T在各部分之间保持相等，因此这就说明，热平衡时上

式定义的量J在各部分之间保持相等。很显然，J = (J1, J2, ..., Jn)和温度一

样，是强度量。

以图(1)中所示的孤立系统为例，这时候a = (v1, v2, ..., vn), 相应的J则是

各区域的压强，即J = (p1, p2, ..., pn), 上述结论告诉我们，热平衡时各区域

内部的压强为常数。

综合(12)式和(19)式，即有

dS =
1

T

(
dE + J · da

)
. (20)

或者也可以重写成

dE = TdS − J · da. (21)

其中TdS是系统吸收的热量Q，而−J · da则是通过改变系统力学状态
变量而向系统输入的能量，因此通常称之为外力对系统所做的功, 记

作W = −J · da。所以(21)式的含义就是，系统能量的增量等于它吸收的热

量加上外力对它做的功, 即dE = Q+W。这也就是热力学第一定律。

如果我们反解S = S(E, a)，进而得到E = E(S, a), 即把(S, a)看作基本

的宏观状态变量。则(21)式告诉我们

T =
∂E

∂S
|a, J = −∂E

∂a
|S. (22)

正因为如此，所以通常又把a称之为系统的广义坐标，而J则称之为广义

力。
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2 绝绝绝热热热变变变换换换

现在，我们将孤立系统推广到绝热的系统，也即是说，我们允许系统和外

界交换力学功，但是，两者之间不允许交换热量，我们称之为允许对系统

进行绝热变换。可以进一步精确化这句话的意思，所谓的绝热变换，其意

思是，允许系统和外界的辅助装置以及一个重物(可以看作是质点)进行相

互作用，进而改变系统的宏观状态(当然，对于孤立系统就是自发演化导

致的宏观状态变化)，但是，过程结束以后，辅助装置的状态必须完全复

原，只允许外界的重物被提升或者下降。如果我们把系统包括外界辅助装

置和重物整个一起看作一个孤立系统，则可以对这个孤立系统应用熵增加

原理，由于辅助装置的状态复原了，其熵变(熵的改变量)为零，又由于重

物可以看作一个质点，其玻尔兹曼熵是零，因此，整个孤立系统的熵变其

实就是原来系统的熵变，从而熵增加原理告诉我们：任任任何何何系系系统统统经经经历历历一一一个个个绝绝绝

热热热变变变换换换以以以后后后，，，其其其玻玻玻尔尔尔兹兹兹曼曼曼熵熵熵都都都不不不会会会减减减少少少！！！

假设通过某个绝热变换把系统从宏观态M变成了宏观态M ′(中途的过程

可以是非平衡的)，则上述结果告诉我们

SB(M) ≤ SB(M
′). (23)

我们可以说，宏观态M先于宏观态M ′(或者M ′后于M), 记作

M ≺ M ′, (24)

其含义就是，宏观态M ′是一个可从M出发经过绝热变换到达的宏观态。如

果反过来也成立，即同时有M ′ ≺ M , 就称M和M ′绝热等价，记作

M ∼ M ′. (25)

很显然，这时候必定有SB(M) = SB(M
′), 也即是说，如果两个宏观态

绝热等价，那么将它们联系起来的绝热变换就是可逆的。反过来，如

果M ≺ M ′, 但是两者并不绝热等价，则可以将两者的关系记作

M ≺≺ M ′, (26)

很显然，这时候必定严格有SB(M) < SB(M
′), 从而将两者联系起来的绝热

变换不可逆。
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因此，通过绝热变换可以在一个系统的所有宏观态的集合中引入一个偏

序关系≺。值得指出的是，绝热变换不一定是很“温柔”的(诸如推动一个

活塞或者什么的)，它也可以是很“暴力”的，如图(2)中所示的那样。

Figure 2: 通过一个“暴力”的绝热变换连接起来的两个热平衡态X和Y .

通过系统间的复合运算(即将两个系统相互接触，让它们构成一个更大

的复合系统), 我们可以将上述偏序关系≺推广到所有系统的所有宏观态的
集合(当然，所有这些系统都是热力学极限下的宏观系统)。不难验证，这

样的偏序关系满足如下性质：

1. 自反性：即M ∼ M。

2. 传递性：即如果M ≺ M ′, 且M ′ ≺ M ′′，则必有M ≺ M ′′。

3. 相容性：即如果M ≺ M ′，且N ≺ N ′，则必有M ×N ≺ M ′×N ′。这

是由于熵的可加性，即SB(M×N) = SB(M)+SB(N) ≤ SB(M
′)+SB(N

′) =

SB(M
′ ×N ′)。

4. 分裂与重组：即我们可以把系统M分裂成两个子系统的复合M1×M2,

或者反过来，把这样的两个子系统重组成一个大系统M。很显然，这样的

分裂和重组可以仅仅是看待整个系统的两种不同观点，所以当然是绝热可

逆的，从而必有M ∼ M1 ×M2。

热热热机机机效效效率率率

绝热变换概念的一个重要应用是用来研究热机效率。实际上，在历史

上，热力学熵的概念最早就是从卡诺对热机效率的研究中导出来的，反而
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玻尔兹曼熵的概念才是后来出现的，虽然从学科逻辑来说，玻尔兹曼熵才

是更具根本性的概念，这也是本书采用的逻辑。

热机的工作原理是从温度为T1的高温热库中提取能量，通过某种装置将

其中一部分能量转化为对环境所做的机械功，并将剩余的能量释放到温度

为T2的低温热库中。该装置以循环方式运行，也就是说，在整个过程结束

时，它回到其初始状态。循环装置包括两个热库一起，整个复合系统被封

闭在一个容器中，该容器只允许系统以纯机械方式与环境交换能量，例如

通过提升或降低一个宏观重物来实现。所以，热机的循环过程就是一种绝

热变换，因此每个循环完成之后，整个复合系统的熵不减。

由于工作物质是循环使用的，其状态必定会回到初始状态，所以一个循

环前后其熵变为零。换言之，一个循环前后整个系统的熵变完全来源于热

库的熵变。假设记循环之前高温热库的熵为S1, 循环之后的熵为S ′
1, 工作物

质从高温热库吸收的热量为Q1(即高温热库吸收的热量为−Q1), 从而即有

S ′
1 = S1 −

Q1

T1

. (27)

类似的，记循环之前低温热库的熵为S2，循环之后的熵为S ′
2，假设工作物

质向低温热库释放的热量为Q2, 则

S ′
2 = S2 +

Q2

T2

. (28)

利用绝热变换必须满足的

S1 + S2 ≤ S ′
1 + S ′

2, (29)

立即有

Q1

T1

− Q2

T2

≤ 0. (30)

假设每个循环系统向外做功为W , 从而

Q1 = Q2 +W. (31)

定义热机效率η为

η ≡ W

Q1

, (32)
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即每吸收一单位的热量能够向外做的功。不难看到，必有

η =
Q1 −Q2

Q2

= 1− Q2

Q1

≤ 1− T2

T1

. (33)

这个式子给出了热机效率的上限，其中等于号对于可逆热机才成立。

3 自自自由由由能能能

很多情况下，人们考察的系统(比如一块材料)都是放置在一个恒温环境

中，系统可以从环境中吸热，也可以向环境放热，但是由于环境非常巨

大，它从系统吸放热的过程可以近似看成是在平衡态下进行的，从而环境

的温度会保持不变。通常我们称这样的恒温环境为一个恒温热库，本节要

考察的就是这样的可以与恒温热库进行热交换的系统。

假设恒温热库的温度为T，其宏观状态记作MR。记与热库接触的系

统的宏观态为M , 因此整个复合系统(所考察的系统加上热库)的宏观态

为M ×MR。假设通过与热库的热交换系统的宏观态演化为M ′，热库的宏

观态演化为M ′
R, 换言之，假设系统与热库间的热交换使得整个复合系统的

宏观态演化为M ×MR → M ′ ×M ′
R。由于整个复合系统为孤立系统，所以

根据熵增加原理，必然有

SB(M
′ ×M ′

R)− SB(M ×MR) ≥ 0. (34)

根据玻尔兹曼熵的可加性，也即

δS + δSR ≥ 0, (35)

式中δS ≡ SB(M
′)− SB(M), δSR ≡ SB(M

′
R)− SB(MR)。

假设在上述过程中系统从热库中吸收了热量Q, 换言之，热库从系统中

吸收了热量−Q, 由于热库很大，其吸放热过程可以看成是可逆的，所以必

有

δSR = −Q/T. (36)

代入(35)式，即有

δS −Q/T ≥ 0. (37)
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又由于系统的能量守恒，其吸收的热量Q必定会转变为内能的增量δE = Q,

而内能的改变当然是因为宏观态的改变导致的，所以

δE ≡ E(M ′)− E(M). (38)

所以最终我们有δS − δE/T ≥ 0, 也即是

δE − TδS ≤ 0. (39)

代入δE和δS的定义式，即有

[E(M ′)− TSB(M
′)]− [E(M)− TSB(M)] ≤ 0. (40)

因此，给定系统的宏观态M，我们可以定义如下宏观量

F (M) ≡ E(M)− TSB(M). (41)

那么，(40)式告诉我们的即是：一个与热库接触的系统，其宏观态的演化

必定是朝着F (M)减少的方向进行的，即在M → M ′的宏观演化下，必定有

δF ≡ F (M ′)− F (M) ≤ 0. (42)

通常称F (M)为系统的自由能，称上述结论为自由能减少原理。

特别的，当这样的系统演化到热平衡态Meq时，其自由能必定取极小

值。很显然，这样的热平衡态Meq由热库的温度T，以及系统所处的力学条

件a唯一确定，不妨记作Meq(T, a)。进一步，我们可以记系统热平衡时的

自由能为F (T, a)

F (T, a) ≡ F (Meq). (43)

综合上述定义，并注意到系统虽然与热库接触但依然是“准孤立”的，

从而热平衡时系统的熵S可以看成是(E, a)的函数(或者反过来，热平衡时

系统的内能可以看成是(S, a)的函数)，从而即有

F (T, a) = E(Meq)− TSB(Meq) = extremS

[
E(S, a)− TS

]
, (44)
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式中extremS表示对变量S求极值，并且我们注意到了对于热平衡时的

熵，有T = ∂E
∂S

|a。从而由(21)式即可以得到dF = dE − SdT − TdS =

−SdT − J · da，即

dF = −SdT − J · da. (45)

自自自由由由能能能的的的含含含义义义

下面我们来考察一下自由能F (M)的物理含义。首先，给定系统的宏观

态M , 其总内能为E(M), 在这些内能中TSB(M)为热运动的能量，由于热

运动是无规则的，所以也称TSB(M)为内能中的无序能量。扣除这种无序

能量，剩下的F (M) = E(M) − TSB(M)就是自由能，所以自自自由由由能能能就就就是是是内内内

能能能中中中的的的有有有序序序能能能量量量。自由能减少原理告诉我们的就是，在一个恒温环境中，

系统的有序能量总是自发减少的！直至热平衡时，有序能量达到极小。

无序能量和有序能量的一个重要区别是，无序能量无法直接用来做功，

而有序能量可以。从这个角度来说，自由能也衡量了系统直接向外做功的

本领，在热平衡时这一本领是最低的。

能量的守恒会令人想到，我们想要多少能量就可以有多少。自然界永不

损失也不增殖能量。然而，例如海洋的能量，在海水里所有原子热运动的

能量，实际上是不能够被我们利用的。为了使得那种能量组织起来，集合

起来，以至于可以被我们所利用，需要存在一种温度上的差别，否则我们

将会发现虽然有能量而我们不能够利用它。能量与能量的可利用性之间存

在着巨大的差异。海水含有非常大量的能量，但无法被我们直接利用来做

功。能量的守恒意味着世界的总能量保持相同的数量。但在不规则的摇晃

之中，那种能量能够在某种情况下分布得那么均匀，使得没有办法使过程

朝某一方向而不是另一方向进行，没有办法对过程的方向实施任何控制以

向外做功，这些不规则摇晃的能量就是无序能量。

费曼曾经对这一困难给过一个很好的比拟：假设你拿着几条毛巾坐在

海滩难上，突然下起了倾盆大雨。你尽快地抓起那些毛巾，跑到更衣室里

去。于是你开始擦干你自己，然后你发现这条毛巾有一点湿了，但它还是

比你的身体要干。你继续用这一条毛巾擦身，直到你发现它湿透了它在擦

干你的同时也在打湿你，打湿的水分同擦干的一样多于是你就换另一条毛
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巾来用；过了不多久你就发现一件可怕的事情所有的毛巾都弄湿了，同你

一样湿。即使你有许多条毛巾，也没有办法变得更干了，因为那些毛巾湿

得同你自己一样，润湿的程度没有差别。人们可以发明一个量，比如把它

叫做“除掉水分的难易程度”。毛巾具有同你一样的除水难易程度，因而

当你用毛巾擦拭你自己的时候，从毛巾流向你的水分同从你流向毛巾的水

分一样多。那并不意味着在毛巾上和在你身上的水一般多条大毛巾比一条

小毛巾蓄存的水更多但它们具有同样的湿润程度。当样样东西都达到了相

同的湿润程度时，你做任何事情都是无济于事的。

现在，水就好像能量一样，因为水的总量是不变的。(如果更衣室的门

敞开着，并且你能够跑到阳光下面去晒干，那你就可以脱离困境了，但我

们假定所有东西都是关起来的，并且你不能够丢掉这些毛巾或者得到任何

新的毛巾。)同样地，如果你设想世界的一部分是封闭的，并且等待足够长

的时间，那么在世界上发生的各次偶然事件中，能量像水一样会均匀地分

布到所有各个部分，直到没有什么东西是单方向变化的了，世界上再也没

有什么我们经历到的东西会激起真正的兴趣了。这种最终的状态，就是孤

立系统的热平衡态。

对应于润湿度或者“除掉水分的难易程度”的那个量叫做温度，虽然我

们说当两个东西温度相同时就达到了平衡，那并不意味着两者所含的能量

相同；那只是意味着从一件东西提取能量是与从另一件东西提取能量同样

容易的。温度就像是一种“取用能量的难易程度”。因而如果你把两件这

样的东西靠着放在一起，表面上看来什么也没有发生；它们互相之间传递

等量的能量，但净的结果是零。因此，当每件东西都具有相同的温度时，

就再没有什么能量可以用来做任何事情的了。宏观不可逆性的原理是，如

果不同的东西处在不同的温度，并且让它们自己留在那里，那么在时间流

逝和过程中，它们就会变得越来越趋于同一温度，而能量的可利用性则总

是在减小。能量的可利用性总是在减小的！自由能减少原理正是对这一结

论的反映。
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