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你只见过杯子从桌子上摔下来，落在地上，碎成一地。但是，与之相

反的逆过程，地上的碎玻璃自动聚合起来，组合成一个完整的杯子并飞回

桌面，你从来没有见过。电影倒着放会引人发笑，因为所有人都知道银幕

上发生的一切不合常理。宏观世界是不可逆的，对此人们习以为常。然而

深研物理的那些人无不对此陷入深思，因为他们知道，宏观世界是由微观

粒子组成的，而微观粒子所满足的哈密顿力学方程却是时间可逆的。不是

吗，一个粒子受力在空中飞舞，拍成影片倒着放，依然是一个粒子在空中

飞舞，只不过粒子的动量反向了，粒子是在倒着飞，对此，没有人会发

笑，因为没有任何不合常理的地方。那么，为什么当粒子的数目到达阿伏

加德罗常数的宏观量级，即1023个的量级，倒放的电影就不合常理了呢？

微观世界的可逆性如何转变成宏观世界的不可逆性了呢？

此问题之所以重要，因为它牵涉到过去和未来的区别如何产生。微观世

界时间可逆，因此微观粒子不会感受到过去和未来有任何区别，过去和未

来的区别完全是宏观世界的现象，虽然它对于我们人类这样的宏观物体来

说是如此根本。对于宏观世界而言，时间只能从过去走向未来，不能反过

来，否则，即使只是电影，也足以使我们发笑。那么，这个区别是如何产

生的呢？

这个问题最容易在经典力学和经典统计力学的框架下澄清。为此假设

我们考虑一个由N个粒子所构成的孤立系统S，所谓孤立系统，即指这些
粒子与外界没有相互作用，包括没有物质和能量的交换。这里N当然要是

一个超过1023量级的宏观数目。实际上，N如此之大，以至于我们可以认

为系统中每一个宏观小局部中都还包含了大量的微观粒子，有时候也称这

1



样的宏观小局部为“物理小”，即宏观上看很小，但微观上看其实依然很

大。这种物理小局部的存在反映了本问题的一个核心特征，即在宏观尺度

与微观尺度之间存在一个“天堑”！

1 基基基础础础知知知识识识

记系统S的微观状态为X, 它由系统中各粒子的位置和动量刻画，即X =

(x1,p1,x2,p2, · · · ,xN ,pN), 式中xi为i粒子的位置矢量，pi为其动量。系统

所有可能微观状态所构成的空间称作相空间，记作M, 因此X就是M中的
点。很显然，M是一个6N维空间，由于N是一个巨大的数字，所以M是
一个极端高维的空间。

系统的微观动力学可以由如下哈密顿正则方程描述

dxi

dt
=

∂H

∂pi

,
dpi

dt
= −∂H

∂xi

. (1)

其中H(X)为系统的哈密顿量，也就是总能量，通常具有如下形式

H(X) =
N∑
i=1

p2
i

2mi

+ U(x1,x2, · · · ,xN), (2)

这里U为粒子间的相互作用势能。哈密顿正则方程的解描述的就是系统在

相空间中的演化过程。

对于某个任意的初始条件X0, 记哈密顿正则方程相应的解为Xt =

(· · · ,xi(t),pi(t), · · · ), 它描述的是一条从X0点发出的相轨迹。我们可以抽

象地把这个解简记为

Xt = gtX0, (3)

式中gt称作相流，它是一个抽象的运算，gt作用在初始相点X0上，即得

到t时刻的相点Xt, 换言之，gt的抽象作用所产生的，就是系统在相空间的

时间演化。很显然，g0应该是一个恒等作用，不妨记作

g0 = 1. (4)
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假设我们把时间平移一下，从s时刻开始演化一段时间t(即演化到t + s时

刻)，则应该有Xt+s = gtXs = gtgsX0, 另一方面，我们也可以直接从0时刻

演化到t+ s时刻，从而有Xt+s = gt+sX0, 两者一比较，即有

gtgs = gt+s. (5)

特别的，gtgs = gsgt。也即是说，相流gt是相空间的一个单参变换群，而且

是一个阿贝尔群，群的乘法由相流的抽象作用决定。

记相空间的体积元为

dX ≡
N∏
i=1

d3xid
3pi

(2π~)3
, (6)

式中常数~的引入是为了使得整个体积元无量纲化(它实际上就是普朗克常

数)。则，著名的刘维尔定理告诉我们

dXt = dX0, (7)

即在相流的作用下，相空间体积元保持不变！关于这个定理的证明，请读

者参阅统计物理的教科书。

假设我们在相空间中任取一个区域D0, 记它的体积为Vol(D0)，并记在

相流的作用下，这个区域在t时刻演化成Dt, 即Dt = gtD0, 则刘维尔定理告

诉我们

Vol(Dt) = Vol(D0). (8)

即在时间演化之下，相空间的体积保持不变。这是因为

Vol(Dt) =

∫
Dt

dXt =

∫
D0

det(
∂Xt

∂X0

)dX0 =

∫
D0

dX0 = Vol(D0). (9)

式中我们注意到，由于刘维尔定理的(7)式, 雅可比行列式det( ∂Xt

∂X0
)其实等

于1。

现在考虑t → −t的时间反演，我们记微观状态X的时间反演态为X。很

显然，在时间反演之下，粒子的动量会反向，即pi → −pi, 从而

X = (x1,−p1,x2,−p2, · · · ,xN ,−pN). (10)
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从(2)式不难看出，系统的哈密顿量是时间反演不变的，即满足

H(X) = H(X). (11)

进而不难看出，哈密顿正则方程(1)也是时间反演不变的！这正好说明系统

的微观动力学具有时间可逆性。

假设在t0时刻取系统的一个微观态Xt0，让它演化一段时间τ , 则会得

到t0 + τ时刻的微观态Xt0+τ。微观动力学的可逆性意味着，假设我们

在t0 + τ时刻反转所有粒子的动量，进而得到Xt0+τ , 然后让系统接着再演

化一个τ时间，则系统将逆向演化，最终t0 + 2τ时刻的微观态正好回归

到Xt0。

直直直观观观的的的道道道理理理

设想一个密闭的刚性盒子，里面装有6个微观粒子，盒子正中有一张隔

板将盒子均分成两半，初始时这6个粒子都处于左边那半。现在，将中间的

隔板移开，那么这6个粒子由于相互之间的碰撞以及与盒壁的碰撞，就会逐

渐地从左半边盒子扩散到右半边。然而，如果你有一点耐心，那么不需要

等上几天，你就能发现，偶尔的，这6个粒子也会全部跑回左半边盒子。

也即是说，如果粒子的数目不多，那么扩散过程就是可逆的。但是，如果

粒子的数目达到1023个，那么你就只会观察到粒子从左边扩散到右边，即

使你等到天荒地老宇宙毁灭，也不会见到所有的粒子又自动跑回左半边盒

子。因此，对于宏观数目的粒子，扩散过程就不可逆了。

少数几个粒子和宏观数目的粒子为什么会引起这么大的区别呢？简单的

回答是，这是一个概率问题，碰撞着的粒子总有概率从分布于整个盒子跑

回到左半边盒子，问题是，如果粒子数目很少，那么这个概率是可观的，

以至于你无需等上几天就能观察到这个现象。但是，如果粒子的数目达

到1023个，那么这个概率将极端接近于零，大约在2−1023量级(每个粒子都

有1
2
= 2−1的概率回到左边), 因此，即使你等到宇宙毁灭，也不会有机会观

察到它发生一次。特别的，在N → +∞的所谓热力学极限之下，相应的概
率将无限接近于零，这时扩散过程就变成100%不可逆的。

下面我们要做的，就是按照玻尔兹曼的思路，将这个关于微观可逆性与

宏观不可逆性的直观道理发展成一个系统的理论。
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2 宏宏宏观观观不不不可可可逆逆逆性性性的的的起起起源源源

考虑黑白两种不同颜色的墨水分别占据一个密闭盒子的左右两半，移开中

间的隔板让两种墨水扩散混合的过程。如图(1)是对这个过程的四张快照，

我们的任务是，判断这四张快照的时间顺序。

Figure 1: 墨水扩散混合过程的四张快照。墨水是在一个密闭盒子里，左右

两半墨水的颜色不同。

任何一个有生活经验的人都很容易判断出，这四张快照的正确时

间顺序是从a到d, 即a → b → c → d。因为我们从来没有见过相反的

顺序。然而，正如前文所说，微观墨水分子的运动其实是可逆的，如

果a → b → c → d的顺序可以发生，那么把所有墨水分子的运动方向反过

来，就会有相反的d → c → b → a的顺序同样可以发生。那么我们为什么

没有见过混合均匀的两种墨水分子自动分离的这种逆过程呢？
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记墨水分子系统的微观状态为X，很显然，图(1) 中的快照不能完

全地刻画X，快照只是对X的粗略刻画，我们称之为系统的宏观态，记

作M(X)，表示与微观态X相对应的系统宏观状态。完全可以设想很多微

观细节不同甚至差异甚大的系统微观态X所拍出来的快照是分辨不出差异

的，从而对应同一个宏观态M。比方说，快照无法分辨每一个物理小局部

的微观细节。再比方说，很显然，快照不能反映墨水分子的运动方向，

因此在我们这个快照的例子中，X和X所对应的宏观态必定相同，也即是

说M(X)是时间反演不变的。

总之，我们通过快照来定义系统的宏观态，一张快照对应很多不同的

微观态，根据这个定义，宏观态M当然就可以等等等同同同为为为相空间M的某个子
集，记作M ⊂ M，对应于同一张快照的所有微观态X就构成这个子集的

所有相点。而且由于M时间反演不变，所以我们可以把M中任何互为时间

反演的一对微观态分别归入子集M+和M−中，进而即可以把M进一步分解

成M+和M−的并，M = M+ ∪M−，其中M+和M−互为对方的时间反演，

即M− = M+。如何用数学语言精确地指定快照所对应的宏观态(子集)M是

一个问题，不过，只要宏观尺度与微观尺度之间存在巨大的差异，那么

我们对宏观态M的时间演化所做的所有定性描述，其实都与其精确指定无

关。

假设t1时刻的宏观态M1在t2 = t1 + τ时刻演化成宏观态M2, 这句话的

含义是什么呢？含义是，在宏观态M1中有某个微观态X ∈ M1, 如果让

系统从这个微观态开始演化一段时间τ , 记所得的微观态为Y , 那么，Y属

于t2 = t1 + τ时刻的宏观态M2, Y ∈ M2(注意，按照微观动力学进行演化的

永远只有微观态)。不妨设X ∈ M+
1 , Y ∈ M+

2 。则根据微观动力学的可逆

性，假设我们在t2时刻从微观态Y ∈ M−
2 ⊂ M2出发，让系统接着再逆向演

化一个τ时间，最终的微观态将正好回归到X ∈ M−
1 ⊂ M1。因此，根据微

观动力学，前面四张快照Ma,Mb,Mc,Md的时间顺序完全是可逆的，可以

是Ma → Mb → Mc → Md, 但只需要将所有墨水分子的动量反过来，完全

也可以是Md → Mc → Mb → Ma。

所以，我们对四张快照时间顺序的确定并不是根据微观动力学，而

是根据我们的经验，Ma → Mb → Mc → Md的顺序符合我们的经验，

而Md → Mc → Mb → Ma的顺序我们从来没有见过，即使从微观动力学的
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角度它同样可能。要回答的问题是，我们何以有此经验？

为了回答这个问题，我们先试着弄清楚一个宏观态M中具体包含的微

观态数目ΓM有多少？很显然，这可以用集合M的相空间体积Vol(M)来衡

量，即

ΓM ≡ Vol(M). (12)

比如对于上面四张快照中的Ma和Md, 由于在Ma中每个墨水分子的运动范

围是盒子的一半，而在Md中每个墨水分子的运动范围是整个盒子，根据相

空间体积的定义(其中需要对每个粒子占据的空间范围积分)，不难看出

ΓMd
/ΓMa ∼ 2N ∼ 210

23

. (13)

也即是说，宏观态Md中所包含的微观态数目远远大于宏观态Ma中所包含

的微观态数目。类似的讨论告诉我们，顺着Ma → Mb → Mc → Md的时间

顺序，宏观态序列所包含的微观态数目是不断增加的，而且每一步都是天

文倍数地增加！

那么，为什么我们日常经验看到的时间顺序总是沿着微观态数目不断增

加的方向呢？简单的回答是，这是一个概率问题。为了说清楚这个回答，

不妨让我们假设前面的四张快照是每间隔一个τ时间所拍摄的，记Ma快照

的拍摄时刻为ta，则Md快照的拍摄时刻就是td = ta + 3τ。为了一般性地考

察宏观态Ma的演化，我们可以按照微观动力学演化其中一个任意的微观

态Xa ∈ Ma，比方说经过一段3τ时间演化到td时刻，进而得到微观态g3τXa,

如果这个微观态属于Md，那我们就把宏观态Ma演化到了Md, 但是如果微

观态g3τXa不属于Md，那宏观态Ma在td时刻就没有演化到Md。

问题就在于，Ma演化到Md的概率pa→d有多大？很显然，这个概率由所

有Xa ∈ Ma, 相应g3τXa ∈ Md的概率决定！作为估算，可以认为这个概率大

约是(g3τMa) ∩Md的相空间体积与(g3τMa)的相空间体积之比，即

pa→d =
Vol(g3τMa ∩Md)

Vol(g3τMa)
. (14)

另一方面，根据刘维尔定理Vol(g3τMa) = Vol(Ma), 而前面我们估算

过Vol(Ma) ∼ 2−NVol(Md), 所以Md是一个远远比(g3τMa)“大得多”的
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集合，从而不难设想当N很大时，(g3τMa)几几几乎乎乎完全被包含在Md之内，因

此g3τMa ∩Md非常接近于g3τMa本身。从而即有

pa→d =
Vol(g3τMa ∩Md)

Vol(g3τMa)
≈ Vol(g3τMa)

Vol(g3τMa)
=

Vol(Ma)

Vol(Ma)
= 1. (15)

也即是说，当粒子数目N很大时，宏观态Ma演化到宏观态Md的概率非常

接近于1。类似的讨论也能进一步告诉我们，当N很大时，系统宏观态按

照Ma → Mb → Mc → Md演化的概率非常接近于1。

为了完满地回答问题。我们还需要解释为什么逆向的Md演化到Ma的

概率非常接近于零。要逆向演化到Ma，我们需要掉转g3τMa ∩ Md中那些

微观态的动量方向，换言之，只有(g3τMa) ∩ Md中的微观态才能逆向演

化到Ma。前面说过，(g3τMa)几几几乎乎乎完全被包含在Md之内, 由于Md时间反演

不变，所以(g3τMa)也几几几乎乎乎完全被包含在Md之内，所以(g3τMa) ∩ Md几乎

和(g3τMa)“一样大”。问题是，(g3τMa)∩Md中的这些微观态在所有Md的

微观态中是非典型的！换言之，当我们观察到系统处于宏观态Md时，其典

型的微观态不太可能处在(g3τMa) ∩Md之内，处在这个之内的概率大约为

Vol((g3τMa) ∩Md)

Vol(Md)
≈ Vol((g3τMa))

Vol(Md)
=

Vol(g3τMa)

Vol(Md)
=

Vol(Ma)

Vol(Md)
∼ 2−N ∼ 2−1023 .

可见，当N为宏观数目时，这个概率非常接近于0。但是，这个概率就是宏

观态Md逆向演化到Ma的概率啊。正因为宏观态这个逆向演化的概率如此

之低，所以你哪怕等到天荒地老宇宙毁灭也不会等到它的发生！

特别的，在N → +∞的热力学极限下，宏观态逆向演化的概率将趋于
零，从而我们只能观察到沿着微观态数目增加方向的正向演化！(对于前

文的墨水系统，也就是只能观察到Ma → Mb → Mc → Md的宏观态时间顺

序。) 玻尔兹曼进一步把这个结论与熵增加原理联系起来，对于宏观态M ,

玻尔兹曼定义

SB(M) = kB log(ΓM), (16)

称之为玻尔兹曼熵。因此宏观态的演化总是沿着相应微观态数目增加的方

向就相应于总是沿着熵增加的方向，这就是熵增加原理。

回到我们的墨水系统，上面的分析也告诉我们，如果墨水分子数目不太

大，逆向演化就完全是可能的，尤其是当你把快照d中所有分子的动量都
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反向，那它就会开始逆向演化，混合均匀的墨水分子会开始自动分离。问

题是, 将动量进行逆向不可能做得无限精确，免不了有误差，而只要有一

点误差，其逆向演化就不精确了，是的，如果误差很小，混合均匀的墨水

分子还是会进行一段时间的自动分离，但是，这个时间不会很长，之后随

着分子间的碰撞，分子动量反向的效果就会完全被打乱，系统又开始正向

演化。而且，墨水分子的数目越大，那么将分子动量反向以后的这个逆向

演化时间就持续得越短，如果N → 0，那逆向演化持续的时间将趋于零(只

要动量反向时有无限小的误差)，换言之，在热力学极限下，系统根本不可

能进行逆向演化。

3 相相相空空空间间间的的的分分分形形形结结结构构构与与与熵熵熵增增增加加加原原原理理理

前面说到，逆向演化之所以极端罕见的原因，在于(g3τMa) ∩Md中的点在

集合Md之内是非典型的。本节的目的就是加深对这种非典型性的理解。为

此，我们还是一般性地考察N个相互作用粒子所构成的孤立系统S。
假设系统各粒子间的相互作用足够，以至于会产生混沌动力学。因此，

系统在相空间中的演化将对初始条件极端敏感，从而，相空间两个邻近的

初始相点，在相流的作用下一般来说会迅速地相互远离。结合前面关于刘

维尔定理的推论，即有: 给定相空间的一个初始小区域D0(比如一个小球

体)，在时间演化之下，由于对初始条件的极端敏感，它在某些方向上将被

拉伸(这些方向上的邻近点在相互远离)，而又由于总体积要保持不变，它

在其它方向上就必定会被压缩，而且拉伸以后的部分还可能会发生弯折、

扭曲等一系列形变。

由于我们是在一个相对于日常生活的宏观时间尺度来说很小，但是相

对于系统微观过程的典型时间来说却很长的时间尺度τ上追踪系统演化过

程的。所以，经过了一段固定的时间τ之后，Dτ = gτD0就会被拉扯成如

图(2)所示的八爪鱼形状，其中每一条爪都被拉扯得很细长。而且由于我

们所考察的相空间是一个极端高维的空间，所以与图中所示的两维情况不

同，实际可以拉伸的方向是很多的，八爪鱼Dτ的细长爪子其实非常多。

进一步，我们可以考察D2τ , 由于它是相流gτ作用在Dτ上的结果，

即D2τ = gτDτ , 所以D2τ必定是由前一步的八爪鱼Dτ再进行一个和上面类
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Figure 2: 相空间区域D0在gτ作用下变成Dτ。

似的拉扯的结果。具体来说，就是把Dτ的每一个局部区域都进一步拉扯

成和上面类似但是更小、爪子更细一些的八爪鱼。完全类似的道理，由

于Dnτ = gτD(n−1)τ , 所以，在时间演化的第n步(即nτ时刻)所产生的相空间

结构，其实是在第n− 1步的相空间结构的基础上再进行一个类似的拉扯而

得到，这个拉扯会把D(n−1)τ的每一个局部区域拉扯成更小、爪子更细的八

爪鱼。整个这个过程其实就是一个所谓的分形迭代过程。现在，请大家停

下来尽力想象一下，当这个迭代过程无限进行下去，我们最终得到的相空

间结构D+∞将会是什么？

对，我们将得到一个相空间“恶魔”，它有无数条无限细的爪子，这些

爪子密密麻麻地相互纠缠着，像一个剪不断理还乱的毛线球一样，塞满了

相空间的所有可达区域。或者我们也可以换一个比喻，相空间的整个可达

区域就像一杯水，最初的D0就像滴入水中的一滴墨，随着时间的演化，它

会在水中纤维化(伸出细爪)、拉伸、扭曲，最后逐渐均匀地弥漫到整杯水

中。是的，所有墨水的总体积依然和最初的墨滴一样，但是这些墨水变成

了弥漫在整杯水中的无限精细的结构。D+∞就是一个这样的无限精细的相
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空间结构。

然而我们的观测能力是有限的，我们无法识别这样的无限精细的结构，

就好像我们无法识别出最终弥漫在水中的墨的精细结构一样，对于我们来

说，这些墨就像是均匀地布满了整杯水。同样，对于我们来说，D+∞就像

是均匀地布满了相空间的所有可达区域。

更精确地说，在相空间中，我们无法识别足够精细的结构，而只

能把这相空间切分成足够小的但是体积有限的“像素”，在一个“像

素”之内的D+∞精细结构因为无法识别而要被模糊掉。正是在这样

的模糊之后，D+∞才像是均匀地布满了相空间的所有可达区域。不妨

记D̃+∞为D+∞“像素模糊”之后的结果，很显然D̃+∞的体积Vol(D̃+∞)就

不再是最初的Vol(D0)了(它现在布满整个相空间可达区域了), 而是相对于

它大大膨胀了！实际上，D+∞内的点在D̃+∞中就是非典型的！

不仅如此，即使在有限时间，比如Dnτ中，也会包含一些很精细的相空

间结构，它是从D(n−1)τ中那些八爪鱼爪子的细小尖端进一步拉扯而来的。

从这里也能看清为什么τ应该是一个相对于微观过程足够长的时间尺度，

因为否则在相流gτ的作用下就还来不及使得Dnτ相比于D(n−1)τ进一步拉扯

出新的精细结构。

总之，“像素模糊”对于Dnτ同样也有影响，只是由于Dnτ的精细结构

没有D+∞那么多，所以“像素模糊”对它的影响相对少一点。直观上很显

然的是，随着n的增长，Dnτ中的精细结构会越来越多，因此“像素模糊”

对它的影响也就越来越大，“像素模糊”导致的体积膨胀也就越来越大。

假设记D̃nτ为Dnτ像素模糊之后的结果。则D̃nτ的体积相对于Dnτ来说也是

大大膨胀了的，Dnτ内的点在D̃nτ内往往也是非典型的。直观上比较显然的

是，Vol(D̃nτ )应该是n的增函数，即

· · · < Vol(D̃(n−1)τ ) < Vol(D̃nτ ) < · · · < Vol(D̃+∞). (17)

也即是说，在“像素模糊”以后，随着时间的增长，相空间区域的体积总

是在不断膨胀的(实际上，由于N是一个宏观数目，所以每一步的体积膨胀

其实都是天文倍数)。

对于一个宏观系统，假设从一个足够小的初始区域D0出发，那么

大体上区域D̃nτ内的所有状态在宏观上看起来都一样，大体上是系统

同一宏观状态Mn所对应的所有不同微观状态，因此Vol(D̃nτ )大体上就
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是此宏观状态所对应的微观状态数目ΓMn。进而玻尔兹曼定义的SB =

kB log
(
Vol(D̃nτ )

)
就是此宏观状态的玻尔兹曼熵。基于上面这个关于相空间

区域体积膨胀的观察，我们可以把这种体积膨胀现象解释成熵增加定律。

特别的，最终熵最大的D̃+∞所对应的系统宏观状态就是热平衡态。

4 然然然而而而，，，引引引力力力是是是不不不一一一样样样的的的

不同颜色的墨水会逐渐混合均匀，看起来这就是世界演化的一般方向，世

界会逐渐变得越来越混合、越来越均匀。然而，在比日常宏观更大的尺度

上这必定是不对的，因为我们的宇宙已经诞生一百多亿年了，然而，它并

没有变得越来越均匀，越来越混合，相反，星系团诞生了，星系诞生了，

恒星诞生了，甚至，人类这样的生命也诞生了！所以，在宇观的尺度上，

世界并没有变得越来越混合与均匀，即使我们并没有什么理由反对在宇观

尺度上使用熵增加原理。

为什么会这样呢？准确的回答是，人类还没有完全了解清楚。但是，我

们知道，在宇观的尺度上，我们需要考虑万有引力，而一个包含了万有引

力的系统和我们之前考虑的单纯的多粒子系统有根本性的不同。比方说，

你设想一个大气团，气体之间通过万有引力相互作用，现在，很偶然的，

某个地方的气体密度稍微增加了一点，因此它对周围气体的吸引也就增加

了，所以这个地方的气体密度就会进一步增加。所以你看，考虑了万有引

力以后，气团不会变得越来越均匀，反而是会把偶然的涨落放大成不均匀

的局部成团结构。实际上，这种不稳定的放大机制就是星系形成的原因。

引力会不会有熵的概念呢？回答是有。比方说，我们今天已经知道黑

洞可以定义一个贝肯斯坦-霍金熵，它正比于黑洞的表面积。根据熵增加原

理，一团物质通过引力塌缩形成黑洞，这个过程熵必定是增加的，最终当

它形成一个稳定的黑洞时，熵会达到最大，但是，这个贝肯斯坦-霍金熵是

正比于表面积，而不是像通常物质的熵那样正比于体积！

贝肯斯坦-霍金熵的微观解释是什么呢？回答是，目前还没有彻底搞清

楚。所以你看，一旦涉及到引力，情况就完全不同了，我们还不太了解如

何一般性地考虑引力的熵，也没有了解清楚引力的不稳定性机制如何与熵

增加原理相协调一致。看起来这里发生的情况有点儿类似于软物质系统里
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常常发生的熵致有序现象，即，整个系统总的熵的确在增加，但是，为了

实现这种熵增加，反而要从均匀的宇宙汤中产生不均匀的星系结构这种有

序结构。当然，具体到底是怎么回事，目前人们还没有搞清楚。

5 有有有诗诗诗为为为证证证

《时间之箭的低语》

你见过杯子坠落，碎成千万片，

却从未见过碎片跃起，重聚为杯。

银幕倒放令人发笑――

因为时间，只朝一个方向奔流。

可若你俯身，窥见那微观的尘埃，

每一粒都循着可逆的律动：

动量翻转，轨迹回溯，

过去与未来，在方程中对称如镜。

为何亿万粒子齐舞，

却再不能逆演那初态？

不是定律禁止，

而是概率将门紧闭。

一个墨滴落入水中，

初时分明，继而弥散；

相空间里，它伸展出亿万细爪，

如幽灵之网，缠绕整个宇宙。

你无法分辨那无限纤细的结构，

只能看见“模糊”后的均匀；

于是熵，悄然生长――
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不是命运，而是多数的沉默。

玻尔兹曼低语：

“熵，是微观态数目的对数。”

于是无序，成了时间之箭的羽翎，

指向那最可能的终局。

然而，引力冷笑：

“宇宙并未混匀，反而生出星辰、山河、你我。”

在引力的疆域，

有序竟成熵增的仆从。

于是我们明白：

宏观的不可逆，

并非源于微观的法则，

而是源于初始的偶然，

与观测的有限。

时间之箭，

不在方程里，

而在我们――

这由1023粒子组成的、会提问的尘埃之中。
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