
玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程

陈陈陈童童童

September 11, 2025

Contents

1 玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程的的的导导导出出出 3

1.1 约化的分布函数 . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 玻尔兹曼方程的导出 . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 细致平衡与平衡 . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 量子玻尔兹曼方程 . . . . . . . . . . . . . . . . . . . . . . . . 9

2 H定定定理理理 10

3 从从从玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程到到到流流流体体体力力力学学学 15

3.1 矩方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 零阶近似 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 一阶近似 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



在前面的章节中，我们主要关心的是热平衡态的统计物理。然而，系统

是怎么演化到热平衡态的呢？这显然是一个重要且有意思的问题，为了回

答这个问题，原则上我们首先需要求解描述相空间概率分布动力学演化的

刘维尔方程，然后再对结果进行相空间粗粒化。然而对于一个宏观系统，

由于其包含了天文数目的微观粒子(1023级别)，从而刘维尔方程是一个自变

量个数为天文数字的偏微分方程，这使得这种求解实际上是不可能的。更

何况，刘维尔方程描述的是系统微观状态的精细演化，这实际上与我们真

正关心的系统的宏观表现不直接相关，换句话来说，刘维尔方程包含了太

多不相关的信息，为了从中提取出相关的信息，前面我们介绍的办法是进

行相空间粗粒化。然而，如果我们研究的系统是稀薄气体，那么玻尔兹曼

还曾经提出过另一个著名的办法，它不仅可以大大约化刘维尔方程的自变

量数目，而且能够有效提取出系统宏观演化的相关信息。这就是著名的玻玻玻

尔尔尔兹兹兹曼曼曼方方方程程程。介绍这个主题将是本章的核心内容。

玻尔兹曼想象大量气体分子在相互碰撞，热平衡时气体分子的速度分布

满足麦克斯韦速度分布律，也就是麦克斯韦-玻尔兹曼分布(第二章中我们

用系综理论导出过这个分布)。然而，碰撞是会改变分子速度的，所以玻尔

兹曼问：热平衡时，气体分子之间的碰撞为什么不会破坏麦克斯韦-玻尔兹

曼分布？以及，假设从一个任意的速度分布出发，分子间的碰撞是如何使

得系统最终趋于热平衡时的麦克斯韦-玻尔兹曼分布的？为了回答这两个问

题，玻尔兹曼在1872年导出了他著名的方程，并证明了著名的H定理。

玻尔兹曼方程是气体动理论的一座高峰。气体动理论的历史始于17世

纪，当时托里切利、帕斯卡和波义耳首次确立了空气的物理性质。通过实

验和理论推理，他们说服其他科学家：地球被一片“空气之海”所包围，

这种空气像水一样施加压力[堪称伟大的科学想象]，并且空气压力是许多

先前被归因于“自然厌恶真空”现象的原因。这一关于空气压力概念的发

展最终导致人们认识到空气是由大量分子组成的，空气的物理性质可以从

微观分子的运动和碰撞来理解。这种观念转变最终导致了以伽利略、波义

耳、牛顿等人为代表的“机械-微粒论”自然观的形成。
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1 玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程的的的导导导出出出

1.1 约约约化化化的的的分分分布布布函函函数数数

考察N个全同粒子所构成的系统，记其刘维尔绘景下的相空间概率密度

为ρt(q1,p1,q2,p2, ...,qN ,pN), 式中qi为第i个粒子的位置矢量，pi为其动

量。全同粒子的性质告诉我们，在N个粒子的任意重排操作之下，相空间

概率密度ρt保持不变。ρt包含了整个系统所有的微观状态信息，然而对于

有些目的而言，其实我们用不到这么多信息，为了提取出真正相关的信

息，我们引入下面的一些定义。

首先，单粒子密度是指t时刻在位置q和动量p处发现N个粒子中任何一

个的期望值，它由下式给出

f1(q,p, t) = ⟨
N∑
i=1

δ3(q− qi)δ
3(p− pi)⟩ρt

=

∫
dµN−1ρt(q,p,q2,p2, ...,qN ,pN), (1)

式中dµN−1 ≡ 1
(N−1)!

∏N
i=2

d3qid
3pi

(2π~)3 ，注意，对于全同粒子系统，整个相空

间的体积元为dµN = 1
N !

∏N
i=1

d3qid
3pi

(2π~)3 。上式第二行利用到了相空间概率

密度在粒子的任意重排之下保持不变。利用ρt的归一化条件，不难看

出f1(q,p, t)的归一化条件为∫
dµ1f1(q,p, t) = N. (2)

也即是说f1(q,p, t)描述的是：在空间q点统计到的动量为p的粒子数的相空

间密度。特别的，麦克斯韦速度分布函数就是这样的一个单粒子密度。

类似的，也可以定义两粒子密度，为

f2(q1,p1,q2,p2, t) =

∫
dµN−2ρt(q1,p1,q2,p2, ...,qN ,pN). (3)

其归一化条件为∫
dµ2f2(q1,p1,q2,p2, t) =

N !

2!(N − 2)!
. (4)

相比于单粒子密度，两粒子密度包含了两个粒子之间的关联！依此类推，

可以定义任意n粒子密度，这里不再赘述。
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系统的动力学演化完全由哈密顿量决定，假设这个哈密顿量为

H(µN) =
N∑
i=1

H1(qi,pi) +
∑
i<j

U(qi − qj), (5)

式中H1(q,p) =
p2

2m
+ V (q)为单体哈密顿量，V (q)为外势场(它同等地作用

在所有粒子上)，U(qi − qj)为两体相互作用势能，为了简单起见，我们假

定粒子之间的相互作用均为两体作用。

根据ρt所满足的刘维尔方程
∂ρt
∂t

= {H, ρt}原则上我们能够推导出任
意n粒子密度所满足的动力学方程，结果表明，这是一组级联方程

组，也就是单粒子密度的演化依赖于两粒子密度，而两粒子密度的演

化又依赖于三粒子密度，依此类推。这就是所谓的BBGKY级联方程

组(Bogoliubov、Born、Green、Kirkwood and Yvon hierarchy)。不过，由

于粒子数N是一个宏观天文数字，所以解这样的级联方程组显然是不现实

的，因此我们这里就不具体讲述这个推导过程了，至于结果读者也很容易

查到，比如问人工智能。真正有意思的是，如果将这个级联方程组适当

地截断，使得单粒子密度成为一个自决定的方程，那就可以求解了。这

样做的结果就会得到著名的玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程。不过，玻尔兹曼本人并不是

通过这种绕了一大圈的办法得到其方程的，同样，由于我们也没有具体

推导BBGKY级联方程组，所以我们也不采用这种办法来导出玻尔兹曼方

程，这里只是提一下，关心这种推导方式的读者请自行参阅相关材料。

1.2 玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程的的的导导导出出出

现在我们主要关心单粒子密度f1(q,p, t), 我们想在某些近似条件下得到关

于它的一个封闭的方程。首先，我们注意到如果忽略粒子间的相互作用势

能，那么很显然，f1(q,p, t)作为单体分布当然会按照单体哈密顿量H1所决

定的刘维尔方程进行演化。我们可以把粒子间的相互作用看作是对这种单

体演化的修正，进而有

∂

∂t
f1 = {H1, f1}+

(∂f1
∂t

)
coll

, (6)

等式右边第一项是单体演化，第二项
(

∂f1
∂t

)
coll
代表粒子间的相互作用对单

体演化的修正。
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对于稀薄气体系统，我们注意到三个或者三个以上粒子同时发生碰撞的

概率是非常低的，因此可以近似认为粒子间的碰撞都是两体碰撞，其碰撞

截面完全由两体相互作用势能决定。同时，我们注意到有两个时间尺度：

第一个尺度是粒子在相邻两次碰撞间的飞行时间τ，也称作弛豫时间；第

二个尺度为两粒子碰撞过程的有效时间τcoll。现在，对于稀薄气体我们有

τ ≫ τcoll. (7)

因此，单粒子密度f1主要在进行单体演化，只是偶尔地被粒子间的碰撞所

扰动，这种两体间的散射就体现在修正项
(

∂f1
∂t

)
coll
上。

假设一个位于单体相空间(q,p1)点的粒子与一个位于(q,p2)点的粒

子发生碰撞，为了简单起见，我们假设宏观上看起来粒子的大小可以

忽略，而且两粒子间的相互作用力是一种微观短程力，以至于宏观上

看起来，这种碰撞局域性地发生在空间点q。由于两粒子的碰撞过程

是微观的，不妨设想可以用量子力学的散射过程来理解。假设单位时

间之内这两个粒子发生散射并跃迁到动量分别为p′
1和p′

2的末态的概率

为ω(p1,p2 → p′
1,p

′
2)

d3p′
1

(2π~)3
d3p′

2

(2π~)3 , 其中
d3p′

1

(2π~)3
d3p′

2

(2π~)3为末态态密度。则单位时间

之内位于(q,p1)点的粒子发生这种两体碰撞的次数就由这个概率乘上符合

碰撞条件的粒子对数目决定，从而可以写成

ω(p1,p2 → p′
1,p

′
2)f2(q,p1,q,p2, t)

d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
. (8)

我们称这种碰撞为正散射，因为它会导致位于(q,p1)点的粒子数减少，很

显然，正散射导致的单位时间之内(q,p1)点粒子数的变化率为

−
∫

ω(p1,p2 → p′
1,p

′
2)f2(q,p1,q,p2, t)

d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
, (9)

之所以要积分，是因为我们要把所有能导致(q,p1)点粒子数减少的正散射

都考虑进来。

但是，与此同时，还存在p′
1,p

′
2 → p1,p2的逆散射，而它会导致(q,p1)点

的粒子数增加。完全类似的考虑告诉我们，逆散射导致的单位时间之

内(q,p1)点粒子数的变化率为

+

∫
ω(p′

1,p
′
2 → p1,p2)f2(q,p

′
1,q,p

′
2, t)

d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
. (10)
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进一步，我们假设散射过程满足时间反演不变性和空间反演不变性。在

时间反演之下，p → −p, 同时，时间反演会把初态变成末态，末态变成初

态，从而时间反演不变性意味着

ω(p1,p2 → p′
1,p

′
2) = ω(−p′

1,−p′
2 → −p1,−p2). (11)

而在空间反演之下，(q,p) → (−q,−p), 所以空间反演不变性意味着

ω(p1,p2 → p′
1,p

′
2) = ω(−p1,−p2 → −p′

1,−p′
2). (12)

两种对称性联合起来，即有

ω(p1,p2 → p′
1,p

′
2) = ω(p′

1,p
′
2 → p1,p2), (13)

不妨记最后的结果为ω(p′
1,p

′
2 | p1,p2)。(注意，这里我们默认了散射概率

不依赖于空间方向，从而q处的散射概率与−q处的一样)

综合上述结果，即有(∂f1
∂t

)
coll

(q,p1) =

∫
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

f2(q,p
′
1,q,p

′
2, t)− f2(q,p1,q,p2, t)

]
. (14)

显然，由此而来的关于f1的方程依赖于f2，从而不封闭。为了得到一个仅

仅只关于f1的封闭的方程，我们假定碰撞之前的两粒子之间没有关联，即

假定

f2(q,p1,q,p2, t) = f1(q,p1, t)f1(q,p2, t). (15)

这一假设有时被称为”分子混沌”（molecular chaos）假设，它看起来是合

理的：可以想象在碰撞过程中，两个粒子的速度会产生关联。但随后会有

一个时长为τ的间隔期，在此期间其中一个粒子才会经历下一次碰撞。而

且通常这次碰撞是与完全不同的另一个粒子发生的，因此新粒子的速度与

第一个粒子的速度毫无关联就是非常合理的。然而关键在于，我们假设的

是碰撞前而非碰撞后速度互不相关――这个看似狡猾的设定，实则悄然引

入了时间之箭。其深远影响将在后文推导H定理时显现。
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把分子混沌假设应用于(14)式，即可以得到如下方程

∂

∂t
f1(q,p1, t)+{f1, H1}q,p1 =

∫
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

f1(q,p
′
1, t)f1(q,p

′
2, t)− f1(q,p1, t)f1(q,p2, t)

]
. (16)

这就是著名的玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程！这个方程左边涉及到f1的微分，而右边则涉

及到它的积分，而且右边是非线性的，因此是一个关于f1的非线性微分-积

分方程。当然，这样一个方程肯定是很难求解的。

由于假定碰撞局域地发生在空间点q, 因此碰撞过程外势场V (q)的变化

可以忽略，也即是说，碰撞过程中，粒子受到的外力可以忽略，从而必然

有碰撞前后动量守恒，能量也守恒，即有

p1 + p2 = p′
1 + p′

2, H1(q,p1) +H1(q,p2) = H1(q,p
′
1) +H1(q,p

′
2). (17)

这当然是对跃迁概率ω(p′
1,p

′
2 | p1,p2)的约束，为了满足这两个约束，ω(p′

1,p
′
2 |

p1,p2)中必然包含一个反映动量守恒的δ函数因子δ3(p′
1 + p′

2 − p1 − p2)以及

一个反映能量守恒的因子δ
(
H1(q,p

′
1)+H1(q,p

′
2)−H1(q,p1)−H1(q,p2)

)
，

一共是四重δ函数因子。注意到，玻尔兹曼方程(16)右边的积分是九重积

分，但是这四重δ函数因子可以去掉四重积分，所以最后真正有效的积分是

五重。实际上，可以把这五重积分表达成对微分散射截面的积分(两重)以

及对p2的积分(三重)，不过这一点我们实际上用不到，所以这里从略。

1.3 细细细致致致平平平衡衡衡与与与平平平衡衡衡

我们已经看到，玻尔兹曼方程的散射项是由正、逆散射共同决定的。如果

在某一给定时刻，逆散射的贡献大于正散射的贡献，那么处于(q,p1)相点

的粒子就会增多，而这将促使正散射的贡献随之增加。反过来，如果正散

射的贡献超过逆散射，则处于(q,p1)相点的粒子就会减少，这又会使得正

散射的贡献随之减少。因此，从一个相对长的时间尺度来看，正、逆散射

的贡献会趋于相等，从而相互抵消，通常人们称这为达成了细细细致致致平平平衡衡衡。

从(16)式不难看出，细致平衡的条件是

f1(q,p
′
1, t)f1(q,p

′
2, t) = f1(q,p1, t)f1(q,p2, t). (18)
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两边取对数，也就是

log f1(q,p
′
1, t) + log f1(q,p

′
2, t) = log f1(q,p1, t) + log f1(q,p2, t). (19)

也即是说，log f1可以表达成关于散射的守恒量的线性组合。因此即有，达

成细致平衡时

log f1(q,p, t) = β(q, t)
[
µ(q, t)−H1(q,p) + p0(q, t) · p/m

]
= β(q, t)

[
µ(q, t)−

(
p− p0(q, t)

)2
2m

− V (q)
]
, (20)

式中β(q, t), µ(q, t)以及p0(q, t)均为组合系数，式中第二个等于号是代入

了H1(q,p) =
p2

2m
+ V (q)。这个结果也即是

f local
1 (q,p, t) = exp

[
− β(q, t)

((p− p0(q, t)
)2

2m
+ V (q)− µ(q, t)

)]
. (21)

这可以看成是某种局域的麦克斯韦-玻尔兹曼分布，β(q, t)可以看作局域的

逆温度，p0(q, t)可以看作局域的平均动量，而µ(q, t)则是局域的化学势。

从这里我们可以看出，细致平衡是一种比整体的热平衡要弱的平衡，因

为它对应的是局域麦克斯韦-玻尔兹曼分布，而不是真正的热平衡麦克斯

韦-玻尔兹曼分布。

如果在细致平衡的基础上，我们进一步要求玻尔兹曼方程中单体演化

项的贡献也为零，即{H1, f1} = 0, 当然这个时候必然也要有 ∂
∂t
f1 = 0(否

则玻尔兹曼方程不会成立)，那么：1. 如果这个时候外势场V (q)没有空间

平移对称性，从而{H1,p} ̸= 0, 则必定有p0 = 0, β(q, t) = β为常数，同

时µ(q, t) = µ也为常数，相应的局域麦克斯韦-玻尔兹曼分布就成为真正的

麦克斯韦-玻尔兹曼分布，即

f1(q,p, t) = f eq
1 (q,p) = exp

[
− β

( p2

2m
+ V (q)− µ

)]
. (22)

2. 另一种情况是，如果外势场等于零V (q) = 0，从而{H1,p} = 0, 那么

这时候必定有β(q, t) = β为常数，同时p0(q, t) = p0、µ(q, t) = µ也均为常

数，从而局域麦克斯韦-玻尔兹曼分布就成为

f1(q,p, t) = f eq
1 (p) = exp

[
− β

((p− p0)
2

2m
− µ

)]
. (23)
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同样是一种真正的麦克斯韦-玻尔兹曼分布。归纳一下就是，如果在细致平

衡的基础上进一步要求单体演化项的贡献也为零，那么系统就会达成真正

的热平衡。

1.4 量量量子子子玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程

前面我们用量子力学来描述两粒子的散射过程，但是，分布函数本身依然

是经典的，也即是说，我们考虑的统计依然是经典统计，也因此，最后

平衡时我们得到的是完全经典的麦克斯韦-玻尔兹曼分布。一个自然的问

题是，如果考虑量子统计会怎么样？首先，如果真是完全量子的话，那

分布函数f1(q,p, t)本身就不存在，因为量子力学不确定关系告诉我们，位

置q和动量p不可能同时确定。所以我们并不是要考虑纯量子的分布函数，

因为根本就没有这种东西。我们要考虑的是一种半经典的分布函数，它依

然由相空间密度f1(q,p, t)描述，但是要考虑到全同粒子之间的量子统计效

应，比方说，对于费米子我们要考虑到泡利不相容原理，也就是(q,p)微观

态上占据的粒子数不能超过一，即0 ≤ f1 ≤ 1。当然全同玻色子没有这么

直观的规则，所以下面我们是先考察全同费米子情形，然后再将结果类推

到全同玻色子。

对于全同费米子，玻尔兹曼方程的单体演化项完全与经典全同粒子

一样，受费米统计影响的只有两体碰撞项。具体来说，在计算动量分别

为p1,p2的两个粒子散射到p′
1,p

′
2时，除了前面已有的因子f1(p1)f1(p2) 之

外，还需要乘以要求两个末态均没有被粒子占据的因子(1 − f1(p
′
1))(1 −

f1(p
′
2)), 因为否则就违背泡利不相容原理了。注意，为了记号的简洁，这

里我们把f1(q,p, t)简记为f1(p)了！同样，逆散射也要考虑类似的修正。因

此最后就有(∂f1
∂t

)
coll

(q,p1) =

∫
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

f1(p
′
1)f1(p

′
2)(1− f1(p1))(1− f1(p2))− f1(p1)f1(p2)(1− f1(p

′
1))(1− f1(p

′
2))

]
.

由此即可以得到全同费米子体系的玻尔兹曼方程。

对于全同玻色子，并没有直观的理由告诉我们如何考虑玻色统计，但

是，前面第七章我们已经看到，玻色统计和费米统计其实只差一个正负
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号，基于此我们把前面全同费米子方程中反映统计效应的(1 − f1)通通改

成(1 + f1), 由此即有(∂f1
∂t

)
coll

(q,p1) =

∫
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

f1(p
′
1)f1(p

′
2)(1 + f1(p1))(1 + f1(p2))− f1(p1)f1(p2)(1 + f1(p

′
1))(1 + f1(p

′
2))

]
.

相应的，也可以得到全同玻色子系统的玻尔兹曼方程。

通常把全同费米子体系和全同玻色子体系的玻尔兹曼方程统称为量子玻

尔兹曼方程，也称为尤林-乌伦贝克(Uehling-Uhlenbeck)方程。

很显然，量子玻尔兹曼方程的细致平衡条件对应于

f1(p
′
1)f1(p

′
2)(1± f1(p1))(1± f1(p2)) = f1(p1)f1(p2)(1± f1(p

′
1))(1± f1(p

′
2)),

式中的±号，+号对应全同玻色子，−号对应全同费米子。不难看出，这个
细致平衡条件也可以写作

log
( f1(p1)

1± f1(p1)

)
+ log

( f1(p2)

1± f1(p2)

)
= log

( f1(p
′
1)

1± f1(p′
1)

)
+ log

( f1(p
′
2)

1± f1(p′
2)

)
.

完全类似于经典全同粒子的相关讨论一样，由此我们可以得到量子全同粒

子细致平衡时的分布，为

f local
1 (q,p, t) =

1

e

[
β(q,t)

(
(p−p0(q,t))

2

2m
+V (q)−µ(q,t)

)]
∓ 1

. (24)

其中∓号的−号所对应的，就是全同玻色子的局域玻色-爱因斯坦分布，

而+号所对应的，就是全同费米子的局域费米-狄拉克分布。如果进一步要

求单体演化项的贡献也为零，也就是要求达到真正的热平衡，相应的就会

得到真正的玻色-爱因斯坦分布和费米-狄拉克分布。

2 H定定定理理理

通常我们认为只要等待的时间足够长，一个热力学系统总能达到热平衡状

态。但这一观点的背后默认了热力学系统的时间演化有一个确定的方向，

总是从不平衡到趋向平衡，未来和过去是截然不同的，热力学系统有一个

时间箭头。然而，另一方面，我们也知道，微观的哈密顿力学是时间反演
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不变的，过去和未来完全平等。本书第二章中，我们一般性地论证过，这

种时间箭头是由于我们对系统的微观信息进行了粗粒化，忽略了一些无关

的微观信息，只将注意力集中于相关信息，由此导致了熵增加原理，熵增

加的方向就是时间之箭的方向。另一方面，对于稀薄气体系统，本章的玻

尔兹曼方程是一种不同的提取相关信息的方式，那么玻尔兹曼方程是如何

确保时间有一个箭头的呢？比方说，它如何确保气体分子之间的碰撞最终

一定会趋于热平衡呢？

实际上，正如前文提到过的，在我们使用分子混沌假设的时候，时间箭

头就进来了，不过为了看清楚这一点，还需要一点辛苦的工作。这个工作

就是最早由玻尔兹曼提出并证明的著名的H定理。

首先玻尔兹曼引入了如下量H

H(t) ≡
∫

dµ1f1(q,p, t) log
(
f1(q,p, t)

)
. (25)

请注意, 这里的H并并并不不不是是是哈哈哈密密密顿顿顿量量量，请千万不要搞混了。所谓H定理，

说的就是：这个量在f1随玻尔兹曼方程的演化之下随时间单调递减！从

而H减少的方向就是时间的方向。

下面我们来证明这个定理。首先，

dH

dt
=

∫
dµ1(log f1 + 1)

∂f1
∂t

=

∫
dµ1 log f1

∂f1
∂t

, (26)

其中第二个等于号去掉+1项的原因是
∫
dµ1f1 = N是固定的，从而

∫
dµ1

∂f1
∂t

=

0。在上式中代入玻尔兹曼方程，即有

dH

dt
=

∫
dµ1 log f1

[
{H1, f1}+

(∂f1
∂t

)
coll

]
=

∫
dµ1{H1, f1 log f1}+

∫
dµ1 log f1

(∂f1
∂t

)
coll

, (27)

第二行的第一项需要注意到
∫
dµ1{H1, f1} = 0(为了看出这一点，请把泊松

括号展开，然后分部积分并注意到边界项为零，因为假设了在相空间无穷

远处f1趋于零)，同样的道理当然也有
∫
dµ1{H1, f1 log f1} = 0。所以最后我
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们有

dH

dt
=

∫
dµ1 log(f1)

(∂f1
∂t

)
coll

=

∫
d3q

∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×

log
(
f1(p1)

)[
f1(p

′
1)f1(p

′
2)− f1(p1)f1(p2)

]
.

现在，交换粒子1, 2的标记1 ↔ 2, 上面的结果当然不变，从而也有

dH

dt
=

∫
d3q

∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×

log
(
f1(p2)

)[
f1(p

′
1)f1(p

′
2)− f1(p1)f1(p2)

]
.

把上面两个式子加起来除以2，即有

dH

dt
=
1

2

∫
d3q

∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×

log
(
f1(p1)f1(p2)

)[
f1(p

′
1)f1(p

′
2)− f1(p1)f1(p2)

]
.

交换动量上加撇和不加撇的标记，并注意到ω(p′
1,p

′
2 | p1,p2) = ω(p1,p2 |

p′
1,p

′
2)，从而又有

dH

dt
=− 1

2

∫
d3q

∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×

log
(
f1(p

′
1)f1(p

′
2)
)[
f1(p

′
1)f1(p

′
2)− f1(p1)f1(p2)

]
.

再把上面两个式子加起来除以2，即有

dH

dt
= −1

4

∫
d3q

∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

log
(
f1(p

′
1)f1(p

′
2)
)
− log

(
f1(p1)f1(p2)

)][
f1(p

′
1)f1(p

′
2)− f1(p1)f1(p2)

]
.

(28)

注意到最后一行是一个形如[log x − log y][x − y]的函数，不难证明，对于

任何x, y, 这个函数都是正的。另外，跃迁概率ω(p′
1,p

′
2 | p1,p2)当然也是正

的，从而上式告诉我们

dH

dt
≤ 0. (29)
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H定理得证！

看起来似乎是，从一个完全时间反演对称的微观哈密顿力学出发，自动

出现了一个宏观的时间箭头！然而，这怎么可能呢？问题就出在分子混沌

假设上，因为关于玻尔兹曼方程的其他一切推导都可以严格按照哈密顿力

学进行(因此都是时间反演对称的)，只有这个地方额外引入了新的假设，

从而也就只可能是这个假设破坏了时间方向的对称性。实际上，分子混沌

假设是假设碰撞之前(而不是碰撞之后)f2 ∼ f1f1，如果与之相反，我们假

设碰撞之后f2 ∼ f1f1，那么最后导出来的就是H随时间单调增加。

另外，从(28)式不难看出，如果细致平衡达成，即f1(p
′
1)f1(p

′
2) =

f1(p1)f1(p2), 那么就会有

dH

dt
= 0, (30)

正如前文分析过的，这时候单体分布函数将取局域平衡分布的形式。特别

的，如果整个系统达成了整体的热平衡，那当然也有dH
dt

= 0, 这说明，热

平衡时H取极小值，由于H单调减小，所以系统的演化才是从不平衡到趋

于平衡。

熵熵熵

H的单调减小不由得让我们想起熵增加原理，基于此，玻尔兹曼提出

将−kBH定义为系统的熵，称作玻尔兹曼熵，通常记作

SB(t) ≡ −kBH(t). (31)

由于H定理，这样定义的玻尔兹曼熵当然满足熵增加原理。

但在另一方面，给定系统完整的相空间密度ρt(µN), 原本就可以自动定

义一个吉布斯熵

S = −kB

∫
dµNρt(µN) log

(
ρt(µN)

)
. (32)

H的定义式(25)使得SB看起来很像吉布斯熵，但其实不是，因为H的定义

式中用的是单粒子密度分布，而不是完整的N粒子密度分布ρt(µN)。再有

就是，如果ρt(µN)精确满足刘维尔方程，那上述吉布斯熵实际上就是一种
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精细化熵，本书第二章曾经证明过，这种精细化熵是守恒的，并没有什么

熵增加原理。

难道上述吉布斯熵与玻尔兹曼熵SB之间就毫无联系了吗？也不是！实

际上，正如马上我们将演示的，在一定的条件下，这两种熵的定义是吻合

的。

为了看清楚这一点，我们需要推广分子混沌假设。注意到ρt(µN) =

ρt(q1,p1, ...,qN ,pN , t)实际上就是N体密度分布，假设它也满足分子混沌假

设的话，那就应该有ρt(q1,p1,q2,p2...,qN ,pN , t) ∝
∏N

i=1 f1(qi,pi, t)。为了

确定这里的比例系数，我们注意到N体密度的归一化条件为∫
1

N !

N∏
i=1

d3qid
3pi

(2π~)3
ρt(q1,p1, ...,qN ,pN , t) = 1, (33)

而单体密度的归一化条件为

1

N

∫
d3qd3p

(2π~)3
f1(q,p, t) = 1, (34)

所以为了使得两边的归一化能对得上，我们可以确定N体密度的分子混沌

假设应该写成

1

N !
ρt(q1,p1, ...,qN ,pN , t) =

1

NN

N∏
i=1

f1(qi,pi, t). (35)

将(35)式代入吉布斯熵的定义式，即有

S = −kB

∫
1

N !

N∏
i=1

d3qid
3pi

(2π~)3
ρt(µN) log

(
ρt(µN)

)
= −kB

∫
1

NN

N∏
i=1

d3qid
3pi

(2π~)3
N∏
j=1

f1(qj,pj, t)
[ N∑
k=1

log f1(qk,pk, t) + log
( N !

NN

)]
= −kB

∫
1

NN

N∏
i=1

[d3qid
3pi

(2π~)3
f1(qi,pi, t)

][ N∑
k=1

log f1(qk,pk, t)−N
]
, (36)

最后一行我们利用了logN ! ≈ N logN − N。式中−N项最后积分出来总的
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贡献是kBN(利用单体密度的归一化条件)，所以上式又可以写成

S = −kB

N∑
k=1

∫
1

NN

N∏
i=1

[d3qid
3pi

(2π~)3
f1(qi,pi, t)

]
log f1(qk,pk, t) + kBN

= −kB

N∑
k=1

∫
1

N

d3qkd
3pk

(2π~)3
f1(qk,pk, t) log f1(qk,pk, t) + kBN

= −kB

∫
d3qd3p

(2π~)3
f1(q,p, t) log f1(q,p, t) + kBN

= −kBH(t) + kBN = SB(t) + kBN. (37)

可见，在分子混沌假设下，吉布斯熵与玻尔兹曼熵只相差一个不重要的常

数kBN。

以上结果说明，分子混沌假设可以看成是某种粗粒化，因为只有粗粒化

的吉布斯熵才满足熵增加原理。这其实也不难理解，因为分子混沌假设本

身就是忽略粒子之间的关联信息，相当于把这些关联信息粗粒化掉了。另

一方面，本书第二章讲到过，严格来说熵增加原理只在先取N → ∞的热力
学极限，再取粗粒化尺度趋于零的极限下才成立。这又反过来暗示我们，

分子混沌假设严格来说也只在这两个极限下才可能成立。最近Yu Deng

等人的证明似乎是符合这一点的，具体文章是Long time derivation of the

Boltzmann equation from hard sphere dynamics, arXiv:2408.07818. 严格证

明分子混沌假设是一个非常困难的问题，Yu Deng等人的工作也许是一个

突破性进展。

3 从从从玻玻玻尔尔尔兹兹兹曼曼曼方方方程程程到到到流流流体体体力力力学学学

从宏观上看，气体当然是一种流体，要满足流体力学规律，比如满

足Navier-Stokes方程。另一方面，前文已经看到了，稀薄气体满足玻尔兹

曼方程，一个自然的问题是，稀薄气体的流体力学规律和玻尔兹曼方程有

没有关系呢？回答是肯定的，稀薄气体的流体力学方程可以从玻尔兹曼方

程中推导出来！完成这个推导就是本章剩余部分的核心课题。

从微观层面看，稀薄气体是由大量分子组成的，这些分子满足的是牛顿

运动定律(或者等价的哈密顿力学)，然而要从这3N(N为粒子数)耦合的二
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阶微分方程组出发，直接推导出描述宏观流体行为的偏微分方程组(如欧拉

方程和纳维-斯托克斯方程)是极其困难的。玻尔兹曼方程提供了一个中间

步骤。它将复杂的多体问题降维到了对单粒子分布函数的描述，从而摆脱

了对所有粒子轨迹的纠缠。这个介于微观和宏观之间的理论层次被称为介

观。

所以，玻尔兹曼方程至少联系着三个最深刻的物理结论，第一，由玻尔

兹曼方程证明的H定理紧密联系着熵增加原理。第二，玻尔兹曼方程解释

了为什么会有麦克斯韦-玻尔兹曼分布。这一点我们已经讲述过了。第三，

玻尔兹曼方程能导出流体力学方程，这也是我们即将讲解的内容。

3.1 矩矩矩方方方法法法

流体力学主要关心一些随空间和时间相对来说缓慢变化的宏观物理量，

诸如粒子数密度分布n(q, t)、质量密度分布ρ(q, t) = mn(q, t)，诸如温度

场T (q, t), 以及诸如速度场u(q, t)等等。因此为了推导流体力学方程，我们

要解决的第一个问题就是，这些物理量与玻尔兹曼方程的单粒子相空间密

度f1(q,p, t)的关系是什么？

首先注意到，f1(q,p, t)的相空间积分为总粒子数N ,
∫

d3qd3p
(2π~)3 f1(q,p, t) =

N , 因此如果不对空间位置积分只对动量积分，那给出来的就应该是粒子数

密度的空间分布n(q, t), 所以我们有

n(q, t) ≡
∫

d3p

(2π~)3
f1(q,p, t). (38)

类似的，对于任何一个单粒子物理量O(q,p)，我们定义其对动量分布

的平均值为

⟨O(q,p)⟩ ≡
∫

d3p
(2π~)3O(q,p)f1(q,p, t)∫

d3p
(2π~)3f1(q,p, t)

=
1

n(q, t)

∫
d3p

(2π~)3
O(q,p)f1(q,p, t).

注意，与前面章节中的用法不同，这里符号⟨⟩不是表示在整个相空间中求
平均，而是仅仅对动量求平均，平均之后的结果当然仅仅只是(q, t)的函

数。由此我们定义速度场u(q, t)为分子速度v的平均值，即

u(q, t) = ⟨v⟩ = ⟨ p
m
⟩. (39)
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正因为上面平均中的积分仅仅只对动量进行，所以很显然

⟨n(q, t)O(q,p)⟩ = n(q, t)⟨O(q,p)⟩, (40)

因为物理量n(q, t)本身就不依赖于动量。

注意到玻尔兹曼方程中单体演化的时间尺度τ远远大于两体碰撞的时间

尺度τcoll, 也即是说，玻尔兹曼方程中的散射项(碰撞项)相对来说是一个快

速变化的项。因此我们不妨仅仅考虑这样的物理量O(q,p)，它乘上碰撞项

以后对动量的积分等于零，即∫
d3p

(2π~)3
O(q,p)

(∂f1
∂t

)
coll

= 0. (41)

代入碰撞积分项的公式，即∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
O(q,p1)ω(p

′
1,p

′
2 | p1,p2)×[

f1(q,p
′
1)f1(q,p

′
2)− f1(q,p1)f1(q,p2)

]
= 0. (42)

完全类似于证明H定理时的操作，通过交换1, 2标记，以及交换加撇和不加

撇的动量标记，并两次加起来除以2，可以看到上式等价于∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

f1(q,p
′
1)f1(q,p

′
2)− f1(q,p1)f1(q,p2)

]
×[

O(q,p1) +O(q,p2)−O(q,p′
1)−O(q,p′

2)
]
= 0. (43)

很明显，如果O满足下面等式，则上式自动成立

O(q,p1) +O(q,p2) = O(q,p′
1) +O(q,p′

2). (44)

满足这个式子的物理量称作碰撞不变量，它也就是碰撞前后守恒的物理

量。比如说动量p和单粒子哈密顿量H1(q,p)都是这样的碰撞不变量，当

然，由于碰撞发生在固定空间点q，所以单粒子动能p2/2m也是碰撞不变

量。但是，最简单的碰撞不变量无疑是O(q,p) = 1。总之，下面假设将注

意力集中在碰撞不变量上。
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结合玻尔兹曼方程和碰撞不变量所满足的性质(41), 对于碰撞不变量，

显然有 ∫
d3p

(2π~)3
O(q,p)

[∂f1
∂t

+ {f1, H1}
]
= 0. (45)

算出式子中的泊松括号，即有∫
d3p

(2π~)3
O(q,p)

[ ∂
∂t

+
p

m
· ∂

∂q
+ F · ∂

∂p

]
f1(q,p, t) = 0, (46)

式中F = −∂V (q)
∂q
为外力，注意它只依赖于空间坐标q不依赖于动量。注意

到O(q,p)不依赖于t, 因此上式中的 ∂
∂t
可以直接提到积分号的外面。 ∂

∂p
项可

以分部积分并丢掉边界项(假设f1在动量空间无穷远处趋于零)， ∂
∂q
项可以

用求导的莱布尼兹法则来改写。最后即有

∂

∂t

∫
d3p

(2π~)3
Of1+

∂

∂q
·
∫

d3p

(2π~)3
p

m
Of1 −

∫
d3p

(2π~)3
f1

p

m
· ∂O
∂q

−
∫

d3p

(2π~)3
F · ∂O

∂p
f1 = 0. (47)

根据取平均的定义，可以将这个式子改写成

∂

∂t
⟨nO⟩+ ∂

∂q
· ⟨nvO⟩ − n⟨v · ∂O

∂q
⟩ − n⟨F · ∂O

∂p
⟩ = 0. (48)

这就是我们关于碰撞不变量的核心方程。下面就是看一些具体的例子。

连连连续续续性性性方方方程程程

首先，在(48)式中取碰撞不变量O = 1, 显然有

∂n

∂t
+

∂

∂q
· (nu) = 0, (49)

式中u = ⟨v⟩为速度场。将这个式子乘上分子质量m，即有关于质量密度的

连续性方程

∂ρ

∂t
+

∂

∂q
· (ρu) = 0. (50)

但这个方程并不是一个封闭的方程，因为我们还需要知道速度场u(q, t)如

何演化。
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速速速度度度场场场的的的方方方程程程

取碰撞不变量O = p = mv代入(48)式，即有

∂

∂t
(ρui) +

∂

∂qj
⟨ρvjvi⟩ − ⟨ρFi⟩/m = 0. (51)

式中我们采用了分量形式，每个表达式中重复出现的分量指标默默默认认认要要要求求求和和和,

下文同。不妨对中间那项进行如下操作

⟨vjvi⟩ = ⟨(vj − uj)(vi − ui)⟩+ uj⟨vi⟩+ ui⟨vj⟩ − uiuj

= ⟨(vj − uj)(vi − ui)⟩+ uiuj. (52)

下面定义一个叫做压力张量的量为

Pij = Pji = ρ⟨(vj − uj)(vi − ui)⟩, (53)

很显然这个量计算的是i方向的动量密度在j方向上的流量，这对应的是

动量密度随时间的变化率，从而结果就等于压力(实际上是压强)，这就

是为什么称之为压力张量。利用这个定义，结合连续性方程(50), 就可以

把(51)式改写为

ρ
( ∂
∂t

+ uj
∂

∂qj

)
ui =

ρ

m
Fi −

∂

∂qj
Pij. (54)

通常人们会定义

Dt =
∂

∂t
+ uj

∂

∂qj
=

∂

∂t
+ u · ∇, (55)

称之为随体导数，也就是跟着流线流动的观察者看到的时间变化率。所以

上面的方程就可以写成

ρDtui =
ρ

m
Fi −

∂

∂qj
Pij. (56)

这个方程其实就是牛顿第二定律，方程左边是加速度项，方程右边的第一

项为外力，第二项为流体内部的压强梯度。然而这个方程也不是一个关于

速度场的封闭方程，因为我们还需要知道压力张量。
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温温温度度度场场场的的的方方方程程程

最后注意到动能1
2
mv2是碰撞不变量，动量mv也是碰撞不变量，所

以O = 1
2
m(v − u)2也是碰撞不变量。取这个碰撞不变量代入(48)式1，即

有(注意到涉及外力的项由于⟨(v − u)⟩ = 0而为零)

1

2

∂

∂t
⟨ρ(v − u)2⟩+ 1

2

∂

∂qi
⟨ρvi(v − u)2⟩ − 1

2
ρ⟨vi

∂

∂qi
(v − u)2⟩ = 0. (57)

定义温度场为(请读者想想为什么这样定义)

3

2
kBT (q, t) ≡ ⟨1

2
m(v − u)2⟩. (58)

再定义热流场Q为

Q ≡ 1

2
mρ⟨(v − u)(v − u)2⟩. (59)

从而即有

1

2
mρ⟨vi(v − u)2⟩ = 1

2
mρ⟨(vi − ui)(v − u)2⟩+ 1

2
mρui⟨(v − u)2⟩

= Qi +
3

2
kBTρui (60)

以及

ρ⟨vi(vj − uj)⟩ = ρ⟨(vi − ui)(vj − uj)⟩+ ρui⟨(vj − uj)⟩ = Pij. (61)

把这些结果代入(57)式，即有

3

2

∂

∂t
(ρkBT ) +

∂Qi

∂qi
+

3

2

∂

∂qi
(ρkBTui) +mPij

∂uj

∂qi
= 0. (62)

由于Pij = Pji，所以

mPij
∂uj

∂qi
= Pij

m

2

(∂uj

∂qi
+

∂ui

∂qj

)
= mPijΛij, (63)

1这里其实有一个微妙之处。在推导核心方程时，我们假设物理量O不显含时间，但上
面定义的O实际上通过u(q, t) 具有显含的时间依赖性。尽管如此，可以验证(48)式仍然成

立，本质上是因为时间依赖带来的额外项为∼ ⟨(v − u) · ∂u
∂t ⟩ = ⟨(v − u)⟩ · ∂u

∂t = 0。

20



式中Λij ≡ 1
2

(∂uj

∂qi
+ ∂ui

∂qj

)
。由此整理一下(62)式，即得

ρDt(kBT ) +
2

3
∇ ·Q = −m

2

3
ΛijPij. (64)

这就是温度场所满足的方程。

即使加上温度场的这个方程，我们的方程也依然没有封闭，因为除了前

面需要知道的Pij之外，这里又出现了一个新的需要知道的量Q, 为了算出

这两个量，我们需要求助于具体的分布函数f1，虽然前面导出的这些方程

对任何f1都成立。但是，为了得到一个具体的f1，就需要求解玻尔兹曼方

程，而这非常难，所以我们得想一些近似办法。

3.2 零零零阶阶阶近近近似似似

首先，考虑达成了细致平衡条件的近似，我们称之为零阶近似。根据前面

的相关讲述可以知道，这时候分布函数f1(q,p.t) 必然是局域麦克斯韦-玻

尔兹曼分布，这里记作f
(0)
1 (q,p, t)

f
(0)
1 (q,p, t) = exp

[
− β(q, t)

((p− p0(q, t)
)2

2m
+ V (q)− µ(q, t)

)]
. (65)

值得说明的是，这个分布不一定是玻尔兹曼方程的解，因为它只是使得

玻尔兹曼方程中的碰撞积分项等于零。不过，考虑到碰撞积分项才是使

得分布函数快速变化的项，所以f
(0)
1 (q,p, t)可以作为分布函数很好的零

阶近似，后文我们再考虑对它的修正。因此下面各量的平均值都是相对

于f
(0)
1 (q,p, t)来说的。

首先，不难算出

u(q, t) = ⟨ p
m
⟩ = p0(q, t)/m. (66)

这就说明f
(0)
1 (q,p, t)可以重写为

f
(0)
1 (q,p, t) = exp

[
− β(q, t)

(1
2
m
(
v − u(q, t)

)2
+ V (q)− µ(q, t)

)]
. (67)

其次，根据温度场的定义，不难通过高斯积分算出

kBT (q, t) ≡
1

3
⟨m(v − u)2⟩ = 1/β(q, t). (68)
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这个结果验证了关于温度场的定义是有道理的。为了下面的计算，不妨

把f
(0)
1 (q,p, t)写作f

(0)
1 (q,p, t) = C(q, t) exp

[
− 1

2
m
(
v − u

)2
/kBT

]
。

不难算得零阶近似下的热流为

Q(0) ≡ 1

2

mρ

n

∫
d3p

(2π~)3
(v − u)(v − u)2C(q, t) exp

[
− 1

2
m
(
v − u

)2
/kBT

]
=

1

2
m2C(q, t)

m3

(2π~)3

∫
d3VVV2 exp

[
− 1

2
mV2/kBT

]
= 0. (69)

式中V = v − u。类似的，可以计算压力张量

P
(0)
ij =

1

n
ρC(q, t)

∫
d3p

(2π~)3
(vi − ui)(vj − uj) exp

[
− 1

2
m
(
v − u

)2
/kBT

]
=

1

n
ρC(q, t)

∫
d3p

(2π~)3
ViVj exp

[
− 1

2
mV2/kBT

]
= δijP, (70)

式中

P =
1

3

1

n
ρC(q, t)

∫
d3p

(2π~)3
V2 exp

[
− 1

2
mV2/kBT

]
=

1

3
ρ

∫
d3VV2 exp

[
− 1

2
mV2/kBT

]
/

∫
d3V exp

[
− 1

2
mV2/kBT

]
= n(q, t)kBT (q, t). (71)

很显然，这个结果就是局域化的理想气体压强公式。

将以上结果代入(56)式，即有即有

Dtu =
F

m
− 1

ρ
∇P. (72)

这就是著名的欧拉方程。将上一段的结果代入(64)式，注意到ΛijPij =

ΛiiP = P∇ · u = nkBT∇ · u, 即有

Dt(kBT ) = −2

3
kBT∇ · u. (73)

以上两个方程，再加上连续性方程，就构成非粘滞性流体(也就是理想流

体)的流体力学方程。
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3.3 一一一阶阶阶近近近似似似

下面考虑一阶修正。假设记f1(q,p, t)为满足玻尔兹曼方程的精确分布函

数，记

g(q,p, t) ≡ f1(q,p, t)− f
(0)
1 (q,p, t), (74)

则由于前面说过的，f
(0)
1 已经是对分布函数的很好的近似，所以可

见g(q,p, t)应该是一个微小的修正，换言之g是小量。代入玻尔兹曼方

程，注意到f
(0)
1 正好使得碰撞积分等于零并保留到一阶小量，从而(∂f1

∂t

)
coll

(q,p1) =

∫
d3p2

(2π~)3
d3p′

1

(2π~)3
d3p′

2

(2π~)3
ω(p′

1,p
′
2 | p1,p2)×[

g(p′
1)f

(0)
1 (p′

2) + f
(0)
1 (p′

1)g(p
′
2)− g(p1)f

(0)
1 (p2)− f

(0)
1 (p1)g(p2)

]
.

很显然，它具有某个特定线性算子作用在g上的形式。接下来的处理可以

用所谓的Chapman-Enskog展开的方法来进行，不过，这里采用一种更简

便的处理，即将上式替换成如下形式(∂f1
∂t

)
coll

= −g

τ
, (75)

这种处理方法称作弛豫时间近似，式中的τ就是所谓的弛豫时间，一般来

说它可以依赖于动量p, 不过，为了简单起见，我们将把它当作常数。

作了弛豫时间近似以后，就可以把玻尔兹曼方程写成

∂f1
∂t

− {H1, f1} = −g

τ
, (76)

注意到g ≪ f
(0)
1 , 所以又可以忽略等式左边包含的g, 从而有

g = −τ
[∂f (0)

1

∂t
− {H1, f

(0)
1 }

]
= −τ

[ ∂
∂t

+ v · ∇q +
F

m
· ∇v

]
f
(0)
1 . (77)

这里值得注意的是，等式右边也是小量，因为其中涉及的偏导都是慢变

的(玻尔兹曼方程中只有碰撞积分项是快变的)。

注意到f
(0)
1 (q,p, t) = C(q, t) exp

[
− 1

2
m
(
v−u

)2
/kBT

]
,并且

∫
d3p

(2π~)3f
(0)
1 =

n(q, t)，算出这个积分即可以得到

f
(0)
1 (q,p, t) = n(2π~)3

( 1

2πmkBT

)3/2
exp

[
− 1

2
m
(
v − u

)2
/kBT

]
. (78)
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显然，f
(0)
1 是通过n, T,u而对变量q, t产生依赖。所以，为了计算出(77)式右

边，我们可以先进行如下计算

∂f
(0)
1

∂ρ
=

f
(0)
1

ρ

∂f
(0)
1

∂T
=

1

T

( m

2kBT
V2 − 3

2

)
f
(0)
1

∂f
(0)
1

∂u
=

m

kBT
Vf

(0)
1

∂f
(0)
1

∂v
= − m

kBT
Vf

(0)
1 . (79)

利用这些结果，再根据(77)式，即有

g = −τf
(0)
1

[D̃(ρ)

ρ
+

1

T

( m

2kBT
V2 − 3

2

)
D̃(T ) +

m

kBT
ViD̃(ui)−

1

kBT
F ·V

]
(80)

其中

D̃(X) =
( ∂
∂t

+ v · ∇q

)
X. (81)

利用上一小节得到的零阶流体力学方程，可以得到

D̃(ρ) = −ρ(∇ · u) +V · ∇ρ

D̃(T ) = −2

3
T∇ · u+V · ∇T

D̃(uj) = −1

ρ

∂P

∂qj
+

Fj

m
+ Vi

∂uj

∂qi
. (82)

其中P = nkBT = ρkBT/m。将这些结果代入(80)式，即得

g = −τf
(0)
1

[
− (∇ · u) +V · ∇ρ

ρ
+

1

T

( m

2kBT
V2 − 3

2

)(
− 2

3
T∇ · u+V · ∇T

)
+

m

kBT

(
−V · ∇P

ρ
+V · F

m
+ ViVj

∂uj

∂qi

)
− 1

kBT
F ·V

]
.

通过代入P = ρkBT/m消去一些项，并整理得

g = −τ
[ 1
T
∇T ·V

( m

2kBT
V2 − 5

2

)
+

m

kBT
Λij(ViVj −

1

3
δijV

2)
]
f
(0)
1 . (83)
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有了分布函数修正项的这个表达式以后，我们就可以计算对热流以及压

力张量的修正。注意到零阶的热流为零，所以考虑到g的修正以后，热流

的公式为

Q =
mρ

2n

∫
d3p

(2π~)3
(v − u)(v − u)2g. (84)

注意到(83)式右边的第二项对这个积分的贡献是零，从而即有

Q = − τm5

2(2π~)3

∫
d3VVV2

( m

2kBT
V2 − 5

2

) 1
T
V · ∇Tf

(0)
1 = −K∇(kBT ).(85)

式中

K =
τm5

6kBT (2π~)3

∫
d3VV4

( m

2kBT
V2 − 5

2

)
f
(0)
1 =

5

2
τkBTn. (86)

它也就是所谓的热传导系数。

反过来，对于压力张量Pij, (83)式右边仅仅只有第二项才有贡献，从而

Pij =
ρ

n

∫
d3p

(2π~)3
(vi − ui)(vj − uj)(f

(0)
1 + g) = δijP + P ′

ij, (87)

式中P = ρkBT/m, 而P ′
ij是g带来的修正

P ′
ij = − τρm4

kBTn(2π~)3
Λkl

∫
d3VViVj(VkVl −

1

3
δklV

2)f
(0)
1 . (88)

为了计算出结果，我们注意到P ′
ij是一个对称无迹张量，也就是P ′

ii = 0(注

意对i是默认求和的)，而且它线性地依赖于对称张量Λij, 所以P ′
ij必定具有

如下形式

P ′
ij = −2µ

(
Λij −

1

3
δijΛkk

)
= −µ

(
∂iuj + ∂jui −

2

3
∇ · u

)
, (89)

式中∂i ≡ ∂
∂qi

, µ是一个常数，称作粘粘粘滞滞滞系系系数数数，请注意把它和化学势区分开

来。

为了计算出粘滞系数µ, 我们仅仅需要计算P ′
ij的一个具体分量，比如

说P ′
12, 它是

P ′
12 = − τρm4

kBTn(2π~)3
Λkl

∫
d3VV1V2(VkVl −

1

3
δklV

2)f
(0)
1

= −2
τm5

kBT (2π~)3
Λ12

∫
d3VV 2

1 V
2
2 f

(0)
1 . (90)
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从而

µ =
τm5

kBT (2π~)3

∫
d3VV 2

1 V
2
2 f

(0)
1 = τnkBT. (91)

注意K/µ = 5
2
。

将以上修正以后的Q和Pij的结果代入(56)式和(64)式，就可以得到修正

以后的流体力学方程。为此我们需要做如下计算

∇ ·Q = −kB∇ · (K∇T ) = −K∇2(kBT )−∇K · ∇(kBT ) (92)

∂jPij = ∂iP − µ
[
∇2ui +

1

3
∂i(∇ · u)

]
− (∂jµ)

(
∂iuj + ∂jui −

2

3
∇ · u

)
(93)

PijΛij = P (∇ · u)− 2µΛijΛij +
2

3
µ(∇ · u)2. (94)

对于式中的ΛijΛij =
1
4
(∂iuj + ∂jui)(∂iuj + ∂jui) =

1
2
(∂iuj)(∂iuj + ∂jui), 注意

到

(∂iuj)(∂iuj) = ∂i(uj∂iuj)− uj∇2uj =
1

2
∇2(u2)− u · ∇2u. (95)

而

(∂iuj)(∂jui) = −1

2
(∂iuj − ∂jui)(∂iuj − ∂jui) + (∂iuj)(∂iuj)

= −(∇× u)2 + (∂iuj)(∂iuj) (96)

所以，最终有

ΛijΛij =
1

2

[
∇2(u2)− 2u · ∇2u− (∇× u)2

]
. (97)

把以上结果代入(56)式和(64)式，即有

ρDtu =
F

m
−∇

(
P − µ

3
∇ · u

)
+ µ∇2u+R. (98)

ρDt(kBT ) =
2

3
K∇2(kBT ) +

2

3
∇K · ∇(kBT )−

2

3

[
mρ(∇ · u) + 2

3
µm(∇ · u)2 − µm

[
∇2(u2)− 2u · ∇2u− (∇× u)2

]]
.

(99)

式中R的分量形式是

Ri = (∂jµ)
(
∂iuj + ∂jui −

2

3
∇ · u

)
. (100)
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在这些方程中，一阶小量是µ,K, 以及ρ, kBT和u的偏导项(因为我们假

设了这些量是缓变的)。如果我们仅仅保留一阶小量，则可以忽略上式方程

中µ,K的导数项以及(99)式中的最后四项。由此即可以得到一阶修正后的

流体力学方程

∂ρ

∂t
+∇ · (ρu) = 0, (101)

Dtu =
F

m
− 1

ρ
∇
(
P − µ

3
∇ · u

)
+

µ

ρ
∇2u. (102)

Dt(kBT ) = −2

3
(∇ · u)(kBT ) +

2

3

K

ρ
∇2(kBT ). (103)

其中我们加上了连续性方程，第二个方程就是著名的Navier-Stokes 方程，

第三个方程是热传导方程。

以上就完成了对流体力学方程的推导。不过，对于稀薄气体，玻尔兹曼

方程包含的信息是比连续介质近似下的流体力学方程更多的。玻尔兹曼方

程之所以强大，是因为它能够在一个统一的框架下，无缝地连接起从连续

介质到完全稀薄气体的各个流动区域，为理解和预测各种复杂的非平衡流

动现象提供了强有力的理论和计算工具。相对于流体力学方程，玻尔兹曼

方程的核心优势在于能够捕捉到流体力学方程所忽略的非平衡效应，如速

度滑移、温度跳跃、剪切流和热流耦合等，这在低密度、高温度梯度或高

速流动等极端条件下尤为重要。这些优势使得玻尔兹曼方程的应用贯穿了

从宏观航空航天到微观芯片制造的广阔领域。
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