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本章我们讲述量子统计力学的基本原理，也就是把前面第一章和第二

章中为经典统计力学建立的理论框架推广到量子情形。为了完成这一推

广，需要引入密度算符的概念，它是经典统计中相空间概念密度的量子对

应物。此外，还需要把经典吉布斯熵和相对熵的概念推广到量子情形。最

后，还需要把第二章中讨论的粗粒化演化和熵增加原理推广到量子系统。

有了这些准备以后，建立量子系统的三大热平衡系综(微正则系综、正则系

综以及巨正则系综)就是一件顺理成章的事情。

1 密密密度度度算算算符符符

1.1 期期期望望望值值值以以以及及及算算算符符符迹迹迹

测测测量量量与与与期期期望望望值值值

量子力学告诉我们：对某个物理量A多次重复实验测得的平均值A等于

算符A在态上的期望值，即

A = ⟨ψ|A|ψ⟩, (1)

|ψ⟩为系统所处的量子态。量子力学原理也告诉我们，物理量A的测量值是
相应算符A的本征值，在单次实验中，我们测得哪个值是随机的，测得本

征值λi的概率为pi = |⟨i|ψ⟩|2, 式中|i⟩为与本征值λi相应的本征态。这样算出
来的概率pi当然也可以通过重复多次实验来检验，因此其计算公式应该也

能写成期望值的形式，的确，假如定义投影算符Pi = |i⟩⟨i|, 则人们很容易
验证

pi = ⟨ψ|i⟩⟨i|ψ⟩ = ⟨ψ|Pi|ψ⟩. (2)

因此，不仅仅物理量的平均值，而且物理量值的概率分布，都可以表达成

厄密算符期望值的形式。

以上讨论告诉我们，在量子力学中一切可以通过重复实验来进行检验的

量都可以由一个适当厄密算符的期望值来计算，假设这个厄密算符是O，
习惯上，人们常将这个期望值简记为⟨O⟩，

⟨O⟩ = ⟨ψ|O|ψ⟩. (3)
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各种厄密算符的期望值就是我们能够从一个量子态中提取的所有信息。

算算算符符符求求求迹迹迹

一个矩阵所有对角元的和称为矩阵的迹，在幺正变换下矩阵的迹保持不

变，这使得我们可以将迹的概念推广到线性算符。对于一个线性算符O, 我

们记其迹为Tr(O), 定义为

Tr(O) =
∑
i

⟨i|O|i⟩, (4)

式中{|i⟩}为希尔伯特空间的一组正交归一矢量基。虽然为了计算算符的迹
我们需要选取一个特定的表象，但由于不同的表象之间只相差一个幺正变

换，所以算符的迹实际上并不依赖于表象。由此可以知道，一个算符的迹

就是它在任何一个表象中表示矩阵的迹，特别的，对于厄密算符，我们可

以将这个表象选为它的本征表象，这时候算符的迹其实就是所有本征值的

和。

假设有两个算符A和B，读者容易证明算符迹满足如下等式

Tr(AB) = Tr(BA). (5)

不过，值得说明的是，对于无穷维希尔伯特空间，并非所有算符的

迹都是定义良好的，因此在无穷维希尔伯特空间上应用(5)式时得特别

小心，有时候它并不成立。比方说，对于坐标算符和动量算符的对

易子来说，如果简单地应用这个公式将会得出Tr([X,P ]) = 0，但实际

上Tr([X,P ]) = i~Tr(1) ̸= 0。在这个例子中，(5)式之所以不成立，正是因

为式中各算符的迹都不是良好定义的。

利用算符的迹，我们可以把算符的期望值公式重写成

⟨ψ|O|ψ⟩ = Tr
(
|ψ⟩⟨ψ|O

)
= Tr

(
ρψO

)
. (6)

式中投影算符ρψ = |ψ⟩⟨ψ|。要证明这个式子，我们只需注意到

Tr
(
|ψ⟩⟨ψ|O

)
=
∑
i

⟨i|ψ⟩⟨ψ|O|i⟩ =
∑
i

⟨ψ|O|i⟩⟨i|ψ⟩ = ⟨ψ|O|ψ⟩.

可见，为了计算算符的期望值，我们并不需要知道量子态|ψ⟩，而是只需要
知道厄密算符ρψ。|ψ⟩和ρψ的一个重要区别是，|ψ⟩可以相差一个非物理的
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整体相位因子，变成eiθ|ψ⟩, 而ρψ在这种相位变换下不变，也即是说，它自
动剔除了这一非物理的整体相位信息。

以上讨论告诉我们，从一个量子系统中能够提取出来的所有物理信息都

包含在ρψ = |ψ⟩⟨ψ|这一特殊厄密算符中。注意到⟨x|ρψ|x⟩ = |⟨x|ψ⟩|2正好是
概率密度。即是说，ρψ在坐标表象中的对角元对应概率密度，所以人们常

常称ρψ为纯态密度算符，它和狄拉克符号|ψ⟩表示的量子态是对应的，这样
的态也称为纯态。下面我们就是要将密度算符这一概念推广到更为一般的

情形。

1.2 混混混态态态

密密密度度度算算算符符符与与与系系系综综综

上面的密度算符ρψ只涉及一个量子态|ψ⟩。然而，有时候可能有多个量
子态|a⟩, a = 1, 2, · · · , 而我们不能确定系统到底处于哪一个态，只知道系统
处于|a⟩态的概率是pa, 这时候就需要将密度算符推广成如下更一般的形式

ρ =
∑
a

pa|a⟩⟨a|. (7)

显然，ρ满足Tr
(
ρ
)
=
∑

a pa = 1。如果这样的概率不只分布在单个纯态

上，那么相应的ρ就称作混态密度算符，我们称它描写的系统状态为混

态。

总之，一个系统的密度算符ρ包含了所有我们能从对这个系统的观测中

提取出来的信息，根据上面的讨论可以知道，密密密度度度算算算符符符ρ应应应该该该满满满足足足如如如下下下性性性

质质质：

• 它是一个厄密算符。

• 它的本征值都大于等于0，为正定算符。

• Tr(ρ) = 1。

有了密度算符以后，对任何物理可观测量O期望值的计算就可以表达为

⟨O⟩ = Tr(ρO). (8)
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由此可见，密密密度度度算算算符符符就就就是是是第第第二二二章章章中中中相相相空空空间间间概概概率率率密密密度度度的的的量量量子子子力力力学学学推推推广广广，，，

而而而Tr就就就是是是相相相空空空间间间积积积分分分的的的量量量子子子力力力学学学对对对应应应物物物。。。

如果一个密度算符能够写成ρ = |ψ⟩⟨ψ|的形式，就称为纯态密度算符，
它描述的系统状态就是纯态，否则就是混态密度算符，描述的状态就是混

态。很显然，纯态密度算符额外满足

ρ2 = ρ. (9)

反过来，如果一个密度算符额外满足上式，则它的本征值必为0或1，由于

密度算符所有本征值的和要等于1，因此它就必定能写成ρ = |ψ⟩⟨ψ|的形
式(|ψ⟩为ρ的本征态)，从而必为纯态密度算符。对于纯态密度算符，我们

必定有

Tr(ρ2) = Tr(ρ) = 1. (10)

对于一个任意的密度算符ρ, 我们必可以通过求解它的本征方程将它对

角化成如下形式

ρ =
∑
a

pa|a⟩⟨a|. (11)

密度算符的正定性告诉我们pa ≥ 0, Tr(ρ) = 1的条件则告诉我们
∑

a pa =

1，所以pa ≤ 1，等号仅当ρ为纯态密度算符时才成立。因此，对于混态密

度算符，我们必有Tr(ρ2) =
∑

a p
2
a <

∑
a pa = 1，即对于混态密度算符，必

有

Tr(ρ2) < 1. (12)

密度算符的(11)形式启发我们可以从系综的角度解释密度算符。也即是

说，我们可以认为密度算符描述的是大量系统(由于对任何物理量期望值的

测量都需要多次重复实验，这相当于引入了大量系统)的集合，其中每一个

系统以概率pa处于|a⟩态。这是因为，这一系综中任何物理量O的期望值同
样由下式给出

⟨O⟩ =
∑
a

pa⟨a|O|a⟩ = Tr(ρO). (13)
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根据系综解释，我们可以将密度算符中出现的概率pa看成是源于我们对

系统信息的缺失，它造成了我们对系统的某种无知。总之，密度算符描述

中包含了对系统的某种无知，这种无知来源于对系统的信息缺失，任何信

息缺失都可以对应于一个系综，从而给出一个密度算符。然而，如何量化

密度算符中包含的无知呢？这个问题我们后面再来讨论。

Bloch 球球球

下面我们详细地讨论一下单个量子比特的密度算符ρ。这时候希尔伯特

空间是2维的，为了具体起见我们可以将基矢量{|0⟩, |1⟩}表示成

|0⟩ =

(
1

0

)
|1⟩ =

(
0

1

)
. (14)

如此一来，密度算符ρ就应该表示成一个2 × 2的厄密矩阵，称为密度矩

阵。但是，任何2 × 2的厄密矩阵都可以用{1, σx, σy, σz}这四个厄密矩阵展
开为ρ = 1

2
(w0 · 1 + w · σ⃗), 式中{w0,w}均为实数。注意到泡利矩阵的迹为

零，则由Tr(ρ) = 1可知，w0 = 1, 从而单个量子比特的密度矩阵ρ必定可以

表示成如下形式

ρ(w) =
1

2

(
1 +w · σ⃗

)
. (15)

w称为量子比特的极化矢量，所以单量子比特的密度矩阵完全由其极化矢

量刻画。另外，容易算出Tr(ρ2) = 1
2
(1 +w2), 由Tr(ρ2) ≤ 1可知

w2 ≤ 1, (16)

等号当且仅当ρ(w)为一个纯态密度矩阵时才成立。

由上面的讨论可知，单个量子比特的所有可能密度矩阵一一对应于3维

极化矢量空间中的一个单位球体w2 ≤ 1，称为Bloch球，这个球体的表面

对应于单量子比特的可能纯态，球内部分描写的当然就是混态。特别的，

在Bloch球体中心，w = 0处的那个混态，就是通常所谓的最大混态，很显

然，它是

ρ(0) =
1

2
· 1 =

1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
. (17)
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之所以说ρ(w)表达式中的w是极化矢量，是因为，假设将单量子比特看

成电子自旋，|0⟩态看成自旋向上态，|1⟩态看成自旋向下态，则我们可以计
算n方向泡利算符(n · σ⃗)的期望值，易得

⟨(n · σ⃗)⟩w = Tr((n · σ⃗)ρ(w)) = n ·w. (18)

这告诉我们，n方向自旋期望值是矢量w在n方向上的投影，可见w正好代

表自旋极化。

假设在单位球面上取一个单位矢量n = (sin θ cosϕ, sin θ sinϕ, cos θ),

n2 = 1，则纯态密度矩阵就是ρ(n) = 1
2

(
1 + n · σ⃗

)
。假设记相应的纯态

为|ψ(n)⟩，即ρ(n) = |ψ(n)⟩⟨ψ(n)|，则由于(n·σ⃗)ρ(n) = ρ(n)(n·σ⃗) = ρ(n)，

容易看出，|ψ(n)⟩必为(n · σ⃗)的本征值为1的本征态。

利用3个泡利矩阵的表达式，并将单位矢量n的分量形式代入ρ(n)，容易

得到

ρ(n) =

(
cos2(θ/2) cos(θ/2) sin(θ/2)e−iϕ

cos(θ/2) sin(θ/2)eiϕ sin2(θ/2)

)
. (19)

由此可以得到

|ψ(n)⟩ =

(
cos(θ/2)e−iϕ/2

sin(θ/2)eiϕ/2

)
. (20)

假设有两个密度矩阵ρ(w1)和ρ(w2), 则对于任意0 ≤ t ≤ 1均有

tρ(w1) + (1− t)ρ(w2) = ρ(tw1 + (1− t)w2), (21)

也即是说，两个密度矩阵按照tρ(w1) + (1− t)ρ(w2)的形式组合以后结果依

然是一个密度矩阵，而且这个密度矩阵的极化矢量刚好是tw1+(1− t)w2。

实际上，假设将0 ≤ t ≤ 1看成可变参数，那方程tw1 + (1 − t)w2描写的就

是w1与w2的连线线段，这条线段当然依然在3维空间的单位球体之内，因

此连线上的每一点当然都对应一个密度矩阵。

2 再再再谈谈谈密密密度度度算算算符符符与与与系系系综综综

这一节我们主要是推广系综的概念。
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密密密度度度算算算符符符集集集合合合的的的凸凸凸性性性

首先我们定义一下什么是向量空间的凸子集。对于向量空间的某个子

集，如果它满足集合中任意两个点的连线段完全处于集合内部，那么这个

集合就是向量空间的一个凸子集。比如图(1)所示的多边形就是两维平面的

凸子集。如果凸子集中的某点永远不能处在子集内连线段内，而只能处于

连线段的端点，那这个点就称为极端点。比如图(1)中的A,B,C,D,E点就

是极端点。

Figure 1: 两维实向量空间的一个凸子集，A,B,C,D,E为极端点。

另外，由于任何两个厄密算符的实系数线性组合依然是厄密算符。所以

一个量子系统所有厄密算符的集合构成了一个实向量空间，系统每一个可

能的厄密算符都对应这个实向量空间里的一个向量。

之所以讨论以上两个概念，是因为，一个量子系统的所有可能密

度算符的集合构成了厄密算符向量空间的一个凸子集。具体来说，假

设ρ1, ρ2, ..., ρN是系统N个可能的密度算符，则下式给出的ρ也必定是系统

可能的密度算符

ρ = p1ρ1 + p2ρ2 + ...+ pNρN , (22)

式中，0 ≤ pi ≤ 1, 且
∑N

i=1 pi = 1。要证明ρ是密度算符，只需验证它满足

密度算符必须满足的3条性质。根据所给条件，ρ的厄密性以及Tr(ρ) = 1这

两条都很明显，唯一需要说明的是ρ的正定性。对于一个厄密算符的正

定性，我们有两种等价的判定方法，1. 所有本征值大于等于0; 2. 这个
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算符在任何量子态|ψ⟩上的期望值都大于等于0。根据第2种判定正定性的

方法，(22)式给出来的厄密算符ρ的正定性也是显然的(注意我们已知每一

个ρi都正定)。

上一段我们刻画了密度算符集合的凸性，实际上更符合凸子集定义

的刻画方法是: 假设ρ1, ρ2为系统两个可能的密度算符，则这两者的连线

段ρ(t) = tρ1 + (1 − t)ρ2上每一个密度算符ρ(t) 也必为系统可能的密度算

符，这里0 ≤ t ≤ 1。这种刻画凸性的方式不仅是上一段给出来的刻画方式

的特例，而且从它出发通过使用数学归纳法我们也能反过来导出上一段的

刻画方式。所以对凸性的这两种刻画方式实际上是等价的。

不仅如此，我们还可以证明，纯态密度矩阵相应于这个密度算符凸

子集的极端点。为此，我们假设ρ = |ψ⟩⟨ψ|, 我们用反证法，设存在密度
算符ρ1和ρ2，使得ρ = tρ1 + (1 − t)ρ2, 0 < t < 1。任意取一个与|ψ⟩正
交的|ψ⊥⟩态，它满足⟨ψ|ψ⊥⟩ = 0, 则有0 = ⟨ψ⊥|ρ|ψ⊥⟩ = t⟨ψ⊥|ρ1|ψ⊥⟩ +
(1 − t)⟨ψ⊥|ρ2|ψ⊥⟩。进一步根据密度算符的正定性，必有⟨ψ⊥|ρ1|ψ⊥⟩ =

⟨ψ⊥|ρ2|ψ⊥⟩ = 0。但是|ψ⊥⟩是任意与|ψ⟩正交的态，因此刚才的结果就意味
着ρ1 = ρ2 = |ψ⟩⟨ψ| = ρ。这就证明了纯态必为极端点。反过来，对于混

态密度算符ρ，由于总有ρ =
∑

a pa|a⟩⟨a|，式中|a⟩⟨a| = ρa均为纯态密度算

符，这就说明混态密度算符必定不是极端点。这就完成了密度算符凸子集

的极端点与纯态一一对应的证明。

比方说对前面讨论过的单量子比特密度算符Bloch球体的例子，整

个Bloch球体就是一个凸子集，球体表面的每一个点都是这个凸子集的

极端点，因此必定相应于纯态。这正好是我们前面已经知道的结论。

不过，Bloch球体是一个特例，它的边界点和极端点是一回事，但是，

图(1)告诉我们，对于一般的凸子集，它的极端点必定是边界点，但是反过

来，它的边界点却不一定是极端点。具有3维以上希尔伯特空间的量子系统

的密度算符凸子集也是这样，它的边界点并不都是极端点。

系系系综综综概概概念念念的的的推推推广广广

根据凸性，假设某个密度算符ρ可以写成ρ =
∑

i piρi,
∑

i pi = 1。则很

显然

⟨O⟩ = Tr(ρO) =
∑
i

piTr(ρiO) =
∑
i

pi⟨O⟩i. (23)
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这就意味着，对于一个量子系统，假设我们能够制备出所有的ρi态，则我

们就可以制备一个系综，让这个系综中的每个系统以pi的概率处在ρi态，

而这个系综就可以由密度算符ρ =
∑

i piρi描述。密度算符ρ既可以看成是描

述一个系统的量子态，也可以看成是描述刚才所说的系综，等式(23)告诉

我们，在物理上我们并不能区分这两者。

很明显，除了纯态以外，任何一个密度算符ρ都有多种办法分解成ρ =∑
i piρi,

∑
i pi = 1。因此与密度算符ρ所对应的系综远不是唯一的，而是有

无穷多的可能性。比方说，对于单量子比特Bloch球体内部的任何一点(对

应密度算符ρ)，我们都可以作无数条过这一点的线段与球面上的两点(对

应于两个纯态密度算符)相交，每一根这样的线段都意味着我们可以将密

度算符ρ表示成球面上的这两个纯态密度算符的线性组合，而ρ就可以看成

是描述了相应的纯态系综，由于这样的线段有无数条，所以ρ可以描述无

数多个不同的纯态系综，在物理上这些纯态系综不可区分。比方说，对

于Bloch球心的那个最大混态密度算符ρ = 1
2
· 1，我们就有无数种表达它的

方式，比如下面的两种

ρ =
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| = 1

2
|+⟩⟨+|+ 1

2
|−⟩⟨−|. (24)

式中

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩). (25)

3 量量量子子子熵熵熵

3.1 冯冯冯诺诺诺伊伊伊曼曼曼熵熵熵

前面我们说过，混态密度算符可以写成ρ =
∑

a pa|a⟩⟨a|的形式，pa可以看
成概率，是一种不确定性，它反映了我们对系统的某种无知。然而如何衡

量这种无知呢？

一个自然的想法是将这种无知定义成某个算符的期望值，不妨称这个算

符为“无知算符”，下面我们就是要找到它的表达式。由于我们的无知反

映在系统的密度算符ρ中，所以这个“无知算符”应该依赖于ρ(而通常的物

理量算符是与态ρ无关的)。而且，如果ρ是一个纯态密度算符，那它就没有

任何不确定性，从而相应的“无知算符”应该为零。

10



另外，从直观上我们知道，如果两个系统S1和S2相互独立，那我们对

它们的无知应该是相加的，或者说相应的“无知算符”应该是相加的。

另一方面，假设我们记S1的密度算符为ρS1，记S2的密度算符为ρS2 , 则由于

这两个系统相互独立，所以两者整体的密度算符应该是ρS1和ρS2的乘积，

不过，ρS1只作用在S1的希尔伯特空间HS1上，ρS2只作用在S2的希尔伯特空

间HS2上，为了强调这一点我们常将这个乘积写成如下形式

ρS1ρS2 = ρS1 ⊗ ρS2 , (26)

它作用在两者整体的希尔伯特空间HS1 ⊗HS2上。为了将密度算符的这种相

乘关系转化为相加关系，我们定义与密度算符ρ相应的“无知算符”如下

− log(ρ). (27)

额外加上的负号是为了使得这个算符为一个正定算符1。显然，这样定义的

“无知算符”的确是相加的，满足− log(ρS1ρS2) = − log(ρS1)− log(ρS2)。

很容易验证，对于纯态密度算符的确有− log(ρ) = 0。这是因为，

纯态密度算符满足ρ2 = ρ，从而ρ的任何幂次都依然等于ρ。从而对于

任何一个幂级数函数f(x)，必有f(ρ) = f(1)ρ。现在我们按照− log(x) =

− log(1 + x− 1)关于x− 1的泰勒展开级数来定义算符函数− log(ρ), 从而当

然就有− log(ρ) = − log(1)ρ = 0。

下面我们可以将密度算符ρ中包含的无知定义为“无知算符”的期望

值，称作冯诺伊曼熵，简称熵，记为S(ρ)，则

S(ρ) = kB⟨− log ρ⟩ = −kBTr
(
ρ log ρ

)
. (28)

从根本上说式中玻尔兹曼常数kB的引入完全是单位选取上的约定俗成，当

然既然在经典吉布斯熵中引入了kB, 那这里为了和经典熵能对应上，kB就

是必须的。显然，S(ρ)也是所有−ρ log ρ本征值之和，从而也有

S(ρ) = −kB
∑
a

pa log(pa). (29)

这正好是香农关于经典概率分布{pa}信息熵的表达式，经典信息熵衡量的
是获取信息以后能够消除的不确定性，换言之，信息熵衡量的正是获取具

1因为ρ的本征值0 ≤ pa ≤ 1, 所以恒有− log(ρ)的本征值− log(pa) ≥ 0。
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体信息之前我们对它的无知，所以冯诺伊曼熵S(ρ)的确衡量的是无知。很

明显，

S(ρ) ≥ 0, (30)

等于号仅当ρ为纯态密度算符时才能取到。

另外，假设系统的希尔伯特空间为D维，即(29)式中的指标a = 1, 2, 3, ..., D。

则由(29)式可以证明，

S(ρ) ≤ kB logD. (31)

等于号当且仅当pa = 1/D时成立，这时候的密度算符为

ρ =
1

D

∑
a

|a⟩⟨a| = 1

D
· 1. (32)

这当然是一个混态密度算符，相应的混态称之为最大混态。

凹凹凹性性性

前面我们说过，一个系统所有可能密度算符的集合是一个凸集，因此冯

诺伊曼熵S(ρ)就是这个凸集上的函数，实际上，它是一个凹函数。为了证

明这一点，任取两个不同的密度算符ρ1, ρ2，然后构造ρ(t) = tρ1+(1− t)ρ2,

0 ≤ t ≤ 1，我们要证明的是 d2

dt2
S(ρ(t)) ≤ 0。为此，我们首先注意到

d

dt
S(ρ(t)) = −kBTr

(
ρ̇ log ρ

)
. (33)

又注意到

log ρ =

∫ ∞

0

ds
( 1

s+ 1
− 1

s+ ρ(t)

)
. (34)

再注意到ρ̈(t) = 0，则有

d2

dt2
S(ρ(t)) = −kB

∫ ∞

0

dsTr
(
ρ̇

1

s+ ρ(t)
ρ̇

1

s+ ρ(t)

)
. (35)

注意这个积分式的被积函数具有Tr(A2)的形式，式中A = (s+ρ(t))−1/2ρ̇(s+

ρ(t))−1/2为厄密算符，所以A2必定是正定算符，从而Tr(A2) ≥ 0，从而即

有 d2

dt2
S(ρ(t)) ≤ 0。
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由凹函数的熟知性质，我们有∑
i

piS(ρi) ≤ S(
∑
i

piρi). (36)

式中0 ≤ pi ≤ 1, 且
∑

i pi = 1。即是说，将多个密度算符“混”起来会增加

冯诺伊曼熵。这个熵的增量通常称作Holevo 信息，记作χ

χ = S(
∑
i

piρi)−
∑
i

piS(ρi). (37)

3.2 相相相对对对熵熵熵

相相相对对对熵熵熵和和和互互互信信信息息息

假设一个量子系统实际由密度算符ρ描写，但是我们不知道，我们猜测

了一个描写它的密度算符σ, 那我们这个猜测中额外包含的无知就应该是

S(ρ ∥ σ) = kB⟨− log σ⟩ − kB⟨− log ρ⟩ = kBTr(ρ log ρ− ρ log σ). (38)

式中⟨− log σ⟩ = −Trρ log σ为我们的猜测中总共包含的无知，⟨− log ρ⟩为系
统密度算符中原本包含的信息缺失，S(ρ ∥ σ)也称作σ和ρ的量子相对熵。
可以想见，量子相对熵S(ρ ∥ σ)这种额外的无知一定大于等于零(等号当且

仅当σ = ρ时才成立)，即

S(ρ ∥ σ) ≥ 0, (39)

事实也的确如此，证明并不复杂，不过证明过程和我们将要进行的讨论关

系不大，因此我们推荐感兴趣的读者去阅读文献2。

特别的，假设我们考虑一个由A和B两个子系统组成的复合系统AB，

记AB的密度算符为ρAB, 记ρA = TrB(ρAB)为子系统A的约化密度算符(式

中TrB表示在子系统B的希尔伯特空间上求迹)，它只作用在子系统A的

希尔伯特空间上，ρB = TrA(ρAB)为子系统B的约化密度算符(TrA表示

在子系统A的希尔伯特空间上求迹)，它只作用在子系统B的希尔伯特

2A Mini-Introduction To Information Theory, Edward Witten，arXiv:1805.11965[hep-

th]
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空间上。当然，一般来说，由于相互作用，A和B之间会存在关联，因

此ρAB ̸= ρA ⊗ ρB。但是假设我们误以为A和B没有关联，并将ρA ⊗ ρB猜测

为AB的密度算符σAB

σAB = ρA ⊗ ρB. (40)

则我们这一猜测的额外无知为(注意TrAB = TrATrB = TrBTrA)

S(ρAB ∥ σAB) = kBTrAB
(
ρAB log ρAB − ρAB log σAB

)
= kBTrAB

(
ρAB log ρAB − ρAB log ρA − ρAB log ρB

)
= SA + SB − SAB. (41)

式中SA = S(ρA)为A的熵, SB = S(ρB)为B的熵, 而SAB = S(ρAB)为AB的

熵。类似这样的记号我们后面还会用，将不再进行说明。人们通常

称SA + SB − SAB为A和B的量子互信息，记为

I(A,B) = SA + SB − SAB. (42)

则S(ρAB ∥ σAB) ≥ 0就意味着量子互信息总是大于等于零的，即

I(A,B) = SA + SB − SAB ≥ 0. (43)

不过，值得说明的是，量子互信息这个概念完全是类比于经典信息论中

的互信息概念而引入的，但它其实并没有经典互信息的内涵。另外，不等

式(43)有时候也称之为熵的次可加性(subadditivity)。

4 海海海森森森堡堡堡绘绘绘景景景与与与薛薛薛定定定谔谔谔绘绘绘景景景

在量子力学中，刻画一个量子系综需要一组物理量算符以及描述系综量子

态的一个密度算符，不妨记其中一个任意的物理量算符为O, 记系综的密度

算符为ρ，则实验可观测的量总是由某物理量算符O在ρ上的期望值⟨O⟩ρ给
出，其中

⟨O⟩ρ ≡ Tr(ρO). (44)

14



当然，量子系统会随着时间演化，这种演化由系统的哈密顿量H决定,

它反映为期望值⟨O⟩ρ会随着时间演化。但是关于⟨O⟩ρ随时间的演化是由物
理量算符O的演化引起还是由密度算符ρ的演化引起，我们有两种常用的不
同观点，分别称之为，海森堡绘景和薛定谔绘景。

海海海森森森堡堡堡绘绘绘景景景

让我们先来看海森堡绘景，它认为是物理量算符在随时间演化，而密度

算符则是不变的。为了讲得更清楚具体一点，我们定义时间演化算符U(t)

U(t) = exp
(
− iHt/~

)
. (45)

显然，它满足

U(0) = 1, U(t)U(s) = U(t+ s). (46)

换言之，U(t)构成一个阿贝尔群。将U(t)对时间t求导，可以得到其满足的

微分方程，为

i~
d

dt
U(t) = HU(t). (47)

海森堡绘景认为：描述量子态的密度算符ρ从不随时间演化, 随时间演

化的是物理量算符，它其实应该为如下Ot,

Ot ≡ U †(t)OU(t), (48)

注意，式中O是不随时间演化的，但它只是t = 0时刻的物理量算符，

即O0 ≡ Ot=0 = O。根据Ot的定义和方程(47), 不难得到如下海森堡运动方

程

i~
d

dt
Ot = [Ot, H]. (49)

这个微分方程的初始条件为

O0 = O. (50)

进而物理量的期望值应该表达为

⟨Ot⟩ρ ≡ Tr(ρOt). (51)
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薛薛薛定定定谔谔谔绘绘绘景景景

如果我们将Ot的定义(48)代入期望值公式(51)，即有

Tr(ρOt) = Tr(ρU †(t)OU(t)) = Tr(U(t)ρU †(t)O). (52)

由此，我们也完全可以把时间演化算符与态的密度算符结合起来，而不是

和物理量算符结合起来，即可以定义随时间演化的态ρt

ρt ≡ U(t)ρU †(t). (53)

从而即可以将上面的期望值公式重写成

⟨Ot⟩ρ ≡ Tr(ρOt) = Tr(ρtO) ≡ ⟨O⟩ρt . (54)

也即是说，我们可以完全等价地认为是量子态在按照ρt随时间演化，而物

理量算符是不随时间演化的，永远为O。
以上这种等价观点就是薛定谔绘景。根据ρt的定义不难看出，它满足如

下薛定谔方程

i~
d

dt
ρt = [H, ρt]. (55)

这个微分方程的初始条件为

ρ0 = ρ. (56)

很显然，海森堡绘景是经典哈密顿绘景的量子力学对应物，薛定谔绘景

则是经典刘维尔绘景的量子对应物。而ρt所满足的薛定谔方程其实就是经

典刘维尔方程的量子版本。

根据(53)式，以及U †U = 1 从而f(UρU †) = Uf(ρ)U †，不难有

S(ρt) = −kBTrρt log ρt = −kBTr[U(ρ log ρ)U †]

= −kBTr[U †U(ρ log ρ)] = −kBTr[ρ log ρ] = S(ρ). (57)

式中第二行利用了Tr(AB) = Tr(BA). 以上结果告诉我们，一个量子系统

的冯诺依曼熵并不随着时间演化。当然这里考虑的冯诺依曼熵是一种精细

熵，所以这个结论就是量子系统的精细熵不随时间演化。
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5 粗粗粗粒粒粒化化化演演演化化化与与与热热热力力力学学学第第第二二二定定定律律律

量子系统的精细化熵不随时间演化，但是粗粒化熵却不是这样。不过为了

讨论量子系统的粗粒化熵，我们需要把第二章《统计物理的基本原理》中

的粗粒化演化的概念推广到量子情形。

同样，我们把时间离散化成步长为τ的离散时间步，因此ti+1 = ti + τ ,

这里ti为第i步的时间。我们记ρ
c
ti
为第i步的粗粒化密度算符，则可以定义

第i+ 1步在粗粒化之前的密度算符为

ρti+1
≡ U(τ)ρctiU

†(τ). (58)

根据关于精细化熵不变的讨论，很显然，这一步是保持冯诺依曼熵不变

的，即有

S(ρti+1
) = S(ρcti). (59)

为了定义粗粒化之后的ρcti+1
, 我们把系统的希尔伯特空间H分解成若干

小的希尔伯特子空间Hα的直和，即H ≡ ⊕αHα, 并假设每个子空间Hα的维

数均为d, 即

d = dim
(
Hα

)
= TrHα1. (60)

进而可以定义

ρcti+1
|Hα ≡ 1Hα

d
· TrHα(ρti+1

|Hα), (61)

式中ρcti+1
|Hα表示将算符ρ

c
ti+1
限制在子空间Hα上，等式右边的1Hα表示子空

间Hα上的单位算符。迭代上面的离散时间步，就完成了对粗粒化演化的定

义。

根据上面的定义，不难有TrHαρ
c
ti+1

|Hα = TrHα(ρti+1
|Hα), 进而有

TrHα

[
ρcti+1

|Hα log
(
ρcti+1

|Hα

)]
= TrHα

[
ρcti+1

|Hα log
(
ρcti+1

|Hα

)]
= TrHα

[
ρti+1

|Hα log
(
ρcti+1

|Hα

)]
, (62)
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这里我们注意到ρcti+1
|Hα是一个常数算符。通过利用上式两边对α求和的结

果，进而即有

δS ≡ S(ρcti+1
)− S(ρcti) = S(ρcti+1

)− S(ρti+1
)

= kB
[
− Trρcti+1

log ρcti+1
+ Trρti+1

log ρti+1

]
= kB

[
− Trρti+1

log ρcti+1
+ Trρti+1

log ρti+1

]
= S(ρti+1

∥ ρcti+1
) ≥ 0. (63)

由此可见，粗粒化演化过程是熵增加的！所有的处理和推导都完全平行于

第二章中关于粗粒化演化的处理。因此，类似于第二章，取热力学极限之

后就有量子系统的热力学第二定律，或者说熵增加原理。

有了孤立系统的熵增加原理之后，接下来的讨论就完全和第二章中的相

关讨论一样了。比方说，同样可以把孤立系统的热平衡态定义为给定宏观

条件下的极大熵状态。

6 三三三大大大热热热平平平衡衡衡系系系综综综

微微微正正正则则则系系系综综综

不妨先考察孤立系统的热平衡态，也就是所谓的微正则系综。记能量本

征值为E的本征子空间为HE, 则由于孤立系统的能量守恒，我们所考察的

密度算符应该限制在这个本征子空间之内。考虑到在热力学极限下，一个

典型量子系统的能谱通常来说为连续谱，所以，在粗粒化之后，我们就需

要考虑本征值在[E,E + δE]区间之内的本征子空间，其中δE为小量。由于

能量守恒，所考察的密度算符只在这样的本征子空间之内才非零。因此，

我们可以设系统的密度算符ρ为

ρ =

σ 1
δE
, 能量本征值落在[E,E + δE]区间之内

0, 否则
(64)

式中σ为某个厄密算符，它只作用在本征子空间HE上。

根据密度算符的归一化条件，有

Trρ = TrHE
(σ) · δN(E)/δE = 1. (65)
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式中δN(E)表示本征值在[E,E + δE]区间之内的能量本征态的数目. 不妨

记δN(E)/δE ≡ Ω(E)为态密度，则以上结果可以重写成

TrHE
(σ) =

1

Ω(E)
. (66)

相应的冯诺依曼熵为

S(ρ) = −kB
δN(E)

δE
TrHE

[σ log(σ/δE)]

= −kBΩ(E)TrHE
(σ log σ) + kB log δE. (67)

其中kB log δE项的贡献是非广延的，因此在热力学极限下相比于前面的广

延项它可以忽略。如此一来，极大化S(ρ)就等价于极大化如下泛函

SG(σ) = −kBΩ(E)TrHE
(σ log σ), (68)

相应的约束条件就是上面的(66)式。对σ进行变分并利用拉格朗日乘子法，

不难得到极大值对应如下方程

Ω(E)TrHE

[(
− kB(log σ + 1) + λ

)
δσ
]
= 0, (69)

式中λ为拉格朗日乘子。进而不难得到相应的σ必定为常数算符，代入归一

化条件(66)，立即有(不妨设HE本身的简并度为1)

σ ≡ 1HE

Ω(E)
. (70)

这时候，相应的熵为

S = kB log Ω(E). (71)

这两个结果就确立了微正则系综的等概率原理和玻尔兹曼熵公式。很显

然，这些结论与经典情形是完全对应的。

正正正则则则系系系综综综以以以及及及巨巨巨正正正则则则系系系综综综

与经典版本相比，正则系综的量子版本几乎没有什么新的东西。同样是

先引入自由能泛函

F (ρ) ≡ E(ρ)− TS(ρ) = ⟨H⟩ρ − TS(ρ), (72)
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这里与经典版本相比唯一的不同在于，这里的ρ是密度算符，这里的S(ρ)是

冯诺依曼熵。完全类似的，我们也有恒温系统的自发过程必定导致自由能

减少(假设系统与外界之间没有力学功的交换)，进而恒温系统的热平衡态

就对应自由能泛函F (ρ)的极小。

为了求出自由能泛函F (ρ)的极小，需要对密度算符ρ进行变分，并要通

过拉格朗日乘子法考虑到ρ的归一化条件，最终可以得到正则系综的密度

算符为

ρ =
1

Z
e−βH , (73)

很显然，这里的一切都和经典情形完全一样，区别只在于现在哈密顿

量H是算符，从而ρ也是算符。归一化条件Trρ = 1告诉我们

Z = Tr
(
e−βH

)
, (74)

其它各热力学量的求法均与经典情形完全一致，这里不再赘述。

量子版本的巨正则系综甚至比经典版本更为简单，因为现在不必对每一

不同粒子数的情形都分别引入一个概率密度，只需对系统(无论其粒子数为

多少)笼统地引入一个粒子数算符N(注意，现在是厄密算符了)，以及笼统

地引入描写量子态的密度算符ρ。系统的巨热力学势泛函可以定义为

Φ(ρ) ≡ ⟨H⟩ρ − TS(ρ)− µ⟨N⟩ρ, (75)

式中T, µ分别为热库的温度以及化学势。完全类似的，热平衡态相应

于Φ(ρ)的极小值。通过变分不难求出巨正则系综的密度算符为

ρ =
1

Ξ
e−β(H−µN). (76)

利用归一化条件，有

Ξ = Tr
(
e−β(H−µN)

)
. (77)

不过，值得注意的是，由于现在H和N都是厄密算符，所以这里涉及

到这两个算符作用顺序的问题。通常人们要求这两个算符可交换顺序，

即[H,N ] = 0，因为只有这样才能满足[ρ,H] = 0 (这是热平衡的要求之一，

相应于经典统计里的{ρ,H} = 0)。换言之，要求粒子数算符是系统的守恒
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量。直观上这是因为，在巨正则系综的考察中，粒子并没有凭空消失或产

生，它们只是和粒子源之间产生了交换。

在量子场论的应用中，粒子数常常不是守恒量，成为守恒量的是诸如电

荷量这样的量。那这时候就不能用粒子数算符来定义巨正则系综了，而应

该相应地用电荷算符。具体的定义和粒子数算符情形完全类似，这里不再

赘述。
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