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本章要考察的是多个全同粒子所构成的系统的量子统计力学。结果表

明，这样的全同粒子可以分成两类，一类是所谓的玻色子，一类是所谓的

费米子，这两类粒子遵循不同的统计力学。另外，本章还会讲述这两种统

计力学的一些应用，其中包括黑体辐射、固体热容、电子简并压，以及玻

色-爱因斯坦凝聚等等。

1 玻玻玻色色色子子子与与与费费费米米米子子子的的的统统统计计计力力力学学学

两两两全全全同同同粒粒粒子子子情情情形形形

记单粒子希尔伯特空间的一组正交归一基矢量为|ui⟩, 满足

⟨ui|uj⟩ = δij. (1)

下面先来讨论两个全同粒子的情形。将这两个粒子标记为1, 2，记相应

的两粒子希尔伯特空间为H, 则H的矢量基为|ui(1), uj(2)⟩。由于我们讨论
的是两个不可区分的全同粒子，我们现在非物理地将这两个粒子分别标记

为1, 2，但实际在物理上，1, 2是不可区分的，这就意味着，如果我们将这

两个粒子相互置换一下，在物理上系统将不会发生任何改变。这有两层含

义，第一，置换前后系统的物理状态不会改变。第二，这样的置换操作不

会引起任何物理可观测量的改变。这两点实际上就意味着，这样的置换操

作是这两个全同粒子体系的一种特殊对称性。

我们定义两粒子的置换算符P12如下，

P12|ui(1), uj(2)⟩ = |ui(2), uj(1)⟩ = |uj(1), ui(2)⟩, (2)

上式的最后一个等号来源于习惯上我们常常将标记为第1个粒子的量子态

写在狄拉克符号的第1个位置。读者很容易验证，这样定义的置换算符是

一个幺正算符(保持态的内积不变)。且对于希尔伯特空间H里的任意量子
态|ψ⟩ =

∑
i,j ψi,j|ui(1), uj(2)⟩, 我们有

P12|ψ⟩ =
∑
i,j

ψi,j|uj(1), ui(2)⟩ =
∑
i,j

ψj,i|ui(1), uj(2)⟩ (3)
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上式的最后一个等号来自于求和指标的重命名。很显然，对于两粒子的置

换，结果相当于将叠加系数ψi,j的两个下标互换，即ψi,j → ψj,i。很明显，

连续进行两次置换相当于不进行任何操作，即有P 2
12 = 1。

现在，对于两个全同粒子的情形，由于置换操作不会改变系统的物理状

态，所以必有

P12|ψ⟩ = e−iφ|ψ⟩, (4)

即置换算符作用之后的量子态只能和原来的量子态相差一个相位。又

由于P 2
12 = 1，从而有(e−iφ)2 = 1, 所以这个相位只有两种可能性，要么

取+1，要么取−1。对于+1的情形，我们就说这两个全同粒子为全同玻

色子，对于−1的情形，我们就说这两个粒子为全同费米子。另外，根据

上一段的讨论我们又知道，用量子态的展开系数来说，P12的作用相当

于P12 : ψi,j → ψj,i。因此对于全同玻色子，我们必有ψi,j = ψj,i，而对于全

同费米子则必有，ψj,i = −ψi,j。人们常常称这个结果为：全同玻色子的波

函数必定为对称波函数，全同费米子的波函数必定为反对称波函数。

两粒子希尔伯特空间H中，所有对称波函数所构成的希尔伯特子空间，
为全同玻色子的对称态空间HS，而所有反对称波函数所构成的希尔伯特子

空间，为全同费米子的反对称态空间HA。读者容易验证，HS的基矢量可

以取为

|ui, uj⟩S =
1

2

(
|ui(1), uj(2)⟩+ |ui(2), uj(1)⟩

)
=

1

2
(1 + P12)|ui(1), uj(2)⟩, (5)

因为|ui, uj⟩S的任意线性叠加态
∑

i,j ci,j|ui, uj⟩S =
∑

i,j ci,j|ui(1), uj(2)⟩/2 +∑
i,j ci,j|ui(2), uj(1)⟩/2 =

∑
i,j

1
2
(ci,j + cj,i)|ui(1), uj(2)⟩，因此在原来的希尔

伯特空间H中来看，这样的态当然都是对称态，因为很明显1
2
(ci,j + cj,i) =

ψi,j是一个对称波函数。类似的，两全同费米子反对称态空间HA的基矢量

可以取为

|ui, uj⟩A =
1

2
(1− P12)|ui(1), uj(2)⟩. (6)

关于两全同费米子的反对称态，有一个特别重要的情形值得单独

考察。这情形就是，假如我们在公式(6)中令i = j，很显然，结果必然

是|ui, ui⟩A = 0。也即是说，对于全同费米子系统，两个粒子不能处在同一

个单粒子态上。这其实就是著名的泡利不相容原理。
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N个个个全全全同同同粒粒粒子子子的的的情情情形形形

以上关于两全同粒子体系置换对称性的讨论当然可以推广到任意N个

全同粒子情形，我们任意地将这N个全同粒子标记为1, 2, 3, ..., N。则对

这N个粒子的置换就表现为对这N个数的置换，我们记在置换操作g的作

用下，粒子n将被置换成粒子g(n), 则g本身就唯一由其在N个粒子上的作

用g : {1, 2, 3, ...., N} → {g(1), g(2), ..., g(N)}决定。最简单的置换操作当然
就是恒等置换，也就是不做任何置换，可以把相应的g简单记为1。另外

我们可以定义两个置换操作g1和g2的乘积g2g1为，先对N个粒子进行置换

操作g1，之后再在g1置换结果的基础上再进行置换操作g2，很显然，按照

这个置换乘法的定义，g2g1仍然是一个置换操作。由此可见，N个全同粒

子的所有可能置换的集合SN在置换乘法下是封闭的，而且恒等置换1显然

在这个集合之内。不仅如此，我们可以将任何置换过程逆转过来，从而

得到任意置换操作g的逆置换操作g−1，它满足g−1g = gg−1 = 1。也即是

说，SN的每一个元素都可逆。满足这些性质的集合SN就称之为一个群，

元素g就是称作一个群元，SN就是N个粒子的置换群，简单的排列组合可

以告诉我们，SN共有N !个群元。

置换操作中最简单的就是两粒子对换，通常记i, j两粒子的对换操作

为(ij)，很明显任何对换都满足(ij)2 = 1。数学上不难证明，N粒子的任意

置换群元g均可以写成一系列的两两对换的乘积。如果g对应于偶数个对换

相乘，我们就称g为偶置换，如果g相应于奇数个对换相乘，我们就称之为

奇置换。很容易证明偶置换的逆依然是偶置换，奇置换的逆依然是奇置

换，比方说偶置换g = (13)(12)的逆g−1 = (12)(13)显然依旧是偶置换。

对于N个全同粒子系统，我们可以首先忽略其全同性，得到N个粒子的

希尔伯特空间H，其基矢量可以选为|ui1(1), ui2(2), ..., uiN (N)⟩, 式中|ui⟩是
单粒子希尔伯特空间的正交归一基矢量。仿照两粒子情形，我们可以将

对N个粒子的置换算符Pg定义成

Pg|ui1(1), ui2(2), ..., uiN (N)⟩ = |ui1(g(1)), ui2(g(2)), ..., uiN (g(N))⟩

=|uig−1(1)
(1), uig−1(2)

(2), ..., uig−1(N)
(N)⟩. (7)

上式的最后一个等号是将多粒子态重新排列一下，使得第1个粒子的态排在

狄拉克符号的第1个位置，以此类推。读者可以验证，这样定义出来的置换
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算符必定是一个幺正算符。

另外，根据上面的定义，读者很容易验证

Pg2Pg1 |ui1(1), ui2(2), ..., uiN (N)⟩

=|ui1(g2g1(1)), ui2(g2g1(2)), ..., uiN (g2g1(N))⟩

=Pg2g1|ui1(1), ui2(2), ..., uiN (N)⟩. (8)

也即是说，置换算符满足如下关系

Pg2Pg1 = Pg2g1 . (9)

这一代数关系的实质就在于，它告诉我们置换算符会保持置换操作的乘法

关系，两个置换操作的乘积对应于两个相应置换算符的乘积。数学家称这

种保持乘法关系的从置换群SN到希尔伯特空间幺正算符的对应关系为置换

群的幺正表示。也即是说，我们定义的置换算符刚好构成了相应置换群的

幺正表示。特别的，幺正表示满足

P †
g = P−1

g = Pg−1 . (10)

考虑到粒子的全同性则有，置换算符的作用不会改变系统的物理状

态，即置换算符作用以后的量子态和原来的量子态只能相差一个相位。因

此，N个全同粒子的物理态空间不是N粒子希尔伯特空间H，而是它的一
个子空间，这个子空间的态额外满足下面的约束条件

Pg|ψ⟩ = e−iφ(g)|ψ⟩. (11)

虽然我们现在考虑的是N个全同粒子，但是由于Pg得构成置换群的幺正表

示，所以这个方程的解其实和两全同粒子类似，即只有两个不同的解。其

中一个解描述全同玻色子，这时候对于任意g，恒有e−iφ(g) = 1。另一个解

描述全同费米子，这时候e−iφ(g) = ε(g)，记号ε(g)对于偶置换取1, 对于奇置

换取−1。

这个一般性结论的证明其实并不难，关键点就在于要注意到：(1)任意

置换g总能写成一系列两粒子对换的乘积. (2)由于Pg是置换群的表示，所以

它也可以写成一系列两粒子对换的乘积。注意到这两点以后，人们就可以
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轻易地将N个全同粒子的分析约化为对两全同粒子的分析。另外，根据置

换的奇偶性，人们不难证明ε(g)满足如下关系

ε(g2)ε(g1) = ε(g2g1), ε(g−1) = ε(g). (12)

与两全同粒子类似，假如我们将|ψ⟩用基矢量|ui1(1), ui2(2), ..., uiN (N)⟩
展开成

|ψ⟩ =
∑

i1,i2,...,iN

ψi1,i2,...,iN |ui1(1), ui2(2), ..., uiN (N)⟩. (13)

则对于全同玻色子体系，叠加系数(波函数)将满足，ψi1,i2,...,iN对于N个指

标的任意置换都对称不变，这种波函数简称对称波函数，或者称为全对称

波函数。而对于全同费米子体系，ψi1,i2,...,iN对于任意两个指标的对换都反

对称，比方说ψi2,i1,...,iN = −ψi1,i2,...,iN , 这种波函数称作反对称波函数，或者

称作全反对称波函数。玻色子的物理态空间称作对称态子空间，记为HS，

费米子的物理态空间称作反对称态子空间，记作HA。因此，对称态子空

间HS其实就是所有对称波函数的空间，而反对称态子空间HA则是所有反

对称波函数的子空间。

与两全同粒子情形类似，对称态空间HS的基矢量可以按照如下方法构

造

|ui1 , ui2 , ..., uiN ⟩S =
1

N !

∑
g

Pg|ui1(1), ui2(2), ..., uiN (N)⟩. (14)

证明其实非常简单，假如将某个置换算符Pg1作用在这样的基矢量上，则由

于Pg1

∑
g Pg =

∑
g Pg1Pg =

∑
g Pg1g =

∑
g′ Pg′(最后一个等号是令g1g = g′，

并将对g的求和替换成对g′的求和得到），由此不难得到这样的基矢量在任

何置换算符的作用下都保持不变，因此是对称态空间的基矢量。

而反对称态空间HA的基矢量的构造方法则是

|ui1 , ui2 , ..., uiN ⟩A =
1

N !

∑
g

ε(g)Pg|ui1(1), ui2(2), ..., uiN (N)⟩. (15)

要证明它是反对称态空间的基矢量，只需要注意到

Pg1

(∑
g

ε(g)Pg

)
= ε(g1)

(∑
g′

ε(g′)Pg′
)
, (16)
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具体的证明细节我们留给读者自己练习。

全同费米子体系反对称态基矢量的构建公式(15)还可以写成一种更常见

的行列式形式

|ui1 , ui2 , ..., uiN ⟩A =
1

N !

∑
g

ε(g)|ui1(g(1)), ui2(g(2)), ..., uiN (g(N))⟩.

=
1

N !

∑
g

ε(g)|ui1(g(1))⟩|ui2(g(2))⟩...|uiN (g(N))⟩.

=
1

N !
det


|ui1(1)⟩ |ui1(2)⟩ ... |ui1(N)⟩
|ui2(1)⟩ |ui2(2)⟩ ... |ui2(N)⟩
... ... ... ...

|uiN (1)⟩ |uiN (2)⟩ ... |uiN (N)⟩

 (17)

在最后的行列式中，我们看到，每个单粒子态相应于行列式的一行，每个

被标记的粒子相应于行列式的一列。很明显，将任意两个粒子对换相应于

交换行列式的两列，因此当然是反对称的。这就再一次证明了，最终的行

列式的确能够成反对称态空间的基矢量。另外，从最终的行列式中还可以

轻易看出另一个重要结果，即一个单粒子态上不可能出现两个和两个以上

的全同费米子，否则的话，这个行列式就会有两行或者更多行是完全一样

的，但是线性代数的知识告诉我们，这样的行列式必定为零。这个结果就

是我们前面提到过的泡利不相容原理。

对于全同粒子体系，置换算符的作用不仅不能改变系统的物理状态，而

且置换算符的作用效果应该是无法观测的，因为对于全同粒子体系而言，

将粒子作一个任意置换对于物理结果不应该有任何影响。因此，这就意味

着，置换算符必须得和任意物理可观测量O均对易，即

PgO = OPg. (18)

特别的，置换算符得和全同粒子哈密顿量对易。从而置换操作是全同粒子

体系的一种特殊对称性。

根据以上的讲述可以知道，自然界中的粒子可以分成玻色子和费米子两

类。量子场论中有一个重要的定理告诉我们，所有整数自旋的粒子都是玻

色子，比如光子(自旋是1)，而所有半整数自旋的粒子都是费米子，比如电

子(自旋是1/2)。
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全全全对对对称称称投投投影影影与与与全全全反反反对对对称称称投投投影影影

习惯上人们常常定义如下算符

S =
1

N !

∑
g

Pg, A =
1

N !

∑
g

ε(g)Pg. (19)

不难验证，这两个都是厄密算符，比如(利用(10)式)

S† =
1

N !

∑
g

P †
g =

1

N !

∑
g

Pg−1 =
1

N !

∑
g−1

Pg−1 = S. (20)

类似的也有A† = A。另外，不难得到

PgS = SPg = S, PgA = APg = ε(g)A. (21)

进而可以导出

S2 = S, A2 = A. (22)

以后者为例

A2 =
1

N !

∑
g

ε(g)PgA =
1

N !

∑
g

(ε(g))2A =
1

N !

∑
g

A = A. (23)

(22)式告诉我们，S和A均为投影算符，S的作用是将量子态投影到全对称

子空间HS, 而A的作用是投影到全反对称子空间HA。类似的，不难有

SA = AS = 0. (24)

因为AS = 1
N !

∑
g ε(g)PgS = 1

N !

∑
g ε(g)S = 0 (因为奇偶置换各占一半)。

利用这两个投影算符，我们可以把HS和HA上的基矢量分别写成

|ui1 , ui2 , ..., uiN ⟩S = S|ui1 , ui2 , ..., uiN ⟩, |ui1 , ui2 , ..., uiN ⟩A = A|ui1 , ui2 , ..., uiN ⟩.

不妨取ζ = +1对应全同玻色子情形(即对应下标为S的全对称态)，ζ =

−1对应全同费米子情形(即对应下标为A的反对称态)。则可以证明，在全

对称或全反对称子空间Hζ上，有如下完备性关系式∑
i1,i2,··· ,iN

|ui1 , ui2 , ..., uiN ⟩ζ ζ⟨ui1 , ui2 , ..., uiN | = 1. (25)
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证明其实不难，以全对称的情况为例∑
i1,i2,··· ,iN

|ui1 , ui2 , ..., uiN ⟩S S⟨ui1 , ui2 , ..., uiN |

=
∑

i1,i2,··· ,iN

S|ui1 , ui2 , ..., uiN ⟩⟨ui1 , ui2 , ..., uiN |S

=S2 = S. (26)

第三行用了空间H上的完备性关系
∑

i1,i2,··· ,iN |ui1 , ui2 , ..., uiN ⟩⟨ui1 , ui2 , ..., uiN | =
1。但是，由于现在限制于全对称子空间HS，而这个子空间本来就是

由S投影出来的，所以S在这个子空间上的作用就相当于恒等算符1, 从而即

有(25)式。

特别的，系统的配分函数为

Z = TrHζ
(e−βH) =

∑
i1,i2,··· ,iN

ζ⟨ui1 , ui2 , ..., uiN |e−βH |ui1 , ui2 , ..., uiN ⟩ζ . (27)

不难证明，这个结果可以进一步写成

Z =
1

N !

∑
P

ζP
∑

i1,i2,··· ,iN

⟨uiP1
, uiP2

, ..., uiPN
|e−βH |ui1 , ui2 , ..., uiN ⟩. (28)

式中为了符号的简略起见，我们直直直接接接以以以P代代代表表表置置置换换换了！ζP对奇置换取ζ, 而

对偶置换取1。

不妨以ζ = −1的全同费米子情形证明最后的这个结果：首先，根

据(27)式，

Z =
∑

i1,i2,··· ,iN
A⟨ui1 , ui2 , ..., uiN |e−βH |ui1 , ui2 , ..., uiN ⟩A

=
∑

i1,i2,··· ,iN

⟨ui1 , ui2 , ..., uiN |Ae−βHA|ui1 , ui2 , ..., uiN ⟩

=
∑

i1,i2,··· ,iN

⟨ui1 , ui2 , ..., uiN |A2e−βH |ui1 , ui2 , ..., uiN ⟩

=
∑

i1,i2,··· ,iN

⟨ui1 , ui2 , ..., uiN |Ae−βH |ui1 , ui2 , ..., uiN ⟩

=
1

N !

∑
P

(−)P
∑

i1,i2,··· ,iN

⟨uiP1
, uiP2

, ..., uiPN
|e−βH |ui1 , ui2 , ..., uiN ⟩. (29)
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式中第三行是利用了[P,H] = 0, 从而[A,H] = 0，最后一行是把投影算

符A往左作用在左矢上了。

最终的结果可以很漂亮地归纳为

TrHS

(
e−βH

)
= TrH

(
Se−βH

)
, TrHA

(
e−βH

)
= TrH

(
Ae−βH

)
. (30)

即在对称子空间或者全对称子空间上算配分函数，就相当于在原来的计算

中插入相应的投影算符。读者如果觉得最终的这个结论更好理解，那前面

关于完备性的相关讨论和推导就不需要管了。

2 理理理想想想玻玻玻色色色气气气体体体

本节是将上一节的理论应用于理想玻色气体，具体来说也就是自旋为零的

自由玻色子气体。(当然，类似的处理也可以应用于理想费米子气体。) 在

涉及到多个粒子的统计复杂性之前，让我们先来计算一下单个自由粒子

的配分函数，这时不涉及到多粒子统计的问题。我们以x这样的符号来代

表粒子的三维位置矢量，因此
∫
dx · · · 这样的积分实际上是三重积分。同

样，以P这样的符号代表粒子的三维动量算符，因此
∫
dp · · · 这样的积分实

际上也是三重积分。

对于单个粒子，在坐标表象下可以定义传播子Kβ(x
′, x) = ⟨x′| exp(−βH)|x⟩

(多粒子传播子定义是类似的)，β表示传播的“时长”。从而单粒子配分函

数为

Z1(β) =

∫
dxKβ(x, x)

根据⟨x′|e−(β1+β2)H |x⟩ =
∫
dy⟨x′|e−β2H |y⟩⟨y|e−β1H |x⟩, 显然我们有关系式∫

dyKβ2(x
′, y)Kβ1(y, x) = Kβ1+β2(x

′, x). (31)

对于单个自由粒子，H = P 2

2m
，此时坐标表象的传播子可以直接算出
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来，它是

Kβ(x
′, x) = ⟨x′|e−βP 2/2m|x⟩ =

∫
dp⟨x′|p⟩⟨p|e−βP 2/2m|x⟩

=

∫
dpe−βp2/2m⟨x′|p⟩⟨p|x⟩ =

∫
dpe−βp2/2m 1

(2π~)3
eip·(x

′−x)/~

=

(
m

2πβ~2

)3/2

exp

(
−1

2
m
(x′ − x)2

β~2

)
. (32)

因此对于单个自由粒子，我们有配分函数

Z1(β) = V

(
m

2πβ~2

)3/2

= V/λ3T 其中λT = ~/
√

m

2πβ
∝ ~

√
β.

从上面单个自由粒子的传播子公式我们可以得到逆温度β的直观物理

意义，逆温度的平方根乘以~就是热力学波长λT，它大概反映的是相干长
度的一个衡量，当两点的距离比λT 远时，热力学涨落会将这两点之间的

任何量子相干性去掉。假定有一个粒子处于某个量子态，其波长为λ，假

设λ > λT，此时如果将此粒子置于温度为1/β 的热源中，则热力学涨落会

起到一个退相干的作用，最后使得粒子能保持相干性的长度不是波长λ 而

是热波长λT。这时候它的量子性基本丧失了，剩下的相干性可以解释成经

典的热力学关联，因此热波长也是体系热力学关联的尺度，是体系热力学

涨落的典型尺度。反之，假设λ < λT，则热源的退相干效应几乎对处于此

态的粒子不起作用，这时候它依然能将其相干性大致保持在波长的范围

内，这种情况下，粒子的量子性依然保持。

这是一个很重要也很有用的物理图象，它还有另一种等效的解释，那

就是说，对一个频率为ω 的物理自由度或物理态，对它的能量有来自于两

方面的贡献，一方面是量子涨落贡献的~ω，另一方面是热力学涨落贡献
的kBT，当~ω < kBT 时，热力学涨落占据了主导地位，此时粒子的行为就

是经典的统计行为。反之，当~ω > kBT 时，量子涨落占据了主导地位，

此时粒子的行为必须要用量子统计来描述。

下面我们从一个稍微不同的角度来讨论自由玻色气体的量子统计，这个

角度的出发点在于前文推导的单个自由粒子的传播子。由于粒子间没有相

互作用，故粒子气的传播子应是每个粒子的贡献乘起来，并计及全同粒子

统计，换句话说，就是先将每个粒子单独的传播子乘起来，再对末态位形
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的各种排列平均。比如，设想有N 个粒子，则根据(28)式

ZN(β) =
1

N !

∑
P

∫
dx1dx2 · · · dxNKβ(xP1, xP2, · · · , xPN ;x1, x2, · · · , xN).

N 的任何一个置换P 均可以写成轮换结构，设置换P中长度为n 的轮换

有Cn个，即
∑

n nCn = N。另外我们注意到任意一个长度为n 的轮换贡献

的传播子因子相当于传播“时长”为nβ并最终回到起点的传播子,∫
dx1dx2 . . . dxnKβ(x2, x3, · · · , x1;x1, x2, · · · , xn)

=

∫
dx1dx2 . . . dxnKβ(x1, xn) · · ·Kβ(x3, x2)Kβ(x2, x1)

=

∫
dx1Knβ(x1, x1) = V

(
m

2πnβ~2

)3/2

. (33)

式中最后一行利用了(31)式。

因此，所有长度相同的轮换对配分函数的贡献都是相同的，对各个置换

求和就换成了对所有可能的轮换分解{Cn} 进行求和，

ZN(β) =
1

N !

∑
{Cn}

N({Cn})
∏
n

(
V

(
m

2πnβ~2

)3/2
)Cn

,

式中N({Cn}) 表示有{Cn} 这样的轮换结构的置换数目，不难想明白它是

N({Cn}) =
N !∏

nCn!nCn
,

其中，分母中的因子n 来自于轮换的对称性，Cn! 来自于置换Cn 个轮换的

位置。

现在，考虑巨配分函数Ξ(β) =
∑

N z
NZN(β)，由上面的式子不难知道

它等于

Ξ(β) = exp

(
V

(
m

2πβ~2

)3/2 ∞∑
n=1

1

n5/2
zn

)
. (34)

后文我们会通过不同方法再次得到这一结果。
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3 光光光子子子气气气与与与声声声子子子气气气

本节依然是讨论量子理想气体，不过和上一节不同，本节将讨论的是粒子

数不守恒的量子理想气体。具体来说，本节将讨论大量光子所组成的光子

气，以及固体里面的声子气，在物理学史上，对这两种量子理想气体的研

究都是爱因斯坦先开始的。

首先，让我们考察单个量子粒子约束在一个边长为L的立方盒子里，盒

子的体积为V = L3。这样的粒子当然要由一个波函数来描述，假设我们给

盒子加上周期性边界条件(即将盒子的各对边进行等同)，那么一个自由粒

子的本征波函数就是如下平面波

ψ =
1√
V
eik·r, (35)

式中k = (k1, k2, k3)为平面波的波矢量，周期性边界条件要求它量子化为

k = (
2πn1

L
,
2πn2

L
,
2πn3

L
), 其中ni ∈ Z. (36)

所以不同的单粒子态由(n1, n2, n3)这三个量子数标记。后文常常需要涉及

对单粒子态求和，因此也就是对这三个量子数求和，
∑

n1,n2,n3
。但实际中

考察的往往是盒子很大的情形，即L ≫ λ, λ为上述平面波的波长，这也就

是量子数ni很大的情形。这时候ni的增减相对于其本身来说就很小，因此

我们可以近似地用积分来代替求和∑
n1,n2,n3

≈
∫
d3n =

V

(2π)3

∫
d3k =

4πV

(2π)3

∫ ∞

0

dkk2, (37)

式中k = |k|, 这里我们已经假设了没有写出来的被积函数是球对称的，因
此可以将角度部分的4π先积出来。

3.1 光光光子子子气气气：：：黑黑黑体体体辐辐辐射射射

假设这个约束在盒子中的粒子是光子，其能量为~ω(k) = ~ck，这里我们利
用了光波的色散关系，其中c为光速。那么整个光子气系统的哈密顿量为

H =
∑

(n1,n2,n3)

~ω(k)N̂(k), (38)
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这里的N̂(k)为波矢量k的光子的粒子数算符。所以系统的能量本征态(我

们称之为系统态，以区分于单粒子态)也就是N̂(k)的本征态，记本征值

为n(k)(为非负整数), 即

N̂(k)|...n(k)...⟩ = n(k)|...n(k)...⟩. (39)

这里涉及到了粒子数算符，所以严格来讲我们应该用巨正则系综。但

是，考虑到光子数N不守恒，所以热平衡时它将取使得自由能最小的值，

也就是

∂F

∂N
|T,V = 0 ⇒光子化学势µ = 0. (40)

所以光子的化学势其实为零。所以我们要算的巨配分函数就成为

Ξ = Tre−βH = Tr exp
(
− β

∑
(n1,n2,n3)

~ω(k)N̂(k)
)

=
∑

{n(k)}

exp
(
− β

∑
(n1,n2,n3)

~ω(k)n(k)
)
=

∏
(n1,n2,n3)

∑
n(k)

e−β~ω(k)n(k)

=
∏

(n1,n2,n3)

[
1 + e−β~ω(k) + e−2β~ω(k) + e−3β~ω(k) + · · ·

]
=

∏
(n1,n2,n3)

1

1− e−β~ω(k) . (41)

或者也可以写成

log Ξ = −
∑

(n1,n2,n3)

log(1− e−β~ω(k)) = − V

(2π)3

∫
d3k log(1− e−β~ω(k)), (42)

式中最后一个等于号我们已经将对单粒子态的求和换成了积分。

代入 V
(2π)3

∫
d3k = 4πV

(2π)3

∫∞
0
dkk2, 以及ω = ck, 容易把上面的结果重写成

Ξ = − V

π2c3

∫ ∞

0

dωω2 log(1− e−β~ω), (43)

值得注意的是，上式右边已经额外乘上了一个因子2，这是因为光子有两种

极化模式。当然，这个因子2其实一开始在哈密顿量的表达式中就应该考虑

到，这里只是作为一种补救。
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进而可以算得其它热力学量，比如光子气的平均能量E为

E = − ∂

∂β
log Ξ =

V ~
π2c3

∫ ∞

0

dω
ω3

eβ~ω − 1
. (44)

常常通过E =
∫
dωE(ω)dω定义单位频率区间的能量E(ω), 则很显然

E(ω) =
V ~
π2c3

ω3

eβ~ω − 1
. (45)

这就是所谓的普朗克分布函数。注意，每给定一个温度，都有一条相应

的普朗克分布曲线，每一条分布曲线都有一个峰值，其位置可以通过求

解dE(ω)/dω = 0确定，它大约是

ωmax = 2.822
kBT

~
, (46)

也即是说，温度越高，峰值频率也越高，这就是所谓的维恩位移定律。

为了计算出光子气的总能量E, 我们在(44)式中作变量代换x = β~ω, 从
而

E =
V

π2c3
(kBT )

4

~3

∫ ∞

0

dx
x3

ex − 1
. (47)

所以关键在于算出积分I =
∫∞
0
dx x3

ex−1
, 后文会更仔细地考察这一类积分，

现在我们只需要知道结果，I = Γ(4)ζ(4) = π4/15。所以最终可以得到光子

气的能量密度E ≡ E/V为

E =
π2k4B
15~3c3

T 4. (48)

为了计算其它热力学量，让我们先来计算光子气的巨热力学势Φ,

Φ = −kBT log Ξ =
V kBT

π2c3

∫ ∞

0

dωω2 log
(
1− e−β~ω). (49)

通过分部积分可以去掉对数，结果是

Φ = − V ~
3π2c3

∫ ∞

0

dω
ω3e−β~ω

1− e−β~ω

= − V

3π2c3
(kBT )

4

~3

∫ ∞

0

dx
x3

ex − 1

= −V π
2k4B

45~3c3
T 4. (50)
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进而即有光子气的压强为

P = −∂Φ
∂V

|T =
π2k4B
45~3c3

T 4 =
1

3
E =

E

3V
⇒ PV =

1

3
E. (51)

进一步还可以算得光子气的熵和热容，分别为

S = −∂Φ
∂T

|V =
4V π2k4B
45~3c3

T 3, CV =
∂E

∂T
|V =

4V π2k4B
15~3c3

T 3. (52)

3.2 声声声子子子气气气

很难想象有什么物质能比气体和固体之间的差异更大。然而，令人相当惊

讶的是，我们可以利用对气体的研究来准确理解固体的某些特性。请看

图(1)中所示的原子晶体：单个原子被牢牢固定在晶格位置――它们显然不

会像气体那样运动。但这些原子的振动（即声波）却可以采用与光子相同

的理论框架进行处理。

Figure 1: 固体的晶格结构

声波很类似于真空中的电磁波，电磁波的量子是光子，声波的量子就叫

声子，声波和电磁波的类似性使得我们想到，类似于光子气，声子也会在

固体中形成声子气。然而，声波和电磁波也有一些不同：首先，声波的传

播速度比光波慢得多，其速度取决于材料的刚度和密度，这里我们将忽略

声速可以依赖于波长和方向的事实，把声速记作cs，看作常数。其次，光

波必须横向极化，而声波也可以纵向极化，所以声波有3个独立的极化(两

个横向加一个纵向)而不是2个。简单起见，我们将假设这三个极化有相同
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的声速。最后，光波的波长可以任意短，但是声波波长不可能短过固体中

相邻原子的间距。

为了考察声子气，首先要考察单声子态的数目。问题是，固体声波到

底有多少单粒子态呢？为了回答这个问题，我们来数一下固体的自由度数

目，假设固体总共有N个原子，那么由于每个原子有3个自由度，所以固体

总的自由度数目就是3N。注意，所谓自由度数目，就是我们可以变动固体

的独立方式的数目。现在，假设我们通过弹性波(也就是声波)的方式变动

固体，在量子力学的意义上，也就是通过激发声子的方式来变动固体。我

们可以激发一个声子到单粒子的第一激发态、或者第二激发态等等，所以

变动固体的方式数目就是我们可以如何激发单个声子(也就是把声子激发到

哪个单粒子态上)的方式数，显然，这个数目正是声子的单粒子态数目。从

而单声子态的总数目就是3N。

另一方面，正如前文说过的，单粒子态的总数目近似由积分 V
(2π)3

∫
d3k给

出。当然，对于声波，由于其波长λ最短也只能到固体中相邻原子间距的

程度，因此对波矢量|k| = 2π/λ的积分是有上限的。实际上，固体物理

的知识告诉我们，由于晶格的周期性，这个积分只能限制在所谓的第一

布里渊区BZ (至于什么是第一布里渊区，限于篇幅请读者参阅固体物理

书，或者问AI), 另外，由于声子有3个独立的极化，所以最终的结果还要

乘以3倍。总之，固体的单粒子态数目将由3 V
(2π)3

∫
BZ
d3k给出，也即是说，

单粒子态的数目由第一布里渊区的体积决定。综合这两段的论证，我们可

以得出，

3N = 3
V

(2π)3

∫
BZ

d3k. (53)

为了估算积分3 V
(2π)3

∫
BZ
d3k, 我们设想给声子频率引入一个上限ωD(称作

德拜频率)，并代入色散关系ω = csk, 用相应的球坐标积分代替真正的布里

渊区积分，从而即有

3
V

(2π)3

∫
BZ

d3k =
3V

2π2c3s

∫ ωD

0

dωω2 =
V ω3

D

2π2c3s
. (54)

由于单声子态的总数目为3N , 所以ωD由下式决定

3N =
V ω3

D

2π2c3s
. (55)
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与德拜频率相应的，通常还会引入一个德拜温度TD, 它也就是最高频

率ωD的声子开始被激发的温度，定义是

TD ≡ ~ωD/kB. (56)

德拜温度的范围从软质材料（如铅）的约100K，到硬质材料（如金刚石）

的2000K不等。大多数材料的德拜温度都在室温附近（±100K左右）。

完全类似于光子气，声子气的巨配分函数为

log Ξ = −3
V

(2π)3

∫
BZ

d3k log(1− e−β~ω(k))

= − 3V

2π2c3s

∫ ωD

0

dωω2 log(1− e−β~ω). (57)

类似的，可以得到声子气的总能量E为

E = − ∂

∂β
log Ξ =

3V ~
2π2c3s

∫ ωD

0

dω
ω3

eβ~ω − 1
. (58)

在上述积分中作x = β~ω的变量代换，并注意到积分上限变为xD = TD/T ,

则有

E =
3V

2π2(~cs)3
(kBT )

4

∫ TD/T

0

dx
x3

ex − 1
. (59)

上述积分并不能解析地积出来，为了得到一些有用的结果，我们考虑两

个极限情况：首先，T ≪ TD的低温极限，这个时候积分上限可以近似为正

无穷，相应的结果我们在光子气的相关讨论中见过了。这时候可以算出热

容正比于T 3,

CV =
∂E

∂T
=

2π2V k4B
5~3c3s

T 3, (T ≪ TD). (60)

代入德拜温度的相关公式，即有

CV = NkB
12π4

5

( T
TD

)3
. (61)

其次，考虑T ≫ TD的高温极限，这时候可以将下面的积分近似成∫ TD/T

0

dx
x3

ex − 1
=

∫ TD/T

0

dx(x2 + · · · ) = 1

3

(TD
T

)3
+ · · · . (62)
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代入(59)式，可以算得这时候的热容为

CV =
V k4BT

3
D

2π2~3c3s
= 3NkB, (T ≫ TD). (63)

对这个结果的物理解释是，在高温时，固体原子近似可以看作是相互独立

的振子，按照能量均分定理，每个振子自由度贡献的热能是kBT (一半是动

能，一半是弹性势能)，3N个振子自由度的热能就是3NkBT，相应的热容

就是3NkB。不过，高温时固体的这个热容结果是人们早就知道的，声子气

模型真正的成功之处在于预言了低温时固体的热容正比于T 3。这里需要注

意的就是，低温时固体的热容主要由声子贡献，当然，对于金属导体，相

应的热容还要加上传导电子的贡献，稍后我们会讨论这一贡献。

4 玻玻玻色色色-爱爱爱因因因斯斯斯坦坦坦统统统计计计

光子气和声子气都是理想玻色气体，但是它们的粒子数都不守恒，从而化

学势为零。本节我们考察粒子数守恒的(从而化学势不为零)的理想玻色气

体。

4.1 理理理想想想玻玻玻色色色气气气体体体的的的统统统计计计力力力学学学

假设单个玻色粒子的能量为ϵ(k, σ), 式中σ是此玻色子的自旋量子数(也就是

其自旋z分量的本征值)，当系统处于一个外界磁场中时，由于自旋与外界

磁场的耦合，单粒子态的能量本征值可以依赖于σ。记相应的粒子数算符

为N̂(k, σ), 其本征值为n(k, σ), 并记µ为化学势。则很显然

H − µN̂ =
∑
k,σ

(
ϵ(k, σ)− µ

)
N̂(k, σ). (64)

完全类似于前面对光子气的讨论，可以得到此玻色气体的巨配分函数为

Ξ = Tr(e−β(H−µN̂)) =
∏
k,σ

1

1− e−β(ϵ(k,σ)−µ)
. (65)

或者也可以写成

log Ξ = −
∑
σ

V

(2π)3

∫
d3k log(1− ze−βϵ(k,σ)), (66)
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式中z = eβµ, 而且我们已经把对k的求和近似成积分了。

特别的，如果没有外场，而且玻色子是非相对论的，则这时候

ϵ(k, σ) =
p2

2m
, (67)

式中p = ~k为粒子的动量。代入上面的式子，即有

log Ξ = −(2s+ 1)
V

(2π~)3

∫
d3p log(1− ze−βp2/2m)

= −(2s+ 1)
4πV

(2π~)3

∫ ∞

0

p2dp log(1− ze−βp2/2m), (68)

式中s是粒子自旋，由于是玻色子，所以s应该是整数。不妨进行x =

(βp2/2m)的变量代换，则上式成为

log Ξ = −(2s+ 1)
4πV

(2π~)3
1

2
(2m/β)3/2

∫ ∞

0

x1/2dx log(1− ze−x). (69)

下面处理上式中的积分

I ≡
∫ ∞

0

x1/2dx log(1− ze−x) = −
∫ ∞

0

x1/2dx

+∞∑
n=1

zn

n
e−nx

= −
∑
n

zn

n5/2

∫ ∞

0

x1/2e−xdx = −
√
π

2

∑
n

zn

n5/2
. (70)

代入(69)式，并整理得

log Ξ = (2s+ 1)V
( m

2πβ~2
)3/2∑

n

zn

n5/2
. (71)

正与前文用不同方法算出来的结果(34)完全吻合(取s = 0)!

将log Ξ对化学势求偏导可以求出系统热平衡时的平均粒子数(依然记

为N), 具体来说是

N = z
∂ log Ξ

∂z
. (72)

根据(66)式，不难得到

N =
∑
σ

V

(2π)3

∫
d3k

1

z−1eβϵ(k,σ) − 1
. (73)
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很显然，式中

⟨N̂(k, σ)⟩ = 1

z−1eβϵ(k,σ) − 1
(74)

就是单粒子态(k, σ)上占据的平均粒子数。

特别的，单粒子基态ϵ(k, σ) = 0上的占据粒子数为

N0 = 1/(z−1 − 1) = z/(1− z), (75)

物理上，单粒子基态上的玻色子数目当然大于等于零，因此必有

0 < z ≤ 1 ⇒ µ < 0. (76)

注意，玻色气体的化学势是负的，这意味着当我们向体系加入一个新的粒

子时，体系的自由能反而会减少。这个初看起来反直觉的结果其实是因

为，每给系统增加一个玻色子，其内能的增加很少(因为这个粒子可以和能

量较低的那些粒子占据同一个单粒子态)，然而由于增加了一个物理自由

度，故而使得体系的熵增加了一，当这个粒子与其他粒子平衡以后它就将

体系总内能中的一份kBT转化为热运动能量，因此总的效应是使得体系的

自由能减少了！

另一方面，根据更特殊一点的(71)式，不难得到这种情况下的平均粒子

数N为

N = (2s+ 1)V
( m

2πβ~2
)3/2∑

n

zn

n3/2
. (77)

但是，归根结底，(77)式是通过算(69)式的积分算出来的，积分的数学

定义要求，被积的每一个单粒子态对结果的贡献都小到可以忽略积分才有

意义，但是，我们已经看到，基态ϵ = 0贡献的粒子占据数是z/(1 − z)，

尤其当z → 1时，并不是一个小到可以忽略的值。所以，我们要将积分下

限ϵ = 0处的这个贡献手动地加上去(原来的积分可以看作是从ϵ = 0+开始

的)，进而把粒子数写成

N = (2s+ 1)
[ z

1− z
+ V

( m

2πβ~2
)3/2∑

n

zn

n3/2

]
. (78)

式中右边的第二项是激发态上的粒子总数，可记作Nex。

21



为了联系关于平均粒子数的这两个式子(73)式和(77)式。我们定义如下

函数

ϕα(z) ≡
1

Γ(α)

∫ ∞

0

dx
xα−1

z−1ex − 1
. (79)

不难进行如下推导

ϕα(z) =
1

Γ(α)

∫ ∞

0

dx
zxα−1e−x

1− ze−x

=
1

Γ(α)
z

∫
dxxα−1e−x

∞∑
n=0

zne−nx

=
1

Γ(α)

∞∑
n=1

zn
∫
dxxα−1e−nx =

∑
n

zn

nα
. (80)

特别的，ϕα(1) = ζ(α), ζ(α)是黎曼Zeta函数。

利用上面函数ϕα(z), 显然可以将(71)式和(78)式分别重写为

log Ξ = (2s+ 1)
V

λ3T
ϕ5/2(z), N = (2s+ 1)

[ z

1− z
+
V

λ3T
ϕ3/2(z)

]
. (81)

式中λT = 1/
√

m
2πβ~2是所谓的热力学波长。注意到−kBT log Ξ = Φ = −PV ,

最后的等于号是用了Gibbs-Duhem关系式，P为玻色气体的压强，进而

由(81)式，有

P = (2s+ 1)kBT
1

λ3T
ϕ5/2(z). (82)

当单粒子能量不依赖于σ时，人们常常把对k的积分转换成对单粒子能

量ϵ的积分，转换办法是定义

(2s+ 1)
V

(2π)3

∫
d3k =

∫ ∞

0

g(ϵ)dϵ, (83)

式中g(ϵ)称为单粒子态的态密度,不难看出对于ϵ(k) = p2/2m的情形，g(ϵ) ∼
ϵ1/2。利用这个办法就可以把(66)式改写成

log Ξ = −
∫ ∞

0

dϵg(ϵ) log(1− ze−βϵ). (84)
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注意到g(ϵ) ∼ ϵ1/2，进而dϵg(ϵ) = 2
3
d(ϵg(ϵ)), 进而可以对上面这个式子分部

积分，并得到

log Ξ =
2

3
β

∫
dϵ

ϵg(ϵ)

z−1eβϵ − 1
. (85)

注意到kBT log Ξ = PV，所以，

PV = kBT log Ξ =
2

3

∫
dϵ

ϵg(ϵ)

z−1eβϵ − 1
. (86)

另一方面，系统的平均能量E为(利用(84)式)

E = − ∂

∂β
log Ξ =

∫
dϵ

ϵg(ϵ)

z−1eβϵ − 1
. (87)

很显然

PV =
2

3
E. (88)

注意，这个结果与光子气的PV = 1
3
E明显不同，因为光子气是极端相对论

性的，而这里的玻色气体是非相对论性的。

4.2 玻玻玻色色色-爱爱爱因因因斯斯斯坦坦坦凝凝凝聚聚聚

为了简单起见，本节仅以s = 0的玻色气体为例进行讨论。

根据(78)式

Nex/V =
1

λ3T
ϕ3/2(z),

很显然，Nex与体积V成正比，而基态的占据粒子数为N0 = z/(1 − z)与体

积V无关，所以只要z不趋于1, 那么与Nex相比N0就可以忽略，这时近似

就有Nex = N。另外，给定总粒子数N , 假设让温度从一个很高的值开始

降低，则随着温度的降低，热波长λT ∼ ~
√
β就会逐渐增加，则由上式可

知，z(从而ϕ3/2(z))也必然要逐渐增加，但是z的取值范围为0 < z ≤ 1，所

以必然有一个临界的低温值Tc, 它相应于z = 1。

现在，假设我们有一团玻色气体，其粒子数密度为n = N/V，因此粒子

间的平均距离为1/ 3
√
n，这些粒子分别处于动量为p 的量子态，并与热源保

持着热平衡。则由

n =
1

λ3T
ϕ3/2(z),
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可以反解出体系的化学势。此外，我们还应注意到，p < ~ 3
√
n的那一部分

态，其波函数是有相互交叠的，当考虑到热力学涨落的退相干效应时，这

些相互交叠的相干性可能被抹平，也可能没有被抹平，这主要取决于热波

长λT的大小，也就是取决于温度的大小。

让我们先从比较高的温度开始，它相应于z ∼ 0 的极限(前面说过z随

温度的降低而增加)，此时，只要 3
√
n > λT , 则，所有的量子力学相干性都

被热力学涨落抹平了，因此是一种遵循经典统计的气体。另外，此时还

有n ≈ 1
λ3
T
z，或者写成

1

n
/λ3T ≈ 1

z
.

因此z ∼ 0意味着上式左边很大。这个式子的物理意义是说，在经典极限

下，每个粒子所占据的平均距离远远大于热力学波长，这正是我们期望的

图象。另外，由于热力学波长就是系统典型的热力学涨落的尺度，因此，

经典极限说的就是，相比粒子的间距而言，热力学涨落局域得很好，他消

去了任何两个粒子波函数间的交叠，同时使得它们之间的热力学关联均较

小。

而随着我们慢慢地降低温度，热力学波长开始渐渐增加，而z 也开始

慢慢的增大，化学势也随之而改变，当热波长λT 变得与粒子间距1/ 3
√
n

相当时（若认为前面z ∼ 0 极限下得到的关于z 的式子依然可以定性

的说明问题的话，这就相当于z ∼ 1），此时那些波长大于粒子间距，

即~/p > 1/ 3
√
n，的粒子态之间的波函数交叠开始不能被热力学涨落所抹平

了，这时这些能级比较低的态间的波函数交叠就变得重要。这些态，而尤

其是p = 0 的基态，波函数开始重叠得厉害，而这种相干叠加就使得基态

上的占据的粒子越来越多

N0 =
z

1− z
.

这个相干叠加的过程是链式的，因此玻色-爱因斯坦凝聚就在瞬间发生了，

总的粒子中有一个很大的份额N0 都凝聚到基态上去了(从而这时Nex与粒子

总数N有明显差别)，N0 是如此之大，使得z 基本就是1，z = 1。我们可以

由此得出临界温度Tc，

N =

(
m

2πβc~2

)3/2

ϕ3/2(1).
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假如我们继续降低温度，热波长越来越长，远远地超过粒子的平均间

距，热力学涨落引起的退相干效应越来越弱，所有波长大于粒子间距，

即~/p > 1/ 3
√
n，的粒子态的波函数交叠均得到保持，基态上凝聚的粒子数

持续增加，而z 越来越精确地等于1，因此，凝聚发生以后(即对T < Tc)，

激发态上的粒子数随着温度的变化规律为

Nex = V

(
m

2πβ~2

)3/2

ϕ3/2(1) = N

(
T

Tc

)3/2

.

因此凝聚量对温度的依赖关系为

N0 = N −Nex = N

[
1−

(
T

Tc

)3/2
]
.

在临界温度Tc之上，基态上凝聚的粒子数可以忽略，根据(82)式，这时

玻色气体的压强为

P = kBT
1

λ3T
ϕ5/2(z). (89)

然而，当T < Tc时，z = 1, 从而压强变成

P =
kBT

λ3T
ϕ5/2(1) ∼ T 5/2, (90)

特别的，这时候的压强与粒子数密度N/V没有关系。

如果，我们研究热容曲线，则会发现，玻色-爱因斯坦凝聚有点类似于

液氮超流相变，由于热容曲线的形状、液氮超流的那种相变被称之为λ 相

变。

玻色-爱因斯坦凝聚体（常简写为BEC）终于在1995年得以实现，距

离其理论预言约70年。首批实现的BEC由铷、钠或锂原子构成，原子

数在N ∼ 104 → 107之间。形成这类凝聚体所需的相变温度极低，约

为Tc ∼ 10−7K。图(2)展示了揭示凝聚体存在的标志性伪彩色分布图：将

原子囚禁于磁阱后关闭磁场，经过短暂时间t，当原子移动~kt/m距离时拍
摄原子云图像。通过原子扩散情况可推知原子云的动量分布，如图(2)所

示。最后两幅图中出现的尖峰证实确有大量原子处于动量基态（由于有限

势阱与海森堡不确定关系，该状态并非k = 0态）。BEC的发现者――博
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尔德的埃里克·康奈尔、卡尔·维曼与MIT的沃尔夫冈·克特勒共同获得

了2001年诺贝尔物理学奖。

Figure 2: 这是取自麻省理工学院Ketterle实验室的铷原子速度分布图。左

图显示的是温度高于临界温度（T > Tc）时、凝聚体即将形成前的情况；

中图和右图则都显示出玻色-爱因斯坦凝聚体（Bose-Einstein condensate）

的存在。

5 费费费米米米-狄狄狄拉拉拉克克克统统统计计计

那么如果是化学势不为零的费米子理想气体，它满足的统计力学又应该是

怎样的呢？

为此，假设单个费米子的能量本征值为ϵ(k, σ)，依然记单粒子态(k, σ)上

占据的费米子数目为n(k, σ), 由于泡利不相容原理，同一个单粒子态最多

只能被一个费米子占据，所以与玻色子不同，这里n(k, σ) = 0, 1。进而即

有费米气体的巨配分函数为

Ξ = Tr(e−β(H−µN̂)) =
∏
k,σ

(1 + e−β(ϵ(k,σ)−µ)). (91)

或者也可以写成

log Ξ =
∑
σ

V

(2π)3

∫
d3k log(1 + ze−βϵ(k,σ)). (92)
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类似玻色气体情形，也可以求出系统热平衡时的平均粒子数N

N = z
∂ log Ξ

∂z
=
∑
σ

V

(2π)3

∫
d3k

1

z−1eβϵ(k,σ) + 1
. (93)

很显然，式中

⟨N̂(k, σ)⟩ = 1

z−1eβϵ(k,σ) + 1
(94)

就是单粒子态(k, σ)上占据的平均粒子数。

如果ϵ(k)不依赖于自旋量子数σ, 那和玻色气体类似，也可以引入态密

度g(ϵ)，进而把(92)式写成

log Ξ =

∫ ∞

0

dϵg(ϵ) log(1 + ze−βϵ). (95)

由于是费米子，所以这里态密度中的s为半整数。和玻色气体的相关推导完

全类似，可以导出

E =

∫ ∞

0

dϵ
ϵg(ϵ)

z−1eβϵ + 1
. (96)

当然，依然有kBT log Ξ = PV，而且，对于ϵ(k) = p2/2m的非相对论情

形，也可以类似地导出PV = 2
3
E。

类似于玻色气体的相关处理，对于ϵ(k) = p2/2m的非相对论情形，也可

以引入x = βp2/2m的变量代换, 进而把(92)式写成

log Ξ = (2s+ 1)
4πV

(2π~)3
1

2
(2m/β)3/2

∫ ∞

0

x1/2dx log(1 + ze−x). (97)

类似地处理上式中的积分

I ≡
∫ ∞

0

x1/2dx log(1 + ze−x) = −
∫ ∞

0

x1/2dx

+∞∑
n=1

(−z)n

n
e−nx

= −
∑
n

(−z)n

n5/2

∫ ∞

0

x1/2e−xdx = −
√
π

2

∑
n

(−z)n

n5/2
= −

√
π

2
ϕ5/2(−z). (98)

其中，根据ϕα(z)的定义，有

−ϕα(−z) = −
∞∑
n=1

(−z)n

nα
=

1

Γ(α)

∫ ∞

0

dx
xα−1

z−1ex + 1
. (99)
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将积分I的结果代入(97)式，并整理得

log Ξ = (2s+ 1)V
( m

2πβ~2
)3/2

(−)ϕ5/2(−z). (100)

由此立即有

N = z
∂ log Ξ

∂z
= (2s+ 1)V

( m

2πβ~2
)3/2

(−)ϕ3/2(−z). (101)

费费费米米米能能能

根据单粒子态上平均占据的粒子数公式(94)可知，当温度T → 0时，一

个单粒子态要么被占据要么就是空的，即

1

eβ(ϵ−µ) + 1
→

1 对于ϵ < µ

0 对于ϵ > µ
(102)

换言之，在T = 0时，如果我们往系统中加入费米子，那它会从最低单粒

子能态开始占据起，随着加入的费米子越来越多，占据的单粒子能态也越

来越高，直到单粒子能级达到µ(T = 0)为止。通常称最后被占据的这个能

级为费米能ϵF

µ(T = 0) ≡ ϵF . (103)

也即是说，T = 0时，费米能级以下的所有单粒子能级都被占据，而费米

能级以上的单粒子能态都是空的。

假设我们考虑的是满足ϵ(k) = p2/2m的非相对论费米子系统，那么很显

然，费米能级对应的费米波数kF是~kF = (2mϵF )
1/2。T = 0时，所有波矢

量满足|k| ≤ kF的单粒子态都被占据，这些被占据的单粒子态构成了波矢

量空间的一个半径为kF的球体，称作费米球，其表面就称作费米面，也就

是满足|k| = kF的球面。

为了决定费米能ϵF , 我们注意到总粒子数为N，从而

N =
∑
σ

V

(2π)3

∫
|k|≤kF

d3k = (2s+ 1)
V

(2π)3
4

3
πk3F = (2s+ 1)

V

6π2

(2m
~2
)3/2

ϵ
3/2
F .
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或者说

ϵF =
~2

2m

( 6π2

2s+ 1

N

V

)2/3
. (104)

费米能为费米子系统设定了一个能标。相应的，我们也可以定义费米温

度TF ≡ ϵF/kB，这设定了低温和高温的界限，T ≪ TF就是低温，T ≫
TF就是高温。对于金属中的自由电子气而言，TF ∼ 104K, 而对于白矮星中

的电子而言，TF > 107K。

也可以计算T = 0时系统的平均总能量E, 为

E =
∑
σ

V

(2π)3

∫
|k|≤kF

d3kϵ(k) =
3

5
NϵF . (105)

根据公式PV = 2
3
E即可以得到这时候费米气的压强

PV =
2

5
NϵF . (106)

也即是说，即使在零温时，费米气体也有非零的压强，称作简并压！因为

这种压强并非来自于费米子的热运动，而是来自于泡利不相容原理，是因

为不同费米子不能处于同一个单粒子态而导致的结果。零温时简并压的存

在是费米气体与玻色气体的典型不同，也是费米气体与经典气体的典型不

同。正是因为电子简并压抵抗了自引力作用，所以白矮星才能稳定存在。

类似的，正是因为中子简并压抵抗了自引力作用，所以才能形成中子星。

低低低温温温时时时的的的费费费米米米气气气体体体

Figure 3: 单粒子态上占据的费米子平均数目。左图是T = 0时的情况，右

图是T ≪ TF的低温时的情况。右图粒子数的分布只在ϵF附近约kBT的范围

内才和左图有明显不同。
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现在考虑T ≪ TF时的低温费米气体，其单粒子态上占据的平均粒子数

如图(3)的右图所示。我们注意到这个粒子数分布只在ϵF附近约kBT的范围

内才和T = 0时的情况有明显不同。写出总粒子数和总能量的公式

N =

∫ ∞

0

dϵ
g(ϵ)

z−1eβϵ + 1
, E =

∫ ∞

0

dϵ
ϵg(ϵ)

z−1eβϵ + 1
. (107)

式中态密度g(ϵ) ∼ ϵ1/2。

总粒子数N当然不依赖于温度T , 现在，我们宣称这意味着

dµ

dT
|T=0 = 0. (108)

为了证明这一点，我们把N对T求导，则有

dN

dT
=

d

dT

∫ ∞

0

dϵ
g(ϵ)

eβ(ϵ−µ) + 1

=

∫ ∞

0

dϵg(ϵ)
d

dT

( 1

eβ(ϵ−µ) + 1

)
≈ g(ϵF )

∫ ∞

0

dϵ
d

dT

( 1

eβ(ϵ−ϵF ) + 1

)
. (109)

其中从第二行到第三行我们用到了两点：第一点是，低温时粒子数分布

函数只在ϵF附近有明显的变化，这意味着第二行的积分中被积项只在ϵF附

近才有非零的贡献，因此我们可以把这一行中的g(ϵ)近似为g(ϵF )。第二点

是，我们利用了 dµ
dT
|T=0 = 0, 进而在第三行中将µ替换成了零温时的ϵF。

显式算出上面最后一行中对T的求导，即有

dN

dT
≈ g(ϵF )

∫ ∞

0

dϵ
(ϵ− ϵF
kBT 2

) 1

4 cosh2(β(ϵ− ϵF )/2)
≈ 0. (110)

积分的最后结果近似为零是因为ϵ − ϵF在ϵF附近是奇函数，而cosh则是偶

函数，而且这个积分仅仅在ϵF附近才有非零贡献(从而积分下限可以替换

成−∞)。

下面我们来说，低温时能量E对T的导数，也就是热容CV。利用和上面

类似的近似，我们有

CV =
∂E

∂T
=

∫ ∞

0

dϵϵg(ϵ)
∂

∂T

( 1

eβ(ϵ−µ) + 1

)
≈
∫ ∞

0

dϵ
[
ϵFg(ϵF ) +

3

2
g(ϵF )(ϵ− ϵF )

] ∂
∂T

( 1

eβ(ϵ−ϵF ) + 1

)
. (111)
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式中中括号里的项是对ϵg(ϵ)进行了泰勒展开, 并注意到ϵg(ϵ) ∼ ϵ3/2。同样

的奇偶性论证告诉我们，中括号里ϵFg(ϵF )项最后对积分的贡献是零，但

是(ϵ− ϵF )项的贡献非零。

令x = β(ϵ− ϵF ), 则可以看出上式最后的积分等于

CV ≈ 3

2
g(ϵF )k

2
BT

∫ ∞

−∞
dx

x2

4 cosh2(x/2)
. (112)

式中的积分当然只是一个数值因子，因此

CV ∼ k2BTg(ϵF ). (113)

这个结果有非常直观的物理解释：低温时，仅仅ϵF附近大约kBT能量范围

的费米子才会参与物理，这样的费米子数目约为g(ϵF )kBT，其中每一个对

热能的贡献是kBT，因此总热能是g(ϵF )(kBT )
2, 从而热容就是上面给出的

结果。

根据(104)式，N ∼ ϵ
3/2
F , 而g(ϵF ) ∼ ϵ

1/2
F ，所以也可以将上述关于热容的

结果改写成

CV ∼ NkB
( T
TF

)
. (114)

我们可以将上述理论应用到一个非常重要的领域――金属。我们可以尝

试将传导电子――即那些可以在晶格中自由移动的电子――视为一种理想

气体。乍一看，这种做法似乎不太可能奏效，因为我们忽略了电子之间的

库仑相互作用。然而，事实证明，将金属中的传导电子近似为理想气体的

做法效果出奇地好。

根据本节所学内容，我们预期金属的热容会由两个部分贡献组成：晶

格振动产生的声子贡献，其随温度变化的关系为T 3（参见公式(61)）；如

果传导电子表现为理想气体，则根据(114)式，它们应贡献一个线性项。因

此，低温下金属的热容可以表示为：

CV = γT + αT 3. (115)

实验数据通常以CV /T对T
2作图，因为这样会得到一条看起来很规整的直

线。该直线与CV /T轴的截距告诉我们电子部分的贡献。
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我们可以大致估算出声子与电子对热容的贡献何时相当。比较

式(61)与式(114)，可得出当T 2 ∼ T 3
D/TF时两者贡献相等。典型数值TD ∼

102K与TF ∼ 104K表明，需要将温度降至1K左右才能观测到电子贡献。

多数金属的线性热容系数γ与理想气体值相当接近（偏差通常在20%以

内）。然而金属中的电子远非自由粒子：其库仑相互作用能至少与动能同

等重要。为何理想气体近似仍能如此准确？这一问题由朗道在1950年代作

出解释，由此发展的理论――通常称为朗道费米液体理论――构成了现代

电子系统研究的理论基础。

索索索末末末菲菲菲展展展开开开

下面我们发展一种更严谨更系统的方式来处理低温费米气。首先我们把

粒子数的公式(101)重写如下

N = (2s+ 1)
V

λ3T
(−)ϕ3/2(−z). (116)

以及由kBT log Ξ = PV = 2
3
E和(100)式得出的总能量E的公式

E =
3

2
(2s+ 1)kBT

V

λ3T
(−)ϕ5/2(−z). (117)

在这两个式子中

−ϕα(−z) =
1

Γ(α)

∫ ∞

0

dx
xα−1

z−1ex + 1
. (118)

由于化学势µ > 0, 所以低温对应于大z, 低温展开相应于大z展开。

为此我们推导函数−ϕα(−z)的一种大z展开，称作索末菲展开。首先我们
把−ϕα(−z)的积分分裂成两部分

−Γ(α)ϕα(−z) =
∫ log z

0

dx
xα−1

z−1ex + 1
+

∫ ∞

log z

dx
xα−1

z−1ex + 1

=

∫ log z

0

dxxα−1
(
1− 1

1 + ze−x

)
+

∫ ∞

log z

dx
xα−1

z−1ex + 1

=
1

α
(log z)α −

∫ log z

0

dx
xα−1

1 + ze−x
+

∫ ∞

log z

dx
xα−1

z−1ex + 1
. (119)
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对最后一行中的第一个积分我们进行变量代换η1 = log z − x，而对第二个

积分我们进行变量代换η2 = x− log z

−Γ(α)ϕα(−z) =
1

α
(log z)α −

∫ log z

0

dη1
(log z − η1)

α−1

1 + eη1
+

∫ ∞

0

dη2
(log z + η2)

α−1

1 + eη2
.

注意到log z ≫ 1, 又注意到这个式子中的第一个积分被分母的eη1压低

了，因此如果我们把这第一积分的上限改成+∞, 那么多算的部分将大约

是e− log z = z−1量级，在大z展开下我们将忽略这个量级的修正，从而即有

−Γ(α)ϕα(−z) ≈
1

α
(log z)α +

∫ ∞

0

dη
(log z + η)α−1 − (log z − η)α−1

1 + eη
.

将其中的分子部分进行泰勒展开

(log z + η)α−1 − (log z − η)α−1 = (log z)α−1
[
(1 +

η

log z
)α−1 − (1− η

log z
)α−1

]
=(log z)α−1

[
1 + (α− 1)η/ log z + ...− 1 + (α− 1)η/ log z + ...

]
=2(α− 1)(log z)α−2η + ... (120)

代进上面的积分，进而即有

−Γ(α)ϕα(−z) ≈
1

α
(log z)α + 2(α− 1)(log z)α−2

∫ ∞

0

dη
η

1 + eη
.

对于式中的积分，我们有∫ ∞

0

dη
η

1 + eη
=

∫ ∞

0

dη
ηe−η

1 + e−η

=

∫ ∞

0

dηηe−η

∞∑
m=0

(−)me−mη

=
∞∑

m=1

(−1)m−1

m2

∫ ∞

0

duue−u =
∞∑

m=1

(−1)m−1

m2
. (121)

对于式中的求和，我们有

1− 1

22
+

1

32
− 1

42
+ · · · =

(
1 +

1

22
+

1

32
+

1

42
+ · · ·

)
− 2
( 1
22

+
1

42
+

1

62
+ · · ·

)
=
(
1− 2

22
)(
1 +

1

22
+

1

32
+

1

42
+ · · ·

)
=

1

2
ζ(2) =

π2

12
.
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因此，将上面所有的结果综合在一起，最终我们有

−ϕα(−z) ≈
(log z)α

Γ(α + 1)

(
1 +

π2

6

α(α− 1)

(log z)2
+ · · ·

)
.

将这个结果代入前面的(116)式和(117)式，即有

N

V
=

(2s+ 1)

6π2~3
(2mµ)3/2

(
1 +

π2

8

(kBT
µ

)2
+ · · ·

)
. (122)

以及

E

V
=

(2s+ 1)

10π2~3
(2m)3/2µ5/2

(
1 +

5π2

8

(kBT
µ

)2
+ · · ·

)
. (123)

根据(122)式，我们可以把化学势对温度的依赖关系反解出来，经过一

些代数运算，并利用费米能ϵF的表达式(104)，可以得到结果为

µ = ϵF

(
1− π2

12

(kBT
ϵF

)2
+ · · ·

)
(124)

注意，µ对温度的领头阶依赖是二次的，这与之前宣称的 dµ
dT
|T=0 = 0完全吻

合。

但，我们真正想算的是热容的公式，为此我们用(123)式除以(122)式，

并代入上面关于化学势的结果，即有

E

N
=

3

5
ϵF

(
1 +

5π2

12

(kBT
ϵF

)2
+ · · ·

)
. (125)

由此立即可以得到低温时的热容

CV =
∂E

∂T
|N = NkB

π2

2

T

TF
. (126)

与之前估算的结果(114)完全一致。

6 附附附录录录：：：从从从量量量子子子统统统计计计到到到经经经典典典统统统计计计

前面的章节我们讲了经典统计力学，也讲了量子统计力学。实际上，经典

统计力学可以作为量子统计力学在~ → 0时的经典极限。为了说清楚这个

问题，不妨以单自由度系统的正则系综为例。
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这时候系统的哈密顿算符为

Ĥ =
p̂2

2m
+ V (q̂), (127)

这里为了强调算符与普通函数的区别，我们给算符上面加上了一个尖帽

子̂。系统的配分函数为
Z = Tr(e−βĤ) =

∫
dq⟨q|e−βĤ |q⟩, (128)

式中|q⟩为位置算符q̂的本征态，满足⟨q′|q⟩ = δ(q′− q)。问题是，算符Ĥ中既
包含了仅依赖于位置算符q̂的项，但也同时包含仅依赖于动量算符p̂的项，

而且由于这两种项不对易，所以我们不能直接将它们因式分解。

不过，利用算符公式

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂]+···, (129)

并注意到[q̂, p̂] = i~，我们有

e−βĤ = e−βp̂2/2me−βV (q̂) +O(~). (130)

式中O(~)表示与~同阶的修正项，在~ → 0的经典极限下，这些修正项可以

忽略。

因此，在~ → 0的经典极限下，我们有

Z =

∫
dq⟨q|e−βĤ |q⟩ =

∫
dq⟨q|e−βp̂2/2me−βV (q̂)|q⟩

=

∫
dqe−βV (q)⟨q|e−βp̂2/2m|q⟩

=

∫
dq

∫
dpe−βV (q)⟨q|p⟩⟨p|e−βp̂2/2m|q⟩

=

∫
dq

∫
dpe−βH(q,p)|⟨q|p⟩|2 =

∫
dqdp

2π~
e−βH(q,p). (131)

式中最后一个等于号利用了

⟨q|p⟩ = 1

(2π~)1/2
eipq/~ ⇒ |⟨q|p⟩|2 = 1

2π~
. (132)
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上面的推导告诉我们，在经典极限下，量子的求迹就变成经典的相空间

积分，对单自由度系统，积分体积元为dqdp
2π~。很明显，将这样的推导推广

到任意的m自由度系统，对应的相空间积分体积元就是

dµ =
dq1 · · · dqmdp1 · · · dpm

(2π~)m
. (133)

正是本书第二章中通过最小相格的方式猜测出来的结果。
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