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1 引引引言言言：：：从从从混混混乱乱乱到到到秩秩秩序序序的的的法法法则则则

想象这样的场景：清晨，水汽在冰冷的玻璃窗上凝结成无数细密的水珠。

每一颗水珠都由亿万水分子组成，这些分子永不停歇地运动、碰撞。如

果，我们拥有神祇般的视野，能同时追踪每一个水分子的精确位置和速度

――它们都遵循着简单、确定的力学规则（无论是牛顿定律还是量子力

学）。那么，一个问题必然浮现：这些确定性规则驱动的微观粒子，如何

“合作”出我们肉眼可见的、规律且可预测的宏观世界？为何散乱飞舞的

分子，在宏观尺度上形成了稳定的水流、均匀的温度、或者…窗上这颗晶

莹的水珠？为何极度的微观“混乱”（chaos）反而孕育出了宏观的“秩

序”（order）与“可预言性”？

这便是统计物理要回答的核心命题。它不是对经典力学的否定，而是对

经典力学在面对天文数字粒子数（ 1023）的复杂系统时局限性的超越与升

级。当粒子数量如此巨大：

精确追踪每一个粒子变得不可能且无意义：求解亿万联立的运动方程是

计算能力的噩梦。更重要的是，我们宏观感官根本无法分辨也无法关心某

个特定粒子的精确轨迹。

确定性规则导致了“表观”的随机性：大量粒子间频繁、复杂的相互作

用，使得即使系统初始状态只有极其微小的差异，其后的演化路径也会迅

速变得千差万别，像无数个被轻轻扰动的多米诺骨牌阵列。这种对初值的

极端敏感，使得长时间、大系统中所有粒子的行为在“表观”层面上表现

得近乎随机。

“多”即“新”：涌现的革命性：当粒子数量达到某个临界点（大约

在阿伏伽德罗常数量级），系统的整体行为会涌现（emerge）出全新的性

质，这是单一粒子或少量粒子系统所完全不具有的。温度、压力、粘度、

冰点…这些我们赖以理解和描述物质世界的核心概念，并非刻在单个粒子

上，而是亿万粒子集体舞动在宏观舞台上展现出的统计规律性（statistical

regularity）。

统统统计计计物物物理理理的的的核核核心心心洞洞洞见见见：：：拥拥拥抱抱抱概概概率率率

统计物理应对这种“微观精确/表观随机”困境的突破在于：放弃对

“确定性”微观路径的执着，拥抱“可能性”的概率描述。
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“微观态”的海洋：想象将系统在某一瞬间的所有粒子状态（位置、速

度/动量）拍摄一张“照片”，这就是一个微观态（microstate）。系统的

演化可以看作在无数张可能的微观态照片间切换。

“宏观态”的模糊透镜：当我们戴上宏观的“眼镜”，比如只看整个系

统的总能量、总体积、总粒子数和平均密度时，我们看到的只是一个宏观

态（macrostate）。这个宏观镜头是“模糊”的――许许多多张微观态照

片看起来是完全一样的（它们具有相同的总能量等宏观参数）。

宏观量即统计平均：我们在宏观世界测到的任何量（如气压、温度），

本质都是某个微观物理量（如分子撞击器壁的力、分子运动的平均动能）

在系统所有可能微观态上的统计平均值。微观的波动在平均中被平滑掉，

留下稳定可测的宏观值。就像赌场老板不关心某位赌客某次的输赢，只关

心长期的平均收益是否稳定为正。

统统统计计计物物物理理理与与与信信信息息息论论论：：：深深深远远远的的的联联联系系系，，，统统统一一一的的的本本本质质质

这里，一个与统计物理核心紧密相连的、深刻而现代的概念出现了――

信息的缺失或者说无知（ignorance）。

微微微观观观态态态“““照照照片片片库库库”””的的的大大大小小小= 信信信息息息缺缺缺失失失的的的度度度量量量：一个宏观态所对应的微

观态照片的数目Ω越多，意味着当我们只知道系统的宏观态（如能量、体

积）时，对系统到底处于哪一张具体的微观态照片上的不确定性就越大，

无知就越多。

熵熵熵：：：与与与信信信息息息论论论的的的核核核心心心桥桥桥梁梁梁：统计物理赋予了物理量熵（Entropy，SB）

革命性的定义：SB = kB log Ω (kB是玻尔兹曼常数)。熵直接量化了一个宏

观态所对应的微观态数Ω。Ω越大，熵SB越大。因此熵正精确地反映了我

们对于一个处于该宏观态的系统的微观细节有多无知！这种对微观细节的

无知度，正是信息论中香农熵（Shannon Entropy）的核心概念――它衡量

的是信息缺失的程度。

自自自然然然定定定律律律：：：趋趋趋向向向最最最大大大未未未知知知？？？ 系统会自发地趋向于拥有更多微观可能性

的宏观态，也就是趋向于使我们对系统微观细节更加无知的状态，这就是

所谓的熵增加定律。宏观世界的演化方向，深刻地与我们对系统微观状态

信息缺失的程度紧密相连。平衡态，就是我们对系统微观信息最无知的状

态（在约束条件下熵SB达到最大）。
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下面让我们具体讲述从哈密顿力学出发，通过引入概率和信息熵等新的

要素，如何自然地建立起整个统计物理的理论体系。

2 刘刘刘维维维尔尔尔定定定理理理与与与相相相空空空间间间分分分形形形结结结构构构

我们要考察的是一个由N个相互作用的粒子所构成的经典力学系统，并

且，我们假定它是一个孤立系统，也就是不受外界影响的系统(或者说与外

界没有物质和能量交换的系统)。比方说一盒子气体，假定盒子是刚性且绝

热的话，盒内的气体就是一个孤立系统。这样的经典力学系统的动力学演

化可以由哈密顿力学描述。

系统的状态(指微观状态)空间称作相空间，记为M, 系统的每一个状

态(微观状态)对应相空间中的一个点(相点)µ = (q, p), 其中q, p是一个缩写

符号，代表共轭的正则变量，q代表位置坐标，是qa = (q1, q2, ..., q3N)的

缩写(N个粒子，每个粒子有3个位置坐标，共3N个位置坐标，即指标a =

1, 2, ..., 3N), p代表正则动量，是pa = (p1, p2, ..., p3N)的缩写(同样，每个粒

子有3个动量分量，共3N个正则动量分量)。所以相空间M是一个6N维空

间，如果记m = 3N为系统的自由度数目，则M就是2m维的, 即

dim(M) = 2m. (1)

物理量为相空间的函数，一般记作O(µ)。特别的，系统的时间演化由

哈密顿量H(µ)决定，满足如下哈密顿正则方程

dqa

dt
=

∂H

∂pa
= {qa, H}, dpa

dt
= −∂H

∂qa
= {pa, H}, (2)

式中{A,B}表示两个物理量A(µ), B(µ)的泊松括号，其定义为

{A,B} =
∂A

∂qa
∂B

∂pa
− ∂A

∂pa
∂B

∂qa
. (3)

式中我们默认对重复出现两次的a指标进行求和，从1加到m = dim(M)/2。

后文类似，对表达式中重复出现的指标，均默认求和。

哈密顿量的物理含义就是系统的总能量。由哈密顿正则方程可以得出能

量守恒，即

dH

dt
=

∂H

∂qa
dqa

dt
+

∂H

∂pa
dpa

dt
=

∂H

∂qa
∂H

∂pa
− ∂H

∂pa
∂H

∂qa
= 0. (4)
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给定初始条件µ0 = (q0, p0)，记哈密顿正则方程的解为qt = q(µ0, t),

pt = p(µ0, t), 满足qt=0 = q0, pt=0 = p0。我们可以抽象地把这个解简记为

µt = gtµ0, (5)

随着时间的变动，µt = (qt, pt)划出一条由初始相点µ0决定的相空间演化

轨道。gt称作相流，它是一个抽象的运算，gt作用在初始相点µ0上，即得

到t时刻的相点µt, 换言之，gt的抽象作用所产生的，就是系统在相空间的

时间演化。很显然，g0应该是一个恒等作用，不妨记作

g0 = 1. (6)

假设我们把时间平移一下，从s时刻开始演化一段时间t(即演化到t + s时

刻)，则应该有µt+s = gtµs = gtgsµ0, 另一方面，我们也可以直接从0时刻演

化到t+ s时刻，从而有µt+s = gt+sµ0, 两者一比较，即有

gtgs = gt+s. (7)

特别的，gtgs = gsgt。注意到初始相点µ0本身也可以跑遍整个相空间，因

此也即是说，相流gt是相空间的一个单参变换群，而且是一个阿贝尔群，

群的乘法由相流的抽象作用决定。

不妨记相空间的体积元为dµ ≡ dmqdmp ≡ dq1dq2 · · · dqmdp1dp2 · · · dpm，
即刘维尔体积元。则著名的刘刘刘维维维尔尔尔定定定理理理告诉我们

dµt = dµ0. (8)

即在相流的作用之下，相空间体积元保持不变。这个结论对于统计物理如

此重要，后面我们当然会给出证明，但在具体给出证明之前，更重要的是

要领会这个定理的重大意义，所以，让我们费点笔墨进行一些解释。

首先，假设我们在相空间中任取一个区域D0, 记它的体积为Vol(D0)，

并记在相流的作用下，这个区域在t时刻演化成Dt, 即Dt = gtD0, 则刘维尔

定理告诉我们

Vol(Dt) = Vol(D0). (9)

即在时间演化之下，相空间的体积保持不变。这是因为

Vol(Dt) =

∫
Dt

dµt =

∫
D0

det(
∂µt

∂µ0

)dµ0 =

∫
D0

dµ0 = Vol(D0). (10)
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式中我们注意到，由于刘维尔定理的(8)式, 雅可比行列式det( ∂µt

∂µ0
)其实等

于1。

相相相空空空间间间的的的分分分形形形结结结构构构

假设系统各粒子间的相互作用足够，以至于会产生混沌动力学。因此，

系统在相空间中的演化将对初始条件极端敏感，从而，相空间两个邻近的

初始相点，在相流的作用下一般来说会迅速地相互远离。结合上面关于刘

维尔定理的推论，即有: 给定相空间的一个初始小区域D0(比如一个小球

体)，在时间演化之下，由于对初始条件的极端敏感，它在某些方向上将被

拉伸(这些方向上的邻近点在相互远离)，而又由于总体积要保持不变，它

在其它方向上就必定会被压缩，而且拉伸以后的部分还可能会发生弯折、

扭曲等一系列形变。

所以，经过了一段固定的时间τ之后，Dτ = gτD0就会被拉扯成如

图(1)所示的八爪鱼形状，其中每一条爪都被拉扯得很细长。而且由于我们

所考察的相空间是一个高维空间，所以与图中所示的两维情况不同，实际

可以拉伸的方向是很多的，八爪鱼Dτ的细长爪子其实非常多。

进一步，我们可以考察D2τ , 由于它是相流gτ作用在Dτ上的结果，

即D2τ = gτDτ , 所以D2τ必定是由前一步的八爪鱼Dτ再进行一个和上面类

似的拉扯的结果。具体来说，就是把Dτ的每一个局部区域都进一步拉扯

成和上面类似但是更小、爪子更细一些的八爪鱼。完全类似的道理，由

于Dnτ = gτD(n−1)τ , 所以，在时间演化的第n步(即nτ时刻)所产生的相空间

结构，其实是在第n− 1步的相空间结构的基础上再进行一个类似的拉扯而

得到，这个拉扯会把D(n−1)τ的每一个局部区域拉扯成更小、爪子更细的八

爪鱼。整个这个过程其实就是一个所谓的分形迭代过程。现在，请大家停

下来尽力想象一下，当这个迭代过程无限进行下去，我们最终得到的相空

间结构D+∞将会是什么？

对，我们将得到一个相空间“恶魔”，它有无数条无限细的爪子，这些

爪子密密麻麻地相互纠缠着，像一个剪不断理还乱的毛线球一样，塞满了

相空间的所有可达区域。或者我们也可以换一个比喻，相空间的整个可达

区域就像一杯水，最初的D0就像滴入水中的一滴墨，随着时间的演化，它

会在水中纤维化(伸出细爪)、拉伸、扭曲，最后逐渐均匀地弥漫到整杯水
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Figure 1: 相空间区域D0在gτ作用下变成Dτ。

中。是的，所有墨水的总体积依然和最初的墨滴一样，但是这些墨水变成

了弥漫在整杯水中的无限精细的结构。D+∞就是一个这样的无限精细的相

空间结构。

然而我们的观测能力是有限的，我们无法识别这样的无限精细的结构，

就好像我们无法识别出最终弥漫在水中的墨的精细结构一样，对于我们来

说，这些墨就像是均匀地布满了整杯水。同样，对于我们来说，D+∞就像

是均匀地布满了相空间的所有可达区域。

更精确地说，在相空间中，我们无法识别足够精细的结构，而只

能把这相空间切分成足够小的但是体积有限的“像素”，在一个“像

素”之内的D+∞精细结构因为无法识别而要被模糊掉。正是在这样

的模糊之后，D+∞才像是均匀地布满了相空间的所有可达区域。不妨

记D+∞为D+∞“像素模糊”之后的结果，很显然D+∞的体积Vol(D+∞)就

不再是最初的Vol(D0)了(它现在布满整个相空间可达区域了), 而是相对于

它大大膨胀了！

实际上，即使在有限时间，比如Dnτ中，也会包含一些很精细的相空间
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结构，它是从D(n−1)τ中那些八爪鱼爪子的细小尖端进一步拉扯而来的。

因此，“像素模糊”对于Dnτ同样也有影响，只是由于Dnτ的精细结构没

有D+∞那么多，所以“像素模糊”对它的影响相对少一点。直观上很显然

的是，随着n的增长，Dnτ中的精细结构会越来越多，因此“像素模糊”对

它的影响也就越来越大，“像素模糊”导致的体积膨胀也就越来越大。假

设记Dnτ为Dnτ像素模糊之后的结果。则直观上比较显然的是Vol(Dnτ )应该

是n的增函数，即

· · · < Vol(D(n−1)τ ) < Vol(Dnτ ) < · · · < Vol(D+∞). (11)

也即是说，在“像素模糊”以后，随着时间的增长，相空间区域的体积总

是在不断膨胀的。

玻尔兹曼指出：对于一个宏观系统，假设从一个足够小的初始区

域D0出发，那么大体上区域Dnτ内的所有状态在宏观上看起来都一样，

大体上是系统同一宏观状态所对应的所有不同微观状态，因此Vol(Dnτ )大

体上就是此宏观状态所对应的微观状态数目Ω。进而玻尔兹曼定义SB =

kB log
(
Vol(Dnτ )

)
为此宏观状态的玻尔兹曼熵。基于上面这个关于相空间

区域体积膨胀的观察，玻尔兹曼进一步把这种体积膨胀现象解释成熵增加

定律。特别的，最终熵最大的D+∞所对应的系统宏观状态就是热平衡态。

以上就是关于相空间分形结构的全部讲述。当然，我们这个讲述主要是

提供一个直观物理图像，这个物理图像对于后文的理解也都很有帮助。尤

其是我们初步提及了“像素模糊”的想法，后文会讨论这个想法的进一步

发展。

刘刘刘维维维尔尔尔定定定理理理的的的证证证明明明

下面我们给出刘维尔定理的证明。很显然，要证明dµt = dµ0, 只需证

明 ∂
∂t
(dµt) = 0, 而这又等价于证明

dµt+ϵ = dµt, (12)

式中ϵ为一个无穷小的时间。要证明这个结果，我们需要用到如下线性代数

恒等式

det(I + Aϵ) = 1 + ϵTr(A), (13)
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式中I为n× n的单位矩阵，A为任意n× n矩阵，也记作An×n。

下面证明(12)式。首先，

dµt+ϵ = det(
∂µt+ϵ

∂µt

)dµt. (14)

所以，要证明(12)式，只要证明det(∂µt+ϵ

∂µt
) = 1。由于µt+ϵ = µt + ϵµ̇t, 所以(∂µt+ϵ

∂µt

)
2m×2m

= I2m×2m + ϵ
(∂µ̇t

∂µt

)
2m×2m

. (15)

代入上面的恒等式(13), 即有

det(
∂µt+ϵ

∂µt

) = 1 + ϵTr(
∂µ̇t

∂µt

) = 1 + ϵ
m∑
a=1

(
∂q̇at
∂qat

+
∂ṗat
∂pat

)

= 1 + ϵ
m∑
a=1

[ ∂

∂qat

(∂H
∂pat

)
− ∂

∂pat

(∂H
∂qat

)]
= 1. (16)

最后一行我们代入了哈密顿正则方程。(12)式得证！进而刘维尔定理得

证！

3 系系系综综综与与与刘刘刘维维维尔尔尔绘绘绘景景景

系系系综综综与与与吉吉吉布布布斯斯斯熵熵熵

给定系统处于某状态µ0, 如果我们能对它进行完备且无限精确的测量，

那我们就能确定这个状态，当然，它对应于相空间M上的一个确定点。
但，无限精确的测量是不可能的，测量总有误差，而且，由于我们所考察

的是宏观系统，其涉及的粒子数目是巨量的，因此能测得每一个粒子的位

置和动量的完备测量实际上也是不现实的。总之，我们对系统的微观信息

必然有无知，往往只能了解到系统的部分信息，我们只能根据这些有限的

信息对系统的微观状态进行一个推测，既然是推测，那就有不确定性，也

即是说，我们只能推断系统处在各个状态的可能性大小。根据得到的信

息，也许我们推断系统处于µ0的可能性高一点，但是我们并不能100%确

定µ0，对于我们来说，除了它之外，也许系统处于其它不同状态的可能性

也非零。
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所以，对于我们来说，只能根据得到的有限信息，对系统可能微观状态

的概率分布进行一个推断，也即是说，无论真实系统的实在状态是什么(这

个是我们不可能知道的)，我们只能推断关于系统可能状态的一个相空间概

率分布，也就是一个相空间概率密度，记作ρ(µ)。作为概率分布，ρ(µ)需

要满足ρ(µ) ≥ 0, 以及归一化条件∫
M

ρ(µ)dµ = 1. (17)

再次强调一下：ρ(µ)就就就是是是我我我们们们对对对系系系统统统微微微观观观状状状态态态的的的一一一种种种推推推断断断，，，反反反映映映了了了由由由于于于

我我我们们们的的的无无无知知知而而而预预预计计计的的的系系系统统统处处处于于于各各各微微微观观观状状状态态态的的的可可可能能能性性性大大大小小小，，，称称称之之之为为为系系系综综综

态态态，，，简简简称称称系系系综综综。

给定一个物理量O(µ), 既然我们不能完全确定系统的状态，从而我们也

就不能完全确定这个物理量的值。不过，根据对系统各状态可能性大小的

推断，我们完全可以计算出这个物理量的统计期望值(称之为系综平均)，

即为

⟨O⟩ρ =
∫
M

O(µ)ρ(µ)dµ. (18)

至于系综平均的结果怎么和实际的实验测量值进行比较，尤其是为什么可

以进行比较，这个我们留待后文再进一步讨论。

为了度量我们对系统状态的推断中所包含的无知，可以定义如下吉吉吉布布布

斯斯斯熵熵熵

S(ρ) = −kB

∫
M

dµρ(µ) log
(
ρ(µ)

)
, (19)

与标准的香农信息熵的定义相比，我们取了以e为底的对数而不是以2为底

的对数，另外我们多乘了一个整体因子kB，也就是玻尔兹曼常数。因此不

难看出

S(ρ) = kB log(2)×用ρ(µ)定义的香农熵. (20)

所以，吉布斯熵S(ρ)的本质依然是信息熵，只是为了方便统计物理的应

用，我们取了不同的单位，这样的单位选取本质上只是一种约定俗成，

主要是为了使得对于宏观系统最终算出的吉布斯熵不是一个天文数字(注

意kB的数值非常小)。

10



吉布斯熵具有可加性。也即是说，假设整个系统可以分成A,B两部分，

从而系统的状态µ = (µA, µB), 这里µA, µB分别为A,B部分的状态。并且假

定两部分之间统计独立，即满足

ρ(µ) = ρA(µA)ρB(µB), (21)

ρA, ρB分别为A,B部分的系综态。则
∫
dµρ log(ρ) =

∫
dµAdµBρAρB log(ρAρB) =∫

dµAρA log(ρA) +
∫
dµBρB log(ρB), 所以

S(ρ) = S(ρA) + S(ρB). (22)

即整个系统的吉布斯熵S为A,B部分各自吉布斯熵的和。

哈哈哈密密密顿顿顿绘绘绘景景景

在哈密顿绘景中，我们认为系综态ρ(µ)是不变的，随时间演化的是物理

量。给定一个相空间函数O(µ), 记相应的物理量在t时刻为Ot(µ), 其定义为

Ot(µ0) ≡ O(µt) = O(gtµ0). (23)

特别的，由于能量守恒，所以Ht(µ0) = H(µt) = H(µ0), 即Ht = H! 进而不

难导出，Ot满足如下哈密顿方程

∂Ot

∂t
= {Ot, H}. (24)

以上方程(24)的具体推导如下(推导过程要代入哈密顿正则方程),

∂Ot(µ0)

∂t
=

∂Ot+s(µ0)

∂s
|s=0 =

∂

∂s
|s=0O(gtgsµ0)

=
∂

∂s
|s=0Ot(gsµ0) =

∂Ot

∂qas

dqas
ds

|s=0 +
∂Ot

∂pas

dpas
ds

|s=0

=
∂Ot

∂qa0

∂H

∂pa0
− ∂Ot

∂pa0

∂H

∂qa0
= {Ot, H}µ0 . (25)

式中泊松括号的下标µ0表示计算泊松括号的时候是相对于相空间坐标µ0 =

(q0, p0)。这个推导也告诉我们，哈密顿方程(24)更清楚的写法应该是，

∂Ot(µ0)

∂t
= {Ot, H}µ0 . (26)

11



刘刘刘维维维尔尔尔绘绘绘景景景

在哈密顿绘景中，系综态不随时间演化，随时间演化的是物理量Ot, 它

按照哈密顿方程(26)演化。这时候物理量的期望值可以写作

⟨Ot⟩ρ =
∫
M

Ot(µ0)ρ(µ0)dµ0 =

∫
M

O(gtµ0)ρ(µ0)dµ0. (27)

但是，我们也可以对(27)式进行µ0 → g−tµ0的变量代换( 从而gtµ0 →
gtg−tµ0 = g0µ0 = µ0), 则有

⟨Ot⟩ρ =
∫
M

O(gtµ0)ρ(µ0)dµ0

=

∫
M

O(µ0)ρ(g−tµ0)d(g−tµ0)

=

∫
M

O(µ0)ρ(g−tµ0)dµ−t. (28)

根据刘维尔定理，相空间的体积元在时间演化之下保持不变，从而dµ−t =

dµ0。另外再定义随时间演化的系综态ρt

ρt(µ0) ≡ ρ(g−tµ0). (29)

从而即有

⟨Ot⟩ρ =
∫
M

O(µ0)ρt(µ0)dµ0 = ⟨O⟩ρt . (30)

也即是说，等价的，我们也可以认为物理量不随时间演化，永远为O, 随时

间演化的是系综态，它按照ρt的定义进行演化。这就是刘刘刘维维维尔尔尔绘绘绘景景景。

完全类似于前面对哈密顿方程(24)的推导，根据ρt的定义(29), 不难导出

它满足的运动微分方程，如下

∂ρt
∂t

= −{ρt, H} = {H, ρt}. (31)

这就是刘刘刘维维维尔尔尔方方方程程程。它更清楚的写法当然是

∂ρt(µ0)

∂t
= {H, ρt}µ0 . (32)

另外，根据ρt的定义(29), 不难得到

ρt(µt) = ρ(g−tµt) = ρ(g−tgtµ0) = ρ(µ0). (33)
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很多书上也把这个结果写成

d

dt
ρt(µt) = 0. (34)

它告诉我们，跟随着相空间一条给定的演化轨道，刘维尔绘景的系综态是

一个常数。

请读者暂停一下，请根据ρt的定义(29)或者等价的(33)式摩想一下ρt(µ)随

时间的演化情况。不妨假设初始时的ρ(µ)只分布在一个小区域D0之内，且

在这个区域内取常数，在D0之外取零。则，根据(33)式，t时刻这些概率将

被输送到区域Dt内去，即是说，ρt(µ)将会在区域Dt内取常数。现在，请结

合前面关于相空间分形结构的讨论，想象随着时间的推移，ρt(µ)将会是怎

么样的分布。很明显，随着时间的推移，ρt(µ) 将表现出越来越多越来越精

细的相空间结构。

4 精精精细细细化化化熵熵熵与与与粗粗粗粒粒粒化化化熵熵熵，，，热热热力力力学学学第第第二二二定定定律律律

从刘维尔绘景来看，统计物理的核心就是根据对真实系统演化过程的了解

建立对系综态演化的合理推断。给定系统的哈密顿量H，最简单的建立这

种推断的方法是，于t = 0时刻任取一个初始系综态ρ(µ0), 然后让它按照刘

维尔方程演化到任意时刻。其隐含的假设是，我们对系统演化过程的了解

是无限精确的，对系统的一切无知都仅仅来源于初始时刻的无知, 也就是

来源于初始系综态ρ(µ0)。

的确，为了度量我们的无知，可以计算ρt的吉布斯熵

S(ρt) = −kB

∫
M

dµρt(µ) log
(
ρt(µ)

)
. (35)

不难证明，S(ρt)实际上是守恒的！证明如下，

S(ρt)/kB = −
∫
M

dµρt(µ) log
(
ρt(µ)

)
= −

∫
M

dµtρt(µt) log
(
ρt(µt)

)
= −

∫
M

dµtρ(µ0) log
(
ρ(µ0)

)
= −

∫
M

dµ0ρ(µ0) log
(
ρ(µ0)

)
= S(ρ)/kB. (36)
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其中推导的第二行利用了ρt(µt) = ρ(µ0), 即(33)式，最后一行则利用了刘维

尔定理。

由于ρt假定了我们对系统演化过程的了解是无限精确的，所以常常称

相应的S(ρt)为系统的精精精细细细化化化熵熵熵，很显然，精细化熵是守恒的，不依赖于

时间。这正反映了系统的精细演化过程是信息守恒的。也即是说，只要我

们能对演化过程了解得无限精确，则我们对系统的一切无知都源于初始时

刻。但是，由于混沌动力学的特征，系统的演化过程表观上看起来却是越

来越随机越来越混乱的，表观上信息一直在丢失，并不守恒！

表观上的信息不守恒来源于，即使理论上我们能建立系综态的精细化演

化ρt, 实际上由于我们追踪真实系统演化的时间尺度不是无限精细的，而且

我们对真实系统演化过程的追踪能力也不是无限精细的，所以，我们对系

统真实演化过程必然有所无知，我们真正能建立的其实是所谓系综态的粗

粒化(coarse grained)演化(或者说系综态的表观演化)ρct，其具体定义稍后再

谈。

表观上，我们是在一个相对于日常生活的宏观时间尺度来说很小，但是

相对于系统微观过程的典型时间来说却很长的时间尺度τ上追踪真实系统

演化的，所谓粗粒化演化ρct，首先是以这个粗粒化时间尺度τ(而不是无限

精细的时间尺度)为时间步长的演化。为了计算我们对系统的表观了解中所

包含的无知，其实应该计算的，正是这种粗粒化演化所对应的熵，称作粗粗粗

粒粒粒化化化熵熵熵S(ρct)。而正如稍后我们将证明的，这个粗粒化熵永远不会减少，只

可能随时间增加。

所谓的粗粒化演化，具体来说，是从对t时刻系综态的粗粒化推断ρct开

始, 将之按照刘维尔方程演化到t + τ时刻(τ就是刚才说过的粗粒化时间尺

度，它相对宏观小而相对微观大，有时也称这样的尺度为物物物理理理小小小)，得到

ρt+τ (µ) = ρct(g−τµ), (37)

注意，这一步是无限精确的。但是，由于实际上我们对演化过程的了解不

可能无限精确，所以我们还要对ρt+τ进行粗粒化，也就是模糊掉它的相空

间精细结构，进而得到t+ τ时刻的粗粒化系综态ρct+τ。

(从这里也能看清为什么τ应该是一个相对于微观过程足够长的时间尺

度，因为否则相比于已经模糊了精细结构的ρct，在相流gτ作用下，ρt+τ就

还来不及拉扯出有待进一步被模糊的新精细结构。)
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如何才能模糊掉相空间的精细结构呢？为此我们把相空间划分成一个一

个的“像素”，称之为相格或者相空间元胞，记为{Cα}, Cα就是第α个相

空间元胞。这些元胞不相重叠且体积固定，记每一个相空间元胞的体积为

ω = Vol(Cα), (38)

它对所有的α均相同。而且由于是在考察粗粒化时间尺度下的演化，所以

不妨把时间也同时离散化了，记时间步长为τ(此步长为物理小), 第i步的时

间为ti, 从而ti+1 = ti + τ。所以根据上面的讲述，我们有

ρti+1
(µ) = ρcti(g−τµ). (39)

为了得到ρcti+1
, 我们定义

ρcti+1
(µ) =

1

ω

∫
Cα

dµ′ρti+1
(µ′), 对于 µ ∈ Cα. (40)

即假设在一个元胞内部，ρcti+1
取常数，数值为ρti+1

在此元胞内的平均

值，这也就是模糊掉元胞之内ρti+1
的相空间精细结构, 如图(2)所示。 联

Figure 2: 粗粒化的系综态。颜色深浅的不同代表不同的概率取值。

合(39)式与(40)式，我们就把ti时刻的粗粒化系综态ρcti(µ)演化到了ti+1时
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刻。迭代这个过程就能得到ρct在所有宏观时间尺度上的演化，我们称之为

粗粗粗粒粒粒化化化演演演化化化, 它描述的就是系综态表观上的演化。

实际上，以上定义的粗粒化演化过程相当于相空间上的一部元胞自动

机，只是每个元胞的“状态”(即相应的概率值)是连续而不是离散的。

下面我们来证明粗粒化演化过程信息并不守恒，相反，它相应的粗粒化

熵永远不会减少，只可能增加！证明如下

δS(ρcti) ≡ S(ρcti+1
)− S(ρcti) = S(ρcti+1

)− S(ρti+1
)

= −kB

∫
M

dµρcti+1
(µ) log

(
ρcti+1

(µ)
)
+ kB

∫
M

dµρti+1
(µ) log

(
ρti+1

(µ)
)

= kB
[
−
∫
M

dµρti+1
(µ) log

(
ρcti+1

(µ)
)
+

∫
M

dµρti+1
(µ) log

(
ρti+1

(µ)
)]

= kB

∫
M

dµρti+1
(µ) log

(ρti+1
(µ)

ρcti+1
(µ)

)
= S(ρti+1

||ρcti+1
) ≥ 0. (41)

式中第一行利用了精细化演化过程熵守恒，从而S(ρcti) = S(ρti+1
), 第

三行代入了(40)式，并注意到在单个元胞之内，ρcti+1
(µ)为常数。式中

的S(ρti+1
||ρcti+1

)就是所谓的相对熵，相对熵一定是大于等于零的，等于号

当且仅当ρcti+1
= ρti+1

时才成立。这个结论说明，系综态的粗粒化演化是一

个不断丢失信息的过程。

但是，上述定义的粗粒化演化过程有一个很大的缺陷，即它依赖于

我们的相空间粗粒化尺度ω。为了消除这种依赖，严格来说我们需要

取ω → 0的极限。但，很显然，在ω → 0的极限下，相空间的粗粒化就消失

了，ρcti+1
将退回到ρti+1

, 因此我们定义的粗粒化演化过程就退回为精细化演

化过程，从而也就不能用来描述系综态表观上的演化了。

解决问题的出路在于注意到，统计物理描述的是宏观系统，因此严格来

说还要取另一个极限，即所谓的热力学极限, 它取粒子数目N → ∞, 系统

所占的空间体积V → ∞, 同时保持N/V固定。因此实际上，最终我们要取

两个极限：热力学极限和ω → 0的极限。

如果先取ω → 0的极限，那正如刚才说过的，粗粒化就消失了，粗粒化

演化就退回为精细化演化。但是，如果先先先取取取热热热力力力学学学极极极限限限，再取ω → 0的极

限，而且假设这两个极限不可交换顺序，那么ρcti+1
就可能不会退回ρti+1

，

这是因为在热力学极限下，相空间是无穷维的，因此元胞内取平均的操

作涉及到了无穷重积分，从而使得即使接着再取ω → 0，ρcti+1
也不会退
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回ρti+1
。这样一来，粗粒化演化过程就会最终保留下来，并且消除了对粗

粒化尺度的依赖，从而就可以真正描写系综态的表观演化。

通常称这种先取热力学极限再取ω → 0定义的粗粒化熵为热热热力力力学学学熵熵熵，这

样一来，上文的证明就告诉我们：孤孤孤立立立系系系统统统的的的热热热力力力学学学熵熵熵永永永远远远不不不会会会减减减少少少，记

作

dS(ρct)

dt
≡

δS(ρcti)

τ
≥ 0. (42)

这就是著名的热热热力力力学学学第第第二二二定定定律律律，也称作熵熵熵增增增加加加原原原理理理。

在实际应用中，为了得到热力学第二定律，我们并不真的需要取N →
∞, 只需要注意到，实际中我们对相空间结构的识别总有一个精细尺寸，

它可能很小，但不是零(因为我们对相空间结构并没有无穷的分辨率)，因

此只需要让所考察的系统相对于这个精细尺寸来说足够大就可以了。比方

说，房间会自发地越来越乱，这种表观上的熵增加就是因为，房间的大小

相对于人眼的分辨尺寸来说很大，因此热力学第二定律可以适用。

特别的，如果某ti时刻ρcti取如下形式(其中Vol(Dti)是相空间的某区域)

ρcti(µ) =


1

Vol(Dti )
, µ ∈ Dti

0, µ不属于Dti

. (43)

则根据吉布斯熵的定义，不难得到

S(ρcti) = kB log
(
Vol(Dti)

)
, (44)

正好与玻尔兹曼熵一致。这时候我们这里证明的热力学第二定律大体上就

等同于关于相空间分形结构的讨论中提到的熵增加定律。只不过之前那里

是直观的讨论，而现在是更具一般性也更严格的证明。

热力学第二定律告诉我们，孤立系统任何自发的宏观过程前后，热力学

熵的增量δS ≥ 0。如果，δS > 0，那此过程必定不可逆，因为逆过程意味

着熵减少，而这是不可能自发进行的。如果，δS = 0, 那此过程就称作可

逆过程。反过来，对于孤立系统的一个过程，假设记其发生前后系统的宏

观状态为A, B，则如果这个过程可逆，就意味着从A可以演化到B, 反过来

也一样，从B也可以演化到A, 那这就意味着这两个宏观状态的粗粒化信息
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是等价的，从而其热力学熵就是一样的，从而必有δS = 0。当然，可逆过

程往往是一种理想极限，现实中的宏观过程都是不可逆的。

热热热平平平衡衡衡态态态

如果一个孤立系统的热力学熵随着时间单调递增，并最终达到一个极大

值稳定下来，我们就称这个孤立系统在自自自发发发热热热化化化，最终的极大熵状态(宏

观状态)就称之为热热热平平平衡衡衡态态态。(当然，也有一些系统，它的上述两个极限可

以交换顺序，从而其热力学熵就等于其精细化熵，是恒定不变的！这样的

系统当然不会自发热化。比方说N个相互之间没有任何相互作用的粒子所

组成的孤立系统就是一个这样的不会自发热化的系统。)

一旦孤立系统达到热平衡态，其热力学熵将在极大值上保持不变，除

非改变系统所处的宏观条件。由于热力学熵保持不变，这就意味着热平衡

时，粗粒化系综态不再随时间演化，即ρcti+1
= ρcti , 也就是与时间无关，不

妨简记为ρc。给定孤立系统所处的宏观条件(比如给定总能量和总体积等

等)，一般来说，最终的热平衡态是唯一的，也就是说无论从任何满足给

定宏观条件的初始ρct=0开始演化，最终得到的都应该是同一个ρc。这也就

是说，热平衡时的ρc应该是在给定宏观条件下，使得泛函S(ρc)取极大的唯

一系综态。因此，ρc可以通过将泛函S(ρc)对ρc变分取极大值来确定。特别

的，这样的ρc当然完全由系统所处的宏观条件决定。

不仅如此，注意到ρcti已经粗粒化了，因此直接对它再次粗粒化(即进

行上面定义过的相格模糊)结果将依然是它本身。结合粗粒化演化过程的

定义，就告诉我们，热平衡时使得ρcti+1
= ρcti成立的前提是ρti+1

= ρcti。

但是，ρti+1
本来就是按照刘维尔方程将ρcti往前演化一个时间步的结果，

既然热平衡时这一步演化保持了系综态不变，那根据刘维尔方程(32), 即

有{H, ρcti} = 0, 也即

{ρc, H} = 0. (45)

值得说明的是，精细化系综态是不可能满足{ρt, H} = 0的，因为相空间

分形结构的物理图像讨论告诉我们，精细化系综态永远在演化，产生越来

越精细的相空间结构，永远不会达到稳定。

由于热平衡态的熵极大，因此，它也就是我们对系统的微观信息缺失得

最多的宏观状态，是我们对系统微观信息最无知的宏观状态。

18



单单单位位位相相相格格格

考虑到量子力学以后，相空间元胞的体积ω就不能任意小了，而是有一

个最小的元胞，称作单位相格，其体积为(2π~)m，式中~为约化的普朗克
常数。

为了说清楚这个结果怎么来的，不妨让我们先考察自由度数目m = 1的

情况。根据海森堡不确定原理，位置和动量的不确定度满足δqδp ≥ ~/2。
这意味着在相空间中，位置和动量的测量不能同时精确，最小可分辨区域

的大小约为δqδp ∼ ~。
进一步，根据玻尔-索末菲量子化条件，对于单自由度的周期系统，相

空间中闭合轨道所围的面积必须是(2π~)的整数倍，即∮
pdq = n(2π~). (46)

量子数n每增加1，相应于新增一个量子态。而由于n每增加1，对应的轨道

所围面积增加(2π~), 这暗示每个量子态占据的相空间面积为(2π~)。综合这
个结果和上面不确定原理的考察结果，我们可以得到结论：相空间的最小

可分辨区域具有面积(2π~)，称之为单位相格，它正好可以被一个量子态占
据。

推广到多自由度系统，相应的玻尔-索末菲量子化条件为∮
padqa = na(2π~), (47)

每个自由度独立量子化。从而单位相格的体积就是各自由度贡献的乘积，

也就是(2π~)m。
这一讨论带给我们一个额外的成果，即如果将相空间体积元dµ的定义

修改成

dµ ≡ dmqdmp

(2π~)m
, (48)

那它计算的就是这一体积微元内所包含的单位相格的数目！或者说这一体

积微元内占据的量子态的个数。特别的，这样修改以后的体积元是无量纲

的。由于归一化条件为
∫
dµρ(µ) = 1, 所以这样修改以后，相空间概率密
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度也跟着变成无量纲的了。因此这样修改以后，吉布斯熵的定义就更自然

了(因为log的自变量自动无量纲了)

S(ρ) = −kB

∫
M

dµρ(µ) log
(
ρ(µ)

)
, (49)

不仅如此，这样修改以后吉布斯熵才正好是相应量子熵的经典极限。因

此，从现在开始，我们都默认使用这一修改后的体积元定义。

全全全同同同粒粒粒子子子

还有一个修正也值得谈一下，即如果系统中的这N个粒子都是同一种粒

子，也就是相互之间不可区分的全同粒子。那么在进行相空间积分时还要

稍作修改，具体来说，就是需要将相空间体积元进一步修正成

dµ ≡ 1

N !

d3Nqd3Np

(2π~)3N
, (50)

即要多除以一个N !。

修改的原因如下：假设记第i个粒子的位置和动量为(qi,pi), 则如果这些

都是全同粒子，那相点(q1,q2, ...,qN ,p1,p2, ...,pN) 与粒子任意置换以后的

相点(qP (1),qP (2), ...,qP (N),pP (1),pP (2), ...,pP (N))(式中P代表置换操作) 就要

等同为同一点，因为由于粒子间不可区分，它们描述同一个微观状态。由

于N个粒子共有N !种不同的置换，所以我们实际上要把N !个相点进行这样

的等同。如此一样，系统的相空间就不再是原来的M了，而是进行这样的
等同以后的M/SN , 这里SN代表N !个不同置换的集合。如此一来，计算相

空间积分的时候，就应该是像下面这样积∫
M/SN

dµ[...], (51)

[...]代表被积函数。如果为了方便我们依然将积分区域保持为原来的M，
那我们就多算了N !倍，从而要额外除以N !，即∫

M/SN

dµ[...] =
1

N !

∫
M

dµ[...]. (52)

当然，等效的观点就是将原来的积分体积元修改成(50), 同时依然将系统相

空间取为原来的M。
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5 再再再谈谈谈热热热平平平衡衡衡态态态以以以及及及温温温度度度的的的概概概念念念

根据前面的定义，一个自发热化的孤立系统，其热力学熵达到极大值的宏

观状态就是热平衡态。本节我们系统地研究一下这种热平衡态。

我们常常把孤立系统分成多个宏观部分，每一个部分就是一个子系统，

子系统依然是宏观系统，只是通常并不是孤立系统，因为不同的子系统之

间存在相互作用，不过，子系统中与周围部分发生相互作用的主要是那些

在子系统表面附近的粒子，这些粒子的数目与自子系统中粒子总数的比值

随着子系统尺寸的增加而迅速下降。因此，当子系统足够大时(指在热力学

极限下)，它与周围部分相互作用的能量比子系统的内能要小得多，因此

可以说子系统是“准准准孤孤孤立立立”的。当然，子系统的准孤立性只在不太长的时

间间隔内才成立，而在足够长的时间间隔内，子系统之间的相互作用不管

多么微弱，总会表现出来。不仅如此，整个系统的热力学平衡之所以能建

立，归根结底就是靠这些比较微弱的相互作用。

各子系统之间是彼此微弱地相互作用着，这一事实相当于：当子系统足

够大时，可以认为各子系统之间是统计独立的。进而吉布斯熵的可加性告

诉我们：在热力学极限下，整个系统的热力学熵可以认为是各个子部分热

力学熵的和。由于整个系统可以分解成的子部分的数目正比于整个系统的

规模，因此一个合理的推论是：在热力学极限下，整个系统的热力学熵将

正比于系统的规模(也即是正比于粒子数N)。

在热力学极限下满足正比于系统规模以及可加性这样两个要求的物理量

就称作广广广延延延量量量。因此，热力学熵是一个广延量，很显然，系统的总能量也

是一个广延量(假设子部分之间的相互作用很微弱，相互作用能相比可以忽

略)。其它的广延量还有比如系统的体积，系统的粒子数等等。

假设我们的孤立系统在力学上是通过固定n个广延量xi, i = 1, 2, .., n(不

妨记作矢量x = (x1, x2, ..., xn))来刻画。也就是说通过施加外力改变x的

值，我们就可以对系统做功。固定x的值，就是没有外力对系统做功，这

当然是孤立系统的一个必然要求。另外，孤立系统的能量守恒就意味着总

能量E也是给定的。总之，我们假定孤立系统所处的宏观条件由n + 1个状

态变量(E,x)刻画(这里先不考虑粒子数目改变的可能性)。

当孤立系统处于热平衡态时，由于其热力学熵S(ρc)达到极大值，前文

说过，这时相应的粗粒化系综态ρc完全由宏观条件(E,x)决定，所以热平衡
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态时的热力学熵也必然完全由(E,x)决定，可以记作S(E,x)。所以，热平

衡态熵极大告诉我们的第一个推论就是，热平衡时的热力学熵必然是一个

宏观状态函数，完全由系统的宏观条件(E,x)决定。

不妨举一个例子，如图(3)所示，考察一个被分隔成n个不同区域的

气体系统，各区域体积是给定的，不同区域之间的分隔壁透热，但是

不透物质，最外面把整个系统围起来的壁则是绝热的。这个系统就是

一个孤立系统，其x = (v1, v2, ..., vn)，其中vi是第i个区域的体积。 因此

Figure 3: 一个孤立系统的例子

根据上面的分析，这个系统达到热平衡时，其热力学熵是一个状态函

数S(E, v1, v2, ..., vn)。

回到一般性的讨论。假设我们把所考察的热平衡孤立系统任意分成A,

B两部分，根据广延量的可加性，相应即有

E = EA + EB, x = xA + xB. (53)

根据子系统的准孤立性，热平衡时A,B两部分各自的热力学熵必然分别

为SA(EA,xA), SB(EB,xB)。虽然总能量E是固定的，但是EA和EB均是变

量。热平衡时熵取极大值就意味着必定有

∂S

∂EA

= 0. (54)

利用熵的可加性S = SA + SB，即有

0 =
∂SA

∂EA

+
∂SB

∂EB

dEB

dEA

=
∂SA

∂EA

− ∂SB

∂EB

. (55)
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换言之，热平衡时必定有

∂SA

∂EA

=
∂SB

∂EB

. (56)

由于A,B两部分是任意分的，这就意味着子系统熵对能量的偏导在整个系

统内部处处一样，通常记这个偏导的结果为1/T ,

1

T
≡ ∂S

∂E
. (57)

因此，热平衡时系统各部分的T相同，称之为温温温度度度。至于为什么不把1/T叫

温度，是因此称T为温度比较符合我们对温度的日常直觉。

因此热平衡时系统各部分的温度得一样。这就说明温度这个量必定不

具备可加性，并且其值与系统规模无关，这样的量就称作强度量。但正如

熵一样，温度显然也是一个纯粹统计性质的量，是在宏观系统中涌现出来

的，在微观上没有意义。

假设让某个子系统与一个巨大的热库接触，与热库一起构成一个孤立系

统，则根据上面的讲述，热平衡时，这个子系统的温度必定与热库温度达

成一致。假设保持子系统的x不变，让整个孤立体系经历一个可逆过程，

使得子系统的能量增加dE, 则根据上面关于温度的定义，必定有

dE = TdS 假如保持x不变, (58)

由于这个能量增量不是外力做功的结果(因为x固定)，所以它只能是从热库

吸收的热量，记作Q, 所以在可逆过程中，

dS =
Q

T
, (59)

即在可逆过程中系统从热库吸收的热量与温度的比值等于系统熵的增量。

当然，如果是放热，那就是熵减少。

反过来，假设整个孤立体系经历的是一个不可逆过程，结果是使得子

系统从热库吸收热量Q。也就是说，热库吸热为−Q(即放热)。由于热库

是巨大的，其吸放热过程均可以看作是在平衡态下进行的，因此是可逆

的。从而根据上面的分析，在这个过程中热库熵的增量dSR = −Q/T。

依然记子系统熵的增量为dS, 则在这个过程中，整个孤立体系总熵的
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增量为dS + dSR = dS − Q/T , 由于这是一个不可逆过程，所以必定

有dS + dSR > 0, 也即是

dS >
Q

T
. (60)

即系统在不可逆过程中熵的增量大于吸热量与温度之比。通常称这为克劳

修斯不等式。

现在，让我们考虑A,B两个一起组成了孤立系统，但是彼此并没有达成

热平衡的物体。它们的温度分别为TA, TB。假设把这两个物体相接触，那

么随着时间的推移，这两个物体将逐渐趋于热平衡，它们的温度将逐渐趋

于相同。在这个过程中，总熵S = SA + SB是增加的，即

dS

dt
=

dSA

dt
+

dSB

dt
=

∂SA

∂EA

dEA

dt
+

∂SB

∂EB

dEB

dt
> 0. (61)

由于总能量保持守恒，所以dEA

dt
+ dEB

dt
= 0, 因此

dS

dt
=

( ∂SA

∂EA

− ∂SB

∂EB

)dEA

dt
=

( 1

TA

− 1

TB

)dEA

dt
> 0. (62)

假设两个物体温度均为正，且B物体的温度比A高，TB > TA > 0, 那么

即有dEA

dt
> 0, 相应也有dEB

dt
< 0, 即B物体的能量在减少，而A物体的能量

在增加，也即是说，B物体在向A物体传热。因此，热量总是从高温物体

自发传向低温物体，而不是反过来。这是热力学第二定律的必然推论。

但是，如果B的温度为负(是的，负温度虽然不常见，但有时是可以实现

的)，TB < 0, 而A的温度为正TA > 0，那类似的也能得出，B物体会向A物

体传热！看起来就像是，负温度是一个比任何正温度更高的温度。

回到把孤立系统分成A,B两部分的讨论。与引入温度概念时的相关推导

完全类似，熵取极大值的要求也必然告诉我们

∂SA

∂xA

=
∂SB

∂xB

热平衡时, (63)

即热平衡时系统各部分的熵对本部分力学状态变量x的偏导在不同部分之

间保持相等。通常定义这一偏导为

∂S

∂x
≡ J

T
. (64)
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由于热平衡时温度T在各部分之间保持相等，因此这就说明，热平衡时上

式定义的量J在各部分之间保持相等。很显然，J = (J1, J2, ..., Jn)和温度一

样，是强度量。

以图(3)中所示的孤立系统为例，这时候x = (v1, v2, ..., vn), 相应的J则是

各区域的压强，即J = (p1, p2, ..., pn), 上述结论告诉我们，热平衡时各区域

内部的压强为常数。

综合(57)式和(64)式，即有

dS =
1

T

(
dE + J · dx

)
. (65)

或者也可以重写成

dE = TdS − J · dx. (66)

其中TdS是系统吸收的热量Q，而−J · dx则是通过改变系统力学状态
变量而向系统输入的能量，因此通常称之为外力对系统所做的功, 记

作W = −J · dx。所以(66)式的含义就是，系统能量的增量等于它吸收的热

量加上外力对它做的功, 即dE = Q+W。这也就是热力学第一定律。

如果我们反解S = S(E,x)，进而得到E = E(S,x), 即把(S,x)看作基本

的宏观状态变量。则(66)式告诉我们

T =
∂E

∂S
|x, J = −∂E

∂x
|S. (67)

正因为如此，所以通常又把x称之为系统的广义坐标，而J则称之为广义

力。

常常也会定义一个量F (T,x)

F (T,x) = extremS

[
E(S,x)− TS

]
, (68)

式中extremS表示对变量S求极值。从而由(66)式即可以得到dF = dE −
SdT − TdS = −SdT − J · dx，即

dF = −SdT − J · dx. (69)

后文我们会以一种不同的方式重新推导这一热力学恒等式。
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6 微微微正正正则则则系系系综综综

通常称孤立系统热平衡时的系综ρc为微正则系综，本节我们来具体确定

它。确定的办法前文已经说过，就是利用热平衡时熵极大，也就是将泛

函S(ρc)对ρc变分求极值。这里对ρc的约束就是归一化条件。

不过要注意到我们的孤立系统是处于给定宏观条件下的，这些条件包括

给定了它的总能量E, 也包括力学条件x(比方说系统的总体积), 这种力学条

件通常是通过在系统的边界加上很强的约束外力来达成的。也即是说，系

统的哈密顿量其实是依赖于x的，严格来说要记作H(µ,x)。

由于能量守恒，而且总能量为E, 所以ρc只能分布在相空间的等能量曲

面H(µ,x) = E上, 不妨记这张等能量曲面为Σ(E,x)。不过，由于ρc是粗粒

化系综态，因此实际上它是分布在E < H(µ,x) < E + δE的能量薄层之

内，δE很小，它来自于对等能量曲面的粗粒化。也即是说，ρc必定具有如

下形式

ρc(µ) =

σc(µ) 1
δE
, µ ∈上述能量薄层

0, µ不属于上述能量薄层
. (70)

其中待定的σc(µ)只在等能量曲面Σ(E,x)上有定义。

记上述能量薄层的相空间体积元为dµ = dΩδE，其中dΩ为等能量曲

面Σ(E,x)上的面积元。则，ρc(µ)的归一化条件成为∫
M

dµρc(µ) =

∫
E<H(µ)<E+δE

dΩδEσc(µ)
1

δE

=

∫
Σ(E,x)

dΩσc(µ) = 1. (71)

不妨记Σ(E,x)的总面积为Ω(E,x)，即

Ω(E,x) =

∫
Σ(E,x)

dΩ =

∫
M

dµ δ
(
H(µ,x)− E

)
. (72)

这里δ
(
H(µ,x) − E

)
是狄拉克δ函数。Ω(E,x)也称作等能量曲面Σ(E,x)上

的总微观态数目。
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类似的，不难算得

S(ρc) =− kB

∫
E<H(µ,x)<E+δE

dµρc(µ) log
(
ρc(µ)

)
=− kB

∫
Σ(E,x)

dΩσc(µ) log
(
σc(µ)

)
+ kB log(δE). (73)

不妨将这个结果记作S(ρc) = SG(σ
c) + kB log(δE)。也即是说，在给定宏观

条件下求泛函S(ρc)的极大值等价于求如下泛函的极大值

SG(σ
c) = −kB

∫
Σ(E,x)

dΩσc(µ) log
(
σc(µ)

)
. (74)

满足的约束条件为 ∫
Σ(E,x)

dΩσc(µ) = 1. (75)

不难用拉格朗日乘子法求得，以上变分问题的解为σc(µ)取常数1，进一步

根据σc的归一化条件(71)，可得

σc(µ) =
1

Ω(E,x)
. (78)

代入SG(σ
c)的表达式可得SG = kB log

(
Ω(E,x)

)
.

因此，孤立系统热平衡时的系综为

ρc(µ) =

 1
Ω(E,x)

1
δE
, µ ∈前述能量薄层

0, µ不属于前述能量薄层
. (79)

1变分求解过程如下：首先SG(σ
c)的变分为

δSG = −kB

∫
Σ(E,x)

dΩ
[
log

(
σc(µ)

)
+ 1

]
δσc(µ). (76)

进一步对约束条件使用拉格朗日乘子法，即可以得到如下变分求极值的方程(λ为拉格朗日

乘子)

0 = −kB

∫
Σ(E,x)

dΩ
[
log

(
σc(µ)

)
+ 1

]
δσc(µ) + λ

∫
Σ(E,x)

dΩδσc(µ)

= −kB

∫
Σ(E,x)

dΩ
[
log

(
σc(µ)

)
− (λ/kB − 1)

]
δσc(µ)

⇒ log
(
σc(µ)

)
= (λ/kB − 1). (77)

这就等价于σc(µ)为常数。
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即热平衡时的系综在前述能量薄层内等等等概概概率率率分分分布布布，或者更简单地说，热

平衡系综在等能量曲面Σ(E,x)上等概率分布。相应的热力学熵为S(ρc) =

kB log
(
Ω(E,x)

)
+ kB log(δE)。由于kB log(δE)这一项并不正比于N , 因此

在N很大的热力学极限下，这一项相比于前面的广延项可以忽略。因此，

我们直接就把kB log
(
Ω(E,x)

)
当作热平衡时的热力学熵，写作

S(E,x) = kB log
(
Ω(E,x)

)
. (80)

很显然，孤立系统热平衡时这个热力学熵公式与玻尔兹曼熵完全一致！

通常称孤立系统热平衡时这种满足等概率分布的系综为微微微正正正则则则系系系综综综。

它告诉我们，孤立系统热平衡时所有可能的微观态以相等的概率出现，这

也就是所谓的等等等概概概率率率原原原理理理。值得注意的是，等概率原理描述的是粗粒化系

综，而不是精细化系综，后者根本就没有热平衡的概念。

遍遍遍历历历性性性，，，以以以及及及系系系综综综平平平均均均等等等于于于时时时间间间平平平均均均

对等概率原理的一个直观解释是：当孤立系统达到热平衡态时，在一个

从微观来看足够长的时间τ之内，系统在相空间中的演化路径会遍历等能

量曲面Σ(E,x)上的每一个点。换言之，热平衡态时，系统在演化过程中会

等概率地访问等能面上所有可能的微观状态。通常称这一解释为各态历经

假说。

当然，以上解释并不是实际发生的情况，因为等概率原理是粗粒化之后

才有的结果。实际的情况很可能是这样的，系统在足够长的时间τ内，其

相轨迹可以无限接近等能面上任何一点。也即是说，系统虽然不会精确地

经过每一个点，但它会访问到任意指定点附近任意小的邻域。这称之为准

各态历经性。

根据各态历经假设，我们就能回答前文在引入系综概念时就提出的问

题，即为什么系综概念是有效的(至少对热平衡态)，或者说为什么对一个

物理量求系综平均的结果可以和实验上对这个物理量的实际测量结果比

较？

具体回答是这样的：首先，在哈密顿绘景中一个物理量Ot(µ0) =

O(µt)的时间平均定义如下

O(µt) ≡ lim
τ→∞

1

τ

∫ τ

0

O(µt)dt. (81)
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当然，实际中τ并不需要真的趋于无穷，只需要相对于微观时间尺度足够

长就可以了，甚至在宏观上看来可以是一个比较短的时间。由于实际测量

一个物理量都需要持续测一段宏观的时间，所以实验中对物理量的测量值

实际就是它的时间平均值。其次，当系统在长时间τ内遍历了整个等能面

时，计算时间平均O(µt)就相当于把系统在每个微观状态i上停留的时间比

例ti/τ 乘以该状态下的物理量值O(i), 然后对所有状态求和:

O(µt) =
∑
i

ti
τ
O(i). (82)

然后，如果系统是各态历经的，那么它在每个允许的微观状态i上停留的时

间比例ti/τ , 在τ → ∞时，就恰好等于该微观状态在微正则系综中出现的概
率Pi = ρc(i)dµ。因此

O(µt) = lim
τ→∞

∑
i

ti
τ
O(i) =

∑
i

PiO(i) =

∫
M

dµρc(µ)O(µ) = ⟨O(µ)⟩ρc . (83)

从而时间平均等于系综平均。因此用系综平均算出来的物理量期望值可以

和其实验测量值比较。

当然，除了前面讨论的准各态历经性之外，各态历经假设还有其它的问

题。比如数学上已经证明，绝大多数真实的物理系统并不会严格遍历整个

等能面，有时候系统会被限制在等能面的一个子集内运动。但是通常人们

相信，对于自由度非常大(宏观系统) 且相互作用足够复杂的系统，在物理

上感兴趣的观测时间尺度τ之内，系统能够访问到其相空间(等能面)中那些

对系综平均有显著贡献的绝大部分区域。这使得时间平均和系综平均在物

理观测精度上是不可区分的。实验和模拟结果都强烈支持这种等价性在宏

观系统中的有效性。

最后，以上对时间平均与系综平均等价性的论证虽然只针对孤立系统的

热平衡态，也就是微正则系综。但是，对于与外界环境有能量或粒子交换

并达成热平衡的系统，我们可以把外界环境包括进来，与所考察的系统一

起构成一个大的孤立系统，然后从这个大的孤立系统出发来讨论问题（比

如后文将要讨论的正则系综就是这样处理的）。因此时间平均与系综平均

的等价性同样可以延伸到这样的系统。因此，即使对于后文的正则系综，

其对系综平均的计算结果也同样可以和相应实验测量结果比较。
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举举举例例例：：：理理理想想想气气气体体体

下面研究一个简单而又重要的孤立系统，N个全同粒子所组成的理想气

体系统。所谓理想气体，指的是这些粒子只在相互碰撞的那一瞬间有相互

作用，其余时间都是自由的，而且假设这种碰撞是完全弹性碰撞。假设把

这种理想气体放在一个体积为V的盒子里面，盒子是绝热的，因此这些盒

内的气体就构成一个孤立系统。给定气体的总能量为E, 并让气体达到热平

衡，这就对应一个微正则系综。

由于相互作用是瞬时的，且不该变粒子碰撞前后的总动能，因此在盒子

内部(不包括边界)，系统的哈密顿量就是

H(µ) =
N∑
i=1

p2
i

2m
, (84)

式中m是粒子的质量，pi是第i个粒子的动量。当然我们可以引入3N个分量

的pa = (p1,p2, ...,pN)，并把上述哈密顿量改写成

H(µ) =
1

2m

3N∑
a=1

p2a. (85)

下面计算等能面上的微观态数目Ω(E, V ), 根据(72)式，有

Ω(E, V ) =

∫
1

N !(2π~)3N
d3Nqd3Npδ

( 1

2m

3N∑
a=1

p2a − E
)

(86)

对坐标q的积分给出V N。又注意到δ
(

1
2m

∑3N
a=1 p

2
a − E

)
= 2mδ

(∑3N
a=1 p

2
a −

2mE
)
。令

∑3N
a=1 p

2
a = p2, 从而在3N维动量空间中引入球坐标，那么d3Np =

dΩ3Np
3N−1dp, 式中dΩ3N为3N维空间中单位球面的面积微元, 相应的整个单

位球面的面积记作Ω3N。综合这些结果，即有

Ω(E, V ) =
1

N !(2π~)3N
2mV N

∫
dΩ3Np

3N−1dpδ(p2 − 2mE)

=
1

N !(2π~)3N
mV N 2π3N/2

Γ(3N/2)
(
√
2mE)3N−2

=
3

2

N

E

V N

(2π~)3N
(2πmE)3N/2

N !(3N/2)!
(87)
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式中我们利用了n维空间中单位球面的面积公式Ωn = 2πn/2

Γ(n/2)
。

因此，系统的熵S(E, V ) = kB log Ω(E, V )为，

S(E, V ) = NkB log
[ V

(2π~)3
(2πmE)3/2

]
− kB log[N !(3N/2)!]. (88)

其中我们忽略了项kB log
(
3
2
N
E

)
, 因为最终我们需要取N很大而N/E固定

的热力学极限，这时这一项相比于其它项可以忽略。注意到，当x很大

时，log(x!) ≈ x log x− x, 从而不难得到

S(E, V ) =
5

2
NkB +NkB log

[ V

N(2π~)3
(4πmE

3N

)3/2]
. (89)

进而根据温度的定义式(57)可以得到

1

T
=

3

2
kB

N

E
⇔ 3

2
kBT = E/N. (90)

即3
2
kBT是每个粒子的平均能量。由于这个平均能量由粒子的平均速度决

定，从而也即是说，温度衡量了粒子的平均运动速度，平均速度越高则温

度越高。另外，根据定义式(64), 可以算得系统的压强P

P

T
=

∂S

∂V
= kB

N

V
⇔ PV = NkBT. (91)

这个结果也就是理想气体的物态方程。在历史上，这个物态方程最早是通

过实验归纳出来的，我们这里给出了它的理论推导。

通过对理想气体微正则系综的概率密度函数进行积分，积去除p1之外的

所有其它变量，可以求出单个粒子的动量概率分布函数p(p1)。根据等概率

原理，即(式中我们将Ω(E, V )重记为了Ω(E, V,N))

p(p1) ≡
∫
E<H(µ)<E+δE

1

N !
d3q1

1

(2π~)3
N∏
i=2

d3qid
3pi

(2π~)3
1

Ω(E, V,N)δE
. (92)

不难看出，上述积分的最终结果是

p(p1) =
V

N

1

(2π~)3
Ω(E − p2

1

2m
, V,N − 1)

Ω(E, V,N)
. (93)
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代入上面关于Ω(E, V,N)的计算结果，并取热力学极限，比如注意到 (3N/2)!
(3(N−1)/2)!

≈
(3N/2)3/2, 同时注意到在热力学极限下

p2
1

2m
≪ E, 即有

p(p1) = (
3N

2
)3/2

1

(2πmE)3/2
(
1− p2

1

2mE

)3N/2−1

=
( 3N

4πmE

)3/2
exp

(
− 3N

2

p2
1

2mE

)
. (94)

第二行是利用了热力学极限下N → ∞, 但是E/N固定。代入温度的关系

式3
2
kBT = E/N , 即有

p(p1) =
( 1

2πmkBT

)3/2
exp

(
− p2

1/2m

kBT

)
. (95)

这就是著名的麦克斯韦-玻尔兹曼分布(也就是所谓麦克斯韦速度分布律)。

在历史上，这条定律的重要性是怎么强调都不为过的，可以说它是统计物

理的真正开始。

推推推广广广：：：比比比特特特的的的统统统计计计力力力学学学

到现在为止我们所研究的都是微观粒子所构成的孤立系统，微观粒子的

状态是连续的。然而类似的处理也可以推广到状态离散的客体所构成的系

统。最典型的就是比特，一个比特仅有两个离散状态，0和1。物理上，0态

可能是某种物质的低能状态，1态则是高能状态(比如通过高低电压实现)，

不妨设单个比特0态的能量为0, 1态的能量为ϵ。我们要研究的就是N个比特

所构成的一个孤立系统。

很显然这系统的任何一个状态刚好对应一个N位的2进制数，如(001001100),

(101001101)(以N = 9为例), 一般地可以记作(n1n2 · · ·nN), 式中ni = 0, 1。

给定系统的总能量E就相当于要求

N∑
i=1

niϵ = E. (96)

很显然，这个总能量完全由1态比特的总数目
∑N

i=1 ni = N1 ≤ N决定，E =

N1ϵ。

给定总能量E, 假设这个N比特系统达到了热平衡态，那么根据微正则

系综的等概率原理，所有总能量等于E的微观状态将以等概率出现, 很显然
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这样的微观态的总数为(相空间积分换成对离散的状态求和)

Ω(E) =
∑

n1,n2,...,nN |
∑

i ni=E/ϵ

1 =
N !

N1!(N −N1)!
. (97)

从而系统的热力学熵为

S(E) = kB log Ω(E) = kB[logN !− logN1!− log(N −N1)!]. (98)

在N1, N ≫ 1的热力学极限下，利用logN ! ≈ N logN −N , 可以得到

S(E) = −NkB
[N1

N
log

N1

N
+

N −N1

N
log

N −N1

N

]
= −NkB

[ E

Nϵ
log

E

Nϵ
+
(
1− E

Nϵ

)
log

(
1− E

Nϵ

)]
. (99)

进而可以算得热平衡时的温度为

1

T
=

∂S

∂E
= −kB

1

ϵ
log

( E

Nϵ− E

)
. (100)

特别的，我们注意到，当E < Nϵ/2时，温度为正，因为这时随着总能量的

增加，微观态数目也跟着增加！但是，当E > Nϵ/2时, 温度为负！这是因

为，这时随着总能量的增加，微观态数目反而在减少。总之，这个系统可

能出现负温度！

反过来，我们也可以将总能量E作为温度T的函数，结果是

E(T ) =
Nϵ

exp(ϵ/kBT ) + 1
. (101)

很显然，当T > 0时，E(T )是T的单调增函数，T = 0时E = 0, 之后随着温

度的升高，E也跟着增加，当T = +∞时，E达到最大值Nϵ/2。如果总能

量超过这个值，那系统就处于负温度状态。但是，一旦让负温度系统与周

围正温度的环境接触，那它就会向环境传热，从而失去能量，最终使得能

量降到Nϵ/2之下，之后系统温度变为正，并逐渐和环境达成热平衡。

可以定义这个系统的热容量C，也就是温度每升高一度能量E的增加

量。不难算得

C =
dE

dT
= NkB(ϵ/kBT )

2 exp(ϵ/kBT )
[
exp(ϵ/kBT ) + 1

]−2
. (102)
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不难看到T → +∞时，C → 0, 对于微观态数作为能量E的函数Ω(E)有上

界的系统，这是一种典型的现象。另外，也可以注意到T → 0+时，C ∝
exp(−ϵ/kBT ) → 0, 这是一种最低能态和最低激发态之间有能隙(在这里就

是ϵ)的系统的典型行为。

同样，可以计算热平衡时，单个比特处于n1态的概率p(n1)，根据等概

率原理，即

p(n1) =
∑

n2,...,nN |
∑

i ni=E/ϵ

1

Ω(E,N)
=

Ω(E − n1ϵ,N − 1)

Ω(E,N)
. (103)

代入Ω(E,N)(即前面的Ω(E))的表达式，并取热力学极限，不难得到

p(0) =
1

1 + exp(−ϵ/kBT )
, p(1) =

exp(−ϵ/kBT )

1 + exp(−ϵ/kBT )
. (104)

7 正正正则则则系系系综综综

从现在开始，除非特别说明，所有我们谈到的系综态都默认是粗粒化系综

态，因此可以把相应的ρc简记为ρ，去掉强调粗粒化的上标c。

前面我们讨论的都是孤立系统，但实际中大量的系统都是处于一个大

的环境中，通常可以近似认为环境有一个恒定的温度，可以和系统交换热

量，因此可以看作是一个热库。因此有必要研究和一个大的恒温热库相接

触的系统，热库和所关心的系统一起构成一个大系统，这个大系统是孤立

系统。

假设所关心的系统由系综态ρ描述，ρ不一定为热平衡态，系统的热力学

熵为S(ρ)，热库的温度为T , 则我们可以定义如下量

F (ρ) = E(ρ)− TS(ρ), (105)

式中E(ρ) = ⟨H⟩ρ为系统能量期望值。F (ρ)称作系统的自由能，它为什么这

么定义，以及其物理含义是什么，我们马上就会看到。

假设整个大系统经过了某个演化过程(不一定是可逆过程)，在过程之后

子系统的系综态变成了ρ′, 则子系统的熵增为

δS ≡ S(ρ′)− S(ρ). (106)
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子系统的能量增量为

δE ≡ E(ρ′)− E(ρ). (107)

假设整个过程子系统从热库吸收的热量为Q(从而热库吸收的热量为−Q),

子系统对热库所做的功为W , 则根据热力学第一定律

δE = Q−W. (108)

记热库在过程中的熵增为δSR, 则由于热库非常大，其吸放热过程可以

看成是可逆的，从而即有

δSR = −Q/T. (109)

由于整个大系统为孤立系统，根据热力学第二定律，经过这个过程其总熵

一定是增加的, 从而即有

δS + δSR = δS −Q/T ≥ 0. (110)

代入δE = Q−W , 即有−(δE − TδS) ≥ W。根据对自由能的定义，也即是

−δF ≥ W. (111)

上面这个结论告诉了我们自由能的含义，即：一个系统自由能的减少可

以转换成它向外做的功，在极限情况下可以完全转换成功，但是，系统永

远不能向外做超出自由能减少量之外的功！换言之：自由能是系统向外做

功的潜能，衡量的是系统做功的能力！

注意自由能的定义式为F = E − TS, 不等于系统的平均能量E, 而是要

减去TS。也即是说，系统总能量中由TS衡量的这部分能量并不能用来做

功，而是一种废能量。由于熵S衡量了我们对系统微观信息的无知程度，

如果S减少，相应的废能量就减少，从而系统向外做功的能力就增强。换

言之，如果我们对系统的微观信息了解得越多，那就可以用它做更多的

功。极限情况下，我们完全了解了系统的微观信息，从而S = 0，那么系统

的总能量E就全部都可以用来做功。

为了理解上述所讲，我们再举一个例子：考虑一个密闭的房间，房间外

面的环境温度是恒定的，房间里面的空气有宏观流动。但是，假设我们对
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房间状况的了解不够仔细，我们忽略了空气的宏观流动，而认为房间已经

达到了热平衡，那我们就不能利用空气做多少功。而如果我们对空气的流

动了解得很清楚，我们获取了额外的信息，那就可以把风力发电机放置在

空气流动比较快的地方，从而就能利用房间里的空气做更多的功。总之，

信息了解得越多，可以利用的自由能就越多！

回到公式(111)。依然假定系统处在恒温环境之中(即和一个大的恒温热

库接触)，但是假设系统并不向外做功(比如保持系统的力学条件x不变)，

即W = 0, 那么公式(111)就变成

δF ≤ 0. (112)

也即是说，对于这样的系统，其自发过程只能使得自由能减少。特别的，

当自由能自发降低到极小值，系统就会达成热平衡！也即是说，对于一个

与恒温热库接触并且不向外做功的系统，其热平衡状态对于自由能F (ρ)的

极小值状态，相应的热平衡系综可以通过将泛函F (ρ)对ρ变分取极值来求

得。

由于公式(111)是通过对整个包括热库在内的大系统应用热力学第二定

律得到的，所以自由能自发降低这个结论实际上等价于热力学第二定律(假

设系统不向热库做功)。

下面我们根据自由能极小的条件来求上述这种系统的热平衡系综。为此

对泛函F (ρ)变分，根据定义式(105), 不难得到

δF (ρ) =

∫
dµH(µ)δρ+ kBT

∫
dµ[log ρ+ 1]δρ. (113)

当然，还要考虑到约束条件
∫
dµρ(µ) = 1，进而利用拉格朗日乘子法，即

可以得到自由能极小值对应ρ = C exp
(
−H/kBT

)
, 其中C为常数，由归一

化条件确定，常常将C写成1/Z，从而热平衡系综为

ρeq(µ) =
1

Z
exp

[
− H(µ)

kBT

]
. (114)

根据归一化条件，有

Z =

∫
M

dµ exp
[
− H(µ)

kBT

]
. (115)

通常称这种热平衡系综为正正正则则则系系系综综综。
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当然，由于在过程中系统并不向环境做功，从而其宏观力学条件x是固

定的，另外，环境热库的温度T又是恒定的，从而(115)式更准确的写法应

该是

Z(T,x) =

∫
M

dµ exp
[
− H(µ,x)

kBT

]
. (116)

通常称Z(T,x)为系统的配分函数。

另一种证明正则系综对应于自由能极小的办法是计算相对熵S(ρ ∥ ρeq),

TS(ρ ∥ ρeq) = kBT

∫
dµρ log

(
ρ/ρeq

)
= kBT logZ + F (ρ). (117)

利用相对熵大于等于零，即有kBT logZ + F (ρ) ≥ 0, 等于号在ρ = ρeq时取

到，很显然，这相应于自由能F (ρ)的极小。所以，热平衡态对应自由能的

极小，这时

kBT logZ + F (ρeq) = 0 ⇒ F (T,x) = −kBT logZ(T,x), (118)

式中F (T,x) ≡ F (ρeq)为热平衡时的自由能。

值得注意的是，虽然这里考察的系统不是孤立系统，但是由于它和热库

的相互作用只发生在系统的表面，只要所考察的系统足够大，所考察的时

间足够短，那么这些来自表面的相互作用就可以忽略，这也就是前面所谓

的“准准准孤孤孤立立立”性。根据这个准孤立性，所考察系统的粗粒化系综必然也要

满足刘维尔方程。特别的，热平衡时的ρeq要满足(45)式, 也就是

{ρeq, H} = 0. (119)

代入ρeq的(114)式，很容易看到，这的确是满足的。

热热热力力力学学学

常常会引入逆温度β，其定义为

β ≡ 1

kBT
. (120)

根据配分函数的定义(115)，不难算得热平衡时系统的平均能量E(T,x)为

E(T,x) ≡ ⟨H⟩ρeq = − ∂

∂β
logZ. (121)
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定义热平衡时系统的熵为S(T,x) ≡ S(ρeq)，则根据自由能的定义式(105)，

有

F (T,x) = E(T,x)− TS(T,x)

⇒ S(T,x) = kB
[
logZ + βE(T,x)

]
. (122)

第二行代入了(118)式。同样是根据(118)，并综合上面的结果(注意 ∂
∂T

=

−kBβ
2 ∂
∂β
)，可以进一步算得

∂F

∂T
= −S. (123)

定义热平衡时的平均广义力J为

J ≡ −⟨ ∂

∂x
H⟩ρeq = kBT

∂ logZ
∂x

. (124)

(注意, 由于ρeq也依赖于x, 所以J ̸= −∂E(T,x)
∂x

) 则根据(118)式可以得到

J = −∂F

∂x
. (125)

根据(123)式和(125)式，即有

dF = −SdT − J · dx. (126)

正好是我们之前得到过的(69)式。关于这一热力学恒等式的两种不同推导

方法说明，微正则系综和正则系综在热力学极限下是等价的。

常常定义系统的热容为

Cx ≡ ∂E(T,x)

∂T
. (127)

其中Cx的下标x是用来强调相应的升温吸热是在保持x固定的前提下进

行的。注意，E(T,x)是一个广延量，所以在热力学极限下将正比于粒子

数N , 而T为一个强度量，在热力学极限下与N无关，所以，根据定义，热

容Cx也必然为一个广延量，在热力学极限下将正比于N。
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根据(121)式，不难得到

−
∂⟨H⟩ρeq

∂β
= − ∂

∂β

[ 1
Z

∫
dµH(µ)e−βH(µ)

]
= ⟨H2⟩ρeq +

1

Z2

∂Z
∂β

∫
dµH(µ)e−βH(µ)

= ⟨H2⟩ρeq +
1

Z
∂Z
∂β

⟨H⟩ρeq

= ⟨H2⟩ρeq −
(
− ∂ logZ

∂β

)
⟨H⟩ρeq = ⟨H2⟩ρeq − (⟨H⟩)2

= ⟨(H − ⟨H⟩)2⟩ρeq . (128)

另一方面−∂⟨H⟩ρeq
∂β

= kBT
2 ∂⟨H⟩ρeq

∂T
= kBT

2Cx, 所以综合起来即有

⟨(H − ⟨H⟩)2⟩ρeq = kBT
2Cx (129)

这说明两件事情：第一，⟨(H − ⟨H⟩)2⟩ρeq是一个广延量，在热力学极限
下正比于N。而⟨H⟩本身也是广延量，在热力学极限下也正比于N。这说

明H的相对误差
√
⟨(H − ⟨H⟩)2⟩/⟨H⟩ ∝ 1/

√
N , 因此在热力学极限下趋于

零。这说明，在热力学极限之下，正则系综的相空间概率分布趋于集中

在⟨H⟩ = E的等能量曲面上，也即是与微正则系综一致。这正好说明了这

两种系综在热力学极限之下的等价性。

第二，由于(H − ⟨H⟩)2 > 0, 从而⟨(H − ⟨H⟩)2⟩ > 0, 所以上面的结果说

明

Cx > 0, (130)

即热平衡系统的热容一定为正。需要说明的是，的确存在负热容的系统，

比如黑洞就是(根据黑洞热力学)，但根据我们这里的证明，这样的系统必

然无法与环境达成稳定的热平衡。

由于热容Cx是在外界没有向系统做功的情况下定义的(即保持力学条

件x固定)，所以CxdT就是系统从外界吸收的热量，因此也就等于TdS, 因

此，我们有

dS =
CxdT

T
. (131)
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Cx当然只是温度T的函数，因此可以将这个式子积分，从绝对零度积

到T度，即有

S(T )− S(0) =

∫ T

0

dT
Cx

T
. (132)

S(0)是多少呢？根据量子力学，绝对零度时系统只能处在基态上，也就

是最低能态上，如果基态不简并，也即是说，相应的微观态数目Ω = 1，

那么当然就有S(0) = 0。但是，如果基态有简并，那S(0)就可能不是零，

这时候通常称之为剩余熵(residual entropy)。

另外，你可能担心积分(132)在T → 0的下限处发散。如果真的发散了，

那要么S(T ) → +∞, 要么S(0) → −∞。但是，根据S = kB log Ω，熵应该

是有限的非负数。从而，唯一的可能即是

当T → 0时 Cx → 0. (133)

这个结果也称之为热热热力力力学学学第第第三三三定定定律律律，或者能斯特定理。其等价的表述是：

当T → 0时，系统可逆过程熵的变化也趋于零，即

lim
T→0

∆S = 0. (134)

极极极大大大熵熵熵原原原理理理

不难利用拉格朗日乘子法证明：正则系综的ρeq使得熵S(ρ)在固定系统

能量期望值的约束条件下取极大值。即，ρeq使得如下泛函在一定的约束下

取极大值

S(ρ) = −kB

∫
dµρ(µ) log ρ(µ), (135)

这里的约束条件为∫
dµH(µ)ρ(µ) = E(T,x) (固定),

∫
dµρ(µ) = 1. (136)

其中的一个拉格朗日乘子最终可以等同为1/T，具体的变分证明过程我们

留给读者自行完成。
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这里简单说一下用相对熵如何证明：根据S(ρ ∥ ρeq) ≥ 0 不难得到

S(ρ) = −kB

∫
dµρ(µ) log ρ ≤ −kB

∫
dµρ log ρeq

不等式右边 = kB logZ + kBβ⟨H⟩ρ = kB
[
Z + βE(T,x)

]
= S(ρeq).

其中倒数第二个等于号用到了能量期望值固定的约束条件，最后一个等于

号代入了(122)式。

以上结论说明，即使对于正则系综，其热平衡态也是某种在给定条件下

对系统微观信息最无知的状态，这里的给定条件就是给定系统宏观能量的

期望值。因此，无论是孤立系统的微正则系综还是与恒温热库接触的正则

系综，热平衡态都是某种对微观信息最无知的状态。人们通常把这个结论

推广到一般情况，即：一一一个个个系系系统统统的的的热热热平平平衡衡衡态态态即即即是是是在在在给给给定定定一一一些些些物物物理理理量量量的的的期期期

望望望值值值的的的前前前提提提下下下，，，人人人们们们对对对系系系统统统微微微观观观信信信息息息最最最无无无知知知的的的宏宏宏观观观状状状态态态(也也也就就就是是是熵熵熵极极极大大大的的的

宏宏宏观观观状状状态态态)。。。之之之所所所以以以要要要给给给定定定一一一些些些物物物理理理量量量的的的期期期望望望值值值，，，是是是因因因为为为这这这些些些期期期望望望值值值正正正是是是

我我我们们们了了了解解解到到到的的的系系系统统统的的的宏宏宏观观观信信信息息息。。。 通常称这为极极极大大大熵熵熵原原原理理理。

当然，人们可能会问，为什么不直接从极大熵原理来推导正则系综的热

平衡态呢？原因在于，这种系统并不是孤立系统，因此它本身并没有熵增

加原理，因此我们并不能预先论证热平衡时极大熵为什么成立。相反，我

们只能事后验证，热平衡时的ρeq刚好使得系统的熵在给定能量期望值的约

束条件下取极大。并且正是基础于这个观察，我们才能归纳并推广出极大

熵原理。

广广广义义义能能能量量量均均均分分分定定定理理理

从现在开始，我们默认物理量的期望值均是在热平衡态下求的。

由于相空间为6N维，因此µ有6N个分量，记为µi = (q1, ..., q3N , p1, ..., p3N),

则可以证明:

⟨µi ∂H

∂µj
⟩ = δijkBT. (137)

这就是所谓的广广广义义义能能能量量量均均均分分分定定定理理理。特别的，如果对于某个分量µj, H只含

有它的二次项，记这个二次项为Hj, 则根据齐次函数的欧拉定理，我们有

从而µj ∂H
∂µj = µj ∂Hj

∂µj = 2Hj。从而上面的广义能量均分定理就告诉我们

⟨Hj⟩ =
1

2
kBT. (138)
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这就是著名的能量均分定理。

对广义能量均分定理的证明如下：

⟨µi ∂H

∂µj
⟩ = 1

Z

∫
dµµi ∂H

∂µj
e−βH

=
1

Z

∫ [ ∫
µi ∂H

∂µj
e−βHdµj

]
dµ̂j, (139)

式中dµ̂j表示对dµ中除µj之外的所有变量积分。另一方面，根据分部积

分，有 ∫
µi ∂H

∂µj
e−βHdµj = − 1

β

∫
∂

∂µj

(
µie−βH

)
dµj +

1

β
δij

∫
e−βHdµj

=− 1

β

(
µie−βH

)
|相空间无穷远处 +

1

β
δij

∫
e−βHdµj. (140)

通常假定相空间无穷远处H → +∞, 从而µie−βH → 0，从而即有∫
µi ∂H

∂µj
e−βHdµj = kBTδij

∫
e−βHdµj. (141)

代入(139)式，即有

⟨µi ∂H

∂µj
⟩ = kBTδij

1

Z

∫
e−βHdµ = kBTδij. (142)

从而就证明了广义能量均分定理。

举举举例例例

1. 比特的统计力学：下面我们用正则系综来讨论前面的N个比特的统

计力学。很显然系统的微观态为µ = {ni}, 哈密顿量为H(µ) = ϵ
∑N

i=1 ni, 从

而，相应的正则系综概率分布为

p(µ) =
1

Z
exp

[
− βϵ

N∑
i=1

ni

]
. (143)

相应的配分函数为

Z(T ) =
∑
{ni}

exp
[
− βϵ

N∑
i=1

ni

]
=

( 1∑
n1=0

e−βϵn1
)
· · ·

( 1∑
nN=0

e−βϵnN
)

= (1 + e−βϵ)N . (144)

42



从而可以得到自由能为

F (T ) = −kBT logZ = −NkBT log[1 + e−ϵ/kBT ]. (145)

进而可以算得熵为

S = −∂F

∂T
= NkB log[1 + e−ϵ/kBT ] +NkBT

( ϵ

kBT 2

) e−ϵ/kBT

1 + e−ϵ/kBT
. (146)

能量的期望值为

E(T ) = −∂ logZ
∂β

= N
ϵe−βϵ

1 + e−βϵ
. (147)

另外，由于p(µ) =
∏N

i=1 pi(ni), 从而容易得到单个比特的概率分布

p1(n1) =
e−βϵn1

1 + e−βϵ
. (148)

这个结果以及E(T )的结果都正好与前面微正则系综求出来的相同。这又一

次说明了，微正则系综和正则系综在热力学极限下是等价的。

2. 理想气体：现在把正则系综应用于理想气体。首先，在盒子内部概

率分布为(盒子外面概率当然为零)

ρ(µ) =
1

Z
exp

[
− β

N∑
i=1

p2
i

2m

]
. (149)

相应的配分函数为(请注意高斯积分的计算)

Z(T, V ) =

∫
1

N !

N∏
i=1

d3qid
3pi

(2π~)3
exp

[
− β

N∑
i=1

p2
i

2m

]
=

V N

N !

(mkBT

2π~2
)3N/2

. (150)

进而可以求出自由能为

F = −kBT logZ = −NkBT
[
log(V e/N) +

3

2
log

(mkBT

2π~2
)]
, (151)

这里已经取了热力学极限。进一步可以算得熵为

S = −∂F

∂T
= NkB

[
log(V e/N) +

3

2
log

(mkBT

2π~2
)]

+
3

2
NkB. (152)
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同样可算得内能的期望值为

E(T ) = −∂ logZ
∂β

=
3

2
NkBT. (153)

很明显，由此即有CV = dE
dT

= 3
2
NkB。当T → 0时，并没有CV → 0，可见

理想气体并不满足热力学第三定律。但这只是说明，理想气体这一理论模

型在温度很低时是失效的。类似的，可算得系统的压强为(根据J = −∂F
∂x

)

P = −∂F

∂V
=

NkBT

V
⇒ PV = NkBT. (154)

这些结果均与前面用微正则系综导出的结果一致。并且同样，这里也可以

导出和前面一样的麦克斯韦-玻尔兹曼分布(也就是所谓麦克斯韦速度分布

律)。

8 麦麦麦克克克斯斯斯韦韦韦妖妖妖

1867 年12 月11 日麦克斯韦在写给彼得·格思里·泰特（Peter Guthrie

Tait）的一封信中描述了一个著名的思想实验。它再次出现在1871 年写给

约翰·威廉·斯特鲁特（John William Strutt）的一封信中，然后在麦克

斯韦1872 年出版的名为《热论》的热力学著作中向公众展示。这就是著名

的麦克斯韦妖思想实验。

麦克斯韦想象一个容器分为两部分，A和B，如图(4) 所示。这两部分

在相同的温度下充满相同的气体，并彼此相邻放置。一个想象中的妖守卫

着两部分之间的活板门，并观察两侧的分子。当A中速度超过平均水平的

分子飞向活板门时，妖会打开它，分子就会从A飞到B。同样，当一个比

平均速度慢的分子从B飞向活板门时，妖会让它从B飞到A。而其它情况

下，妖都会把这扇活板门紧紧关上。因此，B中分子的平均速度会增加，

而A中分子的平均速度会减慢。由于平均分子速度对应于温度，因此A的温

度会自动降低，而B的温度会自动升高，热量自发从A传向了B，这与热力

学第二定律相反。

麦克斯韦描述说：

......如果我们设想一个生物，他的官能如此敏锐，以至于他可

以跟踪其过程中的每一个分子，那么这样一个生物，其属性本
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Figure 4: 麦克斯韦妖

质上与我们自己的属性一样有限，但他将能够完成我们不可能

的事情。因为我们已经看到，在一个温度均匀的充满空气的容

器中，分子的运动速度绝不是均匀的，尽管它们中任意选择的

大量分子的平均速度几乎是完全均匀的。现在让我们假设这样

一个容器被分成两部分，A和B，其中有一个小孔，并且一个可

以看到单个分子的存在打开和关闭这个孔，以便只允许较快的

分子从A 到B，只允许较慢的分子从B到A。因此，他将不需要

做功，就能提高B的温度并降低A的温度，这与热力学第二定律

相矛盾。

那么这个思想实验到底是否违反热力学第二定律呢？回答是，并不违

反。原来，要确定是否让分子通过，妖必须获取有关分子状态的信息，并

丢弃或储存它。丢弃它会导致信息熵立即增加，但妖的内存是有限的，它

不能无限期地存储这些微观信息。实际上，为了能持续地获取分子运动状

态的信息，妖必须不断地清空其内存。具体来说就是，每经过一个相对于

微观过程来说足够长而相对于宏观过程来说足够短的时间τ，妖的内存就

会满，就需要清空其内存，也就是擦除掉它之前在内存中记录下来的那些

信息。而擦除信息就会导致信息熵增加，进而也就会导致热力学熵增加。

因此，考虑到这部分熵的增量之后，在宏观的时间尺度上，整个系统的热

力学熵一直都是增加的！麦克斯韦妖的存在并不违反热力学第二定律。实

际上，这个思想实验只是说明了，热力学熵在本质上也是一种信息熵！
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当然，以上分析是把妖包含在系统之内。如果把妖看成是系统之外的存

在，特别的，由于在系统之外，所以妖可以自带一个来自外面的无限存储

空间的“硬盘”，并永不擦除信息。但如此一来，气体本身就不是孤立系

统了，当然就可以熵减少。实际上，它正好说明，热力学平衡态是外界对

系统微观信息最无知的状态，如果外界能够像妖一样，额外获取系统的微

观信息，那我们就可以逆转热平衡，甚至可以利用这种对热平衡的逆转从

系统中提取额外的功！
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