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[本章中对于N个粒子组成的系统，我们将其微观状态(相点)记为µN , 原

来的符号µ这里要用来表示化学势。]

本章我们再次回到热力学，我们会讨论绝热变换的概念并将之应用于热

机效率的探讨。之后我们引入化学势的概念，并进而对热力学作一个比较

系统的阐述。最后，我们将介绍所谓的巨正则系综。

1 绝绝绝热热热变变变换换换，，，热热热机机机

前面的章节中说过，孤立系统的热平衡态完全由其总能量E以及所处的

力学条件x(比如总体积)给定，E和x都是广延量。现在，我们记这个热平

衡态为X = (E,x)。则孤立系统热平衡时的熵是X的函数，记为S(X)。

如果我们将两个系统――分别处于平衡态X和Y――相互接触，让它们
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构成一个复合系统，就记复合系统的宏观状态为(X, Y ), 相应的热力学熵

为S(X, Y ), 则熵的可加性告诉我们

S(X,Y ) = S(X) + S(Y ). (1)

进一步，在热力学极限下，熵是广延量，这就意味着如果我们把系统规模

扩大λ > 0倍，使宏观态变为λX, 则相应的热力学熵也将扩大λ倍，即有

S(λX) = λS(X). (2)

注意，这个关系式只在热力学极限下才成立。

现在，我们将孤立系统推广到绝热的系统，也即是说，我们允许系统

和外界交换力学功，但是，两者之间不允许交换热量，我们称之为允许对

系统进行绝热变换(可以是可逆的，也可以不可逆)。可以进一步精确化这

句话的意思，所谓的绝热变换，其意思是，允许系统和外界的辅助装置以

及一个重物(可以看作是质点)进行相互作用，进而改变系统的宏观状态，

但是，过程结束以后，辅助装置的状态必须完全复原，只允许外界的重物

被提升或者下降。如果我们把系统包括外界辅助装置和重物整个一起看作

一个孤立系统，则可以对这个孤立系统应用热力学第二定律，由于辅助装

置的状态复原了，其熵变(熵的改变量)为零，又由于重物可以看作一个质

点，其热力学熵是零，因此，整个孤立系统的熵变其实就是原来系统的熵

变，从而热力学第二定律告诉我们：任任任何何何系系系统统统经经经历历历一一一个个个绝绝绝热热热变变变换换换以以以后后后，，，其其其

热热热力力力学学学熵熵熵都都都不不不会会会减减减少少少！！！

假设通过某个绝热变换把系统从热平衡态X变成了热平衡态Y (中途的

过程可以是非平衡的)，则上述结果告诉我们

S(X) ≤ S(Y ). (3)

我们可以说，热平衡态X先于热平衡态Y (或者Y后于X), 记作

X ≺ Y, (4)

其含义就是，热平衡态Y是一个可从X出发经过绝热变换到达的热平衡

态。如果反过来也成立，即同时有Y ≺ X, 就称X和Y绝热等价，记作

X ∼ Y. (5)
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很显然，这时候必定有S(X) = S(Y ), 也即是说，如果两个热平衡态绝热

等价，那么将它们联系起来的绝热变换就是可逆的。反过来，如果X ≺ Y ,

但是两者并不绝热等价，则可以将两者的关系记作

X ≺≺ Y, (6)

很显然，这时候必定严格有S(X) < S(Y ), 从而将两者联系起来的绝热变换

不可逆。

因此，通过绝热变换可以在一个系统的所有热平衡态的集合中引入一个

偏序关系≺。值得指出的是，绝热变换不一定是很“温柔”的(诸如推动一

个活塞或者什么的)，它也可以是很“暴力”的，如图(1)中所示的那样。

Figure 1: 通过一个“暴力”的绝热变换连接起来的两个热平衡态X和Y .

通过系统间的复合运算(即将两个系统相互接触，让它们构成一个更大

的复合系统), 我们可以将上述偏序关系≺推广到所有系统的所有热平衡态
的集合(当然，所有这些系统都是热力学极限下的宏观系统)。不难验证，

这样的偏序关系满足如下性质：

1. 自反性：即X ∼ X。

2. 传递性：即如果X ≺ Y , 且Y ≺ Z，则必有X ≺ Z。

3. 相容性：即如果X ≺ X ′，且Y ≺ Y ′，则必有(X,Y ) ≺ (X ′, Y ′)。

这是由于熵的可加性，即S(X, Y ) = S(X) + S(Y ) ≤ S(X ′) + S(Y ′) =

S(X ′, Y ′)。
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4. 标度不变性：即对于λ > 0, 如果X ≺ Y , 则必有λX ≺ λY。这是由于

熵的广延性。

5. 分裂与重组：即我们可以把系统X分裂成两个子系统的复合(λX, (1−
λ)X)(0 < λ < 1), 或者反过来，把这样的两个子系统重组成一个大系

统X。很显然，这样的分裂和重组可以仅仅是看待整个系统的两种不同观

点，所以当然是绝热可逆的，从而必有X ∼ (λX, (1− λ)X)(0 < λ < 1)。

从熵的性质上也可以证实这一点，因为S(λX, (1 − λ)X) = S(λX) +

S((1− λ)X) = λS(X) + (1− λ)S(X) = S(X)。

6. 稳定性：如果(X, ϵZ0) ≺ (Y, ϵZ1)对于某个Z0, Z1和一个趋向于零

的ϵ序列成立，则有X ≺ Y。这条性质的含义就是“一粒灰尘不能影响绝热

过程”。这条性质当然可以用熵的性质来证明。

我们是利用熵的性质(1)、(2)和(3)证实以上6条性质的。有趣的是，E.

H. Lieb和J. Yngvason在文献A guide to entropy and the second law of ther-

modynamics. Notices of the American Mathematical Society, 45:571–581,

1998，以及这篇文献引用的文献中证明：如果某个偏序关系满足以上6条性

质，比如作为对绝热变换的直观要求，那么反过来，必定存在一个几乎唯

一确定的状态函数S(X), 它具有热力学熵的那些性质(1)、(2)和(3)。

热热热机机机

绝热变换概念的一个重要应用是用来研究热机效率。实际上，在历史

上，热力学熵的概念最早就是从卡诺对热机效率的研究中导出来的，反而

香农熵的概念才是最后出现的，虽然从学科逻辑来说，香农熵才是最根本

的概念，这也是本书采用的逻辑。

热机的工作原理是从温度为T1的高温热库中提取能量，通过某种装置将

其中一部分能量转化为对环境所做的机械功，并将剩余的能量释放到温度

为T2的低温热库中。该装置以循环方式运行，也就是说，在整个过程结束

时，它回到其初始状态。循环装置包括两个热库一起，整个复合系统被封

闭在一个容器中，该容器只允许系统以纯机械方式与环境交换能量，例如

通过提升或降低一个宏观重物来实现。所以，热机的循环过程就是一种绝

热变换，因此每个循环完成之后，整个复合系统的熵不减。

由于工作物质是循环使用的，其状态必定会回到初始状态，所以一个循
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环前后其熵变为零。换言之，一个循环前后整个系统的熵变完全来源于热

库的熵变。假设记循环之前高温热库的熵为S1, 循环之后的熵为S ′
1, 工作物

质从高温热库吸收的热量为Q1(即高温热库吸收的热量为−Q1), 从而即有

S ′
1 = S1 −

Q1

T1

. (7)

类似的，记循环之前低温热库的熵为S2，循环之后的熵为S ′
2，假设工作物

质向低温热库释放的热量为Q2, 则

S ′
2 = S2 +

Q2

T2

. (8)

利用绝热变换必须满足的

S1 + S2 ≤ S ′
1 + S ′

2, (9)

立即有

Q1

T1

− Q2

T2

≤ 0. (10)

假设每个循环系统向外做功为W , 从而

Q1 = Q2 +W. (11)

定义热机效率η为

η ≡ W

Q1

, (12)

即每吸收一单位的热量能够向外做的功。不难看到，必有

η =
Q1 −Q2

Q2

= 1− Q2

Q1

≤ 1− T2

T1

. (13)

这个式子给出了热机效率的上限，其中等于号对于可逆热机才成立。

2 再再再谈谈谈热热热力力力学学学

2.1 化化化学学学势势势

此前第二章中都默认系统的总粒子数是固定的，不作为变量。现在我们考

虑如果粒子数是变量会带来什么新知识。
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同样，让我们从孤立系统开始，假设系统的总粒子数为N , 对于孤立系

统它和力学条件x一样是固定的，所以平衡态应该由(E,x, N)三类宏观参量

刻画，记为X = (E,x, N)。如果系统包含多种粒子，每一种粒子都有一个

粒子数，那就需要进一步将N推广成多维向量N = (N1, N2, · · · )。不过，为
了表达的简单起见，我们主要以一种粒子的情形为例，如何推广到多种粒

子情形留给读者自行探讨。总之，热平衡时，孤立系统的熵应该是状态函

数S(X) ≡ S(E,x, N)。

和第二章中的相关处理一样，现在把整个孤立系统任意分成A, B两部

分，不过，现在假设这两部分之间可以交换粒子，当然，总粒子数N是固

定不变的。记NA, NB分别为A,B部分的粒子数，则和第二章中引入温度时

的讨论完全类似，根据热平衡时熵取极大值，我们有

∂SA

∂NA

=
∂SB

∂NB

. (14)

也即是说，热平衡时系统各部分熵对本部分粒子数的偏导处处都一样。因

此我们可以定义

∂S

∂N
= −µ

T
, (15)

它可以是对系统的任意部分定义的，也可以是对整个系统定义的。则根据

刚才的推导，我们有，热平衡时这样定义的µ/T处处都一样，由于热平衡

时温度处处一样，因此，热平衡时，这样定义的µ必定在整个系统中处处

相同。µ就称之为系统的化化化学学学势势势！注意，不是相空间的相点，后者我们将

记为µN。所以，热热热平平平衡衡衡时时时系系系统统统的的的化化化学学学势势势处处处处处处相相相同同同。

结合第二章的相关结果

∂S

∂E
=

1

T
,

∂S

∂x
=

J

T
. (16)

我们立即有

dS =
1

T
dE +

1

T
J · dx− 1

T
µdN. (17)

稍微整理一下也可以重写成

dE = TdS − J · dx+ µdN. (18)
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这样写的时候，我们最好是认为已经通过反解S = S(E,x, N)而把能量E看

成是S,x, N的函数了，记为E = E(S,x, N). 从这里我们又可以得到

µ =
∂E

∂N
|S,x, (19)

也即是说，化学势就是在保持热力学熵以及力学条件x不变的前提下，系

统每增加一个粒子其总能量的增量。

考虑两个系统A,B，其化学势分别为µA, µB，假设把两者相接触，并允

许两者之间的粒子交换。则由于A,B的复合系统可以看作是孤立系统，所

以根据熵增加原理，粒子交换的结果必定使得整个系统的熵增加，从而

δS = δSA + δSB = −µA

TA

δNA − µB

TB

δNB ≥ 0. (20)

由于总粒子数N = NA +NB固定，所以必有δNA = −δNB, 从而上式告诉我

们

0 ≤ δS =
(µA

TA

− µB

TB

)
δNB. (21)

如果A,B的温度一样TA = TB > 0，但是化学势不一样，假设µA > µB, 则

上式告诉我们δNB ≥ 0, 从而δNA ≤ 0, 也即是说，粒子必定从化学势更高

的A流向化学势较低的B。

2.2 Gibbs-Duhem关关关系系系式式式

现在我们将系统能量看作是S,x, N的函数，记作E(S,x, N)，则由于S,x, N以

及E都是广延量，所以必有(对于λ > 0)

E(λS, λx, λN) = λE(S,x, N), (22)

也即是说，E是变量S,x, N的齐次函数，齐次度为1。从而根据齐次函数的

欧拉定理，我们有

S
∂E

∂S
|x,N +x · ∂E

∂x
|S,N +N

∂E

∂N
|S,x= E(S,x, N), (23)

利用∂E
∂S

|x,N= T , ∂E
∂x

|S,N= −J(第二章提到过这两个结果)，以及 ∂E
∂N

|S,x= µ,

立即有

E = TS − J · x+ µN. (24)
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通常称这个结果为Gibbs-Duhem关系式，注意，由于广延性严格来说需要

取热力学极限，所以这个关系式只在热力学极限下才成立。

特别的，将上式微分，即有

dE = TdS − J · dx+ µdN + SdT − x · dJ+Ndµ (25)

代入前面的(18)式，即有

SdT − x · dJ+Ndµ = 0. (26)

习惯上，人们常常将这个式子除以N , 进而得到

dµ = v · dJ− sdT, (27)

式中v = x/N是平均每个粒子所分到的力学条件，比如平均每个粒子所

占据的体积，s = S/N则是平均每个粒子的熵。常常也将(27)式称作微

分Gibbs-Duhem关系式。

根据微分Gibbs-Duhem关系式，假设我们知道对于某个特定的广义

力J0, 以及对于所有的温度T，我们知道s(J0, T ), 则可以积分上式，得到

µ(J0, T ) = µ(J0, T0)−
∫ T

T0

dT ′s(J0, T
′). (28)

热力学关系式(18)有一些等价的形式，比方说，根据∂E
∂S

|x,N= T反解

出S作为T,x, N的函数，并定义热平衡时的自由能F (T,x, N)为F = E −
TS, 则由于dF = dE − TdS − SdT，代入(18)式即有

dF = −SdT − J · dx+ µdN. (29)

特别的,

µ =
∂F

∂N
|T,x . (30)

类似的，可以定义巨热力学势Φ(T, µ,x)

Φ ≡ F − µN. (31)

则同样不难推导出

dΦ = −SdT − J · dx−Ndµ. (32)
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后文将利用所谓的巨正则系综重新推导这个等式。另一方面，利用Gibbs-

Duhem关系式，我们也有

Φ = −J · x. (33)

进一步，可以定义Gibbs自由能G(T,J, N)

G ≡ F + J · x = E − TS + J · x. (34)

则类似的有

dG = −SdT − x · dJ+ µdN. (35)

特别的

µ =
∂G

∂N
|T,J . (36)

另外一方面，利用Gibbs-Duhem关系式，也有

G = µN. (37)

注意，以上两个式子表面上看似乎很不同，但在热力学极限下两者其实是

等价的。

吉布斯自由能有一个很直观的物理解释，不妨以x为系统体积V，J为压

强P的情形为例说清楚这个解释。这时候，G为T, P,N的函数，所以常常

用来描述等温等压的系统。根据其定义

G = E − TS + PV, (38)

我们可以将G的物理含义解释如下：假设你是一个神，能汇聚能量在真空

中创造出一个物体，比如一只兔子，请问你需要汇聚多少能量？你需要的

能量恰好等于这只兔子的内能E。但是，如果兔子不在真空中，它还需要

排开一些空气，而这需要额外的能量PV , 因此，为了创造这只兔子，你需

要的总能量是E + PV , 这有一个专门的名称叫焓。然而，如果兔子是处于

某个恒温环境中，那么你其实可以少提供一些能量，因为兔子可以从恒温

环境中吸热，这部分能量为TS，它可以由恒温环境提供，所以其实你真正

只需提供G = E − TS + PV的能量就够了，而这就是吉布斯自由能。
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2.3 热热热平平平衡衡衡稳稳稳定定定性性性

孤立系统热平衡态对应熵的极大值。而此前我们只用到了热平衡态对应熵

的极值，极大的条件一直还没用。极值条件对应于熵的一阶变分等于零，

极大值则进一步对应熵的二阶变分小于零。后者又称作热平衡态的稳定条

件，它会告诉我们，为了保证热平衡态的稳定性，系统得满足什么条件。

还是让我们考虑由宏观状态(E,J, N)刻画的孤立系统，相应的强度量

记作(T,J, µ), 我们已经知道，热平衡时这些强度量在系统各部分之间是

相等的。同样，我们任意地把系统分成A,B两个部分，它们的广延坐标满

足EA +EB = E, xA + xB = x, 以及NA +NB = N。现在，设想A,B部分之

间发生了很微小的能量以及物质交换，交换之后A部分的宏观坐标变为

(EA + δE,xA + δx, NA + δN)以及(TA + δTA,JA + δJA, µA + δµA). (39)

类似的，B部分的宏观坐标变换为

(EB − δE,xB − δx, NB − δN)以及(TB + δTB,JB + δJB, µB + δµB). (40)

式中我们注意到了整个系统总的广延坐标是固定的。由于强度坐标都是广

延坐标的函数，所以很显然，在变分的一阶近似上必定有

δTA = −δTB ≡ δT, δJA = −δJB ≡ δJ, δµA = −δµB ≡ δµ. (41)

另一方面，利用Gibbs-Duhem关系式，可以将整个系统总的熵表达为

S = SA + SB =
(EA

TA

+
JA

TA

· xA − µA

TA

NA

)
+
(EB

TB

+
JB

TB

· xB − µB

TB

NB

)
. (42)

热平衡时，这个熵的一阶变分等于零，因此只需要考虑二阶变分, 结果是

δ2S = 2
[
δ
( 1

TA

)
δEA + δ

(JA

TA

)
· δxA − δ

(µA

TA

)
δNA

]
. (43)

式中，我们已经利用了热平衡时两部分的强度坐标是相等的，以及利用

了(41)式，由此而来的结果就是B部分的二阶变分和A部分的二阶变分相

等。简单的推导告诉我们，以上二阶变分可以写成

δ2S = − 2

TA

[
δTA

(δEA + JA · δxA − µAδNA

TA

)
− δJA · δxA + δµAδNA

]
= − 2

TA

[
δTAδSA − δJA · δxA + δµAδNA

]
. (44)
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式中第二行我们代入了热力学等式(18)。由二阶变分小于零的条件，立即

有

δTδS − δJ · δx+ δµδN > 0. (45)

式中，我们去掉了下标A, 因为A,B部分是任意分的, 所以最后这个不等式

对系统的任何部分都成立，当然对整个系统也成立。这个不等式就称之为

热平衡的稳定条件。

作为上面式子的例子，让我们来考虑一个x为体积V , J为压强P的系

统，这时候(45)式就变成

δTδS − δPδV + δµδN > 0. (46)

特别的，假设我们取系统的宏观状态参量为T, V,N , 并假设δV = δN = 0,

由于δS = ∂S
∂T

|V,N δT , 从而由上式立即有

∂S

∂T
|V,N (δT )2 > 0. (47)

由此即有，系统的定体热容CV,N > 0, 即

CV,N = T
∂S

∂T
|V,N> 0. (48)

依然取宏观状态参量为T, V,N , 从而根据热力学等式(29)，即有

dF = −SdT − PdV + µdN. (49)

由此即有−S = ∂F
∂T

|V,N , −P = ∂F
∂V

|T,N , µ = ∂F
∂N

|T,V , 根据类似于∂x∂yf(x, y) =

∂y∂xf(x, y)这样的多元函数求导顺序可交换的规则，即有

∂P

∂N
|T,V = − ∂2F

∂N∂V
|T = − ∂µ

∂V
|T,N . (50)

通常称类似这样的关系式为麦克斯韦关系式。

现在，取δT = 0, 从而根据(46)式，即有

(δV, δN)

(
−∂P

∂V
|T,N − ∂P

∂N
|T,V

∂µ
∂V

|T,N ∂µ
∂N

|T,V

)(
δV

δN

)
> 0. (51)
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这个结果对于任意(δV, δN)均成立，从而下面矩阵是一个正定矩阵(
−∂P

∂V
|T,N − ∂P

∂N
|T,V

∂µ
∂V

|T,N ∂µ
∂N

|T,V

)
正定, (52)

注意，根据上一段的麦克斯韦关系，这也是一个对称矩阵。对称矩阵的正

定性就意味着对角元都大于零，且整个矩阵的行列式也大于零。由对角元

大于零，可得

κT,N ≡ − 1

V

∂V

∂P
|T,N > 0,

∂N

∂µ
|T,V > 0. (53)

其中κT,N就是所谓的等温压缩系数。由行列式大于零，即得

∂P

∂N
|T,V

∂µ

∂V
|T,N − ∂P

∂V
|T,N

∂µ

∂N
|T,V > 0. (54)

3 巨巨巨正正正则则则系系系综综综

现在，考虑一个系统，让它和一个大的恒温热库相接触，热库的温度为T ,

假设同时允许这个系统与热库之间交换粒子，热库的化学势为µ, 那么这个

系统就是一个粒子数不固定的系统。为了用系综的方法描述这样的系统，

我们不仅需要考虑给定粒子数下概率在相空间上的分布，还要考虑概率在

不同粒子数上的分布，具体来说，对于任何粒子数N , 我们需要引入相空间

概率密度ρN(µN) (这里µN为N粒子对应的相点)，它满足如下归一化条件∑
N

∫
dµNρN(µN) = 1, (55)

式中的积分是在N粒子相空间上积分。

则系统的能量期望值是

E(ρ) ≡
∑
N

∫
dµNρN(µN)HN(µN), (56)

式中HN为N个粒子总的哈密顿量。粒子数的期望值N(ρ)为

N(ρ) ≡
∑
N

∫
dµNNρN(µN). (57)
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系统相应的熵为

S(ρ) ≡ −kB
∑
N

∫
dµNρN log ρN . (58)

注意，这些量均对系统的非平衡态有定义。进而也可以把巨热力学势的概

念推广到非平衡态，为此定义

Φ(ρ) ≡ F (ρ)− µN(ρ) = E(ρ)− TS(ρ)− µN(ρ). (59)

下面，设想经过某个过程，使得系统的ρN演变成了ρ′N , ρN → ρ′N , 则演

变之后系统的熵变为

δS ≡ S(ρ′)− S(ρ). (60)

类似的，能量期望值和粒子数期望值的改变量为

δE ≡ E(ρ′)− E(ρ), δN ≡ N(ρ′)−N(ρ). (61)

其中因为粒子数的改变而引起系统平均能量的改变量当然就是µδN。

假设整个过程系统与热库之间没有机械功的交换，只有热量和粒子数的

交换。假设系统从热库中吸热为Q, 则热库的熵变为

δSR = −Q/T. (62)

根据能量守恒，当然有

δE = Q+ µδN. (63)

由于系统与热库一起构成了一个孤立系统，有熵增加原理，所以必定有

δS + δSR = δS −Q/T ≥ 0. (64)

代入上面的(63)式，即有

1

T

(
TδS − δE + µδN

)
≥ 0. (65)

也即是

δΦ ≡ δE − TδS − µδN ≤ 0. (66)

13



也即是说，在非平衡过程中，这样的系统的巨巨巨热热热力力力学学学势势势将将将自自自发发发减减减少少少。

当系统与热库达成热平衡时，巨热力学势将减少至极小值。换言之，

这种系统的热平衡态对应于泛函Φ(ρ)((59)式）的极小值，其中变分的约束

条件就是归一化条件(55)。为了用变分法求出热平衡时的ρN , 可以计算变

分δΦ(ρ)如下

δΦ =
∑
N

∫
dµN

(
HN + kBT (log ρN + 1)− µN

)
δρN . (67)

进一步利用拉格朗日乘子法把约束条件(55)考虑进去，并取最后的变分等

于零，即可以得出热平衡时的ρN为

ρN =
1

Ξ
e−β(HN−µN), (68)

式中1/Ξ是常数，由归一化条件(55)可得

Ξ =
∑
N

∫
dµNe

−β(HN−µN) =
∑
N

zN
∫

dµNe
−βHN (µN ), (69)

式中z ≡ eβµ称作易逸度。(68)式和(69)式描述的系综就称作巨巨巨正正正则则则系系系

综综综。Ξ就是所谓的巨配分函数，根据(69)式的最后一个等于号，它也可以表

达成

Ξ =
∑
N

zNZN , (70)

ZN就是N粒子正则系综的配分函数。

不难验证，巨正则系综满足第二章中归纳出来的极大熵原理。其中对概

率分布的约束条件就是固定系统的能量期望值和粒子数的期望值，即∑
N

∫
dµNρNHN = ⟨HN⟩ = E(T, µ,x) 固定

∑
N

∫
dµNNρN = ⟨N⟩ = N(T, µ,x) 固定.

有时候会把熵的表达式(58)写成−kB log ρN的期望值

S(ρ) = −kB⟨log ρN⟩. (71)
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代入热平衡时的概率分布(68)，即有热平衡时的熵为

S = kB log Ξ + kBβ(⟨HN⟩ − µ⟨N⟩) ⇒ −kBT log Ξ = ⟨HN⟩ − TS − µ⟨N⟩(72)

注意到⟨HN⟩就是热平衡时的平均能量E(T, µ,x), ⟨N⟩就是热平衡时的平均
粒子数N(T, µ,x)，所以，−kBT log Ξ就是热平衡时的巨热力学势Φ(T, µ,x)，

即

Φ(T, µ,x) = −kBT log Ξ. (73)

另外，根据Ξ的定义(69), 不难得到

−∂Φ

∂T
= kB log Ξ + kBT

1

Ξ

∂Ξ

∂T
= −Φ/T − kBβ

1

Ξ

∂Ξ

∂β

= − 1

T
(Φ− ⟨HN⟩+ µ⟨N⟩) = − 1

T
(−TS) = S(T, µ,x). (74)

最后的S(T, µ,x)表示热平衡时的熵。类似的，不难得到

−∂Φ

∂x
= −⟨∂H

∂x
⟩ ≡ J. (75)

以及

−∂Φ

∂µ
= ⟨N⟩. (76)

综合这些结果，即有

dΦ = −SdT − J · dx− ⟨N⟩dµ. (77)

这就是之前得到过的热力学等式(32), 虽然之前式子中的粒子数N现在应

该理解为平均粒子数⟨N⟩。最后这个结果告诉我们，只要算得Ξ，就可以

用(73)式得到热平衡时的巨热力学势，进而又可以算得其它的热力学量。

所以，在巨正则系综的应用中，关键是算巨配分函数Ξ。

由⟨N⟩ = kBT
∂ log Ξ
∂µ

, 可以进一步得到

kBT
∂⟨N⟩
∂µ

= kBT
∂

∂µ

( 1
Ξ

∑
N

N

∫
dµNe

−β(HN−µN)
)

= −kBT
∂ log Ξ

∂µ

1

Ξ

∑
N

N

∫
dµNe

−β(HN−µN) +
1

Ξ

∑
N

N2

∫
dµNe

−β(HN−µN)

= ⟨N2⟩ − ⟨N⟩2 = ⟨(N − ⟨N⟩)2⟩. (78)

15



由于⟨N⟩是广延量，µ是强度量，从而kBT
∂⟨N⟩
∂µ
必定是广延量，因此这就说

明粒子数的涨落⟨(N − ⟨N⟩)2⟩是广延量，在热力学极限下将正比于⟨N⟩, 所
以相对误差 √

⟨(N − ⟨N⟩)2⟩
⟨N⟩

∝ 1√
⟨N⟩

. (79)

所以，在热力学极限下，粒子数涨落的相对误差趋于零，系统的粒子数几

乎被固定在其平均值上。这也说明，在热力学极限下，巨正则系综与正则

系综是等价的。

理理理想想想气气气体体体

不妨以理想气体为例说明一下巨正则系综的应用。首先，根据第二章中

对理想气体正则系综配分函数的计算，有

ZN =
V N

N !

(mkBT

2π~2
)3N/2

. (80)

进而利用Ξ =
∑

N zNZN，即有

Ξ = exp
[
zV
(mkBT

2π~2
)3/2]

. (81)

进而可以得到巨热力学势为

Φ = −kBTzV
(mkBT

2π~2
)3/2

. (82)

进而由⟨N⟩ = −∂Φ
∂µ

= −βz ∂Φ
∂z
(式中利用了z = eβµ), 即可以算得

⟨N⟩ = zV
(mkBT

2π~2
)3/2

. (83)

也即理想气体系统的化学势为

µ = −kBT log
[ V

⟨N⟩
(mkBT

2π~2
)3/2]

. (84)
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