
重重重整整整化化化群群群讲讲讲义义义

陈陈陈童童童

1 固固固定定定点点点附附附近近近的的的重重重整整整化化化群群群流流流

先说两个基本概念：首先，什么是重整化群变换？重整化群变换是一种尺

度变换，也就是变动定义量子场论的尺度，同时调节理论的耦合常数，使

得长程物理的关联函数保持不变，任何满足这个条件的变换都叫做重整化

群变换。重整化群变换是作用在场论有效作用量上的一种变换。第二个概

念，什么是重整化群流？重整化群流就是定义在场论所有耦合常数的空间

的一个无穷维动力系统，这个无穷维动力系统描写的是在连续的尺度变换

下耦合常数以尺度为参数所画出来的流线。重整化群流的固定点就是重整

化变换的固定点。

也就是说假定我们有一个理论，它的作用量是S(a), 其中a是定义这个

理论所需的一个尺度，比方说如果这个理论是定义在格点上，那么a就是

格距。现在我们改变a, 将之变为ã, 同时调节理论的耦合常数，使得作用

量变为S(ã)。重整化群变换的要求是，用新尺度ã和新作用量S(ã) 算出来

的关联函数依然和原来用S(a)算出来的一样。特别的，在重整化群变换

下，配分函数Z应该保持不变。重整化群的固定点就是这样一种特别的作

用量S∗，它满足

S∗(ã) = S∗(a). (1)

我们这一节要研究的就是固定点附近的重整化群流。考察对固定点理

论S∗(a)的一个扰动,

S∗ → S = S∗ +

∫
(ddx)gia

∆i−dOi, (2)

式中Oi是一个Scaling 量纲为∆i的算子，a是定义理论的尺度，gi是无量纲

的耦合常数，是一个小扰动，另外，我们默认对i求和。那么理论的配分函
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数近似就是，

Z =Z∗

(
−
∫
(ddx)gia

∆i−d⟨Oi⟩
)
+

Z∗

(
1

2

∫ ∫
|x1−x2|>a

(ddx1)(d
dx2)gigja

∆i+∆j−2d⟨Oi(x1)Oj(x2)⟩
)
, (3)

式中Z∗是固定点理论的配分函数。由于我们定义理论的尺度是a, 因此在积

分时我们要求两个不同点之间的距离大于a, 即|x1 − x2| > a。

现在我们改变定义理论的尺子至ã, 为了保持配分函数不变，我们同时

调节耦合常数gi → g̃i, 则

Z̃ =Z∗

(
−
∫
(ddx)g̃iã

∆i−d⟨Oi⟩
)
+

Z∗

(
1

2

∫ ∫
|x1−x2|>ã

(ddx1)(d
dx2)g̃ig̃j ã

∆i+∆j−2d⟨Oi(x1)Oj(x2)⟩
)
. (4)

下面我们考虑一个无穷小的尺度变换ã = (1 + ϵ)a, ϵ是一个无穷小量。

利用算子乘积展开

Oi(x1)Oj(x2) ∼
1

|x1 − x2|∆i+∆j−∆k
ckijOk(x2), (5)

我们有

Z̃ =Z∗

(
−
∫
(ddx)g̃iã

∆i−d⟨Oi⟩
)
+

Z∗

(
1

2

∫ ∫
|x1−x2|>ã

(ddx1)(d
dx2)g̃ig̃j ã

∆i+∆j−2d
ckij⟨Ok(x2)⟩

|x1 − x2|∆i+∆j−∆k

)
. (6)

上式后一项括号中的部分显然可以写成

1

2

∫ ∫
|x1−x2|>a

(ddx1)(d
dx2)g̃ig̃j ã

∆i+∆j−2d⟨Oi(x1)Oj(x2)⟩

−1

2

∫ ∫
(1+ϵ)a>|x1−x2|>a

(ddx1)(d
dx2)g̃ig̃j ã

∆i+∆j−2d cijk⟨Ok(x2)⟩
|x1 − x2|∆i+∆j−∆k

. (7)

保留到一阶无穷小，上式的第二项就是

−1

2
Sdϵ

∫
(ddx)gigja

∆k−dcijk⟨Ok⟩, (8)
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式中Sd表示d维空间中d− 1维单位球面的面积。因此，我们就有

Z̃ =Z∗[−
∫
(ddx)

(
g̃k(1 + ϵ)∆k−d +

1

2
Sdϵgigjcijk

)
a∆k−d⟨Ok⟩]+

Z∗

(
1

2

∫ ∫
|x1−x2|>a

ddx1d
dx2g̃ig̃j(1 + ϵ)∆i+∆j−2da∆i+∆j−2d⟨Oi(x1)Oj(x2)⟩

)
.

显然,为了保持配分函数不变，即为了保证Z̃ = Z, 我们应该将g̃i取成

g̃k = gk(1 + ϵ)d−∆k − ϵ
1

2
Sdg

igjcijk, (9)

这里我们精确到一阶无穷小。也即是说，我们有重整化群流

dgk
dϵ

= (d−∆k)gk −
1

2
Sdg

igjcijk

= − ∂

∂gk

(
1

2
(∆i − d)g2i +

1

3!
Sdc

ijkgigjgk

)
. (10)

从上面的重整化群流方程我们很容易看出，对于∆k > d的扰动，重整化

群固定点是稳定的，也就是说在这个扰动方向上重整化群流指向流向固定

点，这样的扰动我们称之为无关扰动。然而，对于∆k < d的那些扰动方

向，重整化群流的流向是背离固定点的，这是一些不稳定的扰动方向，这

样的扰动称之为相关扰动。

2 积积积去去去小小小尺尺尺度度度自自自由由由度度度

重整化群实际上是一个关于如何处理多尺度多自由度系统的纲领，重整化

变换的物理实质就是积去小尺度的短程自由度，这样的操作之所以起作用

是基础于两个基本的观察：第一，小尺度短程自由度对于更大尺度的长程

物理是有影响的，第二，但是只要合适地选取表达理论的变量，那么这个

影响就可以用几个相关参数来概括，几个参数就可以概括小尺度的所有相

关信息，至于短程结构的更多细节信息则与大尺度物理无关。因此，通过

积去短程自由度你就能忽略小尺度结构的无关细节，得到一个与你所关心

的尺度的物理密切相关的有效理论。的确，有效场论的有效二字可以理解

成无效的反义词，它暗示说如果你的理论与你所要考察的物理不在同一尺

度上，那么你的理论就是一种徒劳。下面我们就一个具体的算例来看看通

过积去小尺度短程自由度进而得到有效理论这个操作可以如何进行。
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我们要考察的理论是一个定义在d维欧空间的标量场论，在截断尺度a，

它的有效作用量可以写成

S(a) =

∫
ddx

(
1

2

(
∂iϕ∂iϕ+ ta−2ϕ2

)
+

1

4!
gad−4ϕ4

)
, (11)

人们可以作一个坐标和场变量的rescaling来消除方程里面显含的尺度因

子a，我们保留这个尺度因子以使得无需作这样的rescaling。另外，式中

的t和g是无量纲的藕合常数，我们就是要研究它们如何依赖于重整化尺

度a。为此，我们考虑一个更长一点的临近尺度ã = a(1 + ϵ)，ϵ是一个无穷

小量。根据定义，在截断尺度ã上的理论当然应该是

S(ã) =

∫
ddx

(
1

2

(
∂iϕ∂iϕ+ t̃ã−2ϕ2

)
+

1

4!
g̃ãd−4ϕ4

)
. (12)

重整化的物理实质相当于说，S(ã)可以通过在S(a)的基础上积去波长

在λ ∈ [a, a(1 + ϵ)]区间之内的自由度而得到。我们不妨以ϕ来表示波长

比a(1 + ϵ)更长的自由度，而以η(x)来表示波长在λ ∈ [a, a(1 + ϵ)]之内的自

由度，因此S(a)中的场就应该替换成ϕ + η, 这样一来，重整化群的物理实

质就相当于说

e−S(ã) =

∫
[dη]e−S(a). (13)

根据自由度按波长的这种分解，我们可以将S(a)重写成

S(a) =

∫
ddx

(
1

2

(
∂iϕ∂iϕ+ ta−2ϕ2

)
+

1

4!
gad−4ϕ4

)
+

∫
ddx

(
∂iη∂iϕ+ ta−2ηϕ+

1

3!
gad−4ϕ3η

)
+
1

2

∫
ddx

(
∂iη∂iη + ta−2η2 +

1

2
gad−4ϕ2η2

)
. (14)

这个式子中η的线性项取
∫
ddxA(x)η的形式，A(x)是一个关于ϕ的函数，ϕ的

波长大于a(1 + ϵ)，而η(x)的波长小于a(1 + ϵ)，因此A(x)相对于η(x)来说是

变化缓慢的，由于η(x)的相对较快的振荡线性项
∫
ddxA(x)η的积分实际

上等于零。因此, 在进行(13)的泛函积分计算时，我们实际上要算的就

是η(x)的二次项的高斯积分，由熟知的高斯积分公式可知这个积分算出来

是

det[−∂2 + ta−2 +
1

2
gad−4ϕ2]−

1
2 . (15)
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利用det(A) = eTr ln(A), 我们可以得到

exp
{
− 1

2

∫
ddxddp

(2π)d
|(1−ϵ)1/a<p<1/a ln(p

2 + ta−2 +
1

2
gad−4ϕ2)

}
≃ exp

{
− ϵ

1

2

Sd

(2πa)d

∫
ddx ln(a−2 + ta−2 +

1

2
gad−4ϕ2)

}
=exp

{
ϵC − ϵ

1

2

Sd

(2πa)d

∫
ddx ln(1 + t+

1

2
gad−2ϕ2)

}
=exp

{
ϵC ′ − ϵ

1

2

Sd

(2πa)d

∫
ddx

(
1

2
g(1− t)ad−2ϕ2 − 1

8
g2a2d−4ϕ4

)}
, (16)

式中Sd表示d维欧空间中单位球面的面积，C和C ′均是与场无关的常数，可

以通过在原来的标量场作用量中加上一个常数来重整化，因此我们将忽略

它。

现在，方程(13)告诉我们

e−S(ã) =exp
{
−
∫

ddx

(
1

2

(
∂iϕ∂iϕ+ ta−2ϕ2

)
+

1

4!
gad−4ϕ4

)
− ϵ

1

2

Sd

(2πa)d

∫
ddx

(
1

2
g(1− t)ad−2ϕ2 − 1

8
g2a2d−4ϕ4

)}
=exp

{
−
∫ (

1

2

(
∂iϕ∂iϕ+ t̃(a(1 + ϵ))−2ϕ2

)
+

1

4!
g̃(a(1 + ϵ))d−4ϕ4

)}
,

这个式子的最后一行用到了(12)。比较上面这个方程的相应项，我们可以

得到

t̃ =t+ ϵ

(
2t+

Sd

2(2π)d
g(1− t)

)
g̃ =g + ϵ

(
(4− d)g − 3Sd

2(2π)d
g2
)
. (17)

也即是说，我们有重整化群方程

dt

dϵ
=

(
2t+

Sd

2(2π)d
g(1− t)

)
dg

dϵ
=

(
(4− d)g − 3Sd

2(2π)d
g2
)
. (18)

如果d = 4，即假如我们研究的是一个四维量子场论，那么重整化群方
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程(18)就是

dt

dϵ
=

(
2− 1

16π2
g

)
t+

1

16π2
g

dg

dϵ
=− 3

16π2
g2. (19)

这个方程只有平凡的固定点t = 0, g = 0，在固定点附近ϕ2项扰动是相关扰

动，ϕ4扰动则是无关扰动。

如果d < 4, 当然重整化群方程(18)依然有平凡的固定点t = 0, g = 0，

在这个固定点附近ϕ2扰动和ϕ4扰动均是相关扰动。但是除了这个平凡的固

定点之外，这时候方程(18)还有一个非平凡的固定点，即g = 2(2π)d

3Sd
(4 − d),

t = −4−d
2+d
，在这个固定点附近重整化群可以线性化为

dδt

dϵ
=
2 + d

3
δt+

3Sd

(2 + d)(2π)d
δg

dδg

dϵ
=− (4− d)δg, (20)

很显然，这时候ϕ2扰动依然是相关的，但是ϕ4扰动已经变成无关扰动了。

如果一个物理系统的重整化群流从这个非平凡固定点附近经过，那么由线

性化的重整化群方程(20)人们容易知道，这个系统的关联长度ξ的临界指

数ν为

ν =
3

2 + d
. (21)

3 重重重整整整化化化群群群方方方程程程

前面我们讲过，重整化变换的实质在于积去小尺度短程自由度。有时候我

们也将这样的操作说成是从物理上忽视短程自由度，它有点像我们给一副

图片打码赛克，使得图片的某些细节被忽视。物理上系统地进行这种操作

的办法是将“图片”进行缩放，即rescaling。我们总可以通过将“图片”

不断缩小，从而把打码的像素缩小成基本像素单位，进而看到整幅图片越

来越宏观的结构。在重整化变换中即是，我们总可以通过不断rescaling(即

缩小), 从而把浮动的截断尺度a化约为1个基本单位，从而得到大尺度的有

效理论，当然，这么做的代价是会引入放大倍率e−t(即缩小) (本节的t和上

一节的t毫无关系)。这一节我们就来研究，系统的关联函数如何随着这个

缩放倍率的变化而变化，这就叫做重整化群方程。
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假设我们考察的量子场论系统有一组局域的可观测量算符Oi(x)，它

们的scaling 量纲分别为∆i, 当我们将这个量子场论系统放大e−t倍时(即缩

小)，Oi(x)将变为O′
i(x), 由于缩小系统会使得能量密度更大，所以我们应

该有如下算符混合关系，

Oi(x) ≃ e−t∆iO′
i(e

−tx). (22)

等价地，我们也可以将这个方程写成

Oi(e
tx) ≃ e−t∆iO′

i(x). (23)

这里我们没有写等于号，而是用的≃号，这是因为定义加撇算符的理论和
定义不加撇算符的理论其实不是一回事，两者之间相差一个重整化，下面

我们会进一步澄清这一点。

对于一个量子场论而言，假设基本场变量为ϕ，欧氏作用量为S, 那么量

子场论的关键在于计算泛函积分
∫
[Dϕ]e−S, 比方说，在计算关联函数时，

我们就是要计算这样的泛函积分。因此，一个关键的问题是，当我们将量

子场论系统放大e−t倍时，这个泛函积分会怎么变？换言之，我们得搞清楚

理论本身如何重整化。

这里出现一个关键的问题，即实际上，当我们说把量子场论系统放

大e−t倍(即缩小)时，我们实际在物理上并不能真正做到这一点，我们实际

上做的只是离这个系统远一点，在更远的地方来观测这个系统从而使得自

己能够忽略一些小尺度细节而已。换句话来说，我们实际上是在用一把更

大的尺子来衡量这个系统。或者说在在在重重重整整整化化化过过过程程程中中中，，，系系系统统统中中中各各各点点点的的的物物物理理理

距距距离离离是是是不不不变变变的的的，，，将将将坐坐坐标标标距距距离离离放放放大大大e−t倍倍倍（（（即即即缩缩缩小小小）））必必必然然然同同同时时时要要要将将将尺尺尺子子子放放放

大大大et倍倍倍。。。 物理系统的尺子就反映为度规张量，所以，将量子场论系统的坐

标距离放大e−t倍必然同时要将度规张量g放大e2t倍，即同时进行如下变换

g → e2tg. (24)

式中g为度规张量，其用指标写出来的分量形式为gab。

根据上面的分析我们就能写出关联函数的基本缩放（重整化）方程

⟨O1(e
tx1)O2(e

tx2)....On(e
txn)⟩g

=e−
(
∆1+∆2+...+∆n

)
t⟨O′

1(x1)O′
2(x2)....O′

n(xn)⟩e2tg. (25)

⟨...⟩g表示计算相应的泛函积分时，作用量中的时空度规取作g，也即是

说，⟨...⟩g意味着理论是定义在度规为g的黎曼流形上。注意，与度规e2tg对
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应的算子都是加撇的，因为根据以上所说，算子加撇和度规放大为e2tg是

同步的，两者一起就是所谓的重整化变换。下面我们就是要从这个方

程(25)出发，得到关联函数在缩放下满足的关于t的微分方程。

首先我们注意到，在经典物理的层次上，对于欧氏作用量S，它在度规

变动δgab下满足δS = −
∫
M

1
2
T abδgab, T

ab就是经典的能动量张量1,
∫
M
表示

在时空流形上积分。我们关心的度规无穷小变动是度规e2tgab在t作无穷小

改变时引起的，这时候在经典物理的层次上必有δtS = ∂S
∂t

= −
∫
M
T a
a (t),

T a
a (t)表示定义在度规e2tgab上的能动量张量的缩并。为此，我们可以假设

在量子的层次上，在t做无穷小变动时，作用量和泛函积分测度[Dϕ]e−S的

变动为 ∫
M

T′(t), (26)

式中T′(t)为前面T a
a (t)的量子版本，是一个算符。

根据上一段的分析我们容易知道，当我们将方程(25)中的t作无穷小变

动时，必有

∂

∂t
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g

=−
(
∆1 +∆2 + ...+∆n

)
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g

+ e−
(
∆1+∆2+...+∆n

)
t⟨O′

1(x1)O′
2(x2)....O′

n(xn)

∫
M

T′(t)⟩e2tg. (27)

下面假设
∫
M
T′(t)可以用局域算子O′

i展开成∫
M

T′(t) =
∑
i

′
∫
M

βi(λ)O′
i(x), (28)

求和号中的′号表示我们仅仅对scaling 量纲小于等于时空维数d的算子求

和，因为能动量张量的scaling 量纲不能超过d。另一方面，我们也可以将

度规e2tg上的有效作用量用局域算子展开为

S =
∑
i

′
λi

∫
M

O′
i(x). (29)

同样，由于我们关心的是长程物理, 所以我们仅仅只需要关心相关算子，

或者说可重整项。上式中的λi是一个一般性的记号，它包括相互作用耦合

1这个结果的正负号不用死记，取一个标量场论算一下就知道了。
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常数以及质量等等参数。由此我们可以知道，方程(27)可以重写成

∂

∂t
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g

=−
(
∆1 +∆2 + ...+∆n

)
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g

− e−
(
∆1+∆2+...+∆n

)
t
∑
i

′
βi(λ)

∂

∂λi
⟨O′

1(x1)O′
2(x2)....O′

n(xn)⟩e2tg. (30)

将加撇算符变回不加撇算符，简单整理一下即有

∂

∂t
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g

=−
(
∆1 +∆2 + ...+∆n

)
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g

−
∑
i

′
βi(λ)

∂

∂λi
⟨O1(e

tx1)O2(e
tx2)....On(e

txn)⟩g. (31)

这就是我们要推导的重重重整整整化化化群群群方方方程程程。

如果不用度规的办法进行重整化，而像前面两节一样认为重整化就是调

节耦合常数λi，因此它是一个依赖于t的λi(t)，则我们还有

dλi

dt
= −βi(λ). (32)

可见，βi(λ)就是通常所说的Beta函数。只不过我们这里的t是对长度尺度

的放大倍率，而不是对能量尺度的放大倍率，所以Beta函数的方程(32)多

了一个负号。

参考文献：Joseph Polchinski, String Theory Volume II, Superstring The-

ory and Beyond. Chapter 15 Advanced CFT。本节内容是对Polchinski 这

一章的相关论述的发展，在文献中很可能找不到和我们这里一样的内容。

4 精精精确确确重重重整整整化化化群群群

本本本节节节原原原来来来版版版本本本中中中给给给出出出的的的推推推导导导过过过程程程有有有错错错误误误，，，是是是知知知乎乎乎用用用户户户湛湛湛蓝蓝蓝色色色的的的迷迷迷惘惘惘指指指出出出

的的的，，，他他他也也也建建建议议议了了了正正正确确确的的的修修修订订订方方方法法法。。。在在在此此此对对对湛湛湛蓝蓝蓝色色色的的的迷迷迷惘惘惘表表表示示示感感感谢谢谢！！！

前面我们讨论了重整化变换的一般性定义，和一般性的重整化群。这一

节我们将讨论一个精确的重整化群，进而验证重整化群的物理含义。我们

的讨论将限于四维欧空间的标量场论，但由此得来的重整化群的物理内涵

则是普遍适用的。
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假定我们的标量场论定义在某一个尺度a上，也即是说，假定我们有一

个截断函数K(p2a2), 它在自变量p2a2 < 1时取值为1, 而在p2a2 > 1时飞快地

趋近于零。在做了这样的截断以后，自由标量场的传播子就可以写成

K(p2a2)

p2 +m2
. (33)

我们将作用量S(a)的自由场部分记为S0(a), 它由下式给出

S0(a) =
1

2

∫
d4p

(2π)4
ϕ(−p)ϕ(p)

p2 +m2

K(p2a2)
. (34)

我们记自由场的泛函积分为Z0, Z0 =
∫
[dϕ]e−S0(a)。由高斯积分我们有自由

场关联函数

⟨ϕ(q)ϕ(−p)⟩0 =
1

Z0

∫
[dϕ]ϕ(q)ϕ(−p)e−S0(a) = (2π)4δ4(q − p)

K(p2a2)

p2 +m2
. (35)

特别的，我们可以得到

1

Z0

∫
[dϕ]ϕ(p)ϕ(−p)e−S0(a) = (2π)4δ4(0)

K(p2a2)

p2 +m2
. (36)

包含相互作用以后，我们有泛函积分

Z =

∫
[dϕ]e−S0(a)−SI(a), (37)

式中SI(a)为我们的标量场论的相互作用部分。将这个泛函积分模去自由场

泛函积分的结果定义为相互作用场的配分函数，记为ZI ,

ZI =
Z

Z0

. (38)

我们要推导的重整化群方程即是，SI(a)作为尺度a的函数如何随a变化才能

保证这个配分函数ZI与重整化尺度a无关。前面的小节中我们说过了，这

正是重整化变换的一般要求。也即是说，我们想要讨论，如何才能让下面

的方程成立

0 =
∂ZI

∂ ln(a)
=

1

Z0

∂Z

∂ ln(a)
− Z

Z0

∂Z0

Z0∂ ln(a)
. (39)

首先根据Z0的定义，我们容易有

∂Z0

Z0∂ ln(a)
=− 1

2

∫
d4p

(2π)4
∂K−1

∂ ln(a)
(p2 +m2)

1

Z0

∫
[dϕ]ϕ(p)ϕ(−p)e−S0(a)

=− 1

2
δ4(0)

∫
d4p

∂K−1

∂ ln(a)
K =

1

2
δ4(0)

∫
d4p

∂ ln(K)

∂ ln(a)
. (40)
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在上式的第二行中，我们代入了(36)式。

下面推导的关键是利用泛函积分的Dyson-Schwinger方程，也就是∫
[dϕ]

δ

δϕ(p)
F(ϕ) = 0, (41)

式中F(ϕ)是ϕ的泛函，并且我们假定场位形空间是一个闭合流形，或者如

果场位形空间有边界或渐进边界，我们就假定在边界上F(ϕ) → 0。

应用上面的Dyson-Schwinger方程，我们就有，

0 =
1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

δ

δϕ(p)

(
δe−SI

δϕ(−p)
e−S0

)
=

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

(
1

2

δ2e−SI

δϕ(p)δϕ(−p)
e−S0 − 1

2

δe−SI

δϕ(−p)

δS0

δϕ(p)
e−S0

)
,(42)

通过对泛函积分进行分部积分，上式第二行的第二项显然又等于∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

(
1

2

δ2S0

δϕ(−p)δϕ(p)
− 1

2

δS0

δϕ(−p)

δS0

δϕ(p)

)
e−S0−SI

=

∫
[dϕ]

∫
d4p

(
1

2

∂K

K∂ ln(a)
δ4(0) +

1

2

∂K−1

∂ ln(a)
ϕ(p)ϕ(−p)

p2 +m2

(2π)4

)
e−S0−SI ,

=
1

2

∫
d4p

∂ ln(K)

∂ ln(a)
δ4(0)

∫
[dϕ]e−S0−SI −

∫
[dϕ]

∂e−S0

∂ ln(a)
e−SI . (43)

上式的第二行我们利用了

δ2S0

δϕ(−p)δϕ(p)
= δ4(0)

p2 +m2

(2π)4K
. (44)

请注意不要漏了前面的δ4(0)，这里很容易搞错，请读者严格按照二阶泛函

导数的定义进行推导。

结合(42)式和(43)式，我们就有∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

(
1

2

δ2e−SI

δϕ(p)δϕ(−p)
e−S0

)
−
∫
[dϕ]

∂e−S0

∂ ln(a)
e−SI +

1

2

∫
d4p

∂ ln(K)

∂ ln(a)
δ4(0)

∫
[dϕ]e−S0−SI = 0. (45)

因此, 如果e−SI(a)满足下面的重整化群方程

∂e−SI

∂ ln a
= −1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln a

δ2e−SI

δϕ(−p)δϕ(p)
. (46)
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则, 我们就有(要将所有式子除以Z0)

0 =
1

Z0

∫
[dϕ]

∂e−SI

∂ ln a
e−S0 +

1

Z0

∫
[dϕ]

∂e−S0

∂ ln a
e−SI

−1

2

∫
d4p

∂ ln(K)

∂ ln(a)
δ4(0)

1

Z0

∫
[dϕ]e−S0−SI . (47)

代入(40)式，我们就可以将上面结果重写成

0 =
1

Z0

∂Z

∂ ln(a)
− Z

Z0

∂Z0

Z0∂ ln(a)
. (48)

这正是我们想要的(39)式。换言之，如果重整化群方程(46)成立，则配分函

数ZI与重整化尺度无关。

很显然，在上面的推导中我们可以将相互作用e−SI换成ϕ的任意泛

函F(ϕ)，比方说F(ϕ)可以取成乘积算子ϕ(q1)ϕ(q2)。完全一样的推导告诉

我们，对于任意这样的F(ϕ)，如果它满足重整化群方程

∂F
∂ ln a

= −1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln a

δ2F
δϕ(−p)δϕ(p)

, (49)

那么自由场关联函数⟨F(ϕ)⟩0在重整化群下保持不变，即

∂

∂ ln(a)

[
1

Z0

∫
[dϕ]F(ϕ)e−S0

]
= 0. (50)

比如我们取F为ϕ(q1)ϕ(q2), 那么重整化群方程(49)告诉我们，真正的重整化

以后的算子F应该取成

F = ϕ(q1)ϕ(q2)− ⟨ϕ(q1)ϕ(q2)⟩0, (51)

式中的自由场关联函数⟨ϕ(q1)ϕ(q2)⟩0 = (2π)4δ4(q1 + q2)K(q21a
2)/(q21 + m2),

这样的结果当然是众所周知的。

让我们再来看看前面的方程(46), 它可以重写成

∂SI

∂ ln a
= −1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln a

(
δ2SI

δϕ(−p)δϕ(p)
− δSI

δϕ(−p)

δSI

δϕ(p)

)
. (52)

这个方程在费曼图计算中有很直观的解释，它的左边是藕合常数的重整

化，右边的第一项说明这种重整化可能来源于同一个顶角上的两个算子的

收缩，右边的第二项则说它还可能来源于两个不同顶角上算子的收缩，也

就是说藕合常数的重整化来源于积掉短程自由度。这也正是重整化变换的

物理实质，找到重整化群的这个物理含义当然是K.G.Wilson 的巨大贡献。
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5 从从从重重重整整整化化化群群群的的的物物物理理理实实实质质质到到到理理理解解解生生生命命命现现现象象象

这这这一一一节节节纯纯纯粹粹粹是是是一一一点点点私私私货货货，，，据据据我我我所所所知知知，，，这这这一一一节节节的的的观观观点点点在在在其其其它它它地地地方方方好好好像像像都都都没没没

见见见到到到过过过，，，希希希望望望对对对读读读者者者有有有所所所启启启发发发。。。

首先，让我们重复一下前面的这段话：重整化群实际上是一个关于如

何处理多尺度多自由度系统的纲领，重整化变换的物理实质就是积去小尺

度的短程自由度，这样的操作之所以起作用是基础于两个基本的观察：第

一，小尺度短程自由度对于更大尺度的长程物理是有影响的，第二，但是

只要合适地选取表达理论的变量，那么这个影响就可以用几个相关参数来

概括，几个参数就可以概括小尺度的所有相关信息，至于短程结构的更多

细节信息则与大尺度物理无关。因此，通过积去短程自由度你就能忽略小

尺度结构的无关细节，得到一个与你所关心的尺度的物理密切相关的有效

理论。

重整化群这种处理多尺度多自由度系统的纲领已经被证明反映了凝聚态

物理系统和量子场论系统的本质。然而，生命现象也是从无生命的原子分

子中呈展出来的，任何有生命的系统都是一个多尺度多自由度系统。但是

这种多尺度多自由度系统和传统凝聚态物理或量子场论中研究的系统有所

不同，其中一个关键的不同是，凝聚态系统和量子场论系统的大尺度物理

都是由小尺度结构决定的，重整化群流只能从小尺度流向大尺度，然而生

命系统的典型特征之一是，大尺度可以反过来影响和调节小尺度的结构，

也即是说，在生命系统这样的系统中，多尺度之间的相互沟通更为复杂和

丰富，因此重整化群的纲领很可能不能完全适用，这里很可能还需要全新

的想法！

与此相关的另一个重要不同是，一般来说在重整化群流之下，系统的

熵一定是增加的，因为重整化操作本身就意味着不断舍弃小尺度的无关信

息。然而，生命系统与此相当不同，当然，在生命系统中从小尺度到大尺

度也一定有大量信息是无关而应该被舍弃的，不同的是，在生命系统中许

多真正有意思的信息并不是原来就存在于小尺度结构之中，反而正是来源

于宏观大尺度的输入，因此，生命系统的从小尺度到大尺度不完全是一

个提取相关信息舍弃无关信息的过程（正是这一点和重整化群有本质区

别），它同时还需要相关信息（负熵）的输入（也即是，生命系统总体上

要保持在向环境排出更多熵而吸收更少熵的状态）。也许，正是这个相关

信息（负熵）的输入使得生命系统的大尺度结构可以反过来调节小尺度结

构。归纳来说，在生命系统中存在两个不同的相关信息流向，一个是小尺
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度的相关信息随着重整化群流流向大尺度的结构，然而，在生命系统中同

时还存在一个负熵流，或者说一个反向的相关信息流，它是从大尺度流向

小尺度的。生命现象正是这两种相关信息流向共同作用的结果，因此要真

正理解生命现象我们也许就必须发展一个处理多尺度多自由度系统的新框

架，重整化群和负熵流也许必须同时被包括进这样的框架之中。

在这个系列讲稿的最后这一节，我们花了一点篇幅来讨论重整化群的物

理实质和它的可能推广。目的是为了说明，生命系统同样是一个多尺度多

自由度物理系统，然而这个系统和我们以前用重整化群来处理的那些系统

都有所不同，人们也许需要一个新的框架才能处理生命系统这样不可思议

的多尺度多自由度系统。
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