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1 上上上

你可能听说过哈密尔顿的四元数，不过不一定了解四元数在现代抽象代数

发展历史上的地位。简言之，四元数之于抽象代数，有点类似于非欧几何

之于现代几何学，它们一起带来了一场数学观念的革命！

四元数的定义很简单，就是在实数的基础上添加三个新的元素i, j, k, 并

让它们满足下面这两组简单的代数关系

i2 = j2 = k2 = −1 (1)

−ji = ij = k,−kj = jk = i,−ik = ki = j. (2)

现在，请你停止问i, j, k是什么东西，i, j, k是什么东西不重要，它们的代

数规则才重要，也不要问自然界中什么东西满足这样的规则，这也不重

要。数学是一种游戏，游戏的规则由人而不是由自然制定，对这规则的唯

一限制是，由它所推导出来的整个游戏一定不能出现任何逻辑上的相互矛

盾。现代数学家称这些由“数学游戏规则”生成的“数学游戏”为数学结

构。数学结构不必是自然的反映，只需逻辑一致，另外，当然还要有某种

深层次上的美。实际上，从数学是自然的反映的观念转向数学结构的观念

是现代数学的一场观念革命。

回到四元数。新添加的这三个元素最妙的地方在于，它们的乘法不满足

交换律！它们是反交换的，比如ij = −ji。

那么，在这个新的游戏规则之下，我们能玩些什么游戏呢？让我们

从一个整数的例子开始，关于整数有一条规律是这样的，假定有两个整

数a, b,它们都能写成四个整数的平方和，则这两个整数的乘积ab也一定能
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写成四个整数的平方和。比如4 = 12+12+12+12, 10 = 12+12+22+22,则乘

积40 = 42+22+22+42。再比如30 = 12+22+32+42, 10 = 12+12+22+22,

则乘积300 = 152 + 12 + 52 + 72。这当然是一个有趣的规律，问题是怎么证

明它普遍成立呢？

利用四元数我们就能够很容易地证明它。假定我们有一个一般的四元

数x,

x = x0 + x1i + x2j + x3k, (3)

其中，x0, x1, x2, x3当然是四个实数。现在我们构造一个新的四元数，不妨

记作x, 称为x的共轭，

x = x0 − x1i− x2j− x3k. (4)

利用(1)(2), 你很容易计算出来

xx = x2
0 + x2

1 + x2
2 + x2

3, (5)

我们就称这为四元数x的模方|x|2, 是一个实数。可见，一个四元数的模方
总是四个数的平方和，反过来，假定有一个整数能写成四个整数的平方

和，那么总有一个相应的四元数，其模方等于这个整数。

现在假定我们另有一个四元数y,

y = y0 + y1i + y2j + y3k. (6)

和上面完全一样的，我们也可以求其模方，这模方当然也是四个整数的平

方和。很显然，这两个四元数的乘积xy也是一个四元数，其模方|xy|2当然
也是四个数的平方和。下面是一个关键点，在计算xy的模方时，我们要用

到xy的共轭xy, 利用四元数的代数关系(1)(2)，我们可以证明

xy = y · x. (7)

因此，|xy|2 = xyxy = xyy · x = |y|2xx = |x|2|y|2. 因此，如果有两个整
数，均为四个整数的平方和，那么它们就分别相应于|x|2和|y|2,则它们的乘
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积|x|2|y|2 就一定可以写成一个新的四元数xy的模方|xy|2, 也就是说，必定
也可以写成四个整数的平方和。这样我们就一般性地证明了那个关于整数

的有趣规律。

四元数的游戏能够玩出来的有意思东西还有很多。然而最让人觉得不

可思议的也许是，看起来很人为的构造(1)(2), 竟然无论你怎么玩永远都不

会出现矛盾。不满足乘法交换律的代数在逻辑的一致性上竟然和熟知的整

数，实数，甚至复数一样真实。

写到这里，你可能早就意识到了，四元数其实是复数的某种推广。那么

四元数能不能被进一步推广呢？有一个数学定理是这样说的：如果不破坏

乘法结合律，那么就到此为止，再不能进一步推广了。

2 中中中

继续我们的四元数游戏。这次我们把注意力集中于模长为1的四元数集

合，u = a + bi + cj + dk, 模长为一uu = 1，就给出a2 + b2 + c2 + d2 = 1,

这就是四维欧几里德空间的三维单位球面S3。更有趣的是，任意两个模长

为1的四元数的乘积任然是一个模长为1的四元数，并且每一个模长为1的

四元数u, 都有一个模长为1的四元数u−1 = u作为其逆。也就是说，所有模

长为1的四元数在四元数的乘法下成为一个群，通常将这个群记为Sp(1,H),

H表示四元数。前面的分析告诉我们，Sp(1,H) 的元素一一对应于S3上的

点。

现在，我们选取一个S3上的球坐标，则任意群元u必定可以写成u =

cos(ω) + sin(ω)(n1i + n2j + n3k), 其中n1, n2, n3为三维单位矢量n⃗的三个分

量。不妨将四元数n1i + n2j + n3k记成n, 由四元数代数显然有n2 = −1。

另外，在球坐标中，ω是纬线与北极的夹角，其取值范围是[0, π]。人们

通常将角度ω写成ω/2, 其原因我们稍后会给出，现在ω的取值范围当然就

是[0, 2π]。总之，我们可以将Sp(1,H)的任意群元u写成

u = cos(
ω

2
) + n sin(

ω

2
). (8)
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注意到n2 = −1, 也就是说，在代数上四元数n和虚数单位i是一样的，因

此我们同样有欧拉公式，即任意Sp(1,H)的群元都可以写成

u(ω, n⃗) = exp(
ω

2
n) = cos(

ω

2
) + n sin(

ω

2
). (9)

显然,exp(ω
2
n)的逆元是exp(−ω

2
n).

群Sp(1,H)有一个三维矢量空间旋转的直观解释。为了说清楚这一点，

我们将三维空间中的每一个矢量x⃗，对应到一个四元数x, x = x1i+x2j+x3k,

其中x1, x2, x3是矢量x⃗的三个坐标分量。假定另有一个这样的四元数y, 它相

应于三维矢量y⃗。运用四元素代数我们就有，

xy = −(x⃗ · y⃗) + x× y, (10)

式中x× y代表一个四元数，其相应的三维矢量是x⃗× y⃗.

现在我们将Sp(1,H)的群元共轭地作用在相应于三维矢量x⃗的四元

数x上，

exp
(ω
2
n
)
x exp(−ω

2
n)

=[cos(
ω

2
) + n sin(

ω

2
)]x[cos(

ω

2
)− n sin(

ω

2
)]

= cos(ω)x + sin(ω)n× x + (n⃗ · x⃗)n(1− cos(ω)) (11)

为了得到上式的最后一行我们运用了公式(10)。最后得到的这个看起

来有点复杂的结果其实就是将矢量x⃗绕n⃗轴旋转一个角度ω(正因为ω是

旋转角度，所以我们前面要做那个ω → ω/2的替换)。这可以证明如

下：首先假定x⃗ 在垂直于n⃗ 的平面上，这时候很容易验证将x⃗绕n⃗旋转ω就

是cos(ω)x⃗ + sin(ω)n⃗ × x⃗, 正好相应于(11)最后一行给出的四元数。其次，

如果x⃗本身就沿着n⃗的方向，这时候x⃗绕n⃗轴旋转当然是不变的，注意到这

时x⃗ = n⃗(x⃗ · n⃗), 也正好和(11)最后一行一致。最后，如果x⃗是一个一般的矢

量，则我们总可以将之分解成一个垂直于n⃗的矢量和一个平行于n⃗的矢量的

叠加，矢量的叠加性告诉我们，最终我们的公式必定能够写成(11)最后一

行的形式。
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也就是说，三维空间的每一个旋转，都对应于一个Sp(1,H)群元u(ω, n⃗)。

反过来，两个Sp(1,H)的群元±u(ω, n⃗)对应于同一个三维空间旋转。并且

这个对应保持群的乘法不变。因此，Sp(1,H)与三维旋转群SO(3)之间

有2对1的同态对应。或者说，Sp(1,H)同构于SU(2)群。特别有趣的是，

由(8)我们有，当ω = 2π时，u(2π, n⃗) = −1, 也就是说转动2π角并不是不

变，而是多出一个负号，只有转动4π角才是1，u(4π, n⃗) = 1。

你可能已经注意到了，三维空间中的单位矢量一一对应于平方为−1的

四元数。现在，我们取定一个相应于三维单位矢量m⃗的四元数m, 并

将Sp(1,H) 的群元u共轭地作用在它上面，

u → m(u) = u−1mu (12)

很容易验证m(u)的平方和预先选定的四元数m的平方一样，均为−1, 因

此，每一个m(u)都对应三维空间的一个单位矢量，或者说对应于两维单位

球面S2上的一个点。由于群元u相应于三维球面上的点，因此u → m(u)就

定义了一个S3 → S2的映射。这就是著名的Hopf映射。

为了看清Hopf映射的奇妙之处，我们注意到m(emθu) = m(u)，其

中emθ = cos(θ) + m sin(θ)画出了一个圆周S1，所以，对于S2 上的每一

点，其Hopf映射的原像是S3上的一个圆周。也就是说Hopf映射在底流

形S2上定义了一个非平凡的圆周丛，这个丛的总空间为S3。

以上是将Sp(1,H)群元作用在相应于三维矢量的四元数上，那么如果将

它作用在一个任意的四元数x = x0 + x1i + x2j + x3k上呢？(显然这样一个任

意的四元数相应于一个四维的矢量(x0, x1, x2, x3))。实际上我们可以更一般

地考虑两个相互独立的Sp(1,H)群元(分别记为uL, uR)从左右两边同时作用

在x上，这实际上是对x 的一个线性变换

x → x′ = uLxuR, (13)

由于u的模长为1，很显然，这个线性变换不会改变x的模长，因此它相

应于四维矢量(x0, x1, x2, x3)在四维空间的一个旋转。同样的，我们注意

到(uL, uR) 和(−uL,−uR)对应的是同一个四维旋转，也就是说Sp(1,H) ×
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Sp(1,H) 与SO(4)之间有2对1的同态对应，因此，Sp(1,H) × Sp(1,H)同构

于Spin(4)。

3 下下下

前面我们让你不要问i, j, k是什么东西，也不要问它们之间那个奇怪的乘法

又是什么东西，而是把这一切当成一种奇妙的游戏。这一节我们来谈一谈

如何用我们更熟悉的数学对象来实现这种四元数的代数游戏。这就是所谓

的四元数代数的表示。这里的奇妙现象是，四元数的奇怪乘法可以用矩阵

的乘法来实现。

我们首先注意到任意一个四元数都可以写成u = (a + bi) + (c + id)j的形

式，这启发我们将四元数里的i等同于复数单位i, 因此任何四元数都可以用

两个复数z1 = (a+ bi), z2 = (c+ id)表示成

u = z1 + z2j. (14)

值得注意的是由于四元数的j和i反对易，因此j和复数z之间有关系式，jz =

zj.

假定我们另有一个四元数v = w1 + w2j(w1, w2也是两个复数), 那么由四

元数的乘法，我们可以计算得

uv = (z1w1 − z2w2) + (z1w2 + z2w1)j. (15)

也就是说，我们可以将每一个四元数u看成一个复数对(z1, z2)，四元数的乘

法就等价于在这个复数对空间定义如下的乘法

(z1, z2) · (w1, w2) = (z1w1 − z2w2, z1w2 + z2w1). (16)

当然这依然是一种奇怪的乘法，下面我们要做的就是继续将这种奇怪的复

数对乘法对应到更通常的矩阵乘法。

为此，我们将复数对(z1, z2)对应到一个2× 2的矩阵，

(z1, z2) →

(
z1 z2

−z2 z1

)
. (17)
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当我们将所有的复数对都做了这样的矩阵对应以后，我们很容易发现复数

对的奇怪乘法(16) 自然地对应于下面这个通常的矩阵乘法(
z1 z2

−z2 z1

)(
w1 w2

−w2 w1

)
=

(
z1w1 − z2w2 z1w2 + z2w1

−(z1w2 + z2w1) z1w1 − z2w2

)
. (18)

这样我们就找到了奇怪的四元数代数的矩阵代数实现。让我们简单将

这里的逻辑整理一下，首先，我们发现四元数代数可以实现为复数对的

乘法(16), 其次，我们又发现复数对的这种乘法完全对应于形如(17)类型

的2× 2矩阵的矩阵乘法。因此，我们就将四元数代数实现成了形如下式的

矩阵的矩阵代数，

u = z1 + z2j →

(
z1 z2

−z2 z1

)
. (19)

这个矩阵代数就称为四元数代数的一个矩阵表示，实际上，它是四元数代

数的最小矩阵表示。

很容易验证的是，形如(19)的这些表示矩阵其实就是所有满足

JU = UJ (20)

的2 × 2复矩阵U , 这里U代表U的复共轭矩阵，J是满足J2 = −1的一个2 ×
2矩阵, 它就是四元数里的j在(19)这个矩阵表示中的实现，具体来说就是

J =

(
0 1

−1 0

)
. (21)

方程(20)也称为2 × 2复矩阵空间的赝实条件，所以，四元数代数可以不可

约地表示为所有满足赝实条件的2× 2复矩阵的矩阵代数。这就解释了为什

么初看起来人为地定义的四元数游戏永远都不会出现自相矛盾，因为它等

价一类矩阵的乘法代数，而矩阵的乘法我们知道当然是没有自相矛盾的。
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