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第十八章 哈密顿表述与ADM能

量

陈陈陈童童童

本章主要是想讨论如何将哈密顿力学的框架应用于广义相对论的研究。

这不仅在时空动力学演化的数值模拟中很重要，而且还可以给出引力场哈

密顿量的表达式，以及引力场能量的一个合理定义，也就是所谓的ADM能

量(Arnowitt-Deser-Misner能量)。但是为了系统地处理这些问题，需要在

数学和物理两方面做一些准备，数学上的准备就是要系统地研究如何将

时空流形分解为不同时刻的一系列空间切片，也就是所谓的3 + 1分解或

者ADM分解，而物理上的准备就是要引入引力场作用量的边界项，也就是

所谓的Gibbons-Hawking-York边界项。本章将从数学准备开始，讲清楚所

有这些问题。

18.1 时空中的超曲面

18.1.1 超曲面与ADM分解

考虑n维时空中的n − 1维超曲面，记作Σ, 通常也称作余1维超曲面(由

于n − (n − 1) = 1)。这样的超曲面常常可以由一个光滑函数S(x)按照如下

方程刻画

S(x) = σ, (18.1)

式中σ为常数。不同的常数σ将给出不同的余1维超曲面，它们形成一个

超曲面簇，通常称这样的簇为时空流形的页层化。局域地，我们总可以
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用n− 1维坐标ya, a = 1, 2, ..., n− 1参数化Σ, 进而可以将时空的局域坐标选

取为(σ, ya)。

如果Σ本身是某个时空区域D的边界，记作Σ = ∂D, 则Σ必定是一个闭

合超曲面，也即是说，Σ自己将没有边界。这当然是因为边界的边界总等

于零，即

∂∂D = 0. (18.2)

S(x)的梯度将给出Σ的余法矢量，具体来说，Σ的余法矢量nµ正比

于∂µS(x)，即

nµ = f(x)∂µS(x). (18.3)

式中f(x)为任意标量函数。当然，将nµ的指标升上去就是法矢量nµ。如

果nµ不是类光矢量，则我们总可以通过适当地选取f(x), 使得nµ成为单位

法矢量，即满足

gµνn
µnν = ϵ, (18.4)

式中ϵ = +1,−1分别对应nµ为类空和类时矢量的情形。如果nµ处处类时，

则称相应的超曲面Σ为类空超曲面，反之，如果法矢量nµ处处类空，则称

相应Σ为类时超曲面。

利用方程(18.3)不难证明，超曲面的法矢量满足所谓的Frobenius定理

n[µDνnρ] = 0. (18.5)

证明很简单，只需注意到联络系数关于两个下指标是对称的，从而在全反

对称操作下贡献为零即可。换言之，我们有n[µDνnρ] = n[µ∂νnρ], 进而利用

方程(18.3)很快就能得出结果等于零。反过来，如果一个矢量场nµ满足如

上Frobenius定理，那么它必定是某个余1维超曲面的法矢量场，具体证明

请读者们参阅微分流形相关书籍。

当用ya参数化了Σ以后， ∂
∂ya

= ∂xµ

∂ya
∂µ当然就是Σ的切矢量场，常常将其

指标形式记为eµa，也即是说

eµa ≡
∂xµ

∂ya
. (18.6)

作为Σ的切矢量场，eµa当然和法矢量nµ正交，即有

nµe
µ
a = 0. (18.7)
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定义

hµ
ν ≡ δµν − ϵnµnν , (18.8)

不难验证，

hµ
νh

ν
ρ = hµ

ρ, (18.9)

从而hµ
ν是所谓的投影算符(不要和引力波那一章中的符号混淆了，两者之

间没有关系)。同样不难验证，在这个投影算符的作用下

hµ
νe

ν
a = eµa, hµ

νn
ν = 0, hµ

νnµ = 0. (18.10)

也即是说，这个投影算符的作用是向着超曲面Σ的切向进行投影。

记hµ
ν降指标以后的结果为hµν = gµν − ϵnµnν，根据投影恒等式以及指

标升降关系不难验证，hµν正好就是原来的度规张量gµν 向着超曲面Σ的切

向投影的结果，

hµν ≡ gµν − ϵnµnν = hρ
µh

σ
νgρσ. (18.11)

因此，与hµν相关的，可以引入超曲面上的诱导度规hab，定义如下

hab ≡ eµae
ν
bhµν = eµae

ν
bgµν , (18.12)

其中第二个等于号是利用了nµe
µ
a = 0。

hab的逆矩阵记为hab, 它们可以对超曲面的指标a, b, · · ·进行升降或
者缩并。值得注意的是，虽然hab为hab的逆矩阵，但是，hµν并不是hµν的

逆矩阵，而是它用逆度规张量gµν升指标的结果。事实上，hµν是一个秩

为n− 1的n× n矩阵，它没有逆矩阵。

不过，我们有如下完备性关系式

gµν = ϵnµnν + habeµae
ν
b. (18.13)

为了验证这个式子，我们只需验证等式右边能给出和左边一样的各种内积

关系，比如，等式右边显然可以给出nµ与nν的内积为ϵ, 也能给出eµa与eνb的

内积为hab，nµ与eνa的内积为零。根据这个结果，我们有

habeµae
ν
b = gµν − ϵnµnν = hµν . (18.14)



第十八章 哈密顿表述与ADM能量 5

更一般地，任何与超曲面Σ相切的张量场Aµν···均可以作如下分解

Aµν··· = Aab···eµae
ν
b · · · , (18.15)

很显然，这个式子的确意味着nµA
µν··· = nνA

µν··· = 0, 确证了Aµν···是与Σ相

切的张量场。反过来也有

Aab··· = Aµν···e
µ
ae

ν
b · · · (18.16)

因此，给定时空流形中任意一个张量场，我们可以用投影算符hµ
ν作用于

其每一个指标，进而得到一个与Σ相切的张量场，然后再利用上式，即可

以得到一个相应的定义在Σ上的诱导张量场。值得注意的是，诱导张量

场Aab···仅仅相对于超曲面上的坐标变换ya → y′a来说才是张量，对于时空

中的坐标变换xµ → x′µ来说，它是标量。

当在时空流形上取局域坐标(σ, ya)以后，则除了超曲面上的切矢

量eµa以外，还可以进一步考察时空流形上的切矢量sµ，其定义为

sµ ≡ ∂xµ

∂σ
. (18.17)

一般来说，sµ应该是nµ与eµa的线性组合，写作

sµ = Nnµ +Naeµa. (18.18)

进而即可以将时空流形上的坐标微分写成

dxµ = sµdσ + eµady
a = Nnµdσ + (Nadσ + dya)eµa. (18.19)

因此，原来时空流形上的线元即可以写成

ds2 = gµνdx
µdxν = ϵN2dσ2 + hab(dy

a +Nadσ)(dyb +N bdσ). (18.20)

这称之为时空流形度规的ADM分解。

特别的，当Σ为类空超曲面，从而ϵ = −1时, 变量σ就起到时间坐标的

作用，这时候N就称为时移函数(lapse function), Na就称为位移矢量(shift

vector).

不难看出，如果用矩阵形式，则上述度规的ADM分解可以写成

(gµν) =

[
ϵN2 +NaNa Na

Na hab

]
. (18.21)

所以有 √
|g| = N

√
|h|, 其中h ≡ det(hab). (18.22)
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18.1.2 外曲率

超曲面Σ在时空流形中的弯曲情况经常由其外外外曲曲曲率率率刻画。外曲率张量

是一个对称张量，其定义为

Kab ≡
1

2
eµae

ν
bLngµν , (18.23)

式中Ln表示沿着向量场nµ的李导数。根据第四章中的相关知识， 1
2
Lngµν =

1
2
(Dµnν +Dνnµ) = D(µnν), 所以上述定义又可以重写为

Kab ≡
1

2
eµae

ν
bLngµν = eµae

ν
bD(µnν). (18.24)

进一步，Kab的迹为

K ≡ habKab. (18.25)

利用(18.13)式，即有

K = gµνD(µnν) − ϵnµnνD(µnν) (18.26)

注意到nµnµ = ϵ, 从而nµDνnµ = 0, 进而又可以把这个结果写成

K = Dµn
µ. (18.27)

注意到[ ∂
∂ya

, ∂
∂yb

] = 0,利用[X,Y ] = 0 ⇒ DXY −DYX = 0,从而D∂yae
µ
b−

D∂
yb
eµa = 0, 也就是

eνaDνe
µ
b = eνbDνe

µ
a. (18.28)

再利用nµe
µ
a = 0, 从而(Dνnµ)e

µ
a = −nµDνe

µ
a，不难有

eµae
ν
bDµnν = −eµa(Dµe

ν
b)nν

= −eµb(Dµe
ν
a)nν = eµbe

ν
aDµnν . (18.29)

也即是说，eµae
ν
bDµnν关于a, b指标已经是对称的了，因此，

Kab = eµae
ν
bD(µnν) = eµae

ν
bDµnν . (18.30)

外曲率描写的是超曲面在流形中的相对弯曲状况，它不是曲面本身内

在的曲率，相同的超曲面(具有相同的诱导度规)放在不同的流形中，其外

曲率往往不相同。
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18.1.3 超曲面上的协变导数

我们想研究任意与超曲面Σ相切的张量场Aµν···是如何求协变导数的，

具体来说，我们想把Aµν···在时空流形中的协变导数与Aab··· 在超曲面Σ中的

协变导数(联络系数由诱导度规hab决定)联系起来。为了简单起见，我们考

察一个与Σ相切的矢量场Aµ, 它满足

nµA
µ = 0, Aµ = Aaeµa, Aa = Aµe

µ
a. (18.31)

我们定义Aa在超曲面上的内禀协变导数DaAb为时空流形上的协变导

数DµAν向着超曲面切向的投影，也即

DaAb ≡ eµae
ν
b(DµAν). (18.32)

我们将证明，Da的联络系数正是与诱导度规hab相容的克里斯托夫联络。

为此，我们把(18.32)式右边改写成

eµae
ν
b(DµAν) = eµaDµ(e

ν
bAν)− (eµaDµe

ν
b)Aν

= eµaDµAb − (eµaDµeνb)A
ν

=
∂xµ

∂ya
∂Ab

∂xµ
− (eµaDµeνb)e

νcAc

=
∂

∂ya
Ab − Γ

c

abAc ≡ ∂aAb − Γ
c

abAc. (18.33)

式中我们定义了

Γ
c

ab ≡ (eµaDµeνb)e
νc = (eµaDµe

ν
b)e

c
ν . (18.34)

利用(18.28)式，不难看出Γ
c

ab关于两个下指标a, b对称。

另一方面，根据定义

Dahbc ≡ eµae
ν
be

ρ
c(Dµhνρ) = eµae

ν
be

ρ
c[Dµgνρ − ϵDµ(nνnρ)]

= −ϵeµae
ν
be

ρ
c[(Dµnν)nρ + nν(Dµnρ)] = 0. (18.35)

式中最后一个等于号是利用了nµe
µ
a = 0。所以，协变导数Da与诱导度

规hbc相容，而刚才又证明了它的联络系数Γ
c

ab是对称的。进而根据第四章中

的相关讨论可知，必定有

Γ
c

ab =
1

2
hce

(
∂ahbe + ∂bhae − ∂ehab

)
, (18.36)
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即Γ
c

ab为与诱导度规hab相容的克里斯托夫联络。

Gauss-Weingarten 方方方程程程

任给与超曲面Σ相切的向量场Aµ,我们已经定义了DaAb ≡ eµae
ν
b(DµAν)

为向量场eµaDµAν 的切向投影。现在，我们想问的是，eµaDµAν的法向分量

是多少？

为此，我们将eµaDµA
ν写作eµaDµA

ρgνρ(当然，gνρ实际上就是δνρ), 代

入(18.13)式，即有

eµaDµA
ν = (eµaDµA

ρ)gνρ = (eµaDµA
ρ)(ϵnνnρ + hbceνbeρc)

= ϵ(eµaDµA
ρnρ)n

ν + hbceνb(e
µ
ae

ρ
cDµAρ). (18.37)

注意到nµA
µ = 0, 从而DµA

ρnρ = −AρDµnρ, 代入上式即有

eµaDµA
ν = −ϵ(eµaA

ρDµnρ)n
ν + hbceνbDaAc

= eνbDaA
b − ϵ(eµae

ρ
bDµnρ)A

bnν

= eνbDaA
b − ϵKabA

bnν . (18.38)

最后一行是代入了关于Kab的(18.30)式，这一行的第一项就是切向分量，第

二项则是法向分量。很显然，法向分量正比于外曲率，当且仅当外曲率等

于零时法向分量才等于零。

特别的，取Aν = eνb, 从而Aa = δab , 代入(18.38)式，即有

eµaDµe
ν
b = eνcΓ

c

ab − ϵKabn
ν . (18.39)

这就是所谓的Gauss-Weingarten 方程。

18.1.4 Gauss-Codazzi 方程

根据诱导度规hab, 当然可以算出超曲面Σ的内禀曲率张量R
c

dab，和所

有黎曼曲率张量一样，它由下式定义

[Da, Db]A
c = R

c

dabA
d, (18.40)

根据协变导数Da的定义，即可以得出

R
c

dab = ∂aΓ
c

bd − ∂bΓ
c

ad + Γ
c

aeΓ
e

bd − Γ
c

beΓ
e

ad. (18.41)
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另一方面，时空流形本身也有一个黎曼曲率张量Rρ
σµν , 它是由时空上的度

规张量gµν决定的。我们想问，这两种黎曼曲率张量之间的关系是什么？

为此，我们从Gauss-Weingarten 方程开始，由它可得

eµaDµ(e
ν
bDνe

ρ
c) = eµaDµ

(
eρdΓ

d

bc − ϵKbcn
ρ
)
. (18.42)

对于这个方程的左手边(LHS)，我们有

LHS = eµaDµ(e
ν
bDνe

ρ
c) = eµae

ν
b(DµDνe

ρ
c) + (eµaDµe

ν
b)(Dνe

ρ
c)

= eµae
ν
b(DµDνe

ρ
c) + (eνdΓ

d

ab − ϵKabn
ν)(Dνe

ρ
c)

= eµae
ν
b(DµDνe

ρ
c) + Γ

d

abe
ν
dDνe

ρ
c − ϵKab(n

νDνe
ρ
c)

= eµae
ν
b(DµDνe

ρ
c) + Γ

d

ab(e
ρ
eΓ

e

dc − ϵKdcn
ρ)− ϵKab(n

νDνe
ρ
c).

将这个结果减去ab置换以后的结果，即得

eµae
ν
bR

ρ
σµνe

σ
c. (18.43)

而对于方程(18.42)的右手边(RHS), 我们有

RHS = eµaDµ

(
eρdΓ

d

bc − ϵKbcn
ρ
)

= (eµaDµe
ρ
d)Γ

d

bc + eρd(∂aΓ
d

bc)− ϵ(∂aKbc)n
ρ − ϵKbc(e

µ
aDµn

ρ)

= (eρeΓ
e

ad − ϵKadn
ρ)Γ

d

bc + eρe(∂aΓ
e

bc)− ϵ(∂aKbc)n
ρ − ϵKbc(e

µ
aDµn

ρ).

同样，将这个结果减去ab置换以后的类似结果，即得

eρeR
e

cab − ϵ(DaKbc −DbKac)n
ρ + ϵKac(e

µ
bDµn

ρ)− ϵKbc(e
µ
aDµn

ρ). (18.44)

令等式左边的(18.43)与等式右边的(18.44)相等，即得

eµae
ν
bR

ρ
σµνe

σ
c

=eρeR
e

cab − ϵ(DaKbc −DbKac)n
ρ + ϵKac(e

µ
bDµn

ρ)− ϵKbc(e
µ
aDµn

ρ)

将这个结果向切向投影，即得(用到关于Kab的(18.30)式)

Rµνρσe
µ
ae

ν
be

ρ
ce

σ
d = Rabcd + ϵ(KadKbc −KacKbd). (18.45)

而如果沿着法向nν投影，则得(用了一些黎曼曲率张量的代数性质)

eµae
ν
be

σ
cRµνσρn

ρ = DaKbc −DbKac. (18.46)
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推导过程中我们消去了等式两边整体的负号。

方程(18.30)和方程(18.46)就是所谓的Gauss-Codazzi方程。它们揭示了

时空流形中的黎曼曲率张量的一些分量可以用超曲面的内禀曲率与外曲率

共同来表达。剩下的分量是Rµρνσe
µ
an

ρeνbn
σ, 它们不能用仅仅与hab、Kab相

关的量来表达。

缩缩缩并并并形形形式式式

为了将Gauss-Codazzi 方程揭示的曲率分解应用于爱因斯坦场方程，

我们需要将黎曼曲率张量进行缩并。

首先，里奇张量Rρσ = gµνRµρνσ, 代入(18.13)式，即有

Rρσ = (ϵnµnν + habeµae
ν
b)Rµρνσ

= ϵRµρνσn
µnν + habRµρνσe

µ
ae

ν
b. (18.47)

注意到Rµρνσn
µnρnνnσ = 0(因为Rµρνσ关于指标nu, σ反对称), 所以立即有

Rρσn
ρnσ = habRµρνσe

µ
an

ρeνbn
σ. (18.48)

同样注意到Rµρνσn
µnνnσ = 0，所以有

Rρσe
ρ
cn

σ = habRµρνσe
µ
ae

ρ
ce

ν
bn

σ. (18.49)

进一步，里奇张量R = gρσRρσ, 利用上面的(18.47), 即有

R = (ϵnρnσ + hcdeρce
σ
d)(ϵRµρνσn

µnν + habRµρνσe
µ
ae

ν
b)

= 2ϵhabRµρνσe
µ
an

ρeνbn
σ + habhcdRµρνσe

µ
ae

ρ
ce

ν
be

σ
d

= 2ϵRρσn
ρnσ + habhcdRµρνσe

µ
ae

ρ
ce

ν
be

σ
d. (18.50)

上式最后一行我们代入了(18.48)式。

注意到爱因斯坦张量Gρσ = Rρσ − 1
2
gρσR, 进而即可以得到

Gρσn
ρnσ = Rρσn

ρnσ − 1

2
ϵR

= −1

2
ϵ
[
R + ϵ(KabK

ab −K2)
]
. (18.51)

式中我们利用了上面的(18.48)式和(18.50)式，并代入了Gauss-Codazzi 方

程。式中的R就是由诱导度规hab算出来的曲率标量。类似的，利用(18.49)式,

并代入Gauss-Codazzi 方程，还可以得到

Gρσe
ρ
an

σ = Rρσe
ρ
an

σ = DbK
b
a −DaK

b
b. (18.52)
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方程(18.51)和方程(18.52)的重要性在于，它们可以用来把爱因斯坦场

方程的部分分量用超曲面Σ上的相关变量来重新表达。不过，值得注意的

是，剩下的分量Gρσe
ρ
ae

σ
b 不能用仅仅与hab、Kab相关的量来表达。

如果Σ为类空超曲面，从而nµ类时，则通常会定义

ρ ≡ Tµνn
µnν , ja ≡ Tρσe

ρ
an

σ. (18.53)

则根据爱因斯坦场方程中的Gρσn
ρnσ = κTρσn

ρnσ (κ = 8πG),以及Gρσe
ρ
an

σ =

κTρσe
ρ
an

σ, 立即有

R +K2 −KabK
ab = (2κ)ρ

DbK
b
a −DaK

b
b = κja. (18.54)

式中我们利用了(18.51)式和(18.52)式。

里里里奇奇奇标标标量量量

下面对里奇标量的分解形式进行进一步推导，我们的出发点是上面

的(18.50)式，重写如下

R = 2ϵRρσn
ρnσ + habhcdRµρνσe

µ
ae

ρ
ce

ν
be

σ
d. (18.55)

其中，利用Gauss-Codazzi 方程，立即有

habhcdRµρνσe
µ
ae

ρ
ce

ν
be

σ
d = R + ϵ(KabK

ab −K2). (18.56)

利用黎曼曲率张量的定义[Dν , Dσ]nρ = −nµRµρνσ, 立即有

Rµνn
µnν = −nν [Dν , Dρ]n

ρ = −nν(DνDρn
ρ) + nν(DρDνn

ρ)

= −Dν(n
νDρn

ρ) + (Dνn
ν)(Dρn

ρ) +Dρ(n
νDνn

ρ)− (Dρn
ν)(Dνn

ρ).

注意到K = Dµn
µ, 所以第二行的第二项就是K2，下面我们关注第二行的最

后一项。

(Dρn
ν)(Dνn

ρ) = gµνgρσ(Dρnµ)(Dνnσ)

= (ϵnµnν + hµν)(ϵnρnσ + hρσ)(Dρnµ)(Dνnσ)

= (ϵnµnν + hµν)hρσ(Dρnµ)(Dνnσ) = hµνhρσ(Dρnµ)(Dνnσ)

= hbceµbe
ν
ch

adeρae
σ
d(Dρnµ)(Dνnσ)

= hadhbc(eρae
µ
bDρnµ)(e

ν
ce

σ
dDνnσ)

= hadhbcKabKcd = KabKab.
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式中第三行是利用了类似nσDνnσ = 0(因为Dν(n
σnσ) = 0)这样的结果。因

此，最终我们有

Rµνn
µnν = −Dν(n

νDρn
ρ) +Dρ(n

νDνn
ρ) +K2 −KabKab. (18.57)

综合上面两段的结果，即有

R = R + ϵ(K2 −KabKab) + 2ϵ
[
−Dν(n

νDρn
ρ) +Dρ(n

νDνn
ρ)
]

= R + ϵ(K2 −KabKab) + 2ϵDρ(n
νDνn

ρ − nρDνn
ν). (18.58)

这个结果在后文讨论广义相对论的哈密顿表述时会很有用。

18.2 引力作用量的边界项

在本书第五章中，我们通过对爱因斯坦-希尔伯特作用量进行变分，得

出爱因斯坦场方程。但是，在那里我们也提到过，关于变分的边界项实际

上还遗留有一个微妙的问题有待处理。现在我们来处理这个问题。

首先让我们简单回顾一下对爱因斯坦-希尔伯特作用量的变分计算。注

意到SEH = 1
2κ

∫
d4x

√
−gRµνg

µν(κ = 8πG), 从而即有

δSEH =
1

2κ

∫
d4x

[√
−gRµνδg

µν +
√
−g(δRµν)g

µν + δ(
√
−g)R

]
. (18.59)

利用δ(
√
−g) = 1

2

√
−ggµνδgµν以及δgµν = −gµρδgρσg

σν , 即可以得到

δSEH =
1

2κ

∫
d4x

√
−g

[
− (Rµν − 1

2
gµνR)δgµν + (δRµν)g

µν
]
. (18.60)

所以最后要算的就是δRµν，这已经在第五章中算过了，这里不再重复，结

果是

δRµν = Dρ(δΓ
ρ
νµ)−Dν(δΓ

ρ
ρµ). (18.61)

利用以上结果，容易看出(18.60)式中的δRµν项可以化成

1

2κ

∫
d4x

√
−g(δRµν)g

µν =
1

2κ

∫
d4x

√
−g

[
Dρ(δΓ

ρ
νµ)−Dν(δΓ

ρ
ρµ)

]
gµν

=
1

2κ

∫
d4x

√
−g

[
Dρ(g

µνδΓρ
νµ)−Dν(g

µνδΓρ
ρµ)

]
=

1

2κ

∫
d4x

√
−gDµ

(
gρσδΓµ

ρσ − gµνδΓρ
ρν

)
. (18.62)
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习惯上，会令

vµ ≡ gρσδΓµ
ρσ − gµνδΓρ

ρν . (18.63)

从而可以将(18.60)式写成

(2κ)δSEH =

∫
D
d4x

√
−g

[
−Gµνδgµν

]
+

∫
D
d4x

√
−g(Dµv

µ), (18.64)

式中我们已经假定原来的爱因斯坦-希尔伯特作用量是定义在某个时空区

域D上的。
记时空区域D的边界为∂D, 它当然是一个闭合的时空超曲面(为了简

单起见，假定∂D不存在类光的部分), 记∂D上的坐标为ya，其上的诱导度

规为hab, 外曲率为Kab, 法向量为nµ, 满足nµnµ = ϵ, 其中ϵ在∂D的类空部分
取−1, 而在类时部分取+1。

进而利用弯曲时空中的高斯定理(见第四章中的讲述)，即可以把(18.64)

式进一步写成

(2κ)δSEH =

∫
D
d4x

√
−g

[
−Gµνδgµν

]
+

∫
∂D

d3y
√
|h|ϵ(nµv

µ), (18.65)

很容易看到第二项其实是一个表面积分项，其中ϵ = −1的情形是把第四章

中关于高斯定理的讲述推广到nµ类时的情形。由于在利用最小作用量原理

时我们总是假定场位形在区域边界的变分等于零，即假定

δgµν |∂D = 0. (18.66)

(注意，这意味着边界上诱导度规hab的变分也等于零.) 所以你可能认为

这个表面积分项会自动等于零。然而情况并没有这么简单，因为正如我

们马上就可以看清楚的，vµ并不完全由δgµν决定，它还含有δgµν的偏导项，

虽然δgµν在∂D上为零，但是，δgµν的偏导在∂D上并不一定等于零。所以，
(18.65)式中的表表表面面面积积积分分分项项项其其其实实实并并并不不不等等等于于于零零零！这就是第五章中我们提到过的

那个非常微妙的细节问题。

为了看清楚这个细节问题，让我们回到vµ的定义(18.63)式。为此我们

需要计算δΓµ
ρσ, 注意到我们关心的是边界∂D上的情况，这时候有δgρσ = 0 =

δgρσ, 所以

δΓµ
ρσ|∂D =

1

2
gµν

(
∂ρδgσν + ∂σδgρν − ∂νδgρσ

)
. (18.67)
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代入vµ的定义式(18.63)，可以得到

vµ = gρσ(∂σδgµρ − ∂µδgσρ). (18.68)

进而即有

(nµvµ)|∂D = nµ(ϵnρnσ + hρσ)(∂σδgµρ − ∂µδgσρ)

= nµhρσ(∂σδgµρ − ∂µδgσρ), (18.69)

式中我们注意到了(∂σδgµρ − ∂µδgσρ)关于σ, µ反对称。又由于hρσ是与超曲

面∂D相切的张量，而δgρσ在超曲面∂D上恒等于零，因此，δgρσ沿着切向的

导数也等于零，从而hρσ∂σδgµρ = 0, 因此最终我们有

(nµvµ)|∂D = −hρσnµ∂µδgρσ, (18.70)

注意这里涉及的是δgρσ沿着法向的偏导，而不是切向的，因此不等于零。

综合以上所有结果，即有

(2κ)δSEH =

∫
D
d4x

√
−g

[
−Gµνδgµν

]
−
∫
∂D

d3y
√

|h|ϵhρσnµ∂µδgρσ.(18.71)

这里涉及一个非零的边界积分项，而在应用最小作用量原理时，这样的项

是我们希望能消除的。之所以出现这样的非零边界项，是因为里奇标量

中(从而SEH中)包含了度规场的二阶偏导，而不仅仅是一阶偏导，这是与通

常场论不同的地方。

为了消除这样的变分边界项，我们在引力场的作用量中额外添加一个

边界作用量SB(称作Gibbons-Hawking-York边界项), 其定义是

SB =
1

κ

∫
∂D

d3y
√
|h|ϵK. (18.72)

下面我们来证明，这个边界作用量的变分正好能抵消掉(18.71)中多出来的

边界项。

注意到

K = Dµn
µ = gµνDµnν = (ϵnµnν + hµν)Dµnν

= hµνDµnν = hµν(∂µnν − Γρ
µνnρ). (18.73)
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由于hµν是边界上的度规，其变分等于零，从而

δK = −hµνδΓρ
µνnρ

= −1

2
hµνnρ(∂µδgνρ + ∂νδgµρ − ∂ρδgµν)

=
1

2
hµνnρ∂ρδgµν . (18.74)

最后一行同样是利用了度规场变分沿着切向的偏导等于零。根据这个结果，

即有

(2κ)δSB = 2

∫
∂D

d3y
√

|h|ϵδK =

∫
∂D

d3y
√

|h|ϵhρσnµ∂µδgρσ. (18.75)

很显然，这正好抵消了(18.71)中多出来的边界项。

因此，只要我们取引力场的作用量为SG = SEH + SB, 式中

SEH =
1

2κ

∫
D
d4x

√
−gR, SB =

1

κ

∫
∂D

d3y
√
|h|ϵK. (18.76)

则SG的变分将正好给出

δSG =
1

2κ

∫
D
d4x

√
−g

[
−Gµνδgµν

]
. (18.77)

进而就补上了第五章中推导爱因斯坦场方程时的细节性漏洞。

但是，这里还有一个细节问题，那就是即使对于平坦的闵可夫斯基时

空(因此里奇标量R = 0), 随着时空区域D趋于无穷大，也即∂D趋于无穷远，
计算发现上面定义的SB也会发散，从而使得整个时空的SG发散！为了克服

这个问题，通常会将SB修正为

SB ≡ 1

κ

∫
∂D

d3y
√

|h|ϵ(K −K0), (18.78)

式中K0为同一个超曲面∂D(有相同的诱导度规)嵌入参考的平坦时空流形时

的外曲率(K当然为∂D在待考察的这个时空中的外曲率)。很显然，这样修

正以后，对于平坦时空即有SB = 0, 从而也有SG = 0。更一般地，对于任何

渐进平坦时空，修正以后引力作用量SG都将保持有限，这就解决了发散问

题。注意，由于K0不依赖于待考察时空的度规，因此它的变分等于零，从

而这种修正不会改变前面关于变分边界项的所有讨论。
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18.3 哈密顿表述与ADM能量

现在开始讨论本章的正题，广义相对论的哈密顿表述，也即是说，在

哈密顿力学的框架下讨论广义相对论。这需要将四维时空流形进行ADM分

解，也称作3 + 1分解，即将时空流形切片成三维类空超曲面簇，只不过对

应前面(18.1.1)小节中的σ现在取作时间参数t。利用哈密顿表述，我们可以

给引力场整体的能量下一个合适的定义，称作ADM能量。需要说明的是，

ADM能量仅适用于渐近平坦的时空，因此需要宇宙学常数Λ = 0。

为了建立哈密顿表述，我们需要把时空切片成余1维的类空超曲面簇，

其中每一个超曲面对应一个时间参数t, 给定t的类空超曲面记作Σt, 它由方

程t(x) = t定义，等式左边的t(x)相应于前面(18.1.1)小节中的S(x)。Σt的法

矢量记作nµ (nµ ∝ ∂µt(x)), 当然nµ是类时的，满足

nµnµ = −1. (18.79)

同样也可以用坐标ya参数化Σt本身，如此一来，(t, ya)就构成了时空的一组

局域坐标。

根据(18.1.1) 小节中讨论的ADM分解，可以将时空流形的度规分解成

ds2 = −N2dt2 + hab(dy
a +Nadt)(dyb +N bdt), (18.80)

其中hab为Σt上的诱导度规，其余符号的含义也都和前文相同，比如Σt的外

曲率还是记作Kab。

以t为参数的等ya曲线与Σt相交，但通常不是正交。具体来说，这些曲

线的切矢量tµ ≡
(
∂xµ

∂t

)
ya
(相应于(18.1.1) 小节中的sµ)可以展开为

tµ = Nnµ +Naeµa. (18.81)

这个方程解释了时移函数N以及位移矢量Na的含义。从这个方程我们可以

得到

nµt
µ = −N. (18.82)

另一方面，又有

(∂µt)t
µ =

∂t

∂xµ

∂xµ

∂t
=

∂t

∂t
= 1. (18.83)

而且，我们也知道nµ ∝ ∂µt, 进而比较上面两个式子，即知

nµ = −N∂µt. (18.84)
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如果我们取局部坐标xµ = (t, ya), 则很显然tµ = (1, 0, 0, 0), eµa = δµa , 由

此立即有

Lte
µ
a = 0. (18.85)

式中李导数Lt的下标t表示向量场tµ, 由于这是一个张量方程，所以它当然

在任意局部坐标中均成立！

18.3.1 构造类时边界

在Σt上面取一个余1维闭合超曲面St, 注意，这里余1维是指在Σt中

余1维，同样，闭合也是指在Σt中闭合。记St在Σt中的法矢量为ra，在时

空中，这个法矢量当然就是rµ = raeµa，显然rµnµ = 0。随着沿法向nµ的

推移，不同时刻Σt上的St会扫出一个在时空中余1维的类时超曲面B，如
图(18.1)所示。很显然，rµ也是B在时空中的法矢量，因此当然是一个类空
矢量，满足rµrµ = 1。

图 18.1: 以Σtf ∪ (−Σti) ∪ B为边界的时空区域D.

超曲面St可以看成是Σt与B的交，在时空中，它当然是余2维的。以坐

标θA参数化St, 引入St上的切矢量场

eµA ≡ ∂xµ

∂θA
. (18.86)

这些切矢量场当然同时也是Σt上的切矢量(因此有nµe
µ
A = 0)，因此可以

用eµa展开，设eµA = eµae
a
A, 不难看出eaA = ∂ya

∂θA
。
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St上的诱导度规σAB显然满足

σAB = gµνe
µ
Ae

ν
B = habe

a
Ae

b
B. (18.87)

注意到ra是St在Σt中的法向量，所以St在Σt中的完备性关系为hab = rarb +

σABeaAe
b
B,又由于Σt在时空中的完备性关系为gµν = −nµnν +habeµae

ν
b, 进而

可得St最终在时空中的完备性关系为

gµν = −nµnν + rµrν + σABeµAe
ν
B, (18.88)

这当然是因为St在时空中是余2维超曲面。St在Σt中的外曲率(相对于Σt的

弯曲程度)及其迹分别为

kAB = eµAe
ν
BDµrν = eaAe

b
BDarb, k = σABkAB. (18.89)

式中我们代入了eµA = eµae
a
A。

从上述讨论来看，参数化不同时刻St的坐标θA似乎可以是相互独立的。

但是，前面定义B时说了，是沿着Σt的法向随时间推移St。因此，可以设想

以t为参数的曲线是正交地穿过不同时刻的St的(也即是说在St上，位移矢

量Na = 0), 自然的定义是，取同一条t曲线上所有点的θA坐标相同。也即是

说，我们有(即在方程(18.81)中取Na = 0)(∂xµ

∂t

)
θA

= Nnµ. (18.90)

假设用任意坐标zi参数化B，并在B上引入切向量场eµi, 定义为

eµi ≡
∂xµ

∂zi
. (18.91)

满足rµe
µ
i = 0。因此B上的诱导度规γij满足

γij = gµνe
µ
ie

ν
j. (18.92)

类似于前面的(18.13), 当然也有如下完备性关系

gµν = rµrν + γijeµie
ν
j. (18.93)

类似的，B的外曲率为

Kij = eµie
ν
jDµrν . (18.94)
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其迹为K = γijKij。

虽然原则上zi可以任意选取，但是上面关于如何定义不同时刻St上坐

标的讨论告诉我们，选取zi = (t, θA)是特别方便的。在这种选取中，B上的
一个小位移dxµ将由下式给出

dxµ =
(∂xµ

∂t

)
θA
dt+

(∂xµ

∂θA

)
t
dθA = Nnµdt+ eµAdθ

A. (18.95)

这里我们用了(18.86)式和(18.90)式。因此B上的线元将为

ds2B = gµνdx
µdxν |B

= gµν(Nnµdt+ eµAdθ
A)(Nnνdt+ eνBdθ

B)

= (gµνn
µnν)N2dt2 + (gµνe

µ
Ae

ν
B)dθ

AdθB, (18.96)

式中用到nµe
µ
A = 0。由这个结果立即有

γijdz
idzj = −N2dt2 + σABdθ

AdθB. (18.97)

这意味着
√
−γ = N

√
σ, 其中γ = det(γij), σ = det(σAB)。

18.3.2 引力作用量的ADM分解

为了寻找广义相对论的哈密顿表述，我们需要把引力场的作用量进

行ADM分解。为此我们先将引力场作用量重写在下面

SG =
1

2κ

∫
D
d4x

√
−gR +

1

κ

∫
∂D

d3y
√
|h|ϵK. (18.98)

式中我们暂时忽略了减除项K0。

我们让D为类空超曲面Σti和Σtf以及类时超曲面B围起来的时空区域，
如上面的图(18.1)所示，换言之

∂D = Σtf ∪ (−Σti) ∪ B, (18.99)

式中−Σti前面的负号是用来提醒我们作为D的边界−Σti的法向是向着过去

方向的，与Σti的法向相反，这当然是因为∂D的法向按照定义就是从区域
内部指向外部的。进而利用上一小节的符号，我们可以把区域D上引力场
的作用量更清楚地写成

SG =
1

2κ

∫
D
d4x

√
−gR− 1

κ

∫
Σtf

d3y
√
hK

+
1

κ

∫
Σti

d3y
√
hK +

1

κ

∫
B
d3z

√
−γK, (18.100)
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式中我们已经考虑−Σti前面那个额外的负号了，即用了
∫
−Σti

d3y · · · =

−
∫
Σti

d3y · · ·。
当然，时空区域D被切片成了类空超曲面Σt簇，根据前面的公式(18.58),

在Σt上

R = R +KabKab −K2 − 2Dρ(n
νDνn

ρ − nρDνn
ν). (18.101)

进而即有

1

2κ

∫
D
d4x

√
−gR =

1

2κ

∫ tf

ti

dt

∫
Σt

d3yN
√
h
(
R +KabKab −K2

)
− 1

κ

∫
∂D

d3y
√

|h|ϵmρ(n
νDνn

ρ − nρDνn
ν). (18.102)

式中我们应用了高斯定理，mρ为∂D的法向量，注意它不一定为nρ。同时

我们还用到d4x
√
|g| = d3yN

√
h。

同样，上式中的边界积分项要分解成分别在−Σti , Σtf , 以及B上的
积分。其中在−Σti上的积分可以转换成 (考虑到了这时候mρ = −nρ, 以

及ϵ = −1)

1

κ

∫
Σti

d3y
√
h(−)nρ(n

νDνn
ρ − nρDνn

ν)

=− 1

κ

∫
Σti

d3y
√
hDνn

ν = −1

κ

∫
Σti

d3y
√
hK. (18.103)

式中我们用到了nρn
ρ = −1，以及nρDνn

ρ = 0。很显然，结果正好与(18.100)

中边界作用量的相应项抵消。类似的，Σtf上的所有边界积分项也会刚好抵

消。因此只剩下B上的贡献(B的ϵ = 1, 法向量为rµ)

− 1

κ

∫
B
d3z

√
−γrρ(n

νDνn
ρ − nρDνn

ν)

=− 1

κ

∫
B
d3z

√
−γrρn

νDνn
ρ =

1

κ

∫
B
d3z

√
−γnνnρ(Dνrρ). (18.104)

式中我们利用了rρn
ρ = 0并进行了分部积分。

把所有这些结果放在一起，即有

SG =
1

2κ

∫ tf

ti

dt

∫
Σt

d3yN
√
h
(
R +KabKab −K2

)
+

1

κ

∫
B
d3z

√
−γ

(
K + nµnνDµrν

)
. (18.105)
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下面我们改写一下K,

K = γijKij = γij(eµie
ν
jDµrν)

= (γijeµie
ν
j)Dµrν = (gµν − rµrν)Dµrν , (18.106)

其中我们利用了完备性关系(18.93)。进而即有

K + nµnνDµrν = (gµν − rµrν + nµnν)Dµrν

= (σABeµAe
ν
B)Dµrν = σAB(eµAe

ν
BDµrν)

= σABkAB = k. (18.107)

其中我们利用了完备性关系(18.88)。

有了上面的结果，再利用d3z
√
−γ = dtd2θN

√
σ, 进而即有

SG =

∫ tf

ti

dt
[ 1

2κ

∫
Σt

d3yN
√
h
(
R +KabKab −K2

)
+

1

κ

∫
St

d2θN
√
σ(k − k0)

]
. (18.108)

式中通过包含进一个额外的−k0, 我们已经恢复了被忽略的减除项。

k0是St嵌入在平坦空间中的外曲率。有了减除项k0以后，就可以使得平

坦时空的作用量为零，进一步，对于渐进平坦时空，它可以保证作用量

在St → ∞时保持有限。
注意，在上面的结果中，边界积分项对拉格朗日量是有贡献的，但是

对于拉格朗日体密度当然没有贡献。事实上，我们可以从(18.108)中读出引

力场的拉格朗日体密度LG(不要和李导数混淆了)，为

LG =
1

2κ
N
√
h
(
R +KabKab −K2

)
. (18.109)

而拉格朗日量LG为

LG =

∫
Σt

d3yLG +
1

κ

∫
St

d2θN
√
σ(k − k0). (18.110)

当然，一般来说时空中还会有物质场，物质场的作用量也要进行3 +

1分解，但是由于给定物质场作用量以后，这种分解没有原则上的困难，所

以我们不再进行专门的讨论。同样，后文也都会仅仅将注意力集中在引力

场上，忽略物质场。
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18.3.3 引力场的哈密顿量

为了得到引力场的哈密顿表述，我们定义诱导度规hab的时间导数为

ḣab ≡ Lthab, (18.111)

根据诱导度规的定义，有

ḣab = Lt(gµνe
µ
ae

ν
b) = (Ltgµν)e

µ
ae

ν
b, (18.112)

式中我们利用了(18.85)式。直接计算度规场的李导数

Ltgµν = Dµtν +Dνtµ = Dµ(Nnν +Nν) +Dν(Nnµ +Nµ)

= (∂µN)nν + (∂νN)nµ +N(Dµnν +Dνnµ) +DµNν +DνNµ.

其中Nµ ≡ Naeµa。进而即有

ḣab = 2NKab +DaNb +DbNa ⇒ Kab =
1

2N

(
ḣab −DaNb −DbNa

)
.(18.113)

上述分析表明，引力场作用量(18.108)中的时间导数全部都包含在外曲

率中，进而利用拉格朗日体密度LG的定义(18.109),即可以得到场变量hab的

共轭动量πab为

πab ≡ ∂LG

∂ḣab

=
1

2κ

√
h(Kab −Khab). (18.114)

所以根据勒让德变换，哈密顿体密度HG为

HG ≡πabḣab − LG

=
1

2κ

√
h(Kab −Khab)(2NKab +DaNb +DbNa)

− 1

2κ
N
√
h
(
R +KabKab −K2

)
=

1

2κ
N
√
h
(
KabKab −K2 −R

)
+

1

κ

√
h(Kab −Khab)(DaNb)

=
1

2κ
N
√
h
(
KabKab −K2 −R

)
+

1

κ

√
hDa[(K

ab −Khab)Nb]

− 1

κ

√
hNbDa(K

ab −Khab). (18.115)
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但是，哈密顿量HG其实是拉格朗日量的勒让德变换，定义为HG ≡
∫
d3yπabḣab−

LG, 因此根据(18.110)式，其实还要加上边界积分项的贡献，最终即有

HG =

∫
Σt

d3yHG − 1

κ

∫
St

d2θN
√
σ(k − k0)

=

∫
Σt

d3y(NH +NbHb)− 1

κ

∫
St

d2θN
√
σ(k − k0)

+
1

κ

∫
Σt

d3y
√
hDa[(K

ab −Khab)Nb], (18.116)

式中

H ≡ 1

2κ

√
h
(
KabKab −K2 −R

)
(18.117)

Hb ≡− 1

κ

√
hDa(K

ab −Khab) ⇒

Ha =− 1

κ

√
h
(
DbK

b
a −DaK

b
b

)
. (18.118)

另一方面，利用高斯定理，有

1

κ

∫
Σ

d3y
√
hDa[(K

ab −Khab)Nb] =
1

κ

∫
St

d2θ
√
σra[(K

ab −Khab)Nb].

代入上面的(18.116)式，即有

HG =

∫
Σt

d3y(NH +NbHb)+

− 1

κ

∫
St

d2θ
√
σ
[
N(k − k0)− raNb(K

ab −Khab)
]
. (18.119)

常常也用共轭动量密度πab来把H重新表达成

H =
2κ√
h

(
πabπab −

1

2
π2
)
−

√
h

2κ
R. (18.120)

式中π = habπ
ab。引入如下所谓的de Witt度规

Gabcd ≡
1

2
(hachbd + hadhbc − habhcd). (18.121)

进而即可以进一步将H重写成

H =
2κ√
h
Gabcdπ

abπcd −
√
h

2κ
R. (18.122)



第十八章 哈密顿表述与ADM能量 24

另外，利用共轭动量密度πab也可以把Hb重新表达成

Hb = −2
√
hDa

( 1√
h
πab

)
. (18.123)

注意，在拉格朗日体密度LG中，并未来出现N和Na的时间导数，这意

味着N和Na是拉格朗日乘子，它们的共轭动量密度为零，因此根据哈密顿

正则方程, 即有如下约束方程

0 =
δHG

δN
= H, 0 =

δHG

δNa
= Ha. (18.124)

利用上面关于H和Ha的定义式(18.117)、(18.118)，即有

R +K2 −KabKab = 0, DbK
b
a −DaK

b
b = 0. (18.125)

这与前面的结果(18.54)在忽略物质场时一致。如果进一步考虑物质场，

那么就要在H和Ha中添加上物质场的贡献，最终得到的约束方程依然

是(18.54)式。其中H = 0称作哈密顿约束，而Ha = 0称作动量约束，两种

约束加起来一共四个分量约束方程，正好对应四个独立的微分同胚变换，

实际上，微分同胚不变性就是这四个分量约束方程的起源。

进一步当然还可以根据hab和πab的哈密顿正则方程(如下)推导它们所满

足的运动方程

ḣab =
δHG

δπab
, π̇ab = −δHG

δhab

, (18.126)

只不过具体推导HG对hab和πab的变分有点繁琐，这里从略。特别的，给

定hab和πab在某个初始类空超曲面Σt0的初始值，我们就可以通过求解它们

的哈密顿正则方程，得到它们在此后任意时刻的Σt上的值，而且这种求解

还可以通过数值方法进行，这在时空动力学演化的数值模拟中很有用。

很显然，对于满足哈密顿约束和动量约束的物理场位形，相应的哈密

顿量HG的体密度贡献其实等于零，只有边界积分有贡献，有时候也把这个

边界贡献记作HADM

HADM = −1

κ

∫
St

d2θ
√
σ
[
N(k − k0)− raNb(K

ab −Khab)
]
. (18.127)

对于物理场位形，HG = HADM.
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18.3.4 ADM能量

本小节讨论如何定义渐近平坦时空的总能量，尤其是我们要把它

和HADM联系起来。

前面说过，对于物理的引力场位形，其哈密顿量由HADM给出。但是，

HADM的定义依赖于类空超曲面Σt在很远的渐近区域的行为，同时也依赖

于时移函数N以及位移矢量Na的渐近行为。虽然N和Na总可以任意选，但

时空渐近平坦的事实会给出Σt渐近行为的合适要求。具体来说，我们要

求Σt渐近地与闵可夫斯基时空的某个等时面重合：假如(t̃, x̃, ỹ, z̃)是无穷远

处的一个洛伦兹参考系，则Σt必须渐近地与t̃ = constant的超曲面重合。因

此，Σt上任意选取的坐标ya会渐近地与闵可夫斯基空间坐标联系起来，即

有渐近关系ya → ya(x̃, ỹ, z̃)。类似的，也有渐近关系xµ → xµ(t̃, x̃, ỹ, z̃)。

注意到t̃为渐近区域的静止观察者的固有时，此观察者的协变速度

为uµ = ∂xµ

∂t̃
, 由于uµ是归一的，且与t̃ = constant的超曲面正交，因此它

必定就是渐近区域的nµ, 换言之，我们有渐近关系nµ → ∂xµ

∂t̃
。又注意

到tµ = Nnµ +Naeµa, 所以必然也有如下渐近关系

tµ → N
(∂xµ

∂t̃

)
ya

+Na
(∂xµ

∂ya

)
t̃
. (18.128)

也即是说，按照我们对Σt渐近行为的要求，选取渐近区域的N、Na与选取

相应区域的tµ是一回事。特别的，HADM可以看成是依赖于渐近区域的tµ。

为了定义渐近平坦时空的总能量，我们取St为空间无穷远处的2维球

面，记作S∞
t , 同时，我们在无穷远处选取N = 1以及Na = 0。我们把总能

量EADM定义成如此计算出来的HADM, 即

EADM ≡ −1

κ

∫
S∞
t

d2θ
√
σ(k − k0). (18.129)

之所以说EADM是总能量，原因如下：首先N = 1,Na = 0相应于tµ → ∂xµ

∂t̃
,

也即是说，tµ渐近于无穷远处的一个时间平移生成元。EADM正是这个时间

平移生成元对应的引力哈密顿量，从而就是时空的总能量。

类似的，HADM也可以提供时空总角动量与渐近旋转之间的联系。只

要我们选取tµ → ϕµ ≡ ∂xµ

∂ϕ
, 这里ϕ是渐近区域相对于笛卡尔坐标(x̃, ỹ, z̃)的

一个旋转角度。当然，这种选取相应于N = 0, Na ≡ ϕa = ∂ya

∂ϕ
。也即是说，

时空的总角动量JADM可以定义成

JADM ≡ −1

κ

∫
S∞
t

d2θ
√
σ
[
raϕb(Kab −Khab)

]
, (18.130)
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相对于原来HADM的公式，我们在式中多加了一个额外的负号，这是为了

使得计算出来的角动量的正负与通常约定吻合。值得注意的是，总角动量

的定义是相对于某个转轴而言的，ϕ就是相对于这个转轴的转角。

从上面的定义可以看出，渐近平坦时空的总能量和总角动量只依赖于

引力场在空间无穷远处的渐近行为，这是一个相当奇妙的性质，因为一般

来说，能量总量这样的东西应该是某个能量体密度的体积积分，应该是依

赖于整个空间体的。不过，在电动力学中我们也见过类似的现象，即空间

的电荷总量只依赖于空间无穷远处的电通量。

在渐近平坦时空中，ADM能量(也包括ADM角动量)是时间无关的守恒

量。这是因为：首先，时空的渐近对称性(如时间平移不变性)导致能量守

恒。其次，为了保证时空渐近平坦，引力辐射在无穷远处的能量流需满足

特定衰减条件，从而对ADM能量无贡献。

值得说明的是，这里给出的ADM能量的公式和通常所见的ADM公式

并不相同，推导方式当然也不同。但是，可以证明，两个不同的公式结

果其实是一致的，证明可以参见S. W. Hawking, Gary T. Horowitz, The

Gravitational Hamiltonian, Action, Entropy and Surface Terms, arXiv: gr-

qc/9501014.

正正正质质质量量量定定定理理理(Schoen-Yau-Witten定定定理理理)

既然ADM能量EADM为渐近平坦时空的总能量，一个重要的问题是，

EADM是否有下界? 甚至是否有EADM ≥ 0? 这个问题之所以重要，是因为

如果总能量没有下界，那么任何时空都将不稳定，会无限地往能量更低的

时空衰变。

好在Schoen和Yau给出了这个问题的肯定回答(Yau就是丘成桐)。Schoen-

Yau证明，对于物理上合理的物质场(满足主能量条件)，总有

EADM ≥ 0, (18.131)

且EADM = 0当且仅当时空全局为平坦的闵可夫斯基时空。这表明，引力系

统的总能量非负，且“无引力”的真空即为能量零点，所以通常称这个定

理为正质量定理(质量即是能量)。后来Witten又给出了这个定理的更优雅

而且大大简化的证明，所以也称之为Schoen-Yau-Witten定理。

轴轴轴对对对称称称稳稳稳态态态时时时空空空的的的能能能量量量和和和角角角动动动量量量
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下面我们考察一个具体的渐近时空，并计算其ADM能量和角动量。我

们考察的时空就是轴对称稳态时空。

正如第十三章(讲述克尔黑洞的章节)中提到过的，轴对称的稳态时空

在空间无穷远(r → +∞) 处度规的渐近形式为

ds2 →−
(
1− 2GM

r

)
dt2 + (1 +

2GM

r
)dr2 + r2(dθ2 + sin2 θdϕ2)

− 4GJ

r
sin2 θdtdϕ. (18.132)

通过重新定义r，具体来说就是将r替换成r + GM , 我们也可以将上面的渐

近度规改写成(注意r → +∞)

ds2 →−
(
1− 2GM

r

)
dt2 + (1 +

2GM

r
)
(
dr2 + r2dΩ2

)
− 4GJ

r
sin2 θdtdϕ. (18.133)

式中dΩ2 ≡ dθ2 + sin2 θdϕ2。在第十三章中我们提到过，上面的M是整个时

空的总能量，J是总角动量，现在我们就通过具体计算来确定这一点。

首先，选取Σt为t取常数值的超曲面，不难看出上面的这个渐近度

规(18.133)符合我们对Σt的要求。显然nµ = −
(
1 − GM

r

)
∂µt(注意到r很大，

并且我们的计算仅仅保留到GM/r的一阶，下同)。很显然，Σt上的诱导度

规为

habdy
adyb = (1 +

2GM

r
)
(
dr2 + r2dΩ2

)
. (18.134)

取空间边界St为r = R处的两维球面，最终我们要取R → ∞的极限。不难
看出，St的法向量ra为ra =

(
1 + GM

r

)
∂ar, 并且St上的诱导度规为

σABdθ
AdθB = (1 +

2GM

R
)R2dΩ2. (18.135)

为了计算ADM能量M，我们需要计算k = Dar
a, 计算的结果是k =

2(1− 2GM/R)/R。另外还需要从k中减除掉k0, k0是同一个St嵌入平坦空间

的外曲率。记St在平坦空间的诱导度规为

σ0
ABdθ

AdθB = R′2dΩ2, (18.136)

很显然，为了保证σ0
AB = σAB,需要取R′ = R(1+GM/R)。进而可算得k0 =

2/R′ = 2(1 − GM/R)/R。所以k − k0 = −2GM/R2。另一方面
√
σd2θ =
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R2(1 + 2GM/R) sin θdθdϕ。将这些结果代入公式(18.140), 即得

EADM = M. (18.137)

正如我们所期望的。

为了计算ADM角动量JADM，我们注意到Kabr
aϕb = Ka

braϕ
b = Ka

b(1 +

GM/r) ∂r
∂ya

∂yb

∂ϕ
= (1+GM/r)Kr

ϕ = (1+GM/r)grrKrϕ = (1−GM/r)Krϕ,利

用定义Kab = eµae
ν
bDµnν可以算得Krϕ = (1−GM/r)Γt

rϕ. 利用

gtt = −(1 + 2GM/r), gtϕ = −2GJ/r3. (18.138)

进而可以算得Γt
rϕ = −3GJ sin2 θ/r2, 进而即有Krϕ = −3GJ sin2 θ/R2。另一

方面，公式(18.130)中的第二项(Khabr
aϕb项)其实等于零，因为ra和ϕa是正

交的。将这些结果代入公式(18.130)，即得JADM = (3J/4)
∫ π

0
sin3 θdθ = J ,

即

JADM = J, (18.139)

正是我们期待的结果。

引引引力力力能能能量量量的的的非非非定定定域域域性性性

ADM能量定义的是整个时空的总能量，而且它只取决于度规的渐近行

为，也就是说，这样定义出来的能量是非定域的，即不是由一个能量密度

进行体积积分给出的。除了ADM能量之外，关于引力场全局能量的定义还

有Bondi能量等。

那么，可不可能定义引力场的能量密度呢？前面引力波的章节中好像

我们给出过引力场的能量密度(能动张量)，但是，那里是把时空背景取作

平坦时空，把引力场看作时空背景上的微扰场，而不是采用更一般的引力

场对应于时空弯曲的观点，尤其是，那里我们并没有用到等效原理。那么，

一般来说，对于非微扰的引力场，可不可以定义它的局域能量密度呢？或

者更广泛地说，可不可以定义引力场本身的能动张量呢？

类比于电磁场的话，我们知道，电磁场的能动张量取决于场强的平方，

因此人们可能同样猜想，引力场的能动张量也取决于场强的平方，但问题

是，引力场的场强由克里斯托夫联络来刻画，而根据等效原理，我们总可

以取局域惯性系，在局域惯性系中，克里斯托夫联络为零，也就是引力场

强为零，如此一来就会导致引力场的能动张量恒等于零！但是，引力场当

然是有能量的，所以这样想的话就会自相矛盾。
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问题可能还是出在引力能量的非定域性，也即是说，引力场有能量，

但是这能量并不由局域的能量密度来刻画。换言之，可能不存在引力场能

动张量的一个合理定义！当然，人们也作过一些尝试，想用某种赝能动张

量来定义引力场的能量密度，比如朗道和栗弗席兹的《场论》中就提出过

一个这样的赝张量。但总体来说，这些尝试都不太成功。

另一方面，人们也尝试过定义引力场的准局域能量，即通过一个包围

有限空间区域Σ的两维表面∂Σ来定义能量，这避免了ADM能量定义中需要

取无限远处边界条件的问题。这种准局域能量的典型例子是所谓的布朗-约

克能量，其定义和ADM能量很像，为

EBY(Σ) = −1

κ

∫
∂Σ

d2θ
√
σ(k − k0). (18.140)

另外，在AdS/CFT对应的框架中，引力场的能量可以全息地编码在边

界共形场论的能动张量中，但这一方法仅仅限制于渐近AdS时空，而且它

定义的也是一种全局能量，因为整个时空的能量还是由远处的渐近边界给

出，只是这时候由于是渐近AdS而不是渐近平坦，所以有一个类时的共形

边界而已。


