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第二章 狭义相对性原理以及能

量-动量张量

陈陈陈童童童

本章主要是帮助不太熟悉狭义相对论和与之相关的经典场论的读者快

速熟悉这两方面的内容。对这两方面很熟悉的读者可以跳过本章的大部分

内容。但建议不要跳过最后引入能量动量张量的那一节，因为它对于本书

后续章节的讲解有很关键的作用，即使你已经了解了相关内容，也请务必

浏览一下最后这一节。

2.1 相对性原理

狭义相对论的基本原理是相对性原理，有时候也称之为狭义相对性原

理，它说的是：在所有惯性系中，一切物理规律――包括相互作用的传播规

律――都是相同的。

特别的，爱因斯坦提出，相互作用的传播速度不是无穷大，而是有限

的。的确，按照今天对经典物理的理解，一个物体要对另一个物体施加作

用，就要向它发出一个信号，而受作用的物体只是对这个信号进行响应，

在场论中，这个传播相互作用的信号就是场的波动。总之，物体间的相互

作用需要信息的传递，但是信息传递的速度不可能像超距作用说的那样是

无穷大，而必定是有限的。不妨记信息传播的最大速度为c(当然，c就是真

空中的光速)，按照相对性原理，c必定不依赖于所选的惯性系，而是一个

不变的常数，因因因此此此我我我们们们当当当然然然可可可以以以合合合适适适地地地选选选择择择时时时间间间的的的单单单位位位，，，使使使得得得c = 1。
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第二章 狭义相对性原理以及能量-动量张量 3

2.1.1 间隔不变性与闵可夫斯基几何

考察S系和S ′系这两个惯性系，假定同一事件在这两个参考系中的时

空坐标分别是(t, x, y, z)和(t′, x′, y′.z′)。则，由于时空的均匀性，这两个参

考系之间的坐标变换一定是一个线线线性性性变变变换换换。

现在，设想在S系中，从(t, x, y, z)点发出一束光到达(t+ dt, x+ dx, y +

dy, z + dz)点，由于c = 1，显然我们有

−dt2 + dx2 + dy2 + dz2 = 0. (2.1)

根据c的不变性，同样的两个事件在S ′系看来也得满足

−dt′2 + dx′2 + dy′2 + dz′2 = 0. (2.2)

换言之，两个邻近事件在两不同参考系中的时空坐标必得满足一个约束关

系，即当(2.1)成立时必有(2.2)成立，反之亦然。又由于两参考系之间的坐

标变换是线性变换，因此，对任意的两个邻近事件，我们必有

−dt′2 + dx′2 + dy′2 + dz′2 = D(v)(−dt2 + dx2 + dy2 + dz2), (2.3)

式中v是S ′系相对于S系的速度。同样的，由于S与S ′地位平等，如果从S ′变

换到S，就有

−dt2 + dx2 + dy2 + dz2 = D(−v)(−dt′2 + dx′2 + dy′2 + dz′2). (2.4)

换言之，我们必有D(−v)D(v) = 1。又由于空间的各向同性可知，D对

相对速度v的依赖只能是依赖于其大小v，而必定和其方向无关，因此

我们必定有D(−v) = D(v) = D(v)。因此，D(−v)D(v) = (D(v))2 = 1，

即D(v) = ±1。又由于D(v)是v的连续函数，而且D(0) = 1(对应S和S ′为同

一个参考系的情形)，因此必有D(v) = 1。因此，对于任意两个邻近事件我

们必有

−dt′2 + dx′2 + dy′2 + dz′2 = −dt2 + dx2 + dy2 + dz2. (2.5)

通常将−dt2+ dx2+ dy2+ dz2称为两个邻近事件的时空间隔的平方，简

称间隔平方，并记为ds2，即

ds2 = −dt2 + dx2 + dy2 + dz2 = −dt2 + dx2. (2.6)
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用这个记号，方程(2.5)就可以简记成

ds′2 = ds2, (2.7)

称为两个事件的间隔不变性。

很显然，狭义相对论中的间隔平方完全类似于平坦的欧几里得几何中

的线元ds2，只不过现在处理的是时空而不是单纯的空间，而且在dt2前面

多了一个负号。基于这个观察，闵可夫斯基建议将狭义相对论看成是一种

平坦时空的几何，这种几何类似于描述平坦空间的欧几里得几何，通常称

作闵可夫斯基几何。根据这个观点，惯性参考系之间的坐标变换就类似于

欧几里得几何中的坐标系旋转，(只不过现在是时空坐标的“旋转”), 所

以保持“两点距离”的平方，即间隔平方(现在也同样称作闵氏几何的线

元)。

人们通常约定t = ct = x0(c = 1), x = x1, y = x2, z = x3，这样就把四个

时空坐标统一地记成了xµ, µ = 0, 1, 2, 3。利用这个记号，我们就可以将闵

氏几何的线元重写为

ds2 = ηµνdx
µdxν , (2.8)

式中ηµν为，−η00 = η11 = η22 = η33 = 1, 其它指标分量都等于零。类似于欧

几里得空间的度规张量δµν , 我们称ηµν为四维闵可夫斯基时空的度规张量。

值得注意的是，ηµν关于它的两个指标是对称的，即满足ηµν = ηνµ。

也可以将ηµν看成是一个4× 4矩阵的分量形式(记这个矩阵为η)

ηµν = diag(−1,+1,+1,+1), (2.9)

进而引入这个矩阵的逆矩阵η−1，其分量形式记为ηµν，

ηαβη
βγ = δγα, (2.10)

式中δγα为4 × 4单位矩阵的分量形式。很容易看出，ηµν也为，−η00 = η11 =

η22 = η33 = 1, 其它指标分量都等于零。

假设我们考察的不是两个邻近时空点，而是两个有限间隔的时空

点xµ
1和xµ

2 , 记∆xµ = xµ
2 − xµ

1，记这两个事件的时空间隔为∆s，则有

(∆s)2 = ηµν∆xµ∆xν = −(∆t)2 + (∆x)2. (2.11)

同样，无论在哪个参考系中计算，间隔∆s都是不变的。1. 如果(∆s)2 <

0, 我们就称xµ
1和xµ

2这两个事件类类类时时时相相相间间间(timelike separated)。由于这时
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候(∆x
∆t

)2 < 1，所以我们总可以用信号将这两个事件联系起来，所以这两个

事件就存在因果关系，而且正如马上就会看到的，在不同的惯性系中，事

件的因果关系将会保持不变，先发生的事件在任何惯性系中都会先发生。

2. 如果(∆s)2 = 0, 我们就称这两个事件类类类光光光相相相间间间(lightlike separated)。这

时候可以用光信号将两个事件联系起来。3. 如果(∆s)2 > 0, 我们就称这

两个事件类类类空空空相相相间间间(spacelike separated)。这时候两事件没有任何因果关系，

不可能用任何信号将它们联系起来，同时它们的先后顺序也是相对的，在

不同参考系中对哪个事件先发生会有不同的看法。

为了将上述两事件间的关系看得更清楚，我们取其中一个事件为xµ
1 =

0, 即位于时空图的坐标原点，另一个事件xµ
2 = xµ，记事件xµ与原点事件的

间隔为s，则

s2 = −t2 + x2. (2.12)

对于s2 = 0的类光相间情形，方程−t2 + x2 = 0给出的是时空图上以原点为

顶点的圆锥面，称之为光锥(lightcone), 如图(2.1)所示。

图 2.1: 时空图上原点处的光锥。

对于s2 < 0情形，这时候方程t2 − x2 = −s2 > 0给出的是具有两支的

双曲面，一支位于上半光锥所包围的内部区域，一支位于下半光锥所包围

的内部区域，由于不同惯性系中t2 − x2 = −s2保持不变，因此在不同惯性

系中事件2的坐标xµ只能在这个双曲面上变动。不过由于双曲面被光锥分

隔成了两支，所以在不同惯性系中上半支的点只能在上半支上变动，即恒

有t > 0，而下半支的点则恒有t < 0, 即是说，处于原点未来的事件在任何

惯性系中都保持在未来，而处于原点过去的事件在任何惯性系中都在过去，

即，不同参考系不会改变事件间的因果关系。要让双曲面上半支的点变到
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下半支只能是经过一个t → −t的时间反演。通常称上半光锥为未来光锥，

称下半光锥为过去光锥。

最后，对于s2 > 0情形, 方程x2 − t2 = s2 > 0给出的是一个连通的双

曲面，原则上，这个双曲面上的任何点可以在一个合适的参考系中变到双

曲面上的任何其它点，特别的，t > 0的点可以变到t < 0，反之亦然。即

是说，与原点类空相间的事件是先于原点发生还是后发生并没有绝对的意

义！

固有时

假如原来有一个参考系，有一个粒子从参考系的(t, x, y, z)点运动到(t+

dt, x + dx, y + dy, z + dz)点，这两点(它们当然类时相间)间的间隔当然满

足ds2 = ηµνdx
µdxν。现在，假设有一个钟固定在这个粒子上，记此钟走过

的时间为dτ，并且我们依托这个钟建立一个固定在粒子上的参考系，那么

在这个参考系中，粒子的空间位移当然是零，从而从这个固定在粒子的参

考系看来，间隔ds应该满足，ds2 = −dτ 2，即

ηµνdx
µdxν = −dτ 2. (2.13)

上式中的τ就称之为粒子走过的固有时，而x0 = t则称之为坐标时。很显然，

固有时就是固连在粒子上的钟所走过的时间。

利用固有时，我们可以定义粒子的四维速度uµ

uµ =
dxµ

dτ
. (2.14)

根据(2.13)式，显然有

ηµνu
µuν = −1. (2.15)

我们称uµ为一个类时矢量。即是说，假如把uµ的起点画在光锥原点的话，

uµ将完全躺在光锥之内。这就说明，一切从光锥原点经过的粒子，其在时

空中的运动轨迹都将在这一点的光锥之内。当然，光子例外，光子的运动

轨迹躺在光锥面上，因为光子的固有时总是零！

假设粒子的速度为v，即dx = vdt，则根据(2.13)式即有

dτ 2 = dt2 − dx2 = dt2(1− v2) ⇒ dt =
dτ√
1− v2

. (2.16)



第二章 狭义相对性原理以及能量-动量张量 7

即是说，坐标时总是比固有时长的。测固有时的钟当然是相对于原参考系

运动的钟，所以这个结果常常也被人们说成是，运动的钟会变慢，因为对

同一个参考系中的过程，它测出来的时间更短。

但是，这并非运动的钟本身有什么问题，而是从原参考系的静止观察

者来看，运动的一切事物都变慢了，运动的人的生命过程也变慢了。不过，

从运动的人自己来看，他自己的一切都是正常的，在他看来，反而是原参

考系中的观察者在运动(运动是相对的)，反而是这观察者的生命过程变慢

了。

光锥与世界线

在狭义相对论中，由于类空相间事件的先后顺序是相对的，因此两个

不同地的事件是否同时发生也是相对的，依赖于参考系，这就是所谓的同

时的相对性。在牛顿力学中，我们可以绝对地将时空用等时的空间超曲面

分割，因为同时的相对性，在狭义相对论中却无法做到这一点。但这并不

说明狭义相对论的时空完全没有结构。相反，在任何一个时空点，我们都

可以定义一个光锥，如图(2.2)所示，它就是经过这点的光线在时空中的运

动轨迹之集合。由于在狭义相对论中，一切粒子的运动速度都不能超过光

速，所以经过任何时空点的粒子，其在四维时空中的运动方向都只能在这

点的光锥之内，最多是在光锥面上(对于光子)，而决定不能在光锥之外。

我们把粒子在时空中的运动轨迹称作粒子的世界线，记为xµ(σ), 很多

时候人们会选择粒子的固有时τ作为世界线的参数，即取σ = τ。根据上一

段所说可知，粒子的世界线只能从其上各点的光锥内部穿过，如图(2.2)所

示。

前面我们说过运动的钟会变慢，同时我们也说过运动是相对的。那么，

假设有两只钟，一只为Bob所持有，而Bob静止不动，另一只为Alice持有，

它跟着Alice沿着闭合路径运动一圈再回到起点与Bob的钟比较，那到底哪

只钟慢了呢？回答是，运动的钟绝对地慢了。但是运动不是相对的吗？从

运动钟来看，不是静止的钟在运动吗？但是，从这以运动的钟为参考系的

后一种观点导不出静止的钟变慢的结论，因为这时候这个参考系不是一个

惯性系，这是由于这个运动的钟是沿着闭合路径运动一圈而不是作匀速直

线运动。

其实，这两只钟分别测量的是Bob和Alice的固有时，而Bob与Alice在

时空中的世界线如图(2.3)所示。对于有限长世界线，固有时T是dτ沿着世
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图 2.2: 时空图上的光锥和世界线。

界线的积分

T =

∫
dτ =

∫ √
dt2 − dx2. (2.17)

注意这个积分中的时间微元贡献和空间微元贡献是相减的关系，Bob世界

线的空间完全固定，而Alice的世界线在空间上扫过，由于空间的贡献是

要减去的，所以很显然Bob的固有时比较长，而Alice的固有时比较短，所

以Alice的钟慢！

图 2.3: Bob与Alice在时空中的世界线。

这就是闵可夫斯基几何与欧几里得几何不同的地方，在欧几里得几何



第二章 狭义相对性原理以及能量-动量张量 9

中，两点之间直线总是最短的。但是在闵可夫斯基几何中，对于运动粒子

的世界线，两点之间直线的固有时反而是最长的，而曲线由于要减去更多

的空间贡献，固有时反而会比较短。

2.1.2 庞加莱群

狭义相对论中，两个惯性参考系之间的时空坐标变换称作洛伦兹变换，

根据前面所说，它是一个保持间隔不变性的线性变换，通常写成

dx′µ = Λµ
νdx

ν , (2.18)

式中Λµ
ν 构成变换矩阵Λ的分量形式。根据间隔不变性，我们有

ηµνdx
′µdx′ν = ηµνΛ

µ
αΛ

ν
βdx

αdxβ = ηαβdx
αdxβ, (2.19)

从而即有

ηµνΛ
µ
αΛ

ν
β = ηαβ. (2.20)

我们当然可以将(2.20)式写成矩阵形式，即

ΛTηΛ = η. (2.21)

很容易验证，如果洛伦兹变换Λ1满足上面式子，Λ2也满足上面式子，

则Λ1Λ2必定也满足上面式子，从而也是洛伦兹变换。即是说，所有洛

伦兹变换的集合在矩阵乘法下封闭。另外，对(2.21)式两边求行列式，并注

意到det(η) = −1, 从而即可得

[det(Λ)]2 = 1 ⇒ det(Λ) = ±1. (2.22)

由此可知矩阵Λ必定存在逆矩阵Λ−1，并且很明显Λ−1也是洛伦兹变换，即

任何洛伦兹变换都有逆变换。满足乘法封闭性，并且存在逆元素的元素集

合就是数学上所谓的群，所以，所有洛伦兹变换的集合构成一个群，称作

洛伦兹群，常常记作O(1, 3)。很明显，所有det(Λ) = 1的洛伦兹变换也构成

一个群，它是O(1, 3)的子群，通常记作SO(1, 3)，实际上，人们在谈到洛伦

兹群的时候更多都是指的这个SO(1, 3)群。

进一步，在(2.20)式中取α = β = 0, 即可得

(Λ0
0)

2 = 1 +
∑

i=1,2,3

(Λi
0)

2 ≥ 1 ⇒ Λ0
0 ≥ 1 or Λ0

0 ≤ −1. (2.23)
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从而根据det(Λ)的正负以及Λ0
0的正负，我们可以将洛伦兹变换的集合分成

四个子集。其中所谓的正洛伦兹变换要求满足下面条件

det(Λ) = 1, Λ0
0 ≥ 1. (2.24)

容易验证，正洛伦兹变换的集合也构成一个群，称作正洛伦兹群，它是洛

伦兹群的子群，通常记为SO+(1, 3)。

除了惯性参考系之间的洛伦兹变换之外，很显然，时空坐标的平移

xµ → x′µ = xµ + aµ, (2.25)

这也同样保持事件间的间隔不变。洛伦兹变换再加上时空平移就构成一

个比洛伦兹群更大的群，称作庞加莱群。由于四维时空闵可夫斯基几何

的ds2在庞加莱群变换下保持不变，所以它是闵可夫斯基时空的对称群。

2.1.3 四维闵可夫斯基时空的矢量和张量

上一小节说过，在不同的惯性参考系中，时空坐标按照下面的洛伦兹

变换而变换，

dx′µ = Λµ
νdx

ν , (2.26)

式中变换矩阵Λ满足

ΛTηΛ = η ⇔ Λ−1 = η−1ΛTη. (2.27)

类比于四分量的dxµ，假设一个任意的四分量量Aµ = (A0,A)在参考系

的变换下与dxµ的变换规则相同，即满足

A′µ = Λµ
νA

ν , (2.28)

则我们称Aµ为一个四维闵可夫斯基时空的矢量，简称四矢量，当然严格来

讲Aµ是四矢量的分量形式。与时空间隔类似，我们可以定义四矢量的平

方A2为

A2 = ηµνA
µAν = −(A0)2 +A2 = −(A0)2 + (A1)2 + (A2)2 + (A3)2. (2.29)

很明显，A2在洛伦兹变换下是不变的。假如A2 < 0，我们就称Aµ为一个

类时矢量，假如A2 = 0，我们就称之为一个类光矢量或者零性矢量，假

如A2 > 0，就称之为一个类空矢量。
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我们也可以定义下指标的四分量量Aµ为，

Aµ = ηµνA
ν , (2.30)

写得更清楚一点就是

Aµ = (A0, A1, A2, A3) = (−A0, A1, A2, A3) = (A0,A). (2.31)

则A2就可以写成A2 = AµA
µ，而A2在洛伦兹变换下的不变性则意味着

A′
µA

′µ = AµA
µ. (2.32)

注意到Aµ在洛伦兹变换下按照(2.28)式变换，因此上式就意味着Aµ必然按

照下式变换

A′
µ = (Λ−1)νµAν . (2.33)

在洛伦兹变换下按照这样变换的量同样叫做四矢量。不过为了区分上指标

的四矢量和下指标的四矢量，有时候人们称Aµ为四矢量的逆变分量，而

称Aµ为四矢量的协变分量。利用ηµν我们可以把上指标降下来，进而将逆变

分量转化为协变分量，反过来，我们也可以利用ηµν将下指标升上去，即

Aµ = ηµνAν . (2.34)

假设记∂µ = ∂
∂xµ，则不难明白全微分d = dxµ∂µ是不依赖于坐标系的，

由此即可以看出，偏导运算∂µ在洛伦兹变换下和协变四矢量的变换规则相

同，即按下式变换

∂′
µ = (Λ−1)νµ∂ν . (2.35)

归纳一下即是，在洛伦兹变换下，四矢量的逆变分量和dxµ的变换规则相

同，而协变分量则和∂µ的变换规则相同。

很显然，任意一个逆变四矢量Aµ和任意一个协变四矢量Bµ都可以构成

一个在洛伦兹变换下保持不变的量，这个量即是AµBµ, 有时候也记作A ·B，
称作两个四矢量A和B的内积，有时候也称作矢量A和B的缩并。两个四矢

量的内积(缩并)是洛伦兹不变的，称作一个四维标量，四维标量即是在洛

伦兹变换下保持不变的量。
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四维矢量是只有一个指标的量，我们当然可以进一步考察多个指标的

量，比如Bµν , 如果这个量的每一个指标在洛伦兹变换下都按逆变矢量那样

变，即是说

B′µν = Λµ
αΛ

ν
βB

αβ, (2.36)

我们就称Bµν为一个2阶逆变张量，或者记作(2, 0)张量，(2, 0)代表它有2个

上指标0个下指标。类似的，我们也可以考察(0, 2)张量，它即是两个下指

标，且在洛伦兹变换下按照下式变换的量，

B′
µν = (Λ−1)αµ(Λ

−1)βνBαβ. (2.37)

进一步，也可以考察混合型张量，比如(1, 1)张量，它即是一个上指标一个

下指标，且在洛伦兹变换下按照下式变换的量，

B′µ
ν = Λµ

α(Λ
−1)βνB

α
β. (2.38)

类似的概念可以很容易推广到有p个上指标q个下指标的(p, q)张量。特别的，

(0, 0)张量就是四维标量，(1, 0)张量就是四维逆变矢量，而(0, 1)张量则是四

维协变矢量。

当然，完全类似于四矢量情形，我们同样可以用ηµν来将张量的上指标

降下来，也可以用ηµν来将张量的下指标升上去。而且，对于一个(p, q)张

量，我们可以让它的某个上指标和某个下指标相同，从而默认对这个指标

求和，结果就是一个(p − 1, q − 1)张量，这同样也叫做张量的缩并。比如

说，对于(1, 1)张量Bµ
ν，我们可以考察Bµ

µ = B0
0 +B1

1 +B2
2 +B3

3，注意它

的上指标和下指标已经求和掉了，从而人们很容易验证它是洛伦兹不变的，

即是一个(0, 0)张量，或者说是一个四维标量。

另外，比如说对于(2, 0)张量Bµν，我们可以进一步要求它的两个指标

对称，即满足Bµν = Bνµ，这就叫二阶对称张量。而如果我们要求两个指

标反对称，即满足Bµν = −Bνµ，那就叫二阶反对称张量。对于反对称张

量Bµν，我们有B00 = B11 = B22 = B33 = 0, 这是因为比如说B00 = −B00，

从而必有B00 = 0。对于(0, p)张量Cµ1µ2...µp，如果它的任意两个指标均反对

称，我们就称之为p阶反对称张量。但是在四维时空中，必定有p ≤ 4。这

是因为，在四维时空中，任何指标都只能取0, 1, 2, 3，从而对于p > 4的情

形，Cµ1µ2...µp的任意p个下指标中必有两个取相同值，考虑到反对称这就意

味着Cµ1µ2...µp = 0, 即高于4阶的反对称张量必定为零。进一步，由于p阶反
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对称张量场p个指标必须全不相同，所以在四维时空中，它的独立分量个数

就是 4!
p!(4−p)!

。

最后，四维张量的概念很容易推广到场，如果一个量既是一个四维张

量，同时还是一个场，那就叫做张量场，比如一个(0, 2)型二阶张量场可以

写成Bµν(x)，式中x表示时空点。Bµν(x)在洛伦兹变换下按照下式变

Bµν(x) → B′
µν(x

′) = (Λ−1)αµ(Λ
−1)βνBαβ(x). (2.39)

其它四维张量场的变换规则可以类似地推广。特别的，对于标量场Φ(x)，

我们有

Φ(x) → Φ′(x′) = Φ(x). (2.40)

2.2 狭义相对性原理与经典物理

2.2.1 狭义相对性原理与经典场论

现在我们可以将狭义相对性原理重新表述为，任何物理规律都应该在

洛伦兹变换下保持不变。我们知道，经典场论的规律(也就是场方程) 可以

由最小作用量原理导出，因此这就意味着经典场论的作用量泛函必须在洛

伦兹变换下保持不变！这就意味着经典场论的作用量泛函必须是洛伦兹标

量。

另外，对于局域场论，作用量S总可以写成拉格朗日密度L的积分，
即S =

∫
d4xL，注意到由于det(Λ) = 1，因此体积元d4x显然是洛伦兹不变

的，因此S要是洛伦兹标量当且仅当拉格朗日密度L为洛伦兹标量！

标量场

进一步，假设我们考虑的是一个标量场论，场变量记为ϕ，则拉氏密度

实际上是ϕ和∂µϕ的函数(这里∂µ = ∂
∂xµ )，记为L = L(ϕ, ∂µϕ)。根据最小作

用量原理，我们可以进行如下推导

δS[ϕ(x)] =

∫
d4xδL(ϕ, ∂µϕ)

=

∫
d4x

[∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

]
=

∫
d4x

[∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ)

]
=

∫
d4x

[∂L
∂ϕ

− ∂µ

( ∂L
∂(∂µϕ)

)]
δϕ+

∫
d4x∂µ

( ∂L
∂(∂µϕ)

δϕ
)
. (2.41)
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很显然，最后一行的第二项是全微分项，因此积分结果完全取决于边界项，

为 ∫
d4x∂µ

( ∂L
∂(∂µϕ)

δϕ
)
=

∫
dSµ

( ∂L
∂(∂µϕ)

δϕ
)
|∞. (2.42)

式中dSµ表示四维时空无穷远三维边界的体积元。总之，结果仅仅在四维

时空的无穷远边界上有贡献。但是，最小作用量原理要求在时空的边界上

场位形是固定的，从而δϕ = 0，因此这一项的最终结果其实等于零。

从而即有

δS[ϕ(x)] =

∫
d4x

[∂L
∂ϕ

− ∂µ

( ∂L
∂(∂µϕ)

)]
δϕ, (2.43)

进一步应用最小作用量原理δS[ϕ(x)] = 0，即可得到场方程，

δS

δϕ(x)
=

∂L
∂ϕ

− ∂µ

( ∂L
∂(∂µϕ)

)
= 0. (2.44)

而∂µϕ能构造出来的最简单洛伦兹标量就是

∂µϕ∂
µϕ = ηµν∂µϕ∂νϕ = −(∂tϕ)

2 + (∇ϕ)2. (2.45)

要求动能项为正，并进一步通过将一个合适的常数吸收进场ϕ的定义之中，

我们总能将∂µϕ对拉氏密度最简单的贡献写作

−1

2
∂µϕ∂

µϕ. (2.46)

另外，很显然，ϕ的任意函数−U(ϕ)都是洛伦兹标量，因此可以加到拉氏密
度中去，进而就得到如下最简单的洛伦兹不变的拉氏密度

L = −1

2
∂µϕ∂

µϕ− U(ϕ). (2.47)

当然，洛伦兹不变性并不能完全决定拉氏密度，比如，读者很容易发

现下面的拉氏密度同样洛伦兹不变，

L = −1

2
g(ϕ)∂µϕ∂

µϕ− U(ϕ), (2.48)

式中g(ϕ)为ϕ的任意函数。这也是一种很常见的标量场模型，虽然人们对它

的研究可能比上面那个更简单的模型略少。在这个模型中取g(ϕ)为常数g0,

然后再将
√
g0吸收到ϕ场的定义中去，就回到了上面那个更简单的模型。
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读者可能会想为什么只用ϕ和∂µϕ构造拉氏密度呢？为什么不考虑二阶

导数(∂µ∂νϕ)，甚至更高阶导数呢？的确，考虑二阶导数也能轻易构造出洛

伦兹不变的拉氏密度，比如

L = −1

2
∂µϕ∂

µϕ+ f(ϕ)(∂µ∂νϕ)(∂
µ∂νϕ). (2.49)

但实际上，人们几乎不会研究这种场论模型，原因有两个：第一，这种场

论模型用最小作用量原理导出的场方程是四阶微分方程，而我们通常要求

物理系统的运动微分方程为二阶微分方程。第二，可以证明，这样含高阶

导数的模型导出来的哈密顿量(也就是能量)没有下界，即没有最低能量，

从而物理上是不允许的，这就是所谓的Ostrogradsky 不稳定性。

前面的标量场模型很容易推广，比如说，我们可以同时考察n个标量

场，记为ϕa, a = 1, 2, ..., n，这时候很容易构造出如下拉氏密度，

L = −gab(ϕ)∂µϕ
a∂µϕb. (2.50)

式中gab(ϕ)是ϕa的函数，实际上人们通常让它是场空间的黎曼度规。这样的

场论模型就是所谓的非线性sigma模型。之所以没有在非线性sigma模型的

拉氏密度中加上−U(ϕ)这样的项，是因为我们还要求了场空间的微分同胚
不变性，U(ϕ)这样的项会破坏这种不变性。
前面考察的标量场ϕ都是实数值的，我们当然也可以考察复数值的标

量场，不过由于作用量和拉氏密度必须是实数值的，所以这时候需要同时

考虑ϕ以及它的复共轭场ϕ。很显然，这时候最简单的拉氏密度可以取下面

的形式

L = −∂µϕ∂
µϕ− U(ϕϕ). (2.51)

很容易看出，除了洛伦兹不变性之外，这个拉氏密度还在下面变换下保持

不变，

ϕ → eiθϕ, ϕ → e−iθϕ. (2.52)

式中θ为一个任意常数。

电磁场

以上只考虑了四维闵可夫斯基时空中的标量场论。四维矢量场甚至高

阶张量场当然也能构造相应的拉氏密度，进而得到相应的经典场论。但这
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时候为了得到真正有用的经典场论，往往需要在洛伦兹不变性之外进一步

对系统加上更多的限制。比方说，对于电磁场四矢量Aµ = (ϕ,A)，我们还

要加上规范对称性，即要求物理可观测量和作用量在如下规范变换下保持

不变

Aµ → A′
µ = Aµ + ∂µε(x). (2.53)

式中ε(x)为任意函数。这时候系统的作用量Sg可以写成，

Sg = −
∫

d4x
1

4
FµνF

µν . (2.54)

式中Fµν称作规范场强，它是一个二阶反对称张量场，定义为

Fµν = ∂µAν − ∂νAµ. (2.55)

很容易验证，Fµν在规范变换下保持不变。

将上面这个作用量对Aµ变分，可得

δSg = −
∫

d4x
1

2
F µνδFµν = −

∫
d4xF µν∂µδAν

=

∫
d4x∂µF

µνδAν . (2.56)

为了得出上式最后一行的结果，我们需要分部积分，并丢弃边界项(因为假

设无穷远边界上场的变分等于零)。

人们也可以将电磁场与电流四矢量Jµ = (ρ,J)相耦合，即给电磁场作

用量加上一项SI , 它满足

δSI =

∫
JµδAµ. (2.57)

相应的，根据最小作用量原理0 = δS = δSg + δSI，即可得规范场Aµ满足的

运动微分方程，

−∂µF
µν = Jν . (2.58)

另外，根据Fµν的定义(2.55)，很容易验证它还必然满足如下比安奇恒等式

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (2.59)

(2.58)式和(2.59)式一起就构成麦克斯韦方程组的四维协变形式，更多的讨

论可以参看我的《经典场论新讲》。
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2.2.2 狭义相对性原理与经典力学

如果我们要考察的不是一个场论系统，而是一个粒子，那狭义相对

性原理告诉我们，相对论粒子的作用量也得是洛伦兹变换不变的！唯一

的和粒子坐标有关的这种不变量就是粒子的固有时dτ。所以，粒子的作

用量必定正比于dτ沿着粒子运动路径的积分。固有时具有时间量纲，而

作用量的量纲为能量量纲乘以时间量纲，刚好粒子质量m是能量量纲(由

于E = mc2,而c = 1)，从而我们知道，相对论粒子的作用量必定可以写成

S[x(σ)] = −m

∫
dτ = −m

∫
dσ

√
−ηµν

dxµ

dσ

dxν

dσ
. (2.60)

式中σ为粒子世界线的参数，第一个式子的负号是为了使得作用量有极小

值(因为固有时有极大值，直线的固有时最长)。

值得指出的是，上述作用量(2.60)显然具有重参数不变性，即在σ →
σ̃(σ)的参数变换下保持不变。这意味着我们可以在一定意义上任意选择世

界线参数σ。最常见的选择有两种，第一种是，取σ = τ，即取固有时本身

为路径的参数。第二种选择是取σ = x0 = t，即取通常的时间坐标为参数，

这时候注意到

dτ 2 = dt2 − dx2 = dt2(1− v2). (2.61)

式中v = dx
dt
是粒子的速度。从而就可以将作用量(2.60)写成

S[x(t)] = −m

∫
dt
√
1− v2. (2.62)

假设粒子的运动速度远低于光速，即v ≪ 1，那这时候就可以利用关于v2的

泰勒展开将相对论的作用量(2.62)近似成

S = −m

∫
dt+

∫
dt
1

2
mv2 + ... (2.63)

省略号表示v2的高阶项。很显然，除了相差一个对变分没有影响的常数

项−m
∫
dt之外，这个近似作用量正是非相对论的自由粒子的作用量!

为了导出相对论粒子在闵可夫斯基时空中的运动方程，我们记

L =

√
−ηµν

dxµ

dσ

dxν

dσ
, (2.64)
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因此当取固有时本身为世界线参数时，即σ = τ时，我们有L = 1，即

−ηµν
dxµ

dτ

dxν

dτ
= 1. (2.65)

现在，我们可以把相对论粒子的作用量写成S[x(σ)] = −m
∫
dσL, 为了

导出粒子的运动方程，我们需要计算变分δS[x(σ)] = −m
∫
dσδL。利用

LδL =
1

2
δ(L2) = −ηµν

dxµ

dσ
δ
(dxν

dσ

)
= −ηµν

dxµ

dσ

d(δxν)

dσ
. (2.66)

可以得到

δS[x(σ)] = −m

∫
dσδL = m

∫
dσ

1

L
ηµν

dxµ

dσ

d(δxν)

dσ

= m

∫
dσ

d

dσ

( 1
L
ηµν

dxµ

dσ
δxν

)
−m

∫
dσ

d

dσ

( 1
L
ηµν

dxµ

dσ

)
δxν

= −m

∫
dσ

d

dσ

( 1
L
ηµν

dxµ

dσ

)
δxν . (2.67)

式中最后一个等于号是利用了路径两端是固定的(即在两端δxν = 0)，从而

全微分项的积分结果为零。进而根据最小作用量原理δS[x(σ)] = 0，就可以

得到运动微分方程

δS

δxν(σ)
= −m

d

dσ

( 1
L
ηµν

dxµ

dσ

)
= 0. (2.68)

我们可以通过取σ = τ来简化这个运动方程，这时候L = 1，从而即有

d2xµ

dτ 2
= 0. (2.69)

(2.69)式就是自由的相对论性粒子在时空中的运动微分方程，这个方程

的解显然是

xµ(τ) = uµτ + aµ, (2.70)

式中uµ和aµ均是常矢量，uµ当然就是粒子的四维速度，而且(2.65)式告诉我

们

ηµνu
µuν = −1. (2.71)
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也即是说，相对论性自由粒子在闵可夫斯基时空中是作匀速直线运动！也

可以定义粒子的四维动量pµ，为

pµ = muµ = m
dxµ

dτ
. (2.72)

如果允许引入一个辅助性的力学变量e(σ)，那我们还可以将作用

量(2.60)写成一个更加顺眼的形式，

S[e(σ), x(σ)] =
1

2

∫
dσ

(
e−1ηµν

dxµ

dσ

dxν

dσ
− em2

)
. (2.73)

为了证明这个作用量与前面的(2.60)相等价，人们只要先对辅助力学变

量e(σ)使用最小作用量原理即可，即先利用下式求出e(σ)，再代入上面作

用量中消去e(σ)

δS

δe(σ)
= 0. (2.74)

特别的，(2.73)允许我们取m = 0的极限，从而就得到零质量粒子(比如

光子)的经典作用量，为

S[e(σ), x(σ)] =
1

2

∫
dσ

(
e−1ηµν

dxµ

dσ

dxν

dσ

)
. (2.75)

这是引入辅助变量e(σ)之后的一个意外好处，即允许我们用作用量原理统

一描述有质量粒子和零质量的粒子。

上面所讨论的只不过是一个自由的相对论粒子。而实际的相对论粒子

会和诸如引力场或者电磁场这样的基本力场发生相互作用，如何写出一个

包含了相互作用的作用量呢？我们以电荷为q的带电粒子与电磁场的相互作

用为例来说明这一点。要点依然是通过考虑对称性，不过，这时候我们要

考虑的是电磁场的规范对称性。

仔细思考以后我们可能会发现下面这一项

+q

∫ b

a

Aµdx
µ. (2.76)

它就是电磁势沿着带电粒子世界线的积分, 式中我们假设这条世界线起

于a点终止于b点。这一项显然是洛伦兹不变的，那它规范不变吗？很明显

不是，因为在规范变换(2.53)的作用下，它会变为

q

∫ b

a

Aµdx
µ → q

∫ b

a

Aµdx
µ + q

∫ b

a

dε (2.77)
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但是，我们发现多出来的部分是一个全微分，它完全取决于路径的两个端

点，即

q

∫ b

a

dε = q
(
ε(b)− ε(a)

)
. (2.78)

而我们早就知道，在使用最小作用量原理时，路径的两个端点是固定不变

的，因此规范变换下多出来的这一项对变分完全没有贡献。即是说，虽然

给作用量加上的这一项(2.76)不是规范不变的，但是，由它导出来的运动微

分方程却是规范不变的！所以，(2.76)这一项实际上符合要求！

因此，我们可以写出相对论性带电粒子完整的作用量，为

S[x(σ)] = −m

∫
dσ

√
−ηµν

dxµ

dσ

dxν

dσ
+ q

∫
dσAµ

dxµ

dσ
. (2.79)

如果将参数σ取成坐标时t, 并考虑v ≪ 1的非相对论极限，那上式就可以近

似成

S[x(t)] = −m

∫
dt+

∫
dt
[1
2
mv2 − qϕ+ qA · v

]
+ ... (2.80)

将作用量(2.79)对规范势Aµ变分(为了避免混淆，下面将带电粒子在时

空中的位置坐标改记为xµ
e (σ))，即可得到

δS = q

∫
dσ

dxµ
e

dσ
δAµ

=

∫
d4x

[
q

∫
dσ

dxµ
e

dσ
δ4
(
x− xe(σ)

)]
δAµ. (2.81)

将这个式子与标准的电流四矢量Jµ与规范势的耦合δS =
∫
d4xJµδAµ进行

比较，即可得到此带电粒子系统的电流四矢量，为

Jµ(x) = q

∫
dσ

dxµ
e

dσ
δ4
(
x− xe(σ)

)
. (2.82)

为了看清楚(2.82)式的物理意义，我们取世界线参数σ = x0
e, 并做

出(2.82)式中的积分，则有

ρ = qδ3(x− xe(t))

J = qveδ
3(x− xe(t)). (2.83)

很显然，结果正符合我们对电荷密度以及电流密度表达式的预期。
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2.3 时空对称性与能量动量张量

这一节我们将引入物质系统的一个特征性物理量，即所谓的能量-动

量张量。根据著名的诺特定理，任何一个连续的对称性都必然有一个相应

的守恒流四矢量，能量-动量张量就是与时空平移对称性相对应的守恒流，

由于时空平移本身是一个四维矢量，所以它对应的守恒流就是一个二阶张

量。

2.3.1 场论系统的能量-动量张量

标量场

为了简单起见，我们首先讲述标量场系统的能量-动量张量。

假设有一个标量场ϕ(x)，其拉格朗日密度可以写成L(ϕ, ∂µϕ)，特别的，
这个拉格朗日密度不显含时空坐标x。现在，假定将整个场论系统进行一个

时空平移，使得x点的场平移到x′点，

xµ → x′µ = xµ + aµ, (2.84)

其中aµ为某常数四矢量。记平移之后的场为ϕ′(x)，很显然ϕ′在x′点的场值

来自于平移之前ϕ在x点的场值，即

ϕ′(x′) = ϕ(x). (2.85)

很容易验证作用量S[ϕ] =
∫
d4xL(ϕ, ∂µϕ)在此平移之下保持不变，具体

验证过程如下

S[ϕ′] =

∫
d4xL(ϕ′(x), ∂µϕ

′(x))

=

∫
d4x′L(ϕ′(x′), ∂′

µϕ
′(x′)) =

∫
d4x′L(ϕ(x), ∂′

µϕ(x))

=

∫
d4xL(ϕ(x), ∂µϕ(x)) = S[ϕ] (2.86)

式中第二个等号只是将x变量重写成了x′，倒数第二个等号是用了d4x′ =

d4x以及∂′
µ = ∂µ。

为了通过诺特定理引入相应的守恒流，下面考察无穷小时空平移，即

将aµ取成无穷小量ϵµ。进一步，我们使用一个关关关键键键技技技巧巧巧，即将ϵµ 变成依赖

于时空坐标x的无穷小量ϵµ(x), 即考察如下无穷小时空平移

xµ → x′µ = xµ + ϵµ(x). (2.87)
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当然我们依然有

ϕ′(x′) = ϕ(x). (2.88)

但是，在这种依赖于时空点x的局域平移之下，作用量当然无法保持不变，

因为这种局域平移根本不是系统的对称性。

很显然，在一阶近似上有

∂x′µ

∂xν
= δµν + ∂νϵ

µ,
∂xν

∂x′µ = δνµ − ∂µϵ
ν . (2.89)

另外，记坐标变换的雅可比行列式为|∂x′

∂x
|, 利用矩阵恒等式det(A) =

eTr(lnA), 易得在一阶近似上有

|∂x
′

∂x
| = 1 + ∂µϵ

µ(x). (2.90)

下面我们来计算在局域平移(2.87)之前和之后，系统作用量的改变量。

平移以后的作用量S[ϕ′(x)]为

S[ϕ′(x)] =

∫
d4xL(ϕ′(x), ∂νϕ

′(x))

=

∫
d4x′L(ϕ′(x′), ∂′

µϕ
′(x′)) =

∫
d4x′L

(
ϕ(x), ∂′

µϕ(x)
)

=

∫
d4x|∂x

′

∂x
|L
(
ϕ(x),

∂xν

∂x′µ∂νϕ(x)
)

=

∫
d4x(1 + ∂µϵ

µ(x))L
(
ϕ(x), ∂µϕ(x)− ∂µϵ

ν∂νϕ(x)
)

=

∫
d4x

[
− ∂L

∂(∂µϕ)
∂νϕ(x) + δµνL

(
ϕ(x), ∂ρϕ(x)

)]
∂µϵ

ν

+

∫
d4xL

(
ϕ(x), ∂νϕ(x)

)
. (2.91)

由上面的推导易知，变换前后作用量的改变量为

δS = S[ϕ′(x)]− S[ϕ(x)]

= −
∫

d4x
[ ∂L
∂(∂µϕ)

∂νϕ(x)− δµνL
]
∂µϵ

ν

=

∫
d4xT µ

ν∂µϵ
ν =

∫
d4xTµν∂

µϵν . (2.92)
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式中

T µν = −
[ ∂L
∂(∂µϕ)

∂νϕ(x)− ηµνL
]
. (2.93)

注意(2.92)式，当ϵν是一个不依赖于时空点的整体无穷小平移时，即

有δS = 0，这当然是因为这种整体时空平移是系统的对称性。正因为如此，

不仅对于标量场系统可以找到这样一个T µν，实际上对闵可夫斯基时空的

任何物质系统都能找到一个类似的T µν，因为任何物质系统的作用量在局

域平移(2.87) 前后的改变量都必定能写成如下形式

δS =

∫
d4xTµν∂

µϵν . (2.94)

而这又是因为，当将ϵν取成常矢量(即考察无穷小整体时空平移时)时，由

于时空平移对称性，必有δS = 0，所以在局域化平移情形，δS只能依赖

于ϵν的偏导∂µϵν，从而δS必定能写成(2.94)式的形式！

下面进一步假定ϵν(x)在时空的无穷远边界上都趋于零。另外，上面

的(2.94)式对于任意场位形都成立，下面我们考察真实的满足场运动微分

方程的场位形，那这时候由于这些场位形满足最小作用量原理，当然就

有δS = 0对于任意的在时空无穷远处趋于零的场变分都成立，那当然也对

局域时空平移(2.87)引起的场改变成立。即是说，对于真实场位形，必有

0 = δS =

∫
d4xTµν∂

µϵν . (2.95)

将上式分部积分，即有

0 =

∫
d4xTµν∂

µϵν = −
∫

d4x∂µTµνϵ
ν(x). (2.96)

由于ϵν(x)为任意无穷小函数，从而即有

∂µTµν = 0. (2.97)

即是说，Tµν就是与时空平移对称性相应的守恒流！特别的，如果取ϵµ =

ϵδµ0, 即假设考察的是时间平移，那相应的守恒流T µ0当然就是能量流四矢

量，换言之，T 00必定为能量密度，T i0(i = 1, 2, 3)为能量流密度。而如果

取ϵµ = ϵδµj为空间平移, 那相应的守恒流T µj当然就是动量流四矢量，即

是说T 0j必为动量密度，而T ij为动量流密度。将所有这些合起来，我们就
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称Tµν为能量动量张量！上面的讨论也说明，闵闵闵可可可夫夫夫斯斯斯基基基时时时空空空的的的任任任何何何物物物质质质

系系系统统统都都都存存存在在在这这这么么么一一一个个个守守守恒恒恒的的的能能能量量量动动动量量量张张张量量量。

比如，假设我们考虑L = −1
2
∂µϕ∂

µϕ−U(ϕ)的场论模型，则容易算得，

T µν = ∂µϕ∂νϕ+ ηµνL

= ∂µϕ∂νϕ− 1

2
ηµν∂ρϕ∂

ρϕ− ηµνU(ϕ). (2.98)

很明显，这个T µν的两个指标是对称的。实际上，可以证明，对于任何洛

伦兹不变的标量场论，其T µν都必定是对称张量。但是当我们的考察范围

超出标量场论时，其按照上面类似的办法求出来的T µν就不一定为对称张

量了，比方说对于矢量场，它的T µν就不是对称张量。不过，T µν的流守恒

方程∂µT
µν = 0告诉我们，T µν的定义不是唯一的，实际上人们很容易看出，

对于任何Xρµν，只要Xρµν = −Xµρν，则T µν + ∂ρX
ρµν同样满足流守恒方程，

因此可以定义为新的能动量张量。从而只要我们合适地选取Xρµν , 我们总

可以让重新定义以后的能动量张量为一个对称张量。实际上，马上我们就

会给出一个找到这样一个对称能量动量张量的巧妙办法。

洛伦兹对称性

我们考察的经典场论都是具有洛伦兹不变性的场论，即拉格朗日密度

为洛伦兹标量的理论，具体来说即是拉氏密度在如下坐标变换下保持不变

的理论，

xµ → x′µ = Λµ
νx

ν , (2.99)

Λµ
ν就是所谓的洛伦兹变换。那么，洛伦兹变换对应的守恒流是什么呢？

为此我们需要考察无穷小洛伦兹变换，即取

Λµ
ν = δµν + ϵµν , (2.100)

式中ϵµν为无穷小量。很显然，无穷小洛伦兹变换由于可以和恒等变换连续

过渡，从而必定是正洛伦兹变换，即满足1

det(Λ) = 1 ⇒ ϵµµ = 0. (2.101)

进一步，利用洛伦兹变换的定义ηµνΛ
µ
αΛ

ν
β = ηαβ, 易得

ηµν(δ
µ
α + ϵµα)(δ

ν
β + ϵνβ) = ηαβ ⇒ ϵαβ + ϵβα = 0. (2.102)

1利用矩阵恒等式det(A) = eTr(lnA).
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即ϵµν是一个二阶反对称张量。

注意到无穷小洛伦兹变换为xµ → x′µ = xµ + ϵµνx
ν。为了利用诺特定

理，我们使用关键技巧，即将无穷小参数ϵµν变成依赖于时空坐标的ϵµν(x)，

进而考察如下无穷小局域时空坐标变换，

xµ → x′µ = xµ + ϵµ(x), 这里 ϵµ(x) = ϵµν(x)x
ν . (2.103)

则完全类似于前面对(2.94)式的论证，可知在此时空变换之下作用量的改变

量必定可以写成

δS =

∫
d4xT µ

ν∂µϵ
ν(x)

=

∫
d4xT µ

ν

(
ϵνµ + xρ∂µϵ

ν
ρ

)
. (2.104)

(注意，对于比方说矢量场，它的各指标分量也要按照无穷小局域洛伦兹变

换Λµ
ν(x) = δµν + ϵµν(x)的规则变，这是不同于前面时空平移情形的。在时

空平移情形，矢量场的分量指标并不变换。因此上式中的Tµν一般不同于前

面按照时空平移直接求出来的Tµν。) 注意到ϵµν关于指标反对称，从而有

δS =
1

2

∫
d4x

[
(T µν − T νµ)ϵνµ + (xρT µν − xνT µρ)∂µϵνρ

]
=− 1

2

∫
d4x

[
(T µν − T νµ)ϵµν

]
− 1

2

∫
d4x

[
(xµT ρν − xνT ρµ)∂ρϵµν

]
. (2.105)

如果我们将ϵµν取回常数，则∂ρϵµν = 0, 从而上式最后一行只剩下前面那项，

但是洛伦兹不变性告诉我们，当ϵµν为常数时作用量应该不变，即这时候必

有δS = 0，由此可知

T µν − T νµ = 0, (2.106)

即这样求出来的能动量张量必定是对称张量！这就是我们给出的如何寻找

对称能量动量张量的办法。

在(2.105)式中代入T µν = T νµ，即有

δS = −1

2

∫
d4x

[
(xµT ρν − xνT ρµ)∂ρϵµν

]
. (2.107)

完全类似于前面导出能动量张量守恒的讨论，这个结果意味着Mρµν =

xµT ρν − xνT ρµ为守恒流，满足守恒方程

∂ρM
ρµν = 0. (2.108)
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综合关于无穷小局域时空平移和无穷小局域洛伦兹变换的结果，可知，

在如下无穷小局域时空变换之下

xµ → x′µ = xµ + ϵµ(x), (2.109)

任何物质系统作用量的改变量必定可以写成

δS =

∫
d4xT µν∂µϵν(x) =

1

2

∫
d4xT µν

(
∂µϵν + ∂νϵµ

)
. (2.110)

其中我们利用了T µν是一个对称张量。这个式子是一个很关关关键键键的的的式式式子子子，在

后面的章节中有大用。

电磁场

下面我们来考察一个自由电磁场的能量-动量张量。所谓的自由电磁场

就是不与其它任何东西耦合，单独只由拉氏密度L = −1
4
FµνF

µν描述的无源

电磁场。当然，我们可以按照前面讨论无穷小局域洛伦兹变换中给出的办

法直接找出对称的能量-动量张量。但更快的方法实际上是下面的办法。

我们已经知道标量场能动量张量的公式，为了得到电磁场的能动量张

量，我们将Aµ(µ = 0, 1, 2, 3)的每一个分量看成一个实标量场，从而容易给

出电磁场能动量张量的公式

T µν = −
[ ∂L
∂(∂µAρ)

∂νAρ − ηµνL
]
. (2.111)

代入自由电磁场的拉氏密度可以得到，

T µν = F µ
ρ∂

νAρ − 1

4
ηµνFρσF

ρσ. (2.112)

很显然，这个能动量张量不是一个对称张量，而更为严重的问题是，它不

是规范不变的！而作为物理可观测量，能动量张量必须规范不变！好在，

正如前面所说的，我们可以通过给它加上一个合适的∂ρX
ρµν来重新定义能

动量张量，使它成为一个对称张量。具体来说，我们可以给上述能动量张

量加上∂ρ(−F µ
ρA

ν) = −F µ
ρ∂

ρAν (注意到对于自由电磁场，电流四矢量等

于零，从而方程(2.58)变成∂ρF µ
ρ = 0), 很显然，加上这一项修正以后，电

磁场的能动量张量就变成了如下对称张量

T µν = F µ
ρF

νρ − 1

4
ηµνFρσF

ρσ. (2.113)

这才是一个真正规范不变的量。这个能动量张量有一个重要的特征，即

T µ
µ = 0. (2.114)
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2.3.2 多粒子系统的能量动量张量

考虑多个相对论性自由粒子所构成的系统，我们以n = 1, 2, ..., N来标

记不同的粒子。根据本章前面的知识可以知道，这个系统的作用量可以写

成

S[x(σ)] = −
∑
n

mn

∫
dτn = −

∑
n

mn

∫
dσn

√
−ηµν

dxµ
n

dσn

dxν
n

dσn

. (2.115)

式中xµ
n为粒子n的时空坐标，mn为它的质量，τn为它的固有时，σn为它的

世界线参数。由于上式在σn → σ̃n(σn)的重参数化之下保持不变，所以σn的

选择有很大的任意性，特别的，我们可以将σn选作固有时τn。

不妨以固有时参数(即σn = τn)下的粒子作用量来进一步讨论。作用

量(2.115)显然具有xµ
n → x′

n
µ = xµ

n + aµ(aµ为常矢量) 的时空坐标平移不变

性。为了考察这一时空平移对称性所对应的能动量张量，我们考虑如下局

域化的无穷小时空坐标变换

xµ
n → x′

n
µ
= xµ

n + ϵµ(xn) ⇔ δxµ
n = ϵµ(xn). (2.116)

(从而δ(dxµ
n) = d(δxµ

n) =
∂ϵµ

∂xν
n
dxν

n) 注意到

δS = −
∑
n

mn

∫
δ(dτn) = −

∑
n

mn

∫
1

2

δ(dτ 2n)

dτn

=
∑
n

mn

∫
1

2
δ(ηµνdx

µ
ndx

ν
n)/dτn

=
∑
n

mn

∫
dxµ

n

dτn
ηµνδ(dx

ν
n)

=
∑
n

mn

∫
dxµ

n

dτn
ηµνd(δx

ν
n). (2.117)

可得在上面的局域时空坐标变换下，作用量的改变量为

δS =
∑
n

mn

∫
dxµ

n

dτn
ηµνd(δx

ν
n)

=
∑
n

mn

∫ (dxµ
n

dτn

) ∂ϵµ
∂xν

n

dxν
n

=
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

) ∂ϵµ
∂xν

n

. (2.118)
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通过引入四维时空δ函数δ4
(
x− xn(τn)

)
=

∏3
µ=0 δ

(
xµ − xµ

n(τn)
)
, 可以进

一步将上面结果写成

δS =
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

) ∂ϵµ
∂xν

n

=

∫
d4x

[∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

)
δ4
(
x− xn(τn)

)]
∂νϵµ(x). (2.119)

完全类似于前面关于标量场能量-动量张量的讨论，可知，与时空平移对称

性对应的能动量张量为

T µν(x) =
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

)
δ4
(
x− xn(τn)

)
. (2.120)

显然，这个能动量张量是一个对称张量。

为了看清楚上述能动量张量的意义，我们将它重写成，

T µν =
∑
n

mn

∫
dσn

(dxµ
n

dσn

dxν
n

dτn

)
δ4
(
x− xn(σn)

)
. (2.121)

然后取世界线参数σn = x0
n, 则当我们做完对σn的积分后，即有能动量密度

T 0µ =
∑
n

mn

(dxµ
n

dτn

)
δ3
(
x− xn(t)

)
=

∑
n

pµnδ
3
(
x− xn(t)

)
. (2.122)

类似的，在取σn = x0
n并做完对σn的积分以后，也有流密度

T iµ =
∑
n

mn

(dxµ
n

dτn

dxi
n

dt

)
δ3
(
x− xn(t)

)
=

∑
n

pµnv
i
nδ

3
(
x− xn(t)

)
. (2.123)

综合(2.122)式和(2.123)式，可知粒子系统的能动量张量可以表达成

T µν =
[∑

n

pµnp
ν
n

p0n
δ3
(
x− xn(t)

)]
. (2.124)


