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第十七章 引力波

陈陈陈童童童

17世纪末，牛顿坐在花园里，目睹了一颗苹果的坠落。这一瞬间的灵

感，让他意识到地球与苹果之间存在着一种无形的力――引力。牛顿的万有

引力定律成功解释了行星的运动、潮汐的涨落，甚至预言了海王星的存在。

然而，牛顿的引力是一种“超距作用”，它瞬间传递，无需时间。这种瞬

时性的假设，与19世纪电磁学的发展产生了深刻的矛盾。

19世纪中叶，麦克斯韦建立了电磁场理论，预言了电磁波的存在，并

证明光就是一种电磁波。电磁波以有限的速度传播，这一发现动摇了牛顿

引力的根基。如果电磁相互作用需要时间传递，那么引力相互作用是否也

是如此？这个问题困扰了物理学家数十年，直到爱因斯坦的出现。

1905年，爱因斯坦提出了狭义相对论，彻底否定了“超距作用”的可

能性。任何相互作用的传递速度都不能超过光速，引力也不例外。1915年，

爱因斯坦进一步提出了广义相对论，将引力解释为时空的弯曲。物质告诉

时空如何弯曲，时空告诉物质如何运动。在这一全新的理论框架下，引力

不再是力，而是时空几何的表现。

广义相对论的方程中隐藏着一个惊人的预言：当物质加速运动时，它

会扰动周围的时空，产生一种以光速传播的波动――这就是引力波。引力

波是时空的涟漪，是宇宙的琴弦，它携带着源头的信息，穿越浩瀚的宇宙，

抵达地球。然而，引力波的信号极其微弱，爱因斯坦本人也曾怀疑人类是

否能够探测到它。起初科学家们只能依靠间接证据来推测引力波的存在，

比如双星系统中轨道能量损失的现象，这符合引力波辐射带走能量的预

期。

2



第十七章 引力波 3

一个世纪之后的2015年9月14日，激光干涉引力波天文台（LIGO）首

次直接探测到了引力波信号。这一信号来自13亿光年外的两个黑洞的并合，

标志着人类正式进入引力波天文学的时代。引力波的探测不仅验证了爱因

斯坦的预言，更为我们打开了一扇观测宇宙的新窗口。不同于传统的电磁

波观测手段，引力波不受尘埃、气体或其他物质的影响，能够穿透几乎所

有的障碍直达地球。这意味着我们可以窥探那些传统望远镜无法触及的极

端天体事件，如黑洞碰撞、超新星爆发甚至可能是宇宙大爆炸本身的余晖。

通过引力波，我们可以“聆听”黑洞的碰撞、中子星的并合，甚至追溯宇

宙的起源。

17.1 线性化的场方程

引力波的理论研究当然需要求解爱因斯坦场方程，但是如果引力场很

强，那除了少数特殊情况之外，就没有一般性的解析求解方法。出路之一

是，寻求数值解，或者说发展数值模拟，在实际应用中，这甚至是最为重

要的出路。但是，作为一本讲述理论原理而不是侧重于应用的书，转去讲

数值模拟肯定是不合适的。好在，还有另一条出路，就是去求解弱引力场

近似下的爱因斯坦场方程。这条出路有两个优点：第一，它可以一般性地

进行求解。第二，它足以揭示引力波的存在，揭示其产生和传播的机理。

所谓的弱引力场近似，指的就是，时空几乎是平坦的，只是在这个平

坦的背景上存在一些微扰，所谓时空的涟漪。具体来说，在弱场近似下，

度规场gµν可以分解成如下形式

gµν = ηµν + hµν , (17.1)

式中ηµν = diag(−1,+1,+1,+1)为闵可夫斯基度规，而hµν为这个平坦时空

背景上的微扰小量，满足|hµν | ≪ 1。

这时候，我们把hµν看成是由度规ηµν所描述的平坦时空背景上的场(称

作线性化度规场)，也就是说，hµν是满足洛伦兹变换的平坦时空张量，而

不是弯曲时空张量，因此我们用闵可夫斯基度规来对它进行指标的升降，

比方说

hµν ≡ ηµρηνσhρσ. (17.2)

同样，我们也用闵可夫斯基度规来进行指标的收缩，比方说h ≡ ηµνhµν。

类似的处理也将同样应用于弱引力场近似下的其它量！
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根据第四章的相关知识，在如下无穷小微分同胚变换之下

xµ → x′µ = xµ + ϵµ(x), (17.3)

度规场将变换为

gµν(x) → g′µν(x) = gµν(x)− [ϵρ∂ρgµν + gµρ∂νϵ
ρ + gρν∂µϵ

ρ]. (17.4)

应用弱场近似g′µν = ηµν + h′
µν , 并保留到一阶小量(注意ϵµ和hµν都是小量)，

即可以得到

hµν(x) → h′
µν(x) = hµν(x)− (∂µϵν + ∂νϵµ). (17.5)

换言之，在无穷小微分同胚之下，线性化度规场在变换前后的改变量

为δhµν = −(∂µϵν + ∂νϵµ)。这完全类似于电动力学中电磁矢量势Aµ 在无穷

小规范变换之下的改变量δAµ = −∂µϵ, 所以，在线性化度规场近似下，无

穷小微分同胚变换完全可以看成是一种类似于电动力学中的规范变换，而

线性化度规场hµν就是这一规范变换之下的规范场
1。

线线线性性性化化化场场场方方方程程程

在上面的弱引力场近似下，爱因斯坦场方程可以化简(保留到hµν的一

阶)，这个化简以后的场方程称作线性化爱因斯坦场方程，因为其中我们只

保留到小量hµν的一阶，也就是线性阶。

首先，gµν的一阶近似为

gµν = ηµν − hµν . (17.6)

相应的克里斯托夫联络系数的线性化近似为

Γσ
µν =

1

2
ησρ(∂µhρν + ∂νhρµ − ∂ρhµν). (17.7)

注意，Γσ
µν本身为一阶小量。

黎曼曲率张量为

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (17.8)

1值得注意的是，如果把规范对称性定义成理论中的某种冗余，那么广义相对论中一般

的微分同胚对称性也可以看成是一种广义的规范对称性，因为在量子引力中，真正的物理

可观测量要求是微分同胚不变的，也即是说，广义相对论的微分同胚对称性也是理论描述

的某种冗余。
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在线性化引力场的近似下，联络系数为一阶小量，从而式中的ΓΓ项为二阶

小量，因此可以忽略。从而，黎曼曲率张量的线性化近似为

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ

=
1

2
ηρλ(∂µ∂σhνλ − ∂µ∂λhνσ − ∂ν∂σhµλ + ∂ν∂λhµσ). (17.9)

注意，这同样是一阶小量。进而里奇张量为

Rµν =
1

2
(∂ρ∂µhνρ + ∂ρ∂νhµρ − ∂2hµν − ∂µ∂νh), (17.10)

式中∂2 ≡ ∂µ∂µ, h ≡ hµ
µ。进一步可以得到里奇标量的线性化近似为

R = ∂µ∂νhµν − ∂2h. (17.11)

由里奇张量和里奇标量的线性化近似，即可以得到爱因斯坦张量的线

性化近似，为

Gµν =
1

2

[
∂ρ∂µhνρ + ∂ρ∂νhµρ − ∂2hµν − ∂µ∂νh− (∂ρ∂σhρσ − ∂2h)ηµν

]
.(17.12)

爱因斯坦张量满足比安奇恒等式DµGµν , 在线性化近似下，这个恒等式将变

成

∂µGµν = 0. (17.13)

不难验证，上面给出的线性化爱因斯坦张量自动满足这个恒等式。

有了爱因斯坦张量的线性化近似，我们就可以写出爱因斯坦场方程的

线性化近似了，为

∂ρ∂µhνρ + ∂ρ∂νhµρ − ∂2hµν − ∂µ∂νh− (∂ρ∂σhρσ − ∂2h)ηµν = 16πGTµν .

当然，为了自洽，方程右边的Tµν也得近似为小量。

Fierz-Pauli作作作用用用量量量

我们知道，爱因斯坦场方程可以从爱因斯坦-希尔伯特作用量中得到，

那么，在弱引力场近似下，这个作用量近似为什么呢？这个问题其实有点

复杂，复杂之处在于，为了得到场方程的一阶近似，我们需要将作用量

近似到二阶小量，特别的，我们需要将里奇标量近似到二阶小量，如果
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直接算的话，这会有点复杂。不过，我们可以根据上面给出的爱因斯坦

张量的线性近似，以及作用量原理δSEH = 1
2κ

∫
d4x[−Gµνδhµν ]凑出答案(其

中κ = 8πG)。经过合适的分部积分并丢掉边界项以后，可以得到结果为

SFP =
1

2κ

∫
d4x

[
− 1

4
∂ρhµν∂

ρhµν +
1

2
∂ρhµν∂

νhρµ +
1

4
∂µh∂

µh− 1

2
∂νh

µν∂µh
]
.

这个结果最早是Fierz 和Pauli给出来的，所以也称作Fierz-Pauli作用量。

另一种快速得到Fierz-Pauli作用量的办法是，首先，要求它是hµν的二

阶小量，同时每一项都包含两个偏导运算。在这两个要求下，作用量的一

般形式为

SFP =

∫
d4x

[
c1∂ρhµν∂

ρhµν + c2∂ρhµν∂
νhρµ + c3∂µh∂

µh+ c4∂νh
µν∂µh

]
,

式中c1, c2, c3, c4为待定的常数系数。然后，最重要的是，我们要求这个作用

量在规范变换(17.5)之下保持不变(经过合适的分部积分并丢弃边界项)。计

算出规范变换(17.5)之下上述作用量的改变量，经过合适的分部积分之后，

结果是

δSFP = −
∫

d4x
[
(4c1 + 2c2)∂

2∂µh
µνϵν

+ (2c2 + 2c4)∂µ∂ν∂
ρhµνϵρ + (4c3 + 2c4)∂

2∂µhϵµ

]
. (17.14)

要求这个改变量等于零，由此就能确定

4c1 + 2c2 = 0, 2c2 + 2c4 = 0, 4c3 + 2c4 = 0.

这组方程的通解为

c1 = −1

4
a, c2 =

1

2
a, c3 =

1

4
a, c4 = −1

2
a, (17.15)

式中a为一个未定的常数因子。也就是说，上面这些要求可以把Fierz-

Pauli作用量确定到只差一个整体的常数因子a。

以上推导也给出另一种对引力场方程进行线性近似的办法，就是通

过规范不变性的要求先确定出Fierz-Pauli作用量(差一个整体的常数因子a),

之后再将这个作用量进行牛顿引力近似，与牛顿引力的作用量进行比较，

得到a = 1
16πG
。然后再对最终的Fierz-Pauli作用量进行变分，得到线性化近

似以后的爱因斯坦场方程。这种推导办法的好处是，不需要先知道完整的
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爱因斯坦场方程，甚至都不需要联络和曲率张量等几何概念，更不要说对

这些几何量进行线性近似了。事实上，它只需要假设在弱场近似下，引力

场由hµν描述，然后假设理论在规范变换(17.5)之下保持不变。这是一种完

全场论化的处理办法，它不需要那些黎曼几何的概念。

规规规范范范固固固定定定

实际上，前面得出的线性化场方程还可以简化。为此我们定义

hµν ≡ hµν −
1

2
hηµν . (17.16)

从而易有h ≡ h
µ

µ = −h, 进而也有

hµν ≡ hµν −
1

2
hηµν . (17.17)

所以我们只要先解出hµν , 那由这个式子就能得到原来的hµν . 将(17.17)式代

入前面得到的线性化场方程，不难有

∂ρ∂µhνρ + ∂ρ∂νhµρ − ∂2hµν − ηµν∂
ρ∂σhρσ = 16πGTµν . (17.18)

另外一方面，理论有hµν → hµν − (∂µϵν + ∂νϵµ)的规范对称性, 用变

量hµν来说，这个规范对称性即是

hµν → hµν − (∂µϵν + ∂νϵµ − ηµν∂
ρϵρ). (17.19)

假设原来有∂µhµν = fν , 其中fν是某个任意的矢量场，那么在上述规范变换

之下，它将变成∂µhµν − ∂2ϵν = fν . 因此只要适当地选取ϵν为方程−∂2ϵν =

fν的解，我们就可以让最终的hµν额外满足如下方程

∂µhµν = 0. (17.20)

注意，额外要求hµν满足这个方程以后，我们就不再能进行前面的规范变换

了！所以，这个方程是一种规范固定条件，常常称作de Donder 规范条件，

或者简称为de Donder 规范。当然，规范固定条件不是唯一的，de Donder

规范只是比较好用也比较常用而已，就如同电动力学中的洛伦兹规范一

样。

很显然，在de Donder规范(17.20)下，线性化爱因斯坦场方程(17.18)可

以进一步简化为

−∂2hµν = 16πGTµν . (17.21)
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当然，这时候为了和方程(17.20)自洽，得有

∂µTµν = 0. (17.22)

实际上，这就是协变能动量守恒方程DµTµν = 0的弱引力场近似结果。

其实，de Donder 规范在任意非线性引力场(而不仅仅是线性弱引力

场)情况下是有一个对应物的，就是如下规范条件

gµνΓρ
µν = 0. (17.23)

注意，这不是一个张量方程，因为Γρ
µν不是一个张量。事实上，这个方程只

在特定的局部坐标下才成立2，它就是用来挑出这些方便的局部坐标的。读

者不难自己验证，这个非线性引力场的规范条件在线性化近似下给出的就

是de Donder 规范条件。

上述非线性规范条件(17.23)之所以有用，是因为它有一些良好的性质。

比方说如果我们考虑弯曲时空中的DµDµ算符，则由于DµDµ = gµν(∂µ∂ν −
Γρ
νµ∂ρ), 很显然，如果有规范条件(17.23)，那么即有DµDµ = gµν∂µ∂ν。

类似的简化也发生在计算协变散度Dµωµ时，如果有规范条件(17.23)，

则Dµωµ = gµν(∂µων − Γρ
µνωρ) = ∂νων。

17.2 真空中的引力波

2015年9月14日，人类首次直接捕捉到了来自宇宙深处的时空涟漪――

引力波。这一天，位于美国路易斯安那州和华盛顿州的两台LIGO（激光干

涉引力波天文台）探测器，记录下了一段持续约0.2秒的独特信号。这个编

号为GW150914的事件，不仅验证了爱因斯坦百年前的预言，更开启了人

类探索宇宙的全新窗口。

GW150914源自13亿光年外的一场宇宙“婚礼”：两颗质量分别为35倍

和30倍太阳质量的黑洞，在相互缠绕数十亿年后以近乎光速碰撞合并，最

终形成一个62倍太阳质量的旋转黑洞。这一过程中，相当于3倍太阳质量

的能量(一个巨大的能量)以引力波形式辐射而出，跨越浩瀚星海抵达地球。

LIGO通过测量两条4公里长激光干涉臂的微小长度差（约10−18米），捕捉

到了这场宇宙事件留下的唯一证据。

2016年2月11日，LIGO团队公布这一发现时，科学界为之沸腾。引力

波的探测不仅填补了广义相对论实验验证的最后一块拼图，更标志着“多

2与之相反，张量方程只要在一个坐标系下成立，则就在任意坐标系下都成立。
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信使天文学”时代的来临。人类从此不仅能“看”电磁波，还能“听”引力

波，以前所未有的方式感知黑洞、中子星等暗弱天体的奥秘。截至2023年，

LIGO与欧洲Virgo探测器已累计探测到百余次引力波事件，包括双中子星

合并引发的“光与引力波交响曲”。

这项发现被《科学》杂志誉为“世纪突破”，其核心团队荣获2017年

诺贝尔物理学奖。正如LIGO创始人之一基普·索恩所言：“我们第一次听

见了宇宙的呼吸。”从爱因斯坦的纸笔推演到实验室中的激光闪烁，人类用

百年坚守证明：那些藏匿于时空褶皱中的宇宙私语，终将被倾听。

本节我们来研究在弱场近似下，引力波如何在真空中传播。

17.2.1 求解波动方程

所谓在真空中，指的就是没有物质源。因此这时线性化场方程(17.21)将

变成，

∂2hµν = 0, ∂µhµν = 0. (17.24)

当然，式中第二个方程就是de Donder 规范条件。

由于以上方程为标准的波动方程，它当然有如下标准的平面波解,

hµν = Re
(
Hµνe

ikρxρ)
, (17.25)

式中Hµν是一个复的对称极化张量，kµ是一个实的四维波矢量。记住，求

解的最后一步是取实部，不过，我们也常常省去对这一步的显式书写，而

默认人们最后必然会这么做。

将上述平面波解的假设代入方程(17.24), 立即有

kρk
ρ = 0, kµHµν = 0. (17.26)

前一个方程告诉我们，真空中引力波的波矢量是一个类光矢量，因此引引引力力力

波波波以以以光光光速速速传传传播播播。后一个方程告诉我们，引力波的极化张量与其传播方向正

交。

不过，de Donder 规范条件其实并没有固定所有的规范自由度。为了

看出这一点，假设我们在规范变换(17.19)中取

∂2ϵµ = 0. (17.27)
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则不难看出，只要变换之前的hµν满足de Donder 规范条件，则变换之后依

然满足de Donder 规范条件。

很显然，(17.27)式存在如下平面波解

ϵµ = Re
(
λµe

ikρxρ)
, kρk

ρ = 0. (17.28)

代入规范变换(17.19)，即有，满足de Donder 规范条件的平面引力波还可

以进行如下变换

Hµν → Hµν − i
(
kµλν + kνλµ − ηµνk

ρλρ

)
. (17.29)

因此，我们可以进一步选择合适的λµ使得

H0µ = 0, Hµ
µ = 0. (17.30)

这个条件，联合前面(17.26)的第二式，就称之为横横横向向向无无无迹迹迹规规规范范范，即Transverse

Traceless gauge或者TT规范。所谓无迹，指的就是矩阵H是无迹的，或者

说，这时候h = 0 = −h。因此，在横向无迹规范中，我们有hµν = hµν。

下面我们来数一下引力波的物理自由度。首先，极化张量Hµν有
4(4+1)

2
=

10个独立分量，de Donder 规范条件((17.26)的第二式)对它加上了4个约束

条件，而且，在满足这些约束条件的同时，还可以进行4个剩余的规范变

换(由前面的λµ刻画)，所以，真正物理的独立极化分量只有10 − 4 − 4 =

2个。

取类光矢量kµ = (ω, ki)(类光条件为ω2 − kiki = 0), 则根据(17.30)式以

及(17.26)的第二式可知，在横向无迹规范中，必有

H00 = 0, H0i = 0, kiHij = 0, H i
i = 0. (17.31)

由于3-矢量ki的方向就是波的传播方向，所以这就告诉我们，平面引力波

是横波，因为其极化张量与波的传播方向相垂直。

特别的，如果取ki沿着z轴的方向，则满足上述条件的H必定有如下形

式

Hµν =


0 0 0 0

0 H+ H× 0

0 H× −H+ 0

0 0 0 0

 . (17.32)

式中，H+, H×就是极化张量Hµν的两个独立物理分量。稍微我们会进一步

解释这两种极化模式的物理含义。
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17.2.2 随波起伏

假设你是一个粒子，只受引力作用，因此你走的是弯曲时空中的测地

线，那么，根据等效原理，当引力波从你身上经过时，你将什么都感受不

到，你觉得你是完全自由的。不过，你并不是一个粒子，更好的模型是把

你看成一簇粒子，每一个都在引力场中作测地线运动，当引力波经过你时，

虽然你身上每一个点的引力都没有绝对意义，但是，潮汐力有绝对意义，

作为一簇粒子，你可以感受到潮汐力，它可以由第七章所讲述的测地线偏

离方程来刻画。

根据第七章，测地线偏离方程为

D2ηµ

Dτ 2
= Rµ

ρσνu
ρuσην , (17.33)

式中ηµ为偏离矢量。uµ为这些粒子的协变速度，即∂τ = uµ∂µ(τ为粒子的固

有时), ηµ与uµ正交。类似于第七章中的一些做法，我们取沿着其中一个粒

子测地线自由下落的局部惯性系(从而t = τ)，则在这个局部惯性系中，潮

汐加速度可以简化为

D2ηµ

Dτ 2
=

d2ηµ

dt2
. (17.34)

在此局部惯性系中，uµ = (1, 0, 0, 0), 因此与之正交的偏离矢量ηµ必然满

足η0 = 0, 根据第七章的相关推导，这时候可以将测地线偏离方程简化为

d2ηi

dt2
= Ri00jη

j. (17.35)

前面推导过，线性化的黎曼曲率张量为

Rρ
σµν =

1

2
ηρλ(∂µ∂σhνλ − ∂µ∂λhνσ − ∂ν∂σhµλ + ∂ν∂λhµσ). (17.36)

注意到在TT规范中hµν = hµν , 且h0µ = 0, 从而即有

Ri00j =
1

2
∂2
t hij. (17.37)

代入hij = hij = Re
(
Hije

−iωt+ikjx
j)
, 并将注意力集中在基准测地线附近(在

上述局部惯性系中即取xj = 0)，即有

Ri00j = −ω21

2
Re

(
Hije

−iωt
)
. (17.38)
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为了进一步简化讨论，我们假设引力波沿着局部惯性系的z轴传播，则

在将(17.38)式代入测地线偏离方程(17.35)以后，即有：

1. H+极极极化化化: 对于H× = 0的H+极化模式, 有

d2η1

dt2
= −ω2

2
Re

(
H+e

−iωt
)
η1,

d2η2

dt2
=

ω2

2
Re

(
H+e

−iωt
)
η2. (17.39)

设H+ = |H+|eiϕ+ , 并注意到|H+|为一个微扰小量，从而可以用微扰法求解
出上述方程的近似解，为

η1(t) = η1(0)
(
1 +

1

2
|H+| cos(ωt− ϕ+) + ...

)
η2(t) = η2(0)

(
1− 1

2
|H+| cos(ωt− ϕ+) + ...

)
. (17.40)

在所考察的这一簇测地线中取定一条基准测地线，假设它位于xi =

0的坐标原点，取偏离矢量ηi为它到临近测地线的距离。由于引力波沿

着z轴传播，所以我们只需要考察x − y平面里的情况。假设在原点周围取

一圈测地线，并让它在初始时围绕原点形成一个圆周。则上述解(17.40)告

诉我们，在引力波的影响下，如果这圆周上的测地线沿着x轴(η1方向)向外

移动，则它们必定同时沿着y轴(η2)向内移动，反过来也一样。所以，随着

时间的推移，这一圈粒子必定从圆周演化成椭圆，然后再演化回来，如

图(17.1)所示。

图 17.1: H+极化的引力波影响下x− y平面上的测地偏离演化情况。

2. H×极极极化化化: 类似的，对于H+ = 0的H×极化模式，有

d2η1

dt2
= −ω2

2
Re

(
H×e

−iωt
)
η2,

d2η2

dt2
= −ω2

2
Re

(
H×e

−iωt
)
η1. (17.41)

设H× = |H×|eiϕ× , 并注意到|H×|为一个微扰小量，从而可以用微扰法求解
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出上述方程的近似解，为

η1(t) = η1(0) + η2(0)
1

2
|H×| cos(ωt− ϕ×) + ...

η2(t) = η2(0) + η1(0)
1

2
|H×| cos(ωt− ϕ×) + .... (17.42)

换言之，η1 ± η2的演化情况才与H+极化的情形完全类似。这就相当于

在x − y平面内转过了45度。从而，H×极化的引力波影响下x − y平面上的

测地偏离演化情况如图(17.2)所示。

图 17.2: H×极化的引力波影响下x− y平面上的测地偏离演化情况。

当然，我们也可以考察以上两种极化模式的线性叠加。值得注意的是，

引力波影响下的偏离矢量在角度π的旋转之下是不变的！这与电磁波极化

矢量不同，后者只在2π的旋转下才不变。这一事实反映的是，引力子的自

旋是2，而光子的自旋是1。

引引引力力力波波波探探探测测测器器器

引力波探测器是干涉仪。它们通过让光线在两条互相垂直的臂之间来

回反射进行探测，臂两端的镜子充当测试质量块。当引力波垂直于探测器

平面传播时，会导致其中一条臂缩短而另一条臂伸长。若将探测器两臂分

别沿x轴和y轴对齐，则可通过公式(17.40)读出臂长的最大变化量，

L′ = L
(
1± 1

2
H+

)
⇒ δL

L
= H+. (17.43)

为了估算这一变化的量级，我们需要了解典型天体物理源可能产生的振

幅H+的大小。我们将在后面的小节中详细讨论这一点。结果显示其数值

极其微小：典型源的H+约为10−21。LIGO探测器的每条臂长约L ≈ 3公里，

这意味着需要检测的臂长变化量仅为δL ≈ 10−18米。这个数字看似小得离

谱――它比质子的半径还小，并且比干涉仪所用光的波长小约1012倍。尽管
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如此，探测器的灵敏度足以胜任这一任务。2015年，LIGO天文台首次成功

探测到引力波，该合作组织的三位成员因此获得2017年诺贝尔奖。此后，

LIGO和VIRGO探测器已观测到大量涉及黑洞与中子星合并的事件。

17.2.3 精确解

我们已经找到了线性爱因斯坦方程的波动解。对于一个沿着z轴正方向

传播的平面引力波，这种解的度规可以写成

ds2 = −dt2 + dz2 +
(
δab + hab(t− z)

)
dxadxb, (17.44)

式中a, b = 1, 2指示x− y平面内的坐标分量。由于所考察的是线性爱因斯坦

方程，所以任意hab(t− z)都是解，前文考察的只是这种解的傅里叶分解。

如果我们引入如下光锥坐标

u = t− z, v = t+ z. (17.45)

则也可以把上述线性爱因斯坦方程的解写成

ds2 = −dudv + dxadxa + hab(u)dx
adxb. (17.46)

问题是，对于完整的非线性爱因斯坦场方程，我们能否找到类似的波动解

呢？

回答是，可以！具体来说，下述Brinkmann度规就是一个这样的精确

解，描述沿着z轴正方向传播的平面引力波，

ds2 = −dudv + dxadxa +Hab(u)x
axbdu2. (17.47)

人们可以通过直接计算证明，只要Hab(u)无迹，则相应的Brinkmann度规

就是里奇平坦的，从而是真空爱因斯坦场方程的精确解，

Rµν = 0 ⇔ Ha
a(u) = 0. (17.48)

换言之，这类精确解也有两个独立的极化模式，为

Hab(u) =

[
H11(u) H12(u)

H12(u) −H11(u)

]
. (17.49)

一般来说，人们很难找到一个非线性偏微分方程的一簇依赖于任意函数(比

如这里的H11(u)和H12(u))的精确解，但是，Brinkmann度规例外。
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17.3 引力波的产生

前面的小节中讨论了引力波在真空中的传播，然而引力波是如何产生

的呢？我们知道加速运动的电荷会辐射出电磁波，类似的，加速运动的质

点会辐射出引力波。

想象一个静止的球放在橡皮膜上，橡皮膜会凹陷，但不会产生波动。

如果球在橡皮膜上匀速运动，凹陷的形状会移动，但仍然不会产生波动。

但，如果球在橡皮膜上加速运动，凹陷的形状就会不断变化，这种变化会

以波动的形式向外传播。类似的，物质的存在会引起时空的弯曲(凹陷)，

当物质加速运动时，时空的弯曲会发生变化，这种变化以引力波的形式向

外传播。

更具体地说，由于线性化爱因斯坦方程(17.21)和电磁矢量势满足的方

程类似，都是波动方程，方程的右边就是源，电流矢量是电磁波的源，而

能动张量就是引力波的源，所以，引力波和电磁波有很大的类似之处。但

是，由于电磁矢量势是一个矢量，相应的源也是矢量，而引力波的hµν是二

阶张量，相应的源也是二阶张量，所以引力波的产生和电磁波的产生也有

不同之处，这反映在，偶极辐射就能产生电磁波，但是引力波并不来源于

偶极辐射，要产生引力波，至少需要四极辐射，稍后我们会清楚地看到这

一点。

17.3.1 求解线性化爱因斯坦场方程

我们的出发点是线性化爱因斯坦方程(17.21)，为方便起见重写如下

−∂2hµν = 16πGTµν . (17.50)

我们的基本目标就是求解这个方程。

以上方程可以用标准的格林函数法来求解，具体求解过程与我的《经

典场论新讲》第七章对电磁辐射的求解完全类似，这里只概述一下结果。

首先，我们定义格林函数G(x)(其中x = (t,x)代表时空坐标xµ), 它满足如下

格林方程

−∂2G(x) = δ4(x). (17.51)

利用这个格林函数，即可以把(17.50)式的解写成

hµν(x) = 16πG

∫
d4x′G(x− x′)Tµν(x

′). (17.52)
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不难验证，这个解的确满足de Donder 规范条件，验证如下

∂µhµν(x) = 16πG

∫
d4x′∂µG(x− x′)Tµν(x

′)

= −16πG

∫
d4x′(∂′µG(x− x′))Tµν(x

′)

= 16πG

∫
d4x′G(x− x′)∂′µTµν(x

′) = 0, (17.53)

其中第三行我们进行了分部积分，最后的等号是利用能动量守恒方程。值

得注意的是，虽然这个解满足de Donder 规范条件，但并不意味着它也满

足横向无迹规范，通常来说，它不满足。

由于因果性的考虑，我们应该取G(x)为所谓的延迟格林函数，记

作Gret(x)，根据《经典场论新讲》第七章的推导，

Gret(x) =
1

2π
δ(x2)θ(t), (17.54)

式中x2 = xµx
µ, θ(t)为阶跃函数。这个结果在正洛伦兹变换SO+(1, 3)下明

显保持不变。

取时空坐标x = (t,x)，其中三维矢量x为空间坐标，并取r = |x|, 从
而δ(x2) = δ(t2 − r2) = 1

2r

[
δ(t − r) − δ(t + r)

]
. 又注意到，当t > 0时，

δ(t + r)自动等于零(因为r总大于零)，而当t < 0时δ(t − r)自动等于零，从

而即可以将上面的(17.54)式写成

Gret(x) =
1

2π
δ(x2)θ(t) =

1

4πr
δ(t− r). (17.55)

将以上结果代入(17.52)式，即有

hµν(x) = 16πG

∫
d4x′Gret(x− x′)Tµν(x

′)

= 4G

∫
d4x′ δ(t− t′ − |x− x′|)

|x− x′|
Tµν(x

′)

= 4G

∫
d3x′ 1

|x− x′|
Tµν(x

′, tret). (17.56)

式中tret ≡ t − |x − x′|, 也称作延迟时刻。这个结果的含义是，空间x点t时

刻的引力场由x′点的源在更早的延迟时刻tret决定，这是因为引力波的传播

是需要时间的，它以有限大小的光速(取为1)传播。当然，这个结果与我们

在电动力学里熟悉的推迟势公式基本是一样的。
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如果物质源只分布在一个有限的空间区域内，设这个区域的尺寸

为d，并且假设我们感兴趣的是源在距离很远的地方产生的引力场，即假

设|x− x′| ≫ d, 则就可以作如下近似(注意r = |x|)

|x− x′| = r − x · x′

r
+ ... ⇒ 1

|x− x′|
=

1

r
+

x · x′

r3
+ ... (17.57)

注意延迟时刻tret中包含了一个|x− x′|, 从而

Tµν(x
′, tret) = Tµν(x

′, t− r + x · x′/r + ...). (17.58)

为了进一步近似展开上述结果，我们需要假设在引力波从源点x′传播

到场点x的时间之内，作为源的能动张量改变很小，也即是说，我们要假设

物质源的运动是非相对论的。有了这个假设以后，就可以进一步将上述能

动张量近似展开成

Tµν(x
′, tret) = Tµν(x

′, t− r) + Ṫµν(x
′, t− r)

x · x′

r
+ .... (17.59)

物质源作非相对论运动的假设意味着Ṫµνx
′与相应Tµν的比是一个小量，简

称Ṫµν是一个小量。

有了(17.57)式和(17.59)式这两个近似以后，即可以对结果(17.56)进行

近似展开了。在小量展开的领头阶(小量包含d/r以及Ṫµν)，我们有

hµν(x, t) =
4G

r

∫
d3x′Tµν(x

′, t− r) + .... (17.60)

特别的，

h00(x, t) =
4G

r
E + ...., 其中 E =

∫
d3x′T00(x

′, t− r) (17.61)

根据能动量守恒，E为源的守恒能量，所以这意味着h00(x, t)在小量展开的

领头阶是不依赖于时间的，实际上这个结果就等价于牛顿势Φ = −GE/r。

类似的，也有

h0i(x, t) = −4G

r
Pi + ...., 其中 Pi = −

∫
d3x′T0i(x

′, t− r) (17.62)

当然，Pi就是物质源的守恒动量，因此h0i(x, t)在领头阶也不随时间变化。

通常我们会选取一个合适的惯性系，以使得Pi = 0, 从而让h0i(x, t) = 0。
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正如我们已经看到的，在小量展开的领头阶，h00(x, t), h0i(x, t)均是静

态的，不随时间演化，因此对于引力波的考察并没有多少意思。有意思的

是hij(x, t)，根据(17.60)式，它应该为

hij(x, t) =
4G

r

∫
d3x′Tij(x

′, t− r) + .... (17.63)

注意现在等式右边的积分并不是一个守恒量，因此一般来说是依赖于时间

的。

定定定理理理： ∫
d3xTij(x, t) =

1

2
Ïij(t), (17.64)

式中Iij(t)是能量的四极矩

Iij(t) =

∫
d3xT 00(x, t)xixj. (17.65)

证证证明明明：注意到

T ij = ∂k(T
ikxj)− (∂kT

ik)xj = ∂k(T
ikxj) + (∂0T

0i)xj, (17.66)

式中第二个等于号是利用了能动量守恒方程∂µT
µν = 0。对于这个结果中

的T 0i项，我们再次利用同样的技巧。具体来说对于对称化的指标(ij)，我

们有

T 0(ixj) =
1

2
∂k(T

0kxixj)− 1

2
(∂kT

0k)xixj

=
1

2
∂k(T

0kxixj) +
1

2
(∂0T

00)xixj. (17.67)

将(17.66)式对三维空间积分，忽略全微分的边界项，然后再代入(17.67)式，

即有 ∫
d3xT ij(x, t) =

1

2
∂2
0

∫
d3xT 00(x, t)xixj, (17.68)

从而定理得证。

利用上述定理的结论，就可以把结果(17.63)重写成，

hij(x, t) =
2G

r
Ïij(t− r) + .... (17.69)
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这个结果告诉我们，只需要晃动能量四极矩不为零的物质源，就可以在远

处产生引力波。特别的，这意味着，在领头阶，引力辐射是一种四极辐射，

这与电磁辐射不同，后者在领头阶是偶极辐射。

也即是说，不存在偶极的引力辐射。这可以从下面的说明中看得更清

楚一些。为此我们定义能量的偶极矩

EX =

∫
d3xT 00(x, t)x. (17.70)

注意到，由于能量守恒Ė = 0, 所以

EẊ i =

∫
d3x(∂0T

00)xi = −
∫

d3x(∂jT
j0)xi =

∫
d3xT i0 = P i, (17.71)

其中倒数第二个等于号是进行了分部积分。但是，动量守恒意味着Ṗ = 0,

从而

EẌ = Ṗ = 0. (17.72)

这就告诉我们偶极辐射为零。

现在，我们可以利用结果(17.69)进一步推导出h00和h0i的次领头阶贡

献。为此我们注意到根据de Donder 规范条件∂µhµν = 0, 有

∂0h0i = ∂jhji, ∂0h00 = ∂ihi0. (17.73)

这两个方程中的第一个给出

∂0h0i = ∂j

(2G
r
Ïij(t− r)

)
= −2Gx̂j

r2
Ïij(t− r)− 2Gx̂j

r

...
I ij(t− r), (17.74)

式中我们利用了∂jr = xj/r ≡ x̂j。

(17.74)式的两项中，哪一项的贡献更大呢？由于我们考虑的是远场，

看起来似乎是1/r项的贡献远比1/r2项的贡献为大。但是，这里有一个细节

需要小心，即1/r项比1/r2项多一阶时间导数，对于晃动频率为ω的源，多

一阶时间导数相当于多一个ω ∼ 1/λ因子，这里λ为引力辐射的波长。因此

这也即是说，仅在(1/λ)(1/r) ≫ 1/r2时，1/r项的贡献才远超过1/r2项的贡

献。换言之，仅在如下条件满足时

r ≫ λ, (17.75)

1/r项的贡献才远超过1/r2项的贡献。这个条件就是所谓的远场区条件，或

者说辐射区条件。
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因此，由(17.74)式可知，在辐射区，我们有

h0i = −2Gx̂j

r
Ïij(t− r) + ...., (17.76)

这里我们已经取了P i = 0的惯性参考系。

重复上述技巧，即可以进一步决定h00, 结果是，在辐射区，它可以近

似由下式给出

h00 =
4GE

r
+

2Gx̂ix̂j

r
Ïij(t− r) + ... (17.77)

当然，这些结果也可以通过直接将(17.56)展开到次领头阶来得到，只不过

用de Donder 规范条件来推导这些结果更加快速。

17.3.2 示例：双星系统

作为示例，我们考察一个双星系统。假设两颗星的质量均为M , 两者

间距为R, 在x− y平面内旋转。用牛顿引力很容易算出旋转频率为

ω2 =
2GM

R3
. (17.78)

假设把两颗星均当成质点处理，每一颗星的质量密度当然都是δ函数的

乘积，因此，在非相对论近似下，双星系统的能量密度为

T 00 = Mδ(z)
[
δ(x− R

2
cosωt)δ(y − R

2
sinωt) + δ(x+

R

2
cosωt)δ(y +

R

2
sinωt)

]
.

因此不难算出，能量四极矩Iij(t)为

Iij(t) =
MR2

2

 cos2 ωt cosωt sinωt 0

cosωt sinωt sin2 ωt 0

0 0 0


=

MR2

4

1 + cos 2ωt sin 2ωt 0

sin 2ωt 1− cos 2ωt 0

0 0 0

 (17.79)

代入(17.69)式，即可以算出相应的引力波扰动

hij = −2GMR2ω2

r

cos 2ωtr sin 2ωtr 0

sin 2ωtr − cos 2ωtr 0

0 0 0

 , (17.80)
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式中tr ≡ t− r.

可以看出，双星系统辐射出来的引力波基本上沿着径向往外传播。但

是，如果我们将注意力集中在z轴方向，则上面的结果告诉我们，和自由空

间的平面引力波一样，这时候相应的引力波为横波，其极化模式为H+模式

和H×模式的某种叠加，实际上，这是一种圆极化模式。

为了估算辐射出来的引力波到底有多强，我们代入(17.78)式给出的ω2,

即有

|hij| ∼
G2M2

Rr
. (17.81)

很显然，双星的质量越大，离得越近，则辐射出来的引力波就越强。由于

双星不可能是真正的质点，它们的尺寸最小都是黑洞大小，因此两者最近

的距离当然就是相距一个施瓦西半径R ∼ Rg = 2GM , 这时候

|hij| ∼
GM

r
. (17.82)

一个质量约为几个太阳那么大的黑洞半径约为Rg ∼ 10km, 假如两个这样的

黑洞形成双星系统，假如这系统距离我们数百万光年，即r ∼ 1018km, 则

我们将有|hij| ∼ 10−17。而假如这系统距离我们为数十亿光年，则有|hij| ∼
10−20。当然它们都非常非常小，但是，正如前面的相应小节中提到过的，

当前的引力波探测器已经有足够的灵敏度，足以探测到这么微小的引力波

扰动。

17.4 诺特技巧推导引力波能动张量

考察一个正在发出引力辐射的物质源，我们想问，它的辐射功率为多

少？为此，我们需要取一个很大的两维闭合曲面包围这个物质源(这个两维

曲面在源区的外面，且远离源区)，然后计算单位时间经过这个闭合曲面

流出去的引力能为多少。但是，为了进行这种计算，我们需要知道线性化

引力场的能流密度公式，或者更一般地，需要知道线性化引力场的能动张

量tµν。本节将表明，如何可以用诺特技巧导出它。

根据前文，我们把hµν看作平坦时空中的一个二阶张量场(因此，现

在hµν不必是小量)，它具有如下Fierz-Pauli作用量

SFP =
1

16πG

∫
d4x

[
− 1

4
∂ρhµν∂

ρhµν +
1

2
∂ρhµν∂

νhρµ +
1

4
∂µh∂

µh− 1

2
∂νh

µν∂µh
]
.
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很明显，这个作用量具有时空平移不变性，因此原则上当然可以从它出发

通过标准的诺特定理得到一个正则能动张量。问题是，这样得到的正则能

动张量往往是不对称的。

好在本书第二章(2.103)式和(2.104)式的下面我们描述了一种通过诺特

技巧得到对称能动张量的办法。为此和第二章中的处理一样，我们取如下

无穷小局域洛伦兹变换

xµ → x′µ = xµ + ϵµ(x), ϵµ(x) = ϵµν(x)x
ν . (17.83)

式中ϵµν(x)是无穷小的反对称张量。

作为二阶张量场，hµν(x)必定满足如下洛伦兹变换规则

h′
µν(x

′)Λµ
ρ(x)Λ

ν
σ(x) = hρσ(x) ⇒ h′

µν(x
′)(δµρ + ϵµρ(x))(δ

ν
σ + ϵνσ(x)) = hρσ(x).

注意到ϵµν(x)为无穷小量，不难得到

h′
µν(x

′) = hµν(x)− (hρνϵ
ρ
µ + hµρϵ

ρ
ν). (17.84)

换言之，在无穷小局域洛伦兹变换(17.83)之下，hµν在变换前后的改变量

为(注意，hµν不必是小量)

δhµν ≡ h′
µν(x

′)− hµν(x) = −
(
hρνϵ

ρ
µ(x) + hµρϵ

ρ
ν(x)

)
. (17.85)

式中我们用加横杠的δ以区别于前文出现过的规范变换δhµν = −(∂µϵν +

∂νϵµ).

我们把Fierz-Pauli作用量看作基本场变量hµν的泛函，而诸如hµν这样

的场变量则看成是用ηµν上升指标的结果，其余上指标也作类似理解。这样

一来，Fierz-Pauli作用量就具有如下形式

SFP[hµν(x)] =

∫
D
d4xL

(
hµν(x), ∂ρhµν(x)

)
, (17.86)

式中为了明晰起见，假定只考察一个特定的时空区域D, 也即是说，作用量

的时空积分是在D上积的。
记无穷小局域时空变换(17.83)把时空局域D变到了D′, 即

D → D′, (17.87)
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当然，D′与D的差别是无穷小的。则，无穷小局域时空变换(17.83)之后

的Fierz-Pauli作用量为

SFP[h
′
µν(x)] =

∫
D′

d4xL
(
h′
µν(x), ∂ρh

′
µν(x)

)
=

∫
D′

d4x′L
(
h′
µν(x

′), ∂′
ρh

′
µν(x

′)
)
, (17.88)

注意，现在这个作用量积分是在变换之后的区域D′上积的。

可以对上面的(17.88)式继续进行如下推导

SFP[h
′
µν(x)] =

∫
D′

d4x′L
(
h′
µν(x

′), ∂′
ρh

′
µν(x

′)
)
,

=

∫
D
d4x det(

∂x′

∂x
)L

(
h+ δh,

∂xσ

∂x′ρ∂σ(h+ δh)
)
, (17.89)

式中h是hµν的简记符号(下文约定相同，不要和hµ
µ搞混了)。注意到det(∂x

′

∂x
) =

1 + ∂µϵ
µ, 以及 ∂xσ

∂x′ρ = δσρ − ∂ρϵ
σ, 代入(17.89)式，即有

SFP[h
′
µν(x)] =

∫
D
d4x

(
1 + ∂αϵ

α
)
L
(
h+ δh, ∂ρ(h+ δh)− ∂ρϵ

σ∂σ(h+ δh)
)

=

∫
D
d4x

(
1 + ∂αϵ

α
)
L
(
h+ δh, ∂ρ(h+ δh)− ∂ρϵ

σ∂σh
)

(17.90)

式中我们注意到∂ρϵ
σ∂σ(δh)为二阶无穷小量，从而可以略去。

进一步将(17.90)式展开到一阶小量，即有

SFP[h
′
µν(x)] =

∫
D
d4xL

(
h, ∂ρh

)
+

∫
D
d4x∂µϵ

µL
(
h, ∂ρh

)
−
∫
D
d4x

∂L
∂(∂ρh)

∂σh∂ρϵ
σ +

∫
D
d4xδL, (17.91)

式中

δL ≡ L
(
h+ δh, ∂ρ(h+ δh)

)
− L

(
h, ∂ρh

)
. (17.92)

注意到
∫
D d4xL

(
h, ∂ρh

)
= SFP[hµν(x)]，从而立即有变换前后作用量的改变

量为

δSFP ≡SFP[h
′
µν(x)]− SFP[hµν(x)]

=

∫
D
d4x∂µϵ

µL
(
h, ∂ρh

)
−
∫
D
d4x

∂L
∂(∂ρh)

∂σh∂ρϵ
σ +

∫
D
d4xδL,

=−
∫
D
d4x

[ ∂L
∂(∂ρhµν)

∂σhµν − δρσL
]
∂ρϵ

σ +

∫
D
d4xδL. (17.93)
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很显然，最后的这两项中，前一项就是标准的正则能动张量的贡献,不妨记

θρσ ≡ −
[ ∂L
∂(∂ρhµν)

∂σhµν − ηρσL
]
. (17.94)

则可以将上述结果简写成

δSFP =

∫
D
d4xθµν∂

µϵν +

∫
D
d4xδL. (17.95)

后面的δL项是对正则能动张量θµν的修正，正如本书第二章中根据局域洛伦

兹变换证明过的，这一修正将正好使得最终的能动张量为对称张量。

读者可能觉得，根据最小作用量原理, δL的修正项不应该正好等于零
吗？然而情况并非如此。的确，和最小作用量原理的推导一样，经过分部

积分，我们有∫
D
d4xδL =

∫
D
d4x

[∂L
∂h

− ∂ρ
∂L

∂(∂ρh)

]
δh+

∫
D
d4x∂ρ

[ ∂L
∂(∂ρh)

δh
]

(17.96)

等式右边的第一项根据h场的运动方程(欧拉-拉格朗日方程)自动等于零，

第二项是一个全微分项，它在区域边界∂D上有贡献，而且和最小作用量原
理的情形不同，现在这个边界贡献非零。这是由于δh中包含的是ϵµν项，而

我们现在并并并没没没有有有要求它在区域边界∂D上取零, 相反, 我们将要求ϵµν的偏导

在边界∂D上取零(即在区域边界上，所考察的无穷小局域洛伦兹变换趋于

一个整体的无穷小洛伦兹变换)。所以，与最小作用量原理的情形不同，这

里这个全微分项的贡献不是零！

代入前面的(17.85)式，即可以得到∫
D
d4xδL =

∫
D
d4x∂ρ

[ ∂L
∂(∂ρhµβ)

δhµβ

]
= −2

∫
D
d4x∂ρ

[ ∂L
∂(∂ρhµβ)

hνβϵ
ν
µ

]
= −2

∫
D
d4x∂ρ

[ ∂L
∂(∂ρhµβ)

hνβ

]
ϵνµ − 2

∫
D
d4x

[ ∂L
∂(∂ρhµβ)

hνβ

]
∂ρϵ

ν
µ

= 2

∫
D
d4x∂ρ

[ ∂L
∂(∂ρhµβ)

hν
β

]
ϵµν + 2

∫
D
d4x

[ ∂L
∂(∂ρhµβ)

hν
β

]
∂ρϵµν (17.97)

式中我们适当地升降了指标，并且利用了ϵµν的反对称性来去掉一些负号。

不妨记，

Xρµν ≡ ∂L
∂(∂ρhµβ)

hν
β. (17.98)
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将上面这个结果(17.97)和(17.95)式的结果结合，即有

δSFP =

∫
D
d4x

[
θµν∂µϵν + 2∂ρX

ρµνϵµν + 2Xρµν∂ρϵµν

]
. (17.99)

将Xρµν的µν指标反对称化，并记

Y ρµν ≡ Xρµν −Xρνµ. (17.100)

则不难看出(17.99)又可以写成

δSFP =

∫
D
d4x

[
θµν∂µϵν + ∂ρY

ρµνϵµν + Y ρµν∂ρϵµν

]
. (17.101)

根据第二章的知识，为了读出对称的能动张量tµν , 关键是要把上式凑

成如下形式

δSFP =

∫
D
d4xtµν∂µϵν . (17.102)

结果是，的确能湊出来，我先写出答案，然后我们再验证它的确能倒过来

给出原来的(17.101)式(这比直接凑答案容易些)。答案是，

δSFP =

∫
D
d4x

[
θµν − ∂ρ

(
Y ρµν − Y µρν − Y νρµ

)]
∂µϵν . (17.103)

为了验证，我们需要用到ϵν = ϵνσx
σ, 进而∂µϵν = (∂µϵνσ)x

σ − ϵµν，并注意

到Y ρµν这样的表达式关于后两个指标是反对称的。

为了验证(17.103)式，显然暂时可以不管θµν∫
D
d4x

[
− ∂ρ

(
Y ρµν − Y µρν − Y νρµ

)]
∂µϵν

=

∫
D
d4x

[
− ∂ρ

(
Y ρµν − Y µρν − Y νρµ

)]
((∂µϵνσ)x

σ − ϵµν)

=

∫
D
d4x

[
∂ρY

ρµνϵµν − ∂ρ
(
Y ρµν − Y µρν − Y νρµ

)
(∂µϵνσ)x

σ
]
. (17.104)

这一步我们用到Y µρν + Y νρµ关于µν是对称的，而ϵµν是反对称的。很显然，

(17.101)式中的ϵµν项已经得到验证了，下面我们把注意力放在∂ρϵµν项上。

由上面的推导∫
D
d4x

[
− ∂ρ

(
Y ρµν − Y µρν − Y νρµ

)
(∂µϵνσ)x

σ
]

=

∫
D
d4x

[(
Y ρµν − Y µρν − Y νρµ

)
[(∂ρ∂µϵνσ)x

σ + ∂µϵνρ]
]
. (17.105)
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这里是进行了分部积分(分部积分的边界项之所以可以忽略，是因为我们假

设了ϵνσ的偏导在∂D上取零)。注意到
(
Y ρµν − Y µρν − Y νρµ

)
关于µρ反对称，

而(∂ρ∂µϵνσ)x
σ关于µρ对称，立即有∫

D
d4x

[(
Y ρµν − Y µρν − Y νρµ

)
[(∂ρ∂µϵνσ)x

σ + ∂µϵνρ]
]

=

∫
D
d4x

[(
Y ρµν − Y µρν − Y νρµ

)
∂µϵνρ

]
=

∫
D
d4x

[(
Y ρµν − Y µρν + Y νµρ

)
∂µϵνρ

]
=

∫
D
d4x

[(
− Y µρν

)
∂µϵνρ

]
=

∫
D
d4x

[
Y ρµν∂ρϵµν

]
. (17.106)

正是(17.101)式中的∂ρϵµν项，验证完成！上述过程中我们利用了Y ρµν +

Y νµρ关于指标νρ对称，而∂µϵνρ关于νρ反对称。

从最终的(17.103)式中，可以读出

tµν = θµν − ∂ρ
(
Y ρµν − Y µρν − Y νρµ

)
. (17.107)

这个结果与Weinberg 量子场论第一卷7.4 节中给出的一般公式是一致

的(虽然温伯格并没有讨论张量场)，当然推导方法并不相同，我们这里

的推导主要是强调诺特技巧。有些时候人们也称这种对称的能动量张量

为Belinfante(贝林凡特) 张量。不过，和正则能动张量一样，一般来说，这

个能动张量并不具有δhµν = −(∂µϵν + ∂νϵµ)规范变换之下的规范不变性。

17.5 辐射功率

本节我们着重考察引力源的辐射功率，正如前面所说，这需要知道线

性化引力场能动张量tµν的具体形式，而且，我们想设法让tµν规范不变，因

为这样它才是一个物理量。

17.5.1 引力波能动张量的具体形式

但是真正将Fierz-Pauli作用量的表达式代入上面的(17.107)式进行推

导计算还是太复杂了！为了简化问题，我们可以进一步取横向无迹规

范(TT规范)，即取

h00 = h0i = 0, ∂ihij = 0, hii = 0, (17.108)
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当然，这只是前面(17.31)式的另一种写法。因此，在这个规范中h = hµ
µ =

0, ∂µhµν = 0, 又注意到Fierz-Pauli作用量为

SFP =
1

16πG

∫
d4x

[
− 1

4
∂ρhµν∂

ρhµν +
1

2
∂ρhµν∂

νhρµ +
1

4
∂µh∂

µh− 1

2
∂νh

µν∂µh
]
,

进而通过合适的分部积分即可知，TT规范下的Fierz-Pauli作用量可以写成

SFP =
1

16πG

∫
d4x

[
− 1

4
∂ρhµν∂

ρhµν
]
. (17.109)

当然，这时候hµν场的运动方程就简化为

∂2hµν = 0. (17.110)

从(17.109)中可以读出相应的拉格朗日量L, 为

L =
1

16πG

[
− 1

4
∂ρhµν∂

ρhµν
]
. (17.111)

为了具体计算(17.107)式给出的能动张量，我们先算一下Xρµν , 代入前面的

定义，即可得

Xρµν = − 1

32πG
(∂ρhµβ)hν

β. (17.112)

进而即有

Y ρµν = − 1

32πG

[
(∂ρhµβ)hν

β − (∂ρhνβ)hµ
β

]
. (17.113)

利用运动方程，不难得∂ρY
ρµν = 0, 但是，∂ρ(Y

µρν + Y νρµ) ̸= 0, 具体表达式

当然可以直接算出来，不过，我们这里就不写这个表达式了，因为正如后

文将表明的，它对我们本节想得到的最终结果没有贡献。另一方面，代入

前面的一般公式(17.94), 即可以得出θµν，为(经过了一些指标升降)

θµν =
1

16πG

[1
2
∂µhαβ∂νh

αβ − 1

4
ηµν∂ρhαβ∂

ρhαβ
]
. (17.114)

由于所考察作用量的特殊性，这已经是一个对称张量了。综上，可知

tµν = θµν + ∂ρ(Y
µρν + Y νρµ). (17.115)

的确是一个对称张量。这个能动张量是在TT规范下给出的，它当然不是规

范不变的！然而我们希望让它规范不变，如此才能作为一个物理量。
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为了得到规范不变的能动张量，一种不太严格但是简单的处理办法是

这样的。假设所考察的引力波的特征波长为λ, 下面我们考察一个以时空

点x为中心的典型尺寸为a的时空区域V , a ≫ λ。然后在V上对tµν进行某种

粗粒化平均，即将tµν在V上的多次振荡平均掉，具体来说，我们定义

⟨tµν(x)⟩ ≡
∫
V

d4yW (x− y)tµν(y), (17.116)

其中权函数W在V上光滑变化，满足
∫
V
d4yW (x − y) = 1, 以及在区域的

边界∂V上W = 0。这种粗粒化意味着，对于一个全微分∂X, 其平均将

有⟨∂X⟩ ∼ 1/a, 由于相对来说a很大(a ≫ λ)，因此1/a可以忽略，所以在相

差1/a量级的意义上，我们有

⟨∂X⟩ = 0. (17.117)

由此进一步，我们有如下分部积分关系(在相差1/a量级的意义上, 以后不再

说明)

⟨X∂Y ⟩ = −⟨(∂X)Y ⟩. (17.118)

利用上面的关系，立即有

⟨∂ρ(Y µρν + Y νρµ)⟩ = 0, (17.119)

因为它平均的是一个全微分。类似的，也有

⟨∂ρhαβ∂
ρhαβ⟩ = −⟨(∂2hαβ)h

αβ⟩ = 0, (17.120)

其中最后的等于零是利用了hµν的运动方程。综合这些结果，以及前面给出

的能动张量表达式(17.115), 立即有

⟨tµν⟩ =
1

32πG
⟨∂µhρσ∂νh

ρσ⟩. (17.121)

不难验证，平均以后的能动张量依然满足守恒方程，验证如下

∂µ⟨tµν⟩ =
1

32πG

[
⟨∂2hρσ∂νh

ρσ⟩+ 1

2
⟨∂ν(∂µhρσ∂

µhρσ)⟩
]
= 0, (17.122)

等式右边第一项等于零是由于运动方程，而第二项等于零是因为平均的是

一个全微分。
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不仅如此，平均以后的能动张量(17.121)还是规范不变的！为此，我们

考察规范变换δhµν = −(∂µϵν + ∂νϵµ)，在此变换之下

δ⟨tµν⟩ =
1

32πG

[
⟨∂µδhρσ∂νh

ρσ⟩+ ⟨∂µhρσ∂νδh
ρσ⟩

]
= − 1

32πG

[
⟨∂µ(∂ρϵσ + ∂σϵρ)∂νh

ρσ⟩+ ⟨∂µhρσ∂ν(∂
ρϵσ + ∂σϵρ)⟩

]
.

通过分部积分并利用de Bonder 规范条件∂ρhρσ = 0, 可以看出最后这些项都

等于零，因此最后的结果等于零，即

δ⟨tµν⟩ = 0. (17.123)

所以，平均以后的能动张量(17.121)才是我们最终要找的物理量。

17.5.2 再谈TT规范

对于无源区的一个波矢量为k的平面引力波解hµν , 假设它已经满足de

Donder 规范，但是不满足TT规范，如何才能得到一个相应的TT规范下的

解呢？

为此我们注意到波的传播方向为n = k/|k|, n为单位矢量，TT规范当

然要满足nihij = 0。所以我们引入

Pij(n) ≡ δij − ninj, (17.124)

显然，这是一个对称横向张量，满足niPij = 0, 且很明显其迹为2, Pii = 2。

并且，不难看出Pij是一个投影算符，即满足

PikPkj = Pij. (17.125)

进一步，我们构建如下张量

Λij,kl(n) = PikPjl −
1

2
PijPkl, (17.126)

显然，它关于指标对(ij)和(kl)是对称的。不难验证，它也是投影算符，满

足

Λij,klΛkl,mn = Λij,mn. (17.127)
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并且，它的所有指标均是横向的，即有niΛij,kl = 0, njΛij,kl = 0等等。且它

的(ij)和(kl)指标对均是无迹的，即

Λii,kl = Λij,kk = 0. (17.128)

得到TT规范下的解的办法很简单，就是利用hµν的空间分量hij,

hTT
ij = Λij,klhkl, (17.129)

式中，为了以示区分，我们用上标TT来明确标示TT规范下的解。更一般

的，对于任何对称张量Sij, 均可以定义其横向无迹部分为

STT
ij = Λij,klSkl. (17.130)

现在，我们可以将上一小节得到的⟨tµν⟩公式(17.121)重记为(注意hTT
0µ =

0)

⟨tµν⟩ =
1

32πG
⟨∂µhTT

ij ∂νh
TT
ij ⟩. (17.131)

特别的，能量密度⟨t00⟩为

⟨t00⟩ = 1

32πG
⟨ḣTT

ij ḣTT
ij ⟩. (17.132)

能流密度⟨t0k⟩为(负号来源于0指标的升降)

⟨t0k⟩ = − 1

32πG
⟨ḣTT

ij ∂kh
TT
ij ⟩. (17.133)

有时候需要将涉及单位矢量n的一些量在单位球面上平均，这里收集

一些结果 ∫
dΩ

4π
ninj =

1

3
δij, (17.134)

式中dΩ为球面上的立体角。类似的，也有∫
dΩ

4π
ninjnknl =

1

15
(δijδkl + δikδjl + δilδjk). (17.135)

而且类似的恒等式还可以推广到任意多个n乘积的平均，结果是：对于奇

数个n的乘积，由于被积函数在空间反演下为奇宇称，所以在球面上积分

的结果等于零。而对于偶数个n的乘积，注意到ni1ni2 ...ni2l是全对称的，所
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以其平均的最终结果也只能依赖于克隆内克符号的全对称乘积，需要确定

的是这个结果前面的整体常数因子，这可以通过把所有指标成对地收缩掉

来确定，最终结果是∫
dΩ

4π
ni1ni2 ...ni2l =

1

(2l + 1)!!
(δi1i2δi3i4 ...δi2l−1i2l + ....). (17.136)

根据定义式(17.126), Λij,kl(n)也可以展开成如下形式

Λij,kl(n) =δikδjl −
1

2
δijδkl − njnlδik − ninkδjl

+
1

2
nknlδij +

1

2
ninjδkl +

1

2
ninjnknl. (17.137)

进一步运用上一段的结果，即可以得到∫
dΩ

4π
Λij,kl(n) =

1

30
(11δikδjl − 4δijδkl + δilδjk). (17.138)

17.5.3 辐射功率

有了以上这些准备，现在即可以计算一个有限尺寸引力源辐射引力波

的功率了。为此，我们需要以这个源为中心，在离源很远的地方取一个大

的球面S2包围这个源(假设这个球面的半径为r = |x|)，然后计算单位时间
从这个球面流出去的能流，换言之，辐射功率P为

P =

∫
S2

dAni⟨t0i⟩ =
∫
S2

dA⟨t0r⟩, (17.139)

式中n = x/|x|为径向的单位矢量，dA = r2dΩ为球面的面积元。

根据上一小节，我们知道

⟨t0r⟩ = − 1

32πG
⟨ḣTT

ij

∂

∂r
hTT
ij ⟩. (17.140)

另一方面，根据引力波的产生那一节中的公式(17.69)可知，hTT
ij 必定具有

如下形式

hTT
ij (t, r) =

1

r
fij(t− r). (17.141)

因此，立即有

∂

∂r
hTT
ij = − 1

r2
fij(t− r) +

1

r

∂

∂r
fij(t− r). (17.142)
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而很显然 ∂
∂r
fij(t− r) = − ∂

∂t
fij(t− r), 所以

∂

∂r
hTT
ij = −ḣTT

ij +O(1/r2). (17.143)

由于我们考察的球面离源非常远，所以相比来说，后面的O(1/r2)项可以忽

略。进一步结合(17.140)式，即有

⟨t0r⟩ = 1

32πG
⟨ḣTT

ij ḣTT
ij ⟩ = ⟨t00⟩. (17.144)

所以，引力源的辐射功率为

P =
r2

32πG

∫
S2

dΩ⟨ḣTT
ij ḣTT

ij ⟩. (17.145)

为了得到hTT
ij 的表达式，下面我们要引用引力波的产生那一节中的公

式(17.69)了，不妨将之重写在下面

hij(x, t) =
2G

r
Ïij(t− r). (17.146)

张量Iij可以分解成无迹部分和迹部分的和，

Iij =
(
Iij −

1

3
δijIkk

)
+

1

3
δijIkk. (17.147)

式中Iij − 1
3
δijIkk就是无迹部分，常常记作Qij, 根据Iij的定义，显然有

Qij(t) = Iij −
1

3
δijIkk =

∫
d3xT 00(t,x)

(
xixj −

1

3
δijr

2
)
. (17.148)

为了得到引力辐射的hTT
ij ，我们只需要沿着引力波传播的径向(n方

向)对(17.146)作一个横向无迹投影，注意横向无迹投影的作用之下，Iij的

迹部分可以丢弃，因此有

hTT
ij (x, t) =

2G

r
Λij,kl(n)Q̈kl(t− r). (17.149)

代入辐射功率的(17.145)式，并利用投影算符的性质，不难有

P =
G

8π

∫
S2

dΩΛij,kl(n)⟨
...
Qij

...
Qkl⟩. (17.150)

注意到Ïij仅仅是t− r的函数，因此
...
Qij也仅仅是t− r的函数，与方向n无关。

所以，上述球面积分其实仅仅只需对Λij,kl(n)进行，利用前面的(17.138)式，

并注意到Qij是无迹的，不难得到

P =
G

5
⟨
...
Qij

...
Qij⟩. (17.151)

这就是四极近似下引力源辐射功率的最终表达式。
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17.5.4 估算辐射功率的量级

下面我们来对辐射功率进行一个快速的估算。还是假设一个双星系统，

两星的质量均为M , 间距为R, 则根据牛顿引力，它们相互旋转的频率ω为

ω2R ∼ GM

R2
. (17.152)

能量四极矩Q ∼ MR2, 因此
...
Q ∼ ω3MR2, 由此即可得此双星系统的辐射功

率约为

P ∼ G
...
Q

2 ∼ G4M5

R5
. (17.153)

为了估算出量级，我们需要恢复光速c, 注意到施瓦西半径为Rg =

2GM/c2, 牛顿引力常数的量纲为[G] = M−1L3T−2, 从而即知，c5/G为功率

的量纲(即能量除以时间的量纲)。不妨定义如下普朗克亮度

LPlank ≡
c5

G
≈ 3.6× 1052J/s. (17.154)

进而即可以把上面的(17.153)式恢复为

P ∼
(Rg

R

)5
LPlank. (17.155)

普朗克亮度到底是一个多大的功率呢？这么说吧，太阳发光的功率

为L⊙ ≈ 10−26LPlank, 一个星系大约有1011颗横星，其总亮度为Lgalaxy ≈
10−15LPlank，可观测宇宙中大约有1010个星系，因此宇宙中所有恒星的总亮

度大约为10−5LPlank。

但是，当两个黑洞相互旋转着彼此靠近，当它们之间的距离小到差不

多等于施瓦西半径时，上面的公式(17.155)告诉我们，它们辐射引力波的功

率可以达到一个LPlank! 也就是说，这时候这两个黑洞辐射引力波的功率超

过整个可观测宇宙所有恒星发光的总功率。

那么，行星绕日运动也是一个双星系统，也会辐射引力波，这个辐

射功率大约为多少呢？当然，由于这时候我们考察的两个星星质量不等，

M1 ≫ M2, 所以这时候公式(17.153)应该修正为

P ∼ G4M3
1M

2
2

R5
. (17.156)
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以木星绕日为例，木星的质量约为10−3M⊙, 距离太阳约为109km, 太阳的施

瓦西半径约为3km, 可以根据上面公式估算出木星绕日辐射引力波的功率，

约为

P ∼ 10−50LPlank ≈ 10−24L⊙. (17.157)

显然，这是一个小到可以忽略的功率。之所以和前面黑洞结合过程辐射功

率差这么多，是因为引力辐射的功率反比于距离5次方，因此它随着距离的

增加下降得非常快。

17.6 参考文献
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