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众所周知，量子力学中有三种常用绘景，海森堡绘景、薛定谔绘景、以

及相互作用绘景。然而很少有人知道，经典力学也有相应的三种绘景，即

哈密顿绘景、刘维尔绘景以及经典相互作用绘景，其中前两者其实是常用

绘景，分别对应量子的海森堡绘景和薛定谔绘景。但是经典相互作用绘景

本文作者好像没有在文献中见到过，也许是本文的独家内容。即使常用的

哈密顿绘景和刘维尔绘景，完全讲清楚的文献也不多，这也许是大多数学

物理的学生都不知道经典力学中也有绘景概念的原因。总之，本文就是要

讲清楚所有这些内容。

本文的第一节是对量子力学三种常用绘景的回顾，第二节是讨论如何在

经典力学中定义三种相应的绘景。不过，严格来说，本文讨论的是量子统

计力学和经典统计力学的对应。这是因为，只有在统计力学的范畴之内，

态的量子概念和经典概念才有完全的对应。换言之，本文讨论的不是单个

力学系统，而是一个统计系综，在量子力学中，这样一个统计系综的态由

密度算符描述，相应的，在经典力学中，这样一个统计系综的态由相空间

的一个概率分布所描述。

1 量量量子子子力力力学学学中中中的的的三三三种种种常常常用用用绘绘绘景景景

在量子力学中，刻画一个量子系综需要一组物理量算符以及描述系综量子

态的一个密度算符，不妨记其中一个任意的物理量算符为O, 记系综的密度

算符为ρ，它们都是厄米算符，而且密度算符ρ还得额外满足：1. ρ的本征

值都大于等于零，从而为正定算符; 2. Tr(ρ) = 1。则实验可观测的量总是
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由某物理量算符O在ρ上的期望值⟨O⟩ρ给出，其中

⟨O⟩ρ ≡ Tr(ρO). (1)

当然，量子系统会随着时间演化，这种演化由系统的哈密顿量H决定,

它反映为期望值⟨O⟩ρ会随着时间演化。但是关于⟨O⟩ρ随时间的演化是由物
理量算符O的演化引起还是由密度算符ρ的演化引起，我们有三种常用的不

同观点，分别称之为，海森堡绘景、薛定谔绘景、以及相互作用绘景。

海海海森森森堡堡堡绘绘绘景景景

让我们先来看海森堡绘景，它认为是物理量算符在随时间演化，而密度

算符则是不变的。为了讲得更清楚具体一点，我们定义时间演化算符U(t)

U(t) = exp
(
− iHt/~

)
. (2)

显然，它满足

U(0) = 1, U(t)U(s) = U(t+ s). (3)

换言之，U(t)构成一个阿贝尔群。将U(t)对时间t求导，可以得到其满足的

微分方程，为

i~
d

dt
U(t) = HU(t). (4)

海森堡绘景认为：描述量子态的密度算符ρ从不随时间演化, 随时间演

化的是物理量算符，它其实应该为如下Ot,

Ot = U †(t)OU(t), (5)

注意，式中O是不随时间演化的，但它只是t = 0时刻的物理量算符，

即O0 ≡ Ot=0 = O。根据Ot的定义和方程(4), 不难得到如下海森堡运动方

程

i~
d

dt
Ot = [Ot, H]. (6)

这个微分方程的初始条件为

O0 = O. (7)
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进而物理量的期望值应该表达为

⟨Ot⟩ρ ≡ Tr(ρOt). (8)

薛薛薛定定定谔谔谔绘绘绘景景景

如果我们将Ot的定义(5)代入期望值公式(8)，即有

Tr(ρOt) = Tr(ρU †(t)OU(t)) = Tr(U(t)ρU †(t)O). (9)

由此，我们也完全可以把时间演化算符与态的密度算符结合起来，而不是

和物理量算符结合起来，即可以定义随时间演化的态ρt

ρt = U(t)ρU †(t). (10)

从而即可以将上面的期望值公式重写成

⟨Ot⟩ρ ≡ Tr(ρOt) = Tr(ρtO) ≡ ⟨O⟩ρt . (11)

也即是说，我们可以完全等价地认为是量子态在按照ρt随时间演化，而物

理量算符是不随时间演化的，永远为O。
以上这种等价观点就是薛定谔绘景。根据ρt的定义不难看出，它满足如

下薛定谔方程

i~
d

dt
ρt = [H, ρt]. (12)

这个微分方程的初始条件为

ρ0 = ρ. (13)

相相相互互互作作作用用用绘绘绘景景景

在很多应用中，可以把哈密顿量H拆分成两项之和

H = H0 + V. (14)

其中H0称作自由项，V称之为相互作用项，它们均为厄米算符。
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这时候关于是谁在随时间演化，我们还有第三种观点。为了讲清楚这种

观点，需要定义如下时间演化算符U0(t)

U0(t) ≡ exp
(
− iH0t/~

)
. (15)

显然，它描述的是按照自由哈密顿量H0的演化。U0(t)也构成一个阿贝尔

群，满足

U0(0) = 1, U0(t)U0(s) = U0(t+ s). (16)

不过，值的注意的是，由于H0与H一般来说并不对易，所以一般来

说U0(t)与原来的U(s)也不对易！

根据U0(t)U
†
0(t) = U0(t)U0(−t) = U0(0) = 1(同样也有U †

0(t)U0(t) = 1), 我

们有

Tr(ρtO) = Tr(U(t)ρU †(t)O)

=Tr
(
U(t)ρU †(t)U0(t)U

†
0(t)OU0(t)U

†
0(t)

)
=Tr

(
U †
0(t)U(t)ρU †(t)U0(t)U

†
0(t)OU0(t)

)
=Tr

(
U †
0Uρ(U †

0U)†U †
0OU0

)
. (17)

上式最后一行我们省略了时间演化算符中的自变量时间t.

进而定义随时间演化的物理量算符OI
t为

OI
t ≡ U †

0(t)OU0(t). (18)

同时定义随时间演化的量子态ρIt为

ρIt =
(
U †
0(t)U(t)

)
ρ
(
U †
0(t)U(t)

)†
. (19)

进而即可以将(17)式重写作

Tr(ρtO) = Tr(ρItOI
t ). (20)

即关于是谁在随时间演化的问题，还有第三种等价的观点，即认为态和物

理量算符都在随时间演化，其中物理量算符按照OI
t演化，态按照ρIt演化。

这就是相互作用绘景。
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根据OI
t的定义(18)的定义，不难看出它满足如下微分方程

i~
d

dt
OI

t = [OI
t , H0]. (21)

即在相互作用绘景中，物理量算符随时间的演化由自由哈密顿量H0决定。

为了看清ρIt满足什么微分方程，我们首先注意到

i~
d

dt

(
U †
0(t)U(t)

)
= −U †

0(t)H0U(t) + U †
0(t)HU(t)

=U †
0(t)V U(t) = U †

0(t)V U0(t)
(
U †
0(t)U(t)

)
=V I

t

(
U †
0(t)U(t)

)
. (22)

其中V I
t ≡ U †

0(t)V U0(t)为相互作用绘景中的相互作用算符。将这个结果厄

米共轭，又有i~ d
dt

(
U †
0(t)U(t)

)†
= −

(
U †
0(t)U(t)

)†
V I
t 。利用这两个结果，再

根据ρIt的定义式(19)，不难得出

i~
d

dt
ρIt = [V I

t , ρ
I
t ]. (23)

这就是相互作用绘景中的密度算符所满足的演化微分方程。它告诉我们，

在相互作用绘景中，量子态的时间演化由相互作用绘景中的相互作用算

符V I
t 决定。

2 经经经典典典力力力学学学中中中的的的绘绘绘景景景

下面讨论经典力学中的绘景。我们记经典系统的相空间为M, 相空间的

点(相点)为µ = (q, p), 其中q, p为共轭的正则变量。物理量为相空间的函

数，一般记作O(µ)。经典系综的态为相空间的一个概率分布，记作ρ(µ),

满足ρ(µ) ≥ 0, 以及归一化条件∫
M

ρ(µ)dµ = 1, (24)

这里dµ = dqdp为相空间的积分测度，即刘维尔体积元。从而物理量的期望

值即为

⟨O⟩ρ =
∫
M

O(µ)ρ(µ)dµ. (25)
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经典系统的时间演化由哈密顿量H(µ)决定，满足如下哈密顿正则方程

dq

dt
=

∂H

∂p
= {q,H}, dp

dt
= −∂H

∂q
= {p,H}, (26)

式中{A,B}表示两个物理量A(µ), B(µ)的泊松括号，其定义为

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
. (27)

特别的，由哈密顿正则方程可以得出能量守恒，即

dH

dt
=

∂H

∂q

dq

dt
+

∂H

∂p

dp

dt
=

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0. (28)

给定初始条件µ0 = (q0, p0)，记哈密顿正则方程的解为qt = q(µ0, t),

pt = p(µ0, t), 满足qt=0 = q0, pt=0 = p0。我们可以抽象地把这个解简记为

µt = gtµ0, (29)

式中µt = (qt, pt), gt称作相流，它是一个抽象的运算，gt作用在初始相

点µ0上，即得到t时刻的相点µt, 换言之，gt的抽象作用所产生的，就是系

统在相空间的时间演化。很显然，g0应该是一个恒等作用，不妨记作

g0 = 1. (30)

假设我们把时间平移一下，从s时刻开始演化一段时间t(即演化到t + s时

刻)，则应该有µt+s = gtµs = gtgsµ0, 另一方面，我们也可以直接从0时刻演

化到t+ s时刻，从而有µt+s = gt+sµ0, 两者一比较，即有

gtgs = gt+s. (31)

特别的，gtgs = gsgt。也即是说，相流gt是相空间的一个单参变换群，而且

是一个阿贝尔群，群的乘法由相流的抽象作用决定。

哈哈哈密密密顿顿顿绘绘绘景景景

在哈密顿绘景中，我们认为态ρ(µ)是不变的，随时间演化的是物理量。

给定一个相空间函数O(µ), 记相应的物理量在t时刻为Ot(µ), 其定义为

Ot(µ0) ≡ O(µt) = O(gtµ0). (32)
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特别的，由于能量守恒，所以Ht(µ0) = H(µt) = H(µ0), 即Ht = H! 进而不

难导出，Ot满足如下哈密顿方程

dOt

dt
= {Ot, H}. (33)

以上方程(33)的具体推导如下,

dOt(µ0)

dt
=

dOt+s(µ0)

ds
|s=0 =

d

ds
|s=0O(gtgsµ0)

=
d

ds
|s=0Ot(gsµ0) =

∂Ot

∂qs

dqs
ds

|s=0 +
∂Ot

∂ps

dps
ds

|s=0

=
∂Ot

∂q0

∂H

∂p0
− ∂Ot

∂p0

∂H

∂q0
= {Ot, H}µ0 . (34)

式中泊松括号的下标µ0表示计算泊松括号的时候是相对于相空间坐标µ0 =

(q0, p0)。这个推导也告诉我们，哈密顿方程(33)更清楚的写法应该是，

dOt(µ0)

dt
= {Ot, H}µ0 . (35)

这里不妨再给一个不同的推导，

dOt(µ0)

dt
=

d

dt
O(gtµ0) =

d

dt
O(µt)

=
∂O
∂qt

dqt
dt

+
∂O
∂pt

dpt
dt

=
∂O
∂qt

∂H

∂pt
− ∂O

∂pt

∂H

∂qt
= {O, H}µt . (36)

注意到，相空间的时间演化其实是一个正则变换，因此µt → µ0的变换是一

个正则变换，根据泊松括号的正则变换不变性，并注意到O(µt) = Ot(µ0),

H(µt) = H(µ0), 从而

{O, H}µt = {Ot, H}µ0 . (37)

代入上一式子，即得到(35)式。

刘刘刘维维维尔尔尔绘绘绘景景景

在哈密顿绘景中，态不随时间演化，随时间演化的是物理量Ot, 它按照

哈密顿方程(35)演化。这时候物理量的期望值可以写作

⟨Ot⟩ρ =
∫
M

Ot(µ0)ρ(µ0)dµ0 =

∫
M

O(gtµ0)ρ(µ0)dµ0. (38)
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但是，我们也可以对(38)式进行µ0 → g−tµ0的变量代换( 从而gtµ0 →
gtg−tµ0 = g0µ0 = µ0), 则有

⟨Ot⟩ρ =
∫
M

O(gtµ0)ρ(µ0)dµ0

=

∫
M

O(µ0)ρ(g−tµ0)d(g−tµ0)

=

∫
M

O(µ0)ρ(g−tµ0)dµ−t. (39)

根据刘维尔定理，相空间的体积元在时间演化之下保持不变，从而dµ−t =

dµ0。另外再定义随时间演化的态ρt

ρt(µ0) ≡ ρ(g−tµ0). (40)

从而即有

⟨Ot⟩ρ =
∫
M

O(µ0)ρt(µ0)dµ0 = ⟨O⟩ρt . (41)

也即是说，等价的，我们也可以认为物理量不随时间演化，永远为O, 随时

间演化的是系综的态，它按照ρt的定义进行演化。这就是刘维尔绘景。

完全类似于前面对哈密顿方程(33)的推导，根据ρt的定义(40), 不难导出

它满足的运动微分方程，如下

dρt
dt

= −{ρt, H} = {H, ρt}. (42)

这就是刘维尔方程。它更清楚的写法当然是

dρt(µ0)

dt
= {H, ρt}µ0 . (43)

经经经典典典相相相互互互作作作用用用绘绘绘景景景

如果系统完整的哈密顿量可以拆分成H(µ) = H0(µ) + V (µ)，则我们还

可以引入经典相互作用绘景。为此除了由H决定的相流gt之外，我们还需

要定义由自由哈密顿量H0决定的相流g0t。具体来说，我们需要考虑如下哈

密顿正则方程的解

dq

dt
=

∂H0

∂p
,

dp

dt
= −∂H0

∂q
. (44)
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给定初始条件µ0 = (q0, p0)，我们把这个解记作µI
t = (qIt , p

I
t ), 并称它是由相

流g0t的抽象作用所产生的，即满足

µI
t = g0tµ0. (45)

很显然，g0t也是相空间的一个单参变换群，满足

g00 = 1, g0t g
0
s = g0t+s, (46)

并且它也是一个阿贝尔群。不过，一般来说，g0t的抽象作用与gs的抽象作

用是不可交换的。

完全类似于H在相流gt之下的能量守恒，H0在相流g0t的作用下也是守恒

的，即满足

H0(g
0
tµ0) = H0(µ0). (47)

为了讲清楚经典相互作用绘景，下面我们回到(41)式，重写如下

⟨O⟩ρt =
∫
M

O(µ0)ρt(µ0)dµ0. (48)

对这个式子进行变量代换µ0 → g0tµ0, 并注意到d(g0tµ0) = dµ0(同样是由于相

空间体积元的刘维尔定理)，即有

⟨O⟩ρt =
∫
M

O(g0tµ0)ρt(g
0
tµ0)dµ0. (49)

定义相互作用绘景中的物理量OI
t，以及相互作用绘景中的态ρIt , 如下

OI
t (µ0) ≡ O(g0tµ0), (50)

ρIt (µ0) ≡ ρt(g
0
tµ0) = ρ(g−tg

0
tµ0). (51)

进而即可以把(49)式写成

⟨O⟩ρt =
∫
M

OI
t (µ0)ρ

I
t (µ0)dµ0. (52)

也即是说，可以等价地认为，物理量和态都在随时间演化，物理量按

照OI
t的定义演化，态则按照ρIt的定义演化。这就是经典相互作用绘景。
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根据OI
t的定义，完全类似于哈密顿方程(35)的第二种推导方法，不难得

出

dOI
t (µ0)

dt
=

dO(g0tµ0)

dt
= {O, H0}g0t µ0

= {OI
t , H0}µ0 , (53)

其中最后一个等于号是由于g0tµ0 → µ0也是一个正则变换，同时O(g0tµ0) =

OI
t (µ0), H0(g

0
tµ0) = H0(µ0)。这个结果告诉我们，在相互作用绘景中，物

理量的演化完全由自由哈密顿量H0决定！

而ρIt的定义，我们有

dρIt (µ0)

dt
=

dρt(g
0
tµ0)

dt

=
∂ρt
∂t

(g0tµ0) + {ρt, H0}g0t µ0
. (54)

式中第二行的第二项是根据(53)式，而第一项∂ρt
∂t
(µ)是指对ρt(µ)中的t进行

偏导，根据刘维尔方程(43)，∂ρt
∂t
(g0tµ0) = {H, ρt}g0t µ0

, 代入上式，即有

dρIt (µ0)

dt
= {H, ρt}g0t µ0

− {H0, ρt}g0t µ0
= {V, ρt}g0t µ0

. (55)

注意到泊松括号的正则变换不变性，同时注意到V (g0tµ0) = V I
t (µ0),

ρt(g
0
tµ0) = ρIt (µ0), 进而即可以把上面这个结果改写成

dρIt (µ0)

dt
= {V, ρt}g0t µ0

= {V I
t , ρ

I
t}µ0 . (56)

也即是说，在相互作用绘景中，态的演化完全由相互作用绘景中的相互作

用项V I
t 所决定。

3 经经经典典典线线线性性性响响响应应应理理理论论论

本节讨论经典相互作用绘景的一个应用，即用来推导经典线性响应理论。

本节内容是后加的，起因是2024年10月9日本文的上一个版本上传以后，知

乎用户@The West读了之后，提出可以用本文讨论的经典相互作用绘景推

导经典线性响应理论。所以本节的原始想法应该归于@The West, 我只是具

体实现了一下这个想法。本节的结论当然都是文献中已经有了的，但是利

用经典相互作用绘景来推导这些结论则很可能是新的。
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由于是从相互作用绘景开始，所以当然

H(µ) = H0(µ) + V (µ, t). (57)

这里我们稍作了一点推广，即允许V (t)显含时间t, 这时候前文讲述的一些

相应内容也得做一些改动，细节留给读者自己思考，这里不作赘述。但

是，结论就是，前文的核心结论依然可以直接推广到这种情况，特别的，

相互作用绘景的方程(53)以及(56)都依然成立，当然这时候V I
t (µ0)的定义

是V I
t (µ0) ≡ V (g0tµ0, t)。

相相相互互互作作作用用用绘绘绘景景景与与与微微微扰扰扰论论论

很多时候，我们可以认为系统依然是由哈密顿量H0决定的，只是我们

给系统加上了一个微扰V (t)。这时候人们常常省略OI
t (包括V I

t )的上标I, 就

简单地把相应相互作用绘景中的物理量记作Ot(以及Vt), 并把它理解成是哈

密顿量为H0的系统在哈密顿绘景中的物理量。因此，Ot当然满足如下哈密

顿方程(也就是方程(53))

dOt(µ0)

dt
= {Ot, H0}µ0 . (58)

不过，Vt有点特殊，因为它的定义是Vt(µ0) ≡ V (g0tµ0, t)，其中V (µ, t)是显

含时间的。

下面我们利用微扰的思想求解态ρIt所满足的方程(56)，重写如下

dρIt (µ0)

dt
= {Vt, ρ

I
t}µ0 . (59)

我们假设在t → −∞的时刻

ρI−∞ = ρe, (60)

它就是在扰动之前，系统所处的态。由此可以把(59)式改写成如下积分方

程

ρIt = ρe +

∫ t

−∞
dt′{Vt′ , ρ

I
t′}. (61)
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用迭代的方法求解这个积分方程，即可以得到如下微扰级数

ρIt = ρe +

∫ t

−∞
dt1{Vt1 , ρe}+

∫ t

−∞
dt2

∫ t2

−∞
dt1{Vt2 , {Vt1 , ρe}}

+

∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1{Vt3 , {Vt2 , {Vt1 , ρe}}}+ .... (62)

线线线性性性响响响应应应

利用上面的微扰级数，即有

⟨Ot⟩ρIt = ⟨Ot⟩ρe +
∫ t

−∞
dt1

∫
M

Ot(µ0){Vt1 , ρe}µ0dµ0 + ... (63)

式中我们只保留到了微扰级数的线性阶。为了确保概率分布ρe能够归一

化，我们需要假设ρe在相空间的无穷远边界∂M上以足够快的速度趋于
零。从而对于任意的相空间函数A(µ), B(µ), 我们有∫

M
{A,Bρe}µ0dµ0 =

∫
M

[∂A
∂q0

∂(Bρe)

∂p0
− ∂A

∂p0

∂(Bρe)

∂q0

]
dq0dp0

=

∫
M

[ ∂

∂p0

(
Bρe

∂A

∂q0

)
− ∂

∂q0

(
Bρe

∂A

∂p0

)]
dq0dp0

=

∫
∂M

ρeB
[∂A
∂q0

dq0 −
∂A

∂p0
dp0

]
= 0. (64)

根据这个结果，再利用泊松括号的性质Ot{Vt1 , ρe} = {Vt1 ,Otρe}−{Vt1 ,Ot}ρe,
即可以将(63)式改写成

⟨Ot⟩ρIt = ⟨Ot⟩ρe +
∫ t

−∞
dt1

∫
M
{Ot, Vt1}µ0ρe(µ0)dµ0 + ... (65)

定义扰动引起的物理量期望值的改变为

δ⟨Ot⟩ ≡ ⟨Ot⟩ρIt − ⟨Ot⟩ρe . (66)

则截止到微扰的线性阶，我们可以把结果(65)写成

δ⟨Ot⟩ =
∫ t

−∞
dt1⟨{Ot, Vt1}⟩ρe (67)
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实际应用中，微扰V常常是由某个外源h(t)产生的，即V (µ, t) = W (µ)h(t),

其中W (µ)是与外源h(t)耦合的物理量。这时候上面的结果(67)就可以写成

δ⟨Ot⟩ =
∫ t

−∞
⟨{Ot,Wt′}⟩ρeh(t′)dt′

=

∫ +∞

−∞
χOW (t, t′)h(t′)dt′. (68)

式中χOW (t, t′)称作响应函数，它由下式给出

χOW (t, t′) = Θ(t− t′)⟨{Ot,Wt′}⟩ρe , (69)

这里Θ(t)为阶跃函数。

涨涨涨落落落-耗耗耗散散散定定定理理理

在实际应用中，微扰之前的态ρe常常是由哈密顿量H0给出的热平衡

态，即

ρe =
1

Z
e−βH0 , (70)

式中β = 1/(kBT )为逆温度，Z =
∫
M e−βH0(µ)dµ为配分函数。注意，由

于H0(g
0
−tµ0) = H0(µ0), 所以很显然

ρe,t(µ0) ≡ ρe(g
0
−tµ0) = ρe(µ0). (71)

即热平衡态在刘维尔绘景中依然为ρe。

根据哈密顿绘景与刘维尔绘景等价性的推导，可知⟨{Ot,Wt′}⟩ρe =

⟨{Ot−t′ ,W}⟩ρe,t′ , 由于ρe,t′ = ρe, 所以⟨{Ot,Wt′}⟩ρe = ⟨{Ot−t′ ,W}⟩ρe,t′ =

⟨{Ot−t′ ,W}⟩ρe，所以

χOW (t, t′) = Θ(t− t′)⟨{Ot,Wt′}⟩ρe = Θ(t− t′)⟨{Ot−t′ ,W}⟩ρe = χOW (t− t′).

即对于热平衡态，响应函数实际上只依赖于两个时间之差。

利用{Ot−t′ ,W}ρe = {Ot−t′ ,Wρe} −W{Ot−t′ , ρe}, 即有

⟨{Ot−t′ ,W}⟩ρe =
∫
M

dµ{Ot−t′ ,W}µρe(µ) = −
∫
M

dµW (µ){Ot−t′ , ρe}µ. (72)
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又注意到{Ot−t′ , ρe} = {Ot−t′ ,
1
Z e

−βH0} = −β{Ot−t′ , H0} 1
Z e

−βH0 = −β
dOt−t′

dt
ρe。

代入上式，即有

⟨{Ot−t′ ,W}⟩ρe = β

∫
M

dµW (µ)
dOt−t′(µ)

dt
ρe(µ) = β

d

dt
⟨Ot−t′W ⟩ρe . (73)

利用哈密顿绘景与刘维尔绘景等价性的推导，也有⟨Ot−t′W ⟩ρe = ⟨OtWt′⟩ρe。
综合这些结果，即有

χOW (t− t′) = Θ(t− t′)β
d

dt
⟨Ot−t′W ⟩ρe = Θ(t− t′)β

d

dt
⟨OtWt′⟩ρe . (74)

这个结果即是著名的涨落-耗散定理。
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