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1 引引引言言言

这篇文章的缘起如下：众所周知，在经典物理中随机过程通常用朗之万方

程来描写，它的核心就是在牛顿定律中引入噪声项。但是，我们也知道哈

密顿力学才是描述经典力学的更好理论框架，因此我就想到一个问题，即

如何在哈密顿力学框架中引入随机噪声，我很快就得到了一个答案。所以

当时我在知乎上发了一条消息，说找到了哈密顿力学的一种推广，指的就

是找到了哈密顿力学与随机过程的一种结合。不久之后，我又发现，按照

我的思路，其实在量子力学的框架下引入随机噪声才是更自然的，而经典

力学的情形只是~ → 0时的极限，这就有了现在这篇文章。
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当然，工作完成后我就系统调查了一下文献，然后发现很大程度上白

高兴了，因为无论是结合量子力学与随机过程也好，还是结合经典哈密顿

力学与随机过程也罢，这些大的创新点都是文献中早就有了的。留给我的

只剩下我的思路好像还没有出现过，得到的具体结果好像文献中也没有，

但是大的创新点都早就被别人占据了。因此我写论文的动力就失去了一大

半，最后考虑到对这块知识通常人们可能都不知道，而且我的思路也的确

有一定的优雅性，所以决定还是写成这篇文章。

2 海海海森森森堡堡堡绘绘绘景景景中中中的的的结结结合合合

本节我们考察在海森堡绘景中量子力学与随机过程的一种结合。

对于封闭的量子系统，在海森堡绘景中，物理量算符A的时间演化可以

表示成

A(t+ dt) = U−1(dt)A(t)U(dt), (1)

式中U(dt)为无穷小时间的时间演化算符，给定哈密顿算符H(当然是厄米

算符), U(dt) 由U(dt) = exp
[
− iHdt/~

]
给出。

但是实际的量子系统通常是开放系统，它要受到环境中的噪声的影

响。根据Ito随机微积分([1, 2])，无穷小时间之内的维纳过程dw满足Ito 规

则(dw)2 = dt, 这就说明维纳噪声会影响系统的时间演化。考虑到维纳噪

声(假设有N个独立的噪声)的影响以后，对开放系统量子力学的一个自然

而简单的修改是，将时间演化算符U(dt)修改成如下形式

U(dt) = exp
[
− i(Hdt+

∑
a

Cadwa)/~
]
,

U−1(dt) = exp
[
i(Hdt+

∑
a

Cadwa)/~
]
. (2)

式中dwa(a = 1, 2, ..., N)为由第a个独立噪声源所产生的无穷小维纳过

程，Ca为某算符，不一定为厄米算符。如果Ca为厄米算符，则很显然

有U−1(dt) = U †(dt), 从而算符演化方程(1)能够保持算符的厄米性。但是，

如果Ca不是厄米算符，那U
−1(dt) = U †(dt)就不成立了，相应的，演化方

程(1)也就无法保持算符的厄米性。

不过，无论Ca是否厄米，演化方程(1)总是能够保持量子力学的基本对

易关系。为了看清楚这一点，考虑坐标算符X(t)和动量算符P (t), 按照量子
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力学基本对易关系，我们有

[X(t), P (t)] = i~. (3)

另一方面，根据演化方程(1)，很显然有

[X(t+ dt), P (t+ dt)] = U−1(dt)[X(t), P (t)]U(dt)

= U−1(dt)i~U(dt) = i~, (4)

从而算符的时间演化自动保持量子力学基本对易关系。

将(2)式代入(1)式，定义[Cadwa, A] ≡ [Ca, A]dwa，并记

Hdt+
∑
a

Cadwa ≡ F, (5)

则根据标准的算符公式，有

A(t+ dt) = exp
[
iF/~

]
A(t) exp

[
− iF/~

]
= A(t) +

i

~
[F,A(t)] +

i2

2!~2
[F, [F,A(t)]] +

i3

3!~3
[F, [F, [F,A(t)]]] + ....

运用如下Ito规则

(dt)2 = dtdwa = 0, dwadwb = δabdt, (6)

不难得到上面关于A(t+ dt)的级数展开中，

i2

2!~2
[F, [F,A(t)]] = − 1

2~2
∑
a

[Ca, [Ca, A]]dt, (7)

而F的三次以及更高次项全部为零. 从而即有

dA =
i

~
[Hdt+

∑
a

Cadwa, A]−
1

2~2
∑
a

[Ca, [Ca, A]]dt. (8)

式中dA = A(t + dt) − A(t)。这是一个关于算符A(t)的随机微分方程，它

定义了一个算符值的Ito过程，同时它也是标准量子力学中海森堡运动方程

的Ito推广, 不妨称之为随机海森堡方程。

作为对以上推导过程的一个检验。假设另有一算符B(t)，它也满足

dB =
i

~
[Hdt+

∑
a

Cadwa, B]− 1

2~2
∑
a

[Ca, [Ca, B]]dt. (9)
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则根据(8)式以及(9)式，并利用如下Ito微积分的规则

d(AB) = (dA)B + A(dB) + (dA)(dB), (10)

不难得到，AB同样满足

d(AB) =
i

~
[Hdt+

∑
a

Cadwa, AB]− 1

2~2
∑
a

[Ca, [Ca, AB]]dt. (11)

正好与直接从AB(t + dt) = U−1(dt)AB(t)U(dt)得到的结果一致。也即是

说，方程(8)保持算符的乘积关系，类似的，不难验证，它也保持算符的加

法和数乘，从而算符演化方程(8)保持整个算符代数，它的解定义了算符代

数的一个单参自同构。

3 薛薛薛定定定谔谔谔绘绘绘景景景中中中的的的结结结合合合

变换到薛定谔绘景的话，则算符不随时间演化, 随时间演化的是代表量子

态的密度算符ρ(t), 其时间演化方程为

ρ(t+ dt) = U(dt)ρ(t)U−1(dt). (12)

类似的，应用Ito规则，即可以得到

dρ = − i

~
[Hdt+

∑
a

Cadwa, ρ]−
1

2~2
∑
a

[Ca, [Ca, ρ]]dt. (13)

假设记ρ(t)相应的海森堡绘景密度算符为ρ0 = ρ(0), 记海森堡绘景A(t)算

符对应的薛定谔绘景算符为A0 = A(0)，从而

Tr(ρ0A(t)) = Tr(ρ(t)A0), (14)

等式左边是在海森堡绘景中计算，而等式右边则是在薛定谔绘景中计算。

为了验证这个式子，我们注意到，在形式上，时间演化算符U(dt)可以积

分，进而得到从0时刻到t时刻的有限时间的演化算符U(t),

U(t) = T exp
[
− i

∫ t

0

(Hdt+
∑
a

Cadwa)/~
]
, (15)

式中T表示编时操作。进而可以积分(12)式，并得到

ρ(t) = U(t)ρ0U
−1(t), (16)
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这也就是算符值随机微分方程(13)形式上的解。同样可以积分(1)式，并得

到A(t) = U−1(t)A0U(t)。从而(14)式是直接了当的。

下面我们将方程(13)对维纳噪声求统计平均，依然记统计平均以后

的ρ(t)为ρ(t)(注意不要混淆), 注意到dwa的统计平均等于零, 进而即可以得

到如下算符微分方程

dρ

dt
= − i

~
[H, ρ]− 1

2~2
∑
a

[Ca, [Ca, ρ]]

= − i

~
[H, ρ] +

1

~2
∑
a

[
CaρCa −

1

2
(C2

aρ+ ρC2
a)
]
. (17)

这其实就是量子版本的Fokker-Planck方程。当然，通过对(16)式求统计平

均，就可以得到这个方程形式上的解，写作

ρ(t) = U(t)ρ0U−1(t), (18)

式中U(t)由(15)式给出，G表示将表达式G对维纳噪声求统计平均。这里值

得强调的是，方程(17)的形式解是可以求出的，就是(18)式。

不妨将方程(17)与开放系统著名的Lindblad 方程([3, 4])进行比较，后者

是

dρ

dt
= − i

~
[H, ρ] +

1

~2
∑
a

[
LaρL

†
a −

1

2
(L†

aLaρ+ ρL†
aLa)

]
. (19)

很明显，两者很像，但是有一些微妙的差别，特别的，如果Ca不是厄米

算符，那这两个方程就无法相等同。但是，如果Lindblad算符La本身是厄

米算符，满足L†
a = La, 那这时候Lindblad 方程和我们导出的方程(17)其实

是一样的(只需要取Ca = La就可以了)。这时候，由于我们已经得到了方

程(17)的形式解，那这个形式解当然也是相应Lindblad方程的解，也就是

说，对于这种情况，形式上我们完全解出了Lindblad方程。

4 随随随机机机薛薛薛定定定谔谔谔方方方程程程

以上考察的是在随机噪声影响下，混态ρ(t)如何随时间演化，下面我们来

考察纯态|ψ(t)⟩如何随时间演化，利用时间演化算符U(dt), 不难得到

|ψ(t+ dt)⟩ = U(dt)|ψ(t)⟩ = exp
[
− i(Hdt+

∑
a

Cadwa)/~
]
|ψ(t)⟩

= |ψ(t)⟩ − i

~
(Hdt+

∑
a

Cadwa)|ψ(t)⟩ −
1

2~2
∑
a

C2
adt|ψ(t)⟩.
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式中第二行我们利用了Ito规则。不妨定义d|ψ⟩ ≡ |ψ(t+ dt)⟩ − |ψ(t)⟩，进而
即可以把这个结果写成

d|ψ(t)⟩ = − i

~
(H − i

1

2

∑
a

C2
a/~)|ψ(t)⟩dt−

i

~
∑
a

Ca|ψ(t)⟩dwa. (20)

这是一个关于量子态的随机微分方程, 不妨称之为随机薛定谔方程。从

这个方程可以看出，量子态的时间演化取决于如下非厄米的有效哈密顿

量Heff

Heff = H − i
1

2

∑
a

C2
a/~. (21)

值得说明的是，作为对Lindblad方程的一种考察，类似上面这样的随机

薛定谔方程(细节上有出入，因为我们的方程不是源于对Lindblad方程的考

察)是文献中早已出现过的。

如果Ca为厄米算符。则容易将(20)式厄米共轭，进而得到左矢满足的随

机微分方程

d⟨ϕ(t)| = ⟨ϕ(t)| i
~
(H + i

1

2

∑
a

C2
a/~)dt+ ⟨ϕ(t)| i

~
∑
a

Cadwa. (22)

根据(20)式和(22)式，不难得到

(d⟨ϕ(t)|)|ψ(t)⟩+ ⟨ϕ(t)|(d|ψ(t)⟩) = −⟨ϕ(t)|
∑
a

C2
a/~2|ψ(t)⟩dt. (23)

这个结果告诉我们，如果按照标准的微分规则d(⟨ϕ|ψ⟩) = (d⟨ϕ(t)|)|ψ(t)⟩ +
⟨ϕ(t)|(d|ψ(t)⟩)定义量子态内积的时间微分，那结果将不等于零。也就是
说，按照标准的微分规则，在随机薛定谔方程中，量子态的时间演化不保

持内积不变，从而不是幺正的！当然，这很好理解，因为噪声的存在，会

使得量子系统的信息不断丢失，从而没有幺正性。

但是，随机薛定谔方程(20)特殊的地方就在于，如果考虑到Ito微分的规

则(10), 那就应该有

d(⟨ϕ|ψ⟩) = (d⟨ϕ|)|ψ⟩+ ⟨ϕ|(d|ψ⟩) + (d⟨ϕ|)(d|ψ⟩), (24)

这时候代入(20)式和(22)式，并利用Ito规则，就不难得到

d(⟨ϕ(t)|ψ(t)⟩) = 0. (25)
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也就是说，如果Ca为厄米算符，那么按照Ito微分的规则，量子态的时间演

化将是幺正的。不妨将这种幺正性称作Ito幺正性，以和标准的量子力学幺

正性相区别。

作为随机薛定谔方程(20)最简单的例子，我们不妨假设算符H以及Ca, a =

1, 2, ..., N均不显含时间，且这些算符两两对易，即[H,Ca] = 0, [Ca, Cb] = 0,

因此它们有一组共同的本征态|nc1...cN⟩，满足

H|nc1...cN⟩ = En|nc1...cN⟩, Ca|nc1...cN⟩ = ca|nc1...cN⟩, (26)

式中本征值En, ca为一些数。则可以将量子态|ψ(t)⟩按照这些本征态展开为

|ψ(t)⟩ =
∑
n,ca

ψnc1...cN (t)|nc1...cN⟩, (27)

式中波函数ψnc1...cN (t)为展开系数。将这个展开式代入随机微分方程(20),

即可以得到一组展开系数ψnc1...cN (t)所满足的随机微分方程，为

dψnc1...cN (t) = − i

~
(En − i

1

2

∑
a

c2a/~)ψnc1...cN (t)dt−
i

~
∑
a

caψnc1...cN (t)dwa.(28)

这组随机微分方程的解为

ψnc1...cN (t) = exp
(
− i

~
Ent−

i

~
∑
a

cawa(t)
)
ψnc1...cN (0). (29)

因此，在这种情况下，原来随机薛定谔方程(20)的通解为

|ψ(t)⟩ =
∑
n,ca

ψnc1...cN (0) exp
(
− i

~
Ent−

i

~
∑
a

cawa(t)
)
|nc1...cN⟩. (30)

5 经经经典典典极极极限限限

原本的Lindblad 方程完全是一个量子力学方程，它并没有相应的经典对应

物，换言之，它没有简单的定义良好的经典极限。但是我们的Lindblad 方

程的类似物, 方程(13)，由于能够用算符对易子的形式写出来，所以根据量

子与经典的对应原理，我们很容易得到它的经典对应物。

具体来说，根据量子与经典的对应原理，在~ → 0的极限下，我们应该

将量子的算符替换成经典相空间的函数，将量子的算符对易子[ , ]/(i~)替
换成经典的泊松括号{ , }. 这样替换以后，方程(13)的经典对应物即是

dρ = {Hdt+
∑
a

Cadwa, ρ}+
1

2

∑
a

{Ca, {Ca, ρ}}dt. (31)
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这就是随机噪声影响下的刘维尔方程，不妨称之为随机刘维尔方程。而方

程(17)的经典对应物则是

dρ

dt
= {H, ρ}+ 1

2

∑
a

{Ca, {Ca, ρ}}. (32)

同样，随机海森堡方程(8)的经典对应物则是

dA = {A,Hdt+
∑
a

Cadwa}+
1

2

∑
a

{Ca, {Ca, A}}dt. (33)

它当然是考虑到随机噪声影响之后的哈密顿正则方程，不妨称之为随机哈

密顿方程。
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