
辛辛辛流流流形形形路路路径径径积积积分分分与与与几几几何何何量量量子子子化化化

陈陈陈童童童

类比于标准量子力学教科书里的相空间路径积分公式，一般性地考察了

辛流形上的路径积分，并且发现了它和几何量子化的联系。

这实际上是我的一项研究，只不过工作做完以后发现核心结论似乎文献

中已经有了，所以就不打算写成论文发表了，但是，考虑到我的处理方式

依然是有新意的，所以决定还是写出来。

1 回回回顾顾顾辛辛辛流流流形形形上上上的的的路路路径径径积积积分分分

以单自由度量子系统为例，记其相空间为M1, 相空间坐标为{q, p}，q为正
则坐标，p为正则动量。记H(q, p)为系统哈密顿量，相应的哈密顿算符记

为Ĥ，它作用在物理的希尔伯特空间H上。则根据量子力学路径积分公式
的标准推导，我们有

TrH(e
− i

~ ĤT ) =

∫
Dq(t)Dp(t) exp

( i
~
[ ∮

pdq −
∮
T

H(q, p)dt
])
, (1)

式中T为系统的演化时间。式中的积分测度Dq(t)Dp(t)需要多说两句，作为
路径积分，它当然是对所有满足限制的相空间路径进行积分，而由于求迹

导致积分初末位置的等同，所以这些相空间路径应该是以T为时间周期的

闭合回路，积分测度Dq(t)Dp(t)是对所有这样的闭合回路进行积分。
众所周知的，经典力学的相空间是一个辛流形。在式(1)中，pdq是相空

间M1上的1形式，不妨记作Θ = pdq, 称作辛势。Θ的外微分就是辛形式ω,

ω = dΘ = dp ∧ dq. (2)

ω当然是一个闭形式，dω = 0。所以(1)式也可以写作

TrH(e
− i

~ ĤT ) =

∫
Dq(t)Dp(t) exp

( i
~
[ ∮

Θ−
∮
T

H(q, p)dt
])
. (3)

推广到任意的2n维辛流形M，这时候不一定存在整体的共轭变量{q, p}，
所以我们一般性地把M的点记作x，相应的局部坐标记作xa, a = 1, 2, .., 2n。

辛流形上依然存在闭合的辛形式ω, 在局部坐标中，它可以写作

ω =
1

2
ωabdx

a ∧ dxb, (4)
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式中ωab为反对称张量，并且我们使使使用用用了了了求求求和和和约约约定定定(以以以后后后不不不再再再说说说明明明)。当

然，这里的ωab作为反对称矩阵要求可逆，记其逆矩阵为ω
ab，即满足

ωabω
bc = δca, ωabωbc = δac . (5)

由于dω = 0，所以在一个局部坐标中将依然有

ω = dΘ, (6)

式中的辛势Θ可以写作

Θ = Θadx
a. (7)

显然，ωab = ∂aΘb − ∂bΘa。(6)式也告诉我们，从局部坐标x换到局部坐

标x′，辛势可以相差一个规范变换

Θ → Θ′ = Θ+ dF, (8)

式中F (x)为M上的任意函数, 在经典力学的教科书中F (x)也称作正则变换

的生成函数。

哈密顿量为辛流形M上的能量函数，不妨记作H(x), 相应的量子化以后

的哈密顿算符依然记作Ĥ, 相应的物理希尔伯特空间依然记作H。则(3)式

可以推广到任意的辛流形，成为

TrH(e
− i

~ ĤT ) =

∫
Dx(t) exp

( i
~
[ ∮

Θ−
∮
T

H(x)dt
])
. (9)

同样，这里依然是对所有M中的闭合回路进行积分。
值得注意的是，虽然辛势Θ只在局部坐标中有定义，但是由于在规范变

换(8)下，有
∮
Θ′ =

∮
(Θ + dF ) =

∮
Θ, 另外，又由于泛函积分测度Dx(t)不

依赖于局部坐标的具体选择，所以整个路径积分(9)并不依赖于M的局部坐
标。

物理中的哈密顿量是有特殊含义的，因为它要生成物理的时间演化。

但是在数学上，辛流形M上的任何一个实函数H(x)均可以作为“哈密顿

量”，只不过它生成的时间演化不一定是物理的时间。所以(9)式对任

意H(x)均成立，只需注意到这时候t和T可能均不是物理的时间1。

1为了以示区分，我们也可以记相应的“时间”为s，并把H(x)重记为G(x), 记G(x)量

子化以后对应的“哈密顿算符”为Ĝ。则类似于(9), 我们有

TrH(e−
i
~ θĜ) =

∫
Dx(s) exp

( i

~
[ ∮

Θ−
∮
θ

G(x)ds
])

. (10)

当然, 现在“时间”s的周期为θ。
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Dirac量量量子子子化化化条条条件件件

值得注意的是，路径积分(9)并非对任意辛流形均有定义。它要求辛形

式ω满足如下量子化条件 ∫
Σ

ω = 2πZ~. (11)

式中Σ为辛流形M的任意两维闭合子流形。
为了看清楚这一点，假设M的2阶同调群H2(M,Z)非零，考察H2(M,Z)

中的任意一个闭合的2-循环(2-cycle)Σ。在Σ上挖去一个圆盘D, 剩下的部

分记作Σ − D。取闭合回路C为Σ − D的边，即C = ∂(Σ − D), 当然也

有C = ∂(D)，这里D是将D的定向进行反转的结果。

下面考虑路径积分(9)中的相因子exp
[
i
~

∮
C
Θ
]
, 路径积分的单值性要求

exp
[ i
~

∮
C

Θ
]
= exp

[ i
~

∫
Σ−D

ω
]
= exp

[ i
~

∫
D

ω
]
. (12)

进而即有

1 = exp
[ i
~

∫
Σ−D

ω − i

~

∫
D

ω
]
= exp

[ i
~

∫
Σ−D

ω +
i

~

∫
D

ω
]
= exp

[ i
~

∫
Σ

ω
]
.

从而必然有如下Dirac量子化关系∫
Σ

ω = 2πZ~. (13)

换言之，路径积分(9)要能定义良好的话，就要求f = − i
~ω可以看作

是M上一个复线丛L → M的曲率2-形式。由于ω = dΘ，因此− i
~Θ就是相

应的联络1-形式。在几何量子化的文献中，L → M 被称之为预量子线

丛。

2 辛辛辛流流流形形形路路路径径径积积积分分分与与与极极极化化化

在通常的量子力学中，我们不仅能定义TrH(e
−iĤT/~), 而且能定义矩阵

元⟨ϕ|e−iĤT/~|ψ⟩, 式中|ψ⟩, |ϕ⟩为希尔伯特空间H中的两个量子态。分别
记|ψ⟩态和|ϕ⟩态的波函数为ψ(q)和ϕ(q), 式中q = {qs}, s = 1, 2, ..., n为系

统位形空间的广义坐标。路径积分的标准公式告诉我们

⟨ϕ|e−iĤT/~|ψ⟩ =
∫
dqf

∫
dqi

∫
[Dq(t)Dp(t)]qf ,t=T

qi,t=0 e
iS/~ϕ(qf )ψ(qi), (14)
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式中S为相空间作用量，它由下式给出

S =

∫ T

0

dt[psq̇
s −H(q, p)]. (15)

(14)式中的泛函积分测度[Dq(t)Dp(t)]qf ,t=T
qi,t=0 是表示对所有连接qi和qf的相空

间路径进行积分，注意，这个积分中对于t = 0和t = T时刻的所有p坐标都

要进行积分，没有任何限制，另外，式中的dq表示系统位形空间的体积形

式。

下面，我们把(14)式中对qi和qf的积分吸收进泛函积分测度中，并考虑

进行一个相空间坐标变换，这个坐标变换将会把初始点qi的坐标变为一般

性的x(0) = {xa(0)}, a = 1, 2, ..., 2n, 类似的会把末尾点qf的坐标变为一般性

的x(T ) = {xa(T )}。进而(14)式可以被重写为

⟨ϕ|e−iĤT/~|ψ⟩ =
∫

Dx(t) exp
( i
~
[

∫ x(T )

x(0)

Θ−
∫ T

0

dtH(x)]
)
ϕ(x(T ))ψ(x(0)).(16)

式中泛函积分测度Dx(t) 表示对所有t = 0时刻到t = T时刻的相空间路径进

行积分，注意，这时候我们对初始时刻的x(0)以及对末尾时刻的x(T ) 都没

有任何限制。

我们把(16)式推广到任何存在预量子线丛的辛流形M。不仅如此，我们
还把式中的H推广到M上的任意函数，只需要注意这时候t, T不一定为物
理的时间。一个值得特别说明的问题是，由于在上面的推广过程中，我们

需要进行局部坐标变换，而在这样的变换下Θ → Θ+ dF。所以为了保证方

程(16)的规范不变性，我们必须要求波函数ψ(x)和ϕ(x)同时进行如下规范

变换

Θ → Θ+ dF, ψ(x) → eiF (x)/~ψ(x), ϕ(x) → eiF (x)/~ϕ(x). (17)

不难验证，(16)式在上面的规范变换下的确保持不变。(17)式意味着，波函

数必须为预量子线丛L→ M的截面。
当然，波函数ψ(x)和ϕ(x)并非预量子线丛L → M的任意截面，因

为它们分别是从原来的ψ(q)和ϕ(q) 经过相空间坐标变换而得来的。因

此，假设记原来正则坐标下的切矢量∂qs , s = 1, 2, .., n为Qs, 即在原来的

正则坐标下Qs = ∂qs , 那么如果忽略规范变换多出来的相因子e
iF (x)/~的

话，ψ(x)和ϕ(x)就必须支撑在Qs, s = 1, 2, ..., n的积分子流形上。或者换

种等价的说法，假设记原来正则坐标中的切矢量∂ps = Ps, 那么如果忽
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略规范变换多出来的相因子eiF (x)/~，ψ(x)和ϕ(x)就必须分别满足Psψ(x) =

0和Psϕ(x) = 0。式中，变换到任意的相空间局部坐标x以后，可以记Ps =

P a
s ∂a (∂a ≡ ∂xa)。

为了把规范变换多出来的相因子eiF (x)/~也考虑进来，就需要将普通偏导

推广为协变导数，由于线丛L → M的联络为− i
~Θa，所以需要考虑的协变

导数为

Da = ∂a −
i

~
Θa. (18)

现在，我们就可以说，波函数ψ(x)和ϕ(x)需要满足

DPsψ(x) = 0, DPsϕ(x) = 0. (19)

式中DPs ≡ P a
sDa。换言之，任何物理态的波函数都需要满足这样的要求。

(19)式就是几何量子化文献中的极化条件。注意，对于线丛L → M的
曲率2形式f = − i

~ω而言，式中的切矢量Ps满足

ω(Ps, Pr) = ωabP
a
s P

b
r = 0. (20)

这是因为，在原来的正则坐标中Ps = ∂ps，而ω = dps ∧ dqs。总之，几何量
子化中著名的极化条件在我们的推导中自动出现了！

公式(16)中的泛函积分测度Dx(t)需要一个合适的定义，它是对所
有0到T时刻的辛流形路径积分，不妨记这样的路径集合为LM。很显

然LM为一个无穷维流形，Dx(t)就是LM上的一个“最高阶”微分形式。

特别的，Dx(t)不依赖于M上局部坐标的具体选择。仿照费曼，可以将整
个时间区间[0, T ]切分成N等分，取T = Nϵ为固定值, 记xj ≡ x(jϵ)，并定义

相空间辛体积元dxj为

dxj ≡
1

n!

( ωj

2π~
)n
, (21)

式中ωj =
1
2
ωab(xj)dx

a
j ∧ dxbj，最后即可以将Dx(t)定义成

Dx(t) = lim
N→+∞

( N∏
j=0

dxj
)
. (22)

很显然，这个定义满足Dx(t)不依赖于具体相空间局部坐标的要求。
当然，由于以上所有路径积分公式都是在无穷维流形LM上的积分，所

以具体计算的时候为了得出不发散的计算结果，一般来说我们都需要进行
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合适的正规化，并且，为了将这些计算结果和“物理”的计算结果相比

较，我们还需要进行合适的重整化。

公式(16)加上极化条件(19) 就是我们给出的辛流形路径积分公式。尤其

值得注意的是，我们的结果并不依赖于辛流形局部坐标的选择，而是具有

明显的局部坐标变换下的协变性。极化的关键就是在波函数ψ(x)的自变量

中协变地去除相空间的一半坐标，对于辛流形M为某个位形流形的余切丛
的情形，极化条件(19)总是可以实现的。然而，极化条件并不是唯一的，

原则上几何量子化文献中考察的几乎所有极化条件都可以照搬到我们的辛

流形路径积分中。稍后我们将讨论M为某个凯勒流形的时候，人们常常采
用的极化条件，以及相应的辛流形路径积分。

凯凯凯勒勒勒流流流形形形路路路径径径积积积分分分

如果辛流形M为一个凯勒流形，记其复坐标为zs, s = 1, 2, ..., n, 相

应的实坐标依然记作xa, a = 1, 2, ..., 2n。这时候，辛形式ω可以由凯勒

势K(z, z)给出

ω = i∂∂K. (23)

因此可以取辛势Θ为(注意，辛势总是实的)

Θ =
i

2

(
∂K − ∂K

)
. (24)

从而相应的协变导数为

Ds = ∂s +
1

2~
∂sK, Ds = ∂s −

1

2~
∂sK, (25)

式中∂s ≡ ∂
∂zs

, ∂s ≡ ∂
∂zs
。

这时候，相比于上文讨论的实极化条件，更好用的是凯勒极化条件，即

要求物理态的波函数ψ(x)满足，

Dsψ(x) = 0. (26)

很显然，这个方程的解为

ψ(x) = e−
1
2~K(x)ψh(z), (27)
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式中ψh(z)为复坐标z的全纯函数(即不依赖于z)，显然是协变地去除了M的
一半坐标。因此这个时候，相应的路径积分表达式(16)将成为，

⟨ϕ|e−iĤT/~|ψ⟩ =
∫

Dx(t) exp
( i
~
[

∫ x(T )

x(0)

Θ−
∫ T

0

dtH(x)]
)
×

exp
(
− 1

2~
[K(x(T )) +K(x(0))]

)
ϕh(z(T ))ψh(z(0)). (28)

注意到Θ = i
2
dK − i∂K, 进而可知，这个式子也可以写成

⟨ϕ|e−iĤT/~|ψ⟩ =
∫

Dx(t)e−
1
~K(x(T ))ϕh(z(T ))×

exp
(1
~
[

∫ x(T )

x(0)

∂K − i

∫ T

0

dtH(x)]
)
ψh(z(0)). (29)

特别的，如果在上式中取T = 0，这个时候整个泛函积分Dx(t)就相当于
对相空间坐标x(0) = x积分，因此就可以得到如下关于量子态的内积公式

⟨ϕ|ψ⟩ =
∫
dxe−

1
~K(x)ϕh(z)ψh(z). (30)

式中dx代表辛体积元, 即dx ≡ 1
n!

(
ω/2π~

)n
。

3 辛辛辛流流流形形形路路路径径径积积积分分分与与与预预预量量量子子子化化化

3.1 从从从辛辛辛流流流形形形路路路径径径积积积分分分到到到预预预量量量子子子化化化

下面我们把(16)式涉及的路径积分重写为∫
dx′ϕ(x′)

∫
[Dx(t)]x′,T exp

( i
~
[

∫ x′

x(0)

Θ−
∫ T

0

dtH(x)]
)
ψ(x(0)). (31)

式中的泛函积分测度[Dx(t)]x′,T代表对所有0时刻发出，T时刻到达相空间

固定点x′的相空间路径进行积分，特别的，这里对x(0)没有任何附加要

求。不妨定义ψT (x
′)如下，

ψT (x
′) ≡

∫
[Dx(t)]x′,T exp

( i
~
[

∫ x′

x(0)

Θ−
∫ T

0

dtH(x)]
)
ψ(x(0)). (32)

很显然，ψT (x)也是线丛L → M的截面，不过，虽然初始的ψ(x)满足极化
条件，但一般来说，ψT (x)并不满足极化条件，因此不能作为物理态的波

函数。
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根据ψT (x
′)的定义和路径积分式(31)，可知，可以将ψT (x)和ϕ(x)的内

积(ϕ, ψT )定义为

(ϕ, ψT ) ≡
∫
dxϕ(x)ψT (x). (33)

当然，这个内积也可以推广到线丛L→ M的任意两个截面。
定义哈密顿函数H(x)的预量子化算符Ĥpre如下，

ψT (x
′) ≡ exp

(
− i

~
ĤpreT

)
ψ(x′). (34)

进而根据(32)式，即有

exp
(
− i

~
ĤpreT

)
ψ(x′) =

∫
[Dx(t)]x′,T exp

( i
~
S[x(t)]

)
ψ(x(0)). (35)

式中的作用量S[x(t)]为

S[x(t)] =

∫ x′

x(0)

Θ−
∫ T

0

dtH(x) =

∫ T

0

dt
[
Θaẋ

a −H(x)
]
. (36)

下面我们证明，当~ → 0时，(35)式定义的预量子化算符Ĥpre将自动趋

于几何量子化方案中所定义的预量子化算符。具体的推导如下：首先，

在~ → 0时，(35)式右边的路径积分可以由驻定相近似来计算，也即是

说，对路径积分的贡献将主要由如下相空间路径主导，在这条路径附

近作用量S的变分等于零，即δS = 0, 我们称之为经典路径，记作y(t)。

正如我们马上就会看到的，y(t)满足一组一阶微分方程，也就是通常

所谓的哈密顿方程。而且，由于T时刻的x′是给定的，所以y(t)必须满

足y(T ) = x′, 但是，由于x(0)并不是给定的，所以y(0)也不是预先给定的，

而是要由y(T ) = x′决定。

为了导出y(t)所满足的方程，我们需要对(36)式给出的作用量S进行变

分，不难发现δ
∫ x′

x(0)
Θ =

∫ T

0
dtδ

(
Θaẋ

a
)
=

∫ T

0
dtωabẋ

bδxa，进而有

0 = δS =

∫ T

0

dt
[
ωabẋ

b − ∂aH
]
x(t)=y(t)

δxa. (37)

也即是说，y(t)满足

ẏa = ωab∂bH(y) ≡ vaH . (38)
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这就是著名的哈密顿方程，其中切向量场vH ≡ vaH∂a就称之为哈密顿向量

场。

也即是说，当~ → 0时，(35)式可以近似为

exp
(
− i

~
ĤpreT

)
ψ(x′) ≃ exp

( i
~
S[y(t)]

)
ψ(y(0)). (39)

式中y(t)为满足哈密顿方程(38)的，由y(T ) = x′决定的相空间路径。

最后，为了求出Ĥpre的表达式，我们在(39)式中取无穷小的时间间

隔T = ϵ, 并注意到此时S[y(t)]近似为

S[y(t)] = [Θa(x
′)ẏa −H(x′)]ϵ+ ... = [Θa(x

′)vaH(x
′)−H(x′)]ϵ+ .... (40)

同时注意到ya(0) = ya(T )− vaH(T )ϵ+ ... = x′ − vaH(x
′)ϵ+ ..., 从而ψ(y(0)) =

ψ(x′)− ϵvaH(x
′)∂aψ(x

′) + ..., 以上所有的省略号都表示ϵ的高阶项。进而即有

ψ(x′)− ϵ
i

~
Ĥpreψ(x

′) ≃
(
1 +

i

~
[Θav

a
H(x

′)−H(x′)]ϵ
)(
ψ(x′)− ϵvaH∂aψ(x

′)
)
.

比较ϵ项的系数，即可以得到

Ĥpre ≃ −i~DvH +H, (41)

式中DvH ≡ vaHDa，≃号表示在~ → 0时等式才成立。这正是几何量子化中

熟知的预量子化算符。

到这里为止，本文的核心结论就都已经得到了，但是，考虑到很多熟悉

量子力学路径积分的物理学工作者并不熟悉几何量子化，所以下一节我们

对预量子化的概念进行一个简短的回顾。

3.2 预预预量量量子子子化化化简简简短短短回回回顾顾顾

根据上一节可以知道，任给辛流形M上的一个哈密顿函数H(x)，我们可以

定义相应的哈密顿向量场vH为

vH = vaH∂a = (ωab∂bH)∂a. (42)

另外，任给M上的两个函数H1, H2，可以定义它们的泊松括号

{H1, H2} ≡ vH1(H2) = −ωab∂aH1∂bH2. (43)
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按照熟知的定义ω(vH1 , vH2) = ωabv
a
H1
vbH2

, 不难验证有，

ω(vH1 , vH2) = {H1, H2}. (44)

另一方面，辛流形的熟知结果告诉我们，dω = 0的条件等价于如下雅可

比恒等式

{H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0. (45)

或者等价的用向量场的对易子来说，即是

[vH1 , vH2 ] = v{H1,H2}. (46)

另外，对于线丛L→ M上的协变导数，微分几何的熟知结论告诉我们

[Dv, Du]−D[v,u] = f(v, u) = − i

~
ω(v, u), (47)

式中v, u为M上的任意两个切向量场，f为线丛L→ M的曲率2形式。

为了符号简单起见，我们直接在(41)式中取等于号，即相当于直接取几

何量子化中标准的预量子化算符,

Ĥpre = −i~DvH +H. (48)

则，根据上面这些熟知的结果，不难验证

[Ĥ1pre, Ĥ2pre] = (−i~)
(
− i~Dv{H1,H2}

+ {H1, H2}
)
= (−i~) ̂{H1, H2}pre. (49)

即, 预量子化映射是一个从泊松括号的李代数到算符对易子李代数的同

态。

预量子化算符Ĥpre作用在线丛L → M的截面上。根据(33)式，任给L →
M的两个截面σ1(x)和σ2(x), 其内积(σ1, σ2)定义为

(σ1, σ2) ≡
∫
dxσ1(x)σ2(x). (50)

根据这个内积，L → M的所有截面构成一个希尔伯特空间Hpre。不难

验证，预量子化算符Ĥpre是作用在这个希尔伯特空间上的自伴算子。不

过，Hpre并不是物理态的希尔伯特空间H, 因为物理态的波函数并非L →
M的任意截面，而是还要额外满足极化条件！
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