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第六章 波动方程与路径积分

本书是从海森堡引入的矩阵力学开始，然后通过跃迁元概念以及跃迁

元乘法，过渡到量子力学的基本原理，再过渡到量子力学的现代理论体系。

然而，在历史上，矩阵力学出现不久薛定谔就提出了一种看起来完全不同，

但实际却是等价的波动力学。在波动力学里，波函数成了基本概念，跃迁

元通常是作为导出概念而引入的。但是，既然我们已经有了完整的量子力

学理论体系，那逻辑当然也可以反过来，我们当然可以从量子力学的一般

原理出发，进而导出薛定谔的波动力学。这也就是本章要做的事情之一。

本章的另一个任务是介绍量子力学的路径积分表述，这种表述是费曼

在量子力学理论已经成熟之后才找到的，实际上，它可以作为跃迁幅乘法

的一个漂亮应用。

本本本章章章主主主要要要以以以单单单自自自由由由度度度的的的一一一维维维运运运动动动为为为例例例，，，推推推广广广到到到三三三维维维，，，甚甚甚至至至推推推广广广到到到任任任

意意意多多多自自自由由由度度度情情情形形形都都都是是是直直直接接接了了了当当当的的的。。。

6.1 薛定谔波动方程

本节都是在薛定谔绘景中考虑问题，因此所有的物理量算符均不随时

间演化，我们将这些算符记作A(而不是A0)这样的形式，注意，和之前的

记号相比，现在省略了下标0。相应的，这些算符在坐标表象中的表示则记

作Â(请注意和第一第二章中的Â相区别)。

6.1.1 坐标表象

对于一个非相对论粒子来说，它的基本物理量就是坐标和动量，相应

的算符分别为X和P。但是X和P并不对易，因此它们没有共同的本征表
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第六章 波动方程与路径积分 3

象。所以，要么考虑算符X的本征表象，要么考虑算符P的本征表象，前

者叫做坐标表象，后者称为动量表象。相比来说，坐标表象的用处更大一

些，物理上也更直观一些，所以我们主要考虑这种表象。

首先，我们要取X的所有本征态|x⟩来构成一个可确定区分可能性完备
集，|x⟩满足如下本征方程

X|x⟩ = x|x⟩, (6.1)

它描述粒子处于位置x的这种可能性。这些量子可能性当然也要满足可确

定区分性。

另一方面，我们已经熟知，可确定区分可能性完备集要满足⟨i|j⟩ = δij,

但是，这里的可能性i, j都是离散的可能性。而现在x则是连续的可能性，

因此我们需要将克龙内克符号δij推广到指标连续的情况，这就是所谓的

狄拉克德尔塔函数，记作δ(x − x′)。与δij相比，i, j不等时δij取零，所以现

在x ̸= x′时，δ(x−x′)等于零。但是现在，x = x′时，δ(x−x′)可不是等于1，

而是等于+∞, 稍后我们将看到，这是连续和离散的本质不同所带来的必然

结果。

δij的一个基本性质是有如下方程成立∑
j

δijfj = fi, (6.2)

即所有对j的求和中，只有j = i这一项有非零贡献。推广到连续指标就需

要把求和换成积分，因此相应的推广就是
∫
dx′δ(x− x′)fx′ = fx，式中的积

分区间是从负无穷到正无穷，习惯上常把fx记作f(x)(因为它们均表示这个

量对x有依赖)，因此就有∫
dx′δ(x− x′)f(x′) = f(x). (6.3)

特别的，取f(x) = 1，即有∫
dx′δ(x− x′) = 1. (6.4)

但是，前面说了x ̸= x′时，δ(x − x′)均为零，现在它的积分得等于1，因此

就说明x = x′时，δ(x− x′)得为+∞。所以，克龙内克符号推广到连续指标
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的这个δ(x − x′)是一个很奇怪的函数，假设取定x′，让x变动，那这个函数

描述的是x = x′位置的一个无限尖锐的脉冲，并且这个脉冲的积分等于1。

实际上，严格来说，δ(x − x′)并不是一个函数，而是一种被称为广义函数

的东西，它的最核心特征，就是满足方程(6.3).

有了δij的推广以后，我们就可以把可确定区分性的⟨i|j⟩ = δij推广到连

续情形，因此就有

⟨x|x′⟩ = δ(x− x′). (6.5)

这就是位置本征可能性的可确定区分性，或者也叫做位置本征态的正交归

一关系。

对于任意量子态|ψ⟩，根据跃迁幅乘法我们有|ψ⟩ =
∑

i |i⟩⟨i|ψ⟩，现在
把中间可能性换成位置本征可能性，相应的当然就要把离散的求和换成积

分，因此即有|ψ⟩ =
∫
dx|x⟩⟨x|ψ⟩, 其中展开系数⟨x|ψ⟩就叫做微观粒子的波

函数ψ(x), 即

ψ(x) = ⟨x|ψ⟩. (6.6)

所以波函数就是一种特殊的跃迁幅，它表示粒子从可能性ψ跃迁到位置可

能性(x)的跃迁幅。

利用波函数的概念，我们就可以计算两个量子态之间的内积, 根据跃

迁幅乘法

⟨ϕ|ψ⟩ =
∫
dx⟨ϕ|x⟩⟨x|ψ⟩ =

∫
dxϕ∗(x)ψ(x) = (ϕ, ψ), (6.7)

其中第二个等号是利用了⟨ϕ|x⟩ = ⟨x|ϕ⟩∗ = ϕ∗(x)。另外，(ϕ, ψ)是坐标表象

下的一个常用记号，它就定义成(ϕ, ψ) =
∫
dxϕ∗(x)ψ(x), 通常称作两个波函

数的内积，很显然，它也满足

(ϕ, ψ)∗ = (ψ, ϕ). (6.8)

我们已经将抽象的量子态|ψ⟩表示成了坐标表象下的波函数ψ(x)，现在
来考察算符在坐标表象下的表示。对于一维的非相对论粒子，它最基本的

算符就是位置算符X和动量算符P，其它物理量的算符都可以由这两个算

符通过算符乘法、加法、以及乘上一个常数倍数这样的操作生成，也就是
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说，都具有O(X,P )这样的形式。这里O(X,P )表示某个X和P的函数，当

然我们还要求它有厄米性。

对于任何一个希尔伯特空间的抽象算符A，我们定义它在坐标表象中

的表示为Â, Â由下式定义

Âψ(x) = ⟨x|A|ψ⟩, (6.9)

式中|ψ⟩是任意一个量子态，ψ(x)是它的波函数。很显然，如果抽象算

符A作用在态|ψ⟩上得到|ϕ⟩，即A|ψ⟩ = |ϕ⟩。那么根据我们的定义(6.9)，就

有Âψ(x) = ⟨x|A|ψ⟩ = ⟨x|ϕ⟩ = ϕ(x)，即有Âψ(x) = ϕ(x)。也就是说，Â在

波函数上的作用与抽象算符A在相应狄拉克符号上的作用完全对应，因此

它的确够成了抽象算符A的表示，也因此，只要A是一个线性算符，那么相

应的Â也必然是一个线性算符。假设A的本征方程为A|un⟩ = λn|un⟩, 那么相
应就有Â的本征方程，Âun(x) = λnun(x)，两者的本征值和本征矢量都完全

对应。

不仅如此，我们还可以计算任意算符A在任意两个态|ψ⟩和⟨ϕ|之间的
跃迁元⟨ϕ|A|ψ⟩，⟨ϕ|A|ψ⟩ =

∫
dx⟨ϕ|x⟩⟨x|A|ψ⟩ =

∫
dxϕ∗(x)Âψ(x) = (ϕ, Âψ),

即有

⟨ϕ|A|ψ⟩ = (ϕ, Âψ). (6.10)

那么，在坐标表象中我们怎么定义一个算符Â的厄米共轭算符Â†呢？很简

单，由于Â是抽象算符A在坐标表象下的表示，我们就相应地定义Â†为A†在

坐标表象下的表示，即，

Â†ψ(x) = ⟨x|A†|ψ⟩. (6.11)

因此我们同样有⟨ψ|A†|ϕ⟩ = (ψ, Â†ϕ), 而由厄米共轭算符的定义⟨ψ|A†|ϕ⟩∗ =
⟨ϕ|A|ψ⟩，因此(ψ, Â†ϕ)∗ = (ϕ, Âψ)。又由于根据波函数内积所满足的(6.8),

(ψ, Â†ϕ)∗ = (Â†ϕ, ψ), 因此我们就有

(Â†ϕ, ψ) = (ϕ, Âψ). (6.12)

这就是我们定义的Â†所满足的基本关系式, 它和人们在波函数空间中对一

个算符的厄米共轭算符的通常定义完全一样。根据这个结果我们可以知
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道，任何一个抽象的厄米算符，其在坐标表象中的表示也必然是一个厄米

算符！特别的，位置算符X的表示X̂必然是一个厄米算符，动量算符P的表

示P̂也必然是一个厄米算符。我们下面要做的，就是根据我们对算符表示

的定义(6.9)，求出X̂和P̂的具体形式。

但是首先我们需要知道，根据上面的论述，坐标表象中的算符所

构成的算符代数应该和原来抽象算符的算符代数完全对应1。特别的，

由[X,P ] = i~, 必然有

[X̂, P̂ ] = i~. (6.13)

我们先来看位置算符。由于|x⟩是位置本征态，相应的坐标值是x，
即X|x⟩ = x|x⟩，也即⟨x|X = x⟨x|。因此根据我们的定义(6.9)，X̂ψ(x) =

⟨x|X|ψ⟩ = x⟨x|ψ⟩ = xψ(x)，这也就是说，在坐标表象中，位置算符X̂其实

就是给波函数乘上x, 你也可以简记为X̂ = x。

为了求出坐标表象中的动量算符P̂ ,我们注意到P̂
(
X̂ψ(x)

)
= P̂

(
xψ(x)

)
,

另一方面, 根据(6.13)式，P̂ X̂ψ(x) = X̂P̂ψ(x) − i~ψ(x), 也即P̂
(
X̂ψ(x)

)
=

x
(
P̂ψ(x)

)
− i~ψ(x)，与前面的结果比较，即有

P̂
(
xψ(x)

)
= −i~ψ(x) + x

(
P̂ψ(x)

)
. (6.14)

这让我们很自然地猜测

P̂ = −i~∂x, (6.15)

式中∂x表示对x求偏导。

由上面的猜测，我们容易得到[X̂, P̂ ]ψ(x) = (−i~)
(
x∂xψ(x)−∂x(xψ(x))

)
=

(−i~)(x∂xψ(x) − ψ(x) − x∂xψ(x)) = i~ψ(x), 即[X̂, P̂ ]ψ(x) = i~ψ(x)。由
于ψ(x)为任意波函数，因此这就说明，上面的猜测的确能使得[X̂, P̂ ] =

i~成立2，所以它是一个正确的猜测。因此，在坐标表象中，动量算符正比

于一个对坐标x的偏导运算。

1数学上的专业术语叫做两个算符代数同构
2值得说明的是，使得这个式子成立的P̂并不唯一，以上猜测只是最简单的一种可能。

不过，P̂的不同选取并不会导致不同的量子力学，因为这些不同选取之间只差一个非物理

的规范变换。
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6.1.2 德布罗意波和薛定谔波动方程

当然，我们也可以考察动量本征态(也就是有确定的动量取值的量子可

能性)，即满足P |p⟩ = p|p⟩的本征态|p⟩, 它们当然也满足正交归一性(注意

到p同样是一个连续变量)

⟨p|p′⟩ = δ(p− p′). (6.16)

另一方面，|p⟩在坐标表象中的波函数当然是⟨x|p⟩, 根据定义，它应该满
足P̂ ⟨x|p⟩ = ⟨x|P |p⟩ = p⟨x|p⟩, 代入P̂ = −i~∂x，这也就是微分方程

−i~∂x(⟨x|p⟩) = p⟨x|p⟩. (6.17)

很容易积分求出这个微分方程的解，即是

⟨x|p⟩ = c exp (ipx/~) , (6.18)

式中c为积分常数。

另外，由正交归一关系⟨p′|p⟩ = δ(p−p′),利用跃迁幅乘法插入中间可能
性，即有δ(p−p′) =

∫
dx⟨p′|x⟩⟨x|p⟩ =

∫
dx⟨x|p′⟩∗⟨x|p⟩ =

∫
dx|c|2ei(p−p′)x/~ =

~|c|2
∫
dyei(p−p′)y, 式中最后一个等于号是利用了变量代换x = y~。代

入数学公式(请自行查阅这个公式)
∫
dxeikx = (2π)δ(k)，即有δ(p − p′) =

|c|2(2π~)δ(p−p′),两边比较，显然可以取c = 1/
√
2π~，从而即可以把(6.18)式

写成

⟨x|p⟩ = 1√
2π~

exp (ipx/~) . (6.19)

上面这个式子告诉我们，一个动量为p的粒子，其到位置本征可能性的

跃迁幅可以看作是一个平面波，这个波的波长是

λ = (2π~)/p. (6.20)

这一点不难验证，exp (ip(x+ 2π~/p)/~) = exp(ipx/~) exp(2πi) = exp(ipx/~),
即这个波在空间上的确以上面给出的λ为周期。

粒子同时可以用一个波来描写！这是德布罗意的伟大想法，它拓展了

爱因斯坦关于光的波粒二象性，进而认为所有的微观粒子都具有波粒二象
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性。一个动量为p的粒子，其德布罗意波的波长正由上面的(6.20)式给出，

这个波长就称之为德波罗意波长！因此，所有的微观粒子应该都可以进行

波的干涉和衍射实验，实际上，德波罗意提出他的波粒二象性以后，这一

点很快就被实验证实了。

(6.20)式告诉我们，德布罗意波长反比于粒子动量，动量越大则波长越

短。而我们知道，当用一个波(比方说光波)去观察一个对象时，我们的观

察有一个分辨率，这个分辨率取决于波长，比波长更小的空间尺度是无法

分辨的。因此，如果我们想看清更小的更微观的结构，那就得用波长更短

的波去观测。通常的可见光波长在几百个纳米，是原子尺寸的上千倍，因

此如果用可见光去观测，那我们连原子都不可能看清。基于这个原因，整

个20世纪物理学的很大一部分都在追求驾驭波长越来越短的光，或者其它

微观粒子的德布罗意波，比方说电子的波布罗意波长比可见光就要短得多，

因此可以用来观察晶体微观的晶格结构等等。当然，波长越短动量就越大，

而动量越大就意味着能量越大，因此为了用微观粒子来看清世界更小更微

观的结构，我们就得把这些粒子加速到很高的能量，这就是为什么要建造

强大的粒子加速器的原因。因为，我们想看清在最基本的最渺不可见的尺

度上，我们这个世界是怎么构成的。

当然，也可以定义动量空间波函数，为ψ̃(p) ≡ ⟨p|ψ⟩，根据这个定义，
它和坐标空间波函数ψ(x)的关系为

ψ̃(p) ≡ ⟨p|ψ⟩ =
∫
dx⟨p|x⟩⟨x|ψ⟩ = 1√

2π~

∫
dxe−ipx/~ψ(x), (6.21)

式中我们利用跃迁幅乘法插入了中间可能性(x). 完全类似的，通过插入中

间可能性(p)，我们也有

ψ(x) =
1√
2π~

∫
dpeipx/~ψ̃(p). (6.22)

由此可见，动量空间波函数与坐标空间波函数的关系是互为傅里叶变换与

逆变换的关系。

一维非相对论粒子的总能量等于动能与势能之和，相应的哈密顿算符

应该是H = P 2

2m
+ V (X)，式中V (X)为势能算符。在薛定谔绘景中，量子态

按照如下薛定谔方程随时间演化

i~
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩. (6.23)
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假设记哈密顿算符H在坐标表象下的表示为Ĥ, 那么也就有Ĥ = P̂ 2

2m
+

V (X̂), 代入上面找到的X̂和P̂的表达式，即有Ĥ = − ~2
2m
∂2x + V (x)。又

由i~∂tψ(x, t) = i~∂t⟨x|ψ(t)⟩ = ⟨x|i~∂t|ψ(t)⟩ = ⟨x|H|ψ(t)⟩ = Ĥψ(x, t)(式中

第三个等号我们使用了一般形式的薛定谔方程(6.23)),我们就有i~∂tψ(x, t) =
Ĥψ(x, t)。由此就可以知道一维非相对论粒子在坐标表象下的薛定谔方程

为

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t). (6.24)

这就是最广为人知的薛定谔波动方程。这样, 我们就从最一般形式的薛定

谔方程(6.23)推导出了薛定谔波动方程。

人们很容易把上面的推理过程推广到三维空间，这时候动量算符P的

坐标表象表示就是P̂ = −i~∇。进一步写出相应的坐标表象薛定谔方程是
直接了当的，结果是，

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m
∇2 + V (x)

]
ψ(x, t). (6.25)

它描写微观粒子的波函数ψ(x, t)如何随着时间演化。

6.1.3 概率流密度

在第三章中我们已经看到，量子态随时间的幺正演化一定会保持希

尔伯特空间的内积不变，特别的，量子态的归一关系在时间演化下会

保持不变，即对任意t恒有⟨ψ(t)|ψ(t)⟩ = 1。在中间插入位置可能性，即

有1 =
∫
dx⟨ψ(t)|x⟩⟨x|ψ(t)⟩ =

∫
dx|⟨x|ψ(t)⟩|2。注意到|⟨x|ψ(t)⟩|2为ψ可能性

的粒子在参考时刻t跃迁到位置可能性x的概率密度，简称t时刻在x位置找

到粒子的概率密度，也就是单位空间体积内的概率(之所以是概率密度而

不是概率，是因为现在x是连续变量，我们最终是要对x积分的)，通常记

作ρ(x, t), 即ρ(x, t) = |⟨x|ψ(t)⟩|2, 当然由于ψ(x, t) ≡ ⟨x|ψ(t)⟩为粒子的波函
数，所以也可以把局域概率密度写成ρ(x, t) = |ψ(x, t)|2。所以，归一化关
系永远为1就意味着总概率

∫
dxρ(x, t)永远为1，也就是总概率守恒。

一个自然的问题是，除了总概率守恒之外，在单粒子波动力学中有没

有局域的概率守恒？换言之，我们想知道存不存在一个概率流密度J(x, t)，
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使得下面的连续性方程成立

∂tρ+ ∂xJ = 0. (6.26)

J(x, t)代表的就是单位时间沿着x轴正方向流过x点的概率。如果能找到这

样的J(x, t)，我们就说单粒子波动力学是局域概率守恒的。

实际上，J(x, t)的确存在，为此我们将单粒子薛定谔波动方程及其复

共轭方程重写如下

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t).

−i~
∂

∂t
ψ∗(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ∗(x, t). (6.27)

然后我们用ψ∗乘以上式的第一个方程，用ψ乘以上式的第二个方程，再将

结果相减，就可以得到

i~
∂

∂t

(
ψ∗ψ

)
=

(
− ~2

2m

)[
ψ∗ ∂

2

∂x2
ψ − ψ

∂2

∂x2
ψ∗

]
=

∂

∂x

[
− ~2

2m
(ψ∗∂xψ − ψ∂xψ

∗)

]
. (6.28)

很显然，最终的这个方程的确能够写成连续性方程(6.26)的形式，只需要我

们取

J(x, t) =
−i~
2m

(
ψ∗∂xψ − ψ∂xψ

∗)
=

1

2m

(
ψ∗P̂ψ − ψP̂ψ∗). (6.29)

这就是一维非相对论粒子概率流密度的表达式。

我们也很容易将上面的结果推广到三维情形，这时候概率流密度将是

一个矢量J(x, t)，代表的是在这个矢量的横截面上，单位时间之内通过单

位横截面积的概率。这时候相应的局域概率守恒方程就是

∂tρ+∇ · J = 0. (6.30)

为了得到J(x, t)的表达式，人们只需将(6.29)式中的一维动量算符替换成三

维动量算符P̂ = −i~∇, 从而即有

J(x, t) =
−i~
2m

(
ψ∗∇ψ − ψ∇ψ∗). (6.31)
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读者可以直接写出三维的薛定谔波动方程，然后按照和一维情形完全一样

的推导来证明这一表达式的确是对的。

为了看清楚局域概率守恒方程(也就是所谓的连续性方程)(6.30)的含

义，我们将它在一个任意的三维区域V上积分，进而即有

−∂t
∫
V

d3xρ(x, t) =

∫
V

d3x∇ · J =

∮
∂V

dS · J, (6.32)

式中∂V表示三维区域V的边界，
∮
∂V
表示在这个边界上积分，这个式子的

最后一个等号是用了多变量微积分中的高斯定理，其中dS表示边界上的面

积元。上面这个最终结果的含义很清楚，那就是，区域V内总概率随着时

间的减少率，等于单位时间之内通过区域边界流出去的概率。这就是局域

概率守恒的真正含义。

6.2 路径积分

跃迁幅乘法最漂亮的应用之一，是可以用来导出量子力学的第三种表

述形式，也就是费曼所建立起来的路径积分表述，本节就是要给出这一推

导。这时候在海森堡绘景中进行讨论更加方便一点，所以与上一节不同，

本节默认使用海森堡绘景。

路径积分在现代物理中的重要性是怎么强调都不为过的，比方说它可

以很漂亮地建立起量子场论，尤其是量子的规范场论，而如果用传统的正

则量子化办法就会困难得多。路径积分的一大好处是，它直接和作用量联

系起来，而作用量是明显保持对称性的，所以路径积分量子化容易明显地

保持对称性，尤其是在考虑了狭义相对论以后，它可以明显地保持狭义相

对论的庞加莱对称性，这也是它广泛应用于相对论量子场论的原因之一。

下面开始推导。在前面的章节中我们引入过海森堡绘景，对于薛定谔

绘景中的算符O，其相应海森堡绘景中的算符O(t)为

O(t) = exp(iHt/~)O exp(−iHt/~). (6.33)

另外，引入海森堡绘景的位置本征态|x, t⟩对于我们来说是方便的，其定义
是

|x, t⟩ = exp(iHt/~)|x⟩. (6.34)
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很容易验证，|x, t⟩满足X(t)|x, t⟩ = x|x, t⟩，式中X(t)为海森堡绘景中的位

置算符。

记xi为粒子的初始位置，xf为最终位置。下面我们将注意力集中在粒

子从0时刻的初态可能性(xi, 0)跃迁到T时刻的末态可能性(xf , T )的跃迁幅

⟨xf , T |xi, 0⟩. (6.35)

通过在任意中间t时刻插入位置本征态的完备集，然后利用跃迁幅乘

法，我们可以把上面的跃迁幅改写成

⟨xf , T |xi, 0⟩ =
∫
dx⟨xf , T |x, t⟩⟨x, t|xi, 0⟩. (6.36)

这是跃迁幅满足的一个基本方程。 现在，我们如图(6.1)中所示的那样，将

图 6.1: 图中的qi, qf实际上分别是xi, xf，水平方向表示坐标x, 竖直方向为

时间。

整个时间区间T等分成N个间距为ϵ = T/N的小区间，其中各分割时刻分别

为

tm = mϵ. (6.37)

则通过在每一个中间分割时刻都插入相应位置本征态的完备集并利用跃迁

幅乘法，我们有

⟨xf , T |xi, 0⟩ =
∫
dxN−1...dx1

N−1∏
m=0

⟨xm+1, tm+1|xm, tm⟩. (6.38)
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式中x0 = xi, xN = xf。其含义就是(xi, 0) → (xf , T )的跃迁幅等于所有

形如(xi, 0) → (x1, t1) → (x2, t2) → ... → (xN−1, tN−1) → (xf , T )的逐时跃

迁(如图(6.1))的跃迁幅之和(积分的本质就是求和)，这里的求和是指对所

有t1, t2, , , tN−1时刻的中间可能性求和(求积分)。

根据定义，我们有|xm, tm⟩ = exp(iHtm/~)|xm⟩,当然也有⟨xm+1, tm+1| =
⟨xm+1| exp(−iHtm+1/~) = ⟨xm+1| exp(−iHϵ/~) exp(−iHtm/~), 式中利用
了tm+1 = tm + ϵ, 从而即有

⟨xm+1, tm+1|xm, tm⟩ = ⟨xm+1| exp
(
− iHϵ/~

)
|xm⟩

=

∫
dpm⟨xm+1|pm⟩⟨pm| exp

(
− iHϵ/~

)
|xm⟩. (6.39)

式中哈密顿算符H是一个关于坐标算符和动量算符的函数，H(P,X),

而式中的|pm⟩为动量本征态。通过算符对易关系我们总是可以将所有
的P都放到H表达式的左边，而将所有的X都对易到右边，从而有(注意，

由P |pm⟩ = pm|pm⟩, 有⟨pm|P = pm⟨pm|)

⟨pm|H(P,X)|xm⟩ = H(pm, xm)⟨pm|xm⟩. (6.40)

从而根据(6.39)式我们有(精确到ϵ的一次方阶)

⟨xm+1, tm+1|xm, tm⟩ =
∫
dpm exp

[
− iH(pm, xm)ϵ/~

]
⟨xm+1|pm⟩⟨pm|xm⟩

=

∫
dpm
2π~

exp
{
− i

[
H(pm, xm)ϵ− pm(xm+1 − xm)

]
/~+O(ϵ2)

}
=

∫
dpm
2π~

exp
{ i
~
[
pmẋm −H(pm, xm)

]
ϵ
}
. (6.41)

式中我们代入了动量本征波函数的表达式(6.19), 并且最后一行利用

了xm+1 − xm = ẋ(tm)ϵ，并忽略了ϵ的高阶项。

将(6.41)式代入(6.38)式，就可以得到

⟨xf , T |xi, 0⟩ =
∫
dpN−1dxN−1

2π~
...
dp1dx1
2π~

dp0
2π~

× exp
{ i
~

N−1∑
m=0

[
pmẋm −H(pm, xm)

]
ϵ
}
. (6.42)



第六章 波动方程与路径积分 14

注意，随着离散时间的进行t0 → t1 → .... → tN−1, 各离散时刻的坐标变量

和动量变量也随之而演化为(xi, p0) → (x1, p1) → ...→ (xN−1, pN−1), 也就是

在(x, p)的空间中演化，这个空间当然也就是经典力学里熟知的相空间。不

妨用相空间的直线把(xm, pm)与(xm+1, pm+1)连起来，如此一来，随着离散

时间的演化，我们就得到一条在相空间中的折线路径，tm时刻路径经过相

空间坐标(xm, pm)。当然，注意到(6.42)是要对所有(xm, pm)(N − 1 ≥ m ≥
1)积分的，这就相当于对所有可能的折线路径进行积分！

下面，我们取N → +∞，ϵ → 0的极限，同时保持Nϵ = T固定。则在

这个极限下，上面的相空间折线路径当然就变成了一条任意的路径，这

时候(6.42)式中的复杂多重积分(实际上已经变成了无穷重积分) 就相当于

对所有以x(0) = xi, x(T ) = xf为端点(端点处的动量并不固定)的相空间路

径x(t), p(t)进行积分。在这个极限之下，(6.42)式就趋近于

→ ⟨xf , T |xi, 0⟩ =
∫
[Dp(t)Dx(t)] exp

{ i
~

∫ T

0

dt
[
pẋ−H(p, x)

]}
(6.43)

最后这个表达式中的
∫
[Dp(t)Dx(t)]是对(6.42)式中的无穷重积分测度的

简记符号。其中S[p(t), x(t)] =
∫ T

0
dt
[
pẋ − H(p, x)

]
就是所谓的相空间作

用量，它是相空间路径的泛函。也即是说，跃迁幅⟨xf , T |xi, 0⟩可以由所
有以x(0) = xi, x(T ) = xf为端点(端点处的动量并不固定)的相空间路

径x(t), p(t)给出，每一条相空间路径的贡献是exp
(
iS[p(t), x(t)]/~

)
, 将所

有这些相空间路径的贡献都加起来(积分无非就是加起来)，即得到跃迁

幅⟨xf , T |xi, 0⟩。这就是所谓的相空间路径积分。
如果我们是求算符O(X,P )的跃迁元，那相应于(6.43)式，就有

⟨xf , T |O(X(t), P (t))|xi, 0⟩

=

∫
[Dp(t)Dx(t)]O(x(t), p(t)) exp

{ i
~

∫ T

0

dt
[
pẋ−H(p, x)

]}
, (6.44)

注意，等式右边路径积分中插入的是算符所对应的经典物理量O(x(t), p(t)),

其中x, p都不是算符。

对于非相对论粒子，哈密顿量H(p, x)通常可以写成如下形式

H(p, x) =
p2

2me

+ V (x), (6.45)
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式中V (x)为势能，me是粒子质量。因此(6.41)式的积分是

⟨xm+1, tm+1|xm, tm⟩ =
∫
dpm
2π~

exp
{
− i

~
[ p2m
2me

− pmẋm + V (xm)
]
ϵ
}
. (6.46)

这是一个所谓的高斯积分，利用后面附录给出的高斯积分公式，可以算出

结果为

⟨xm+1, tm+1|xm, tm⟩ =
√

me

2π~iϵ
exp

( i
~
[
1

2
meẋ

2
m − V (xm)]ϵ

)
. (6.47)

将(6.47)式代入(6.38)式就可以得到

⟨xf , T |xi, 0⟩ =
∫
dxN−1...dx1

(√ me

2π~iϵ

)N

exp
( i
~

N−1∑
m=0

[
1

2
meẋ

2
m − V (xm)]ϵ

)
.

与前面相空间路径积分的处理类似，保持Nϵ = T固定，取N → +∞，
ϵ→ 0的极限则这个结果就变成

⟨xf , T |xi, 0⟩ =
∫
[Dx(t)] exp

( i
~

∫ T

0

dtL(x, ẋ)
)
, (6.48)

式中L(x, ẋ) = 1
2
meẋ

2 − V (x)为坐标空间路径x(t)的拉格朗日量，式中积分

测度
∫
[Dx(t)]的定义为∫

[Dx(t)]... = lim
ϵ→0,N→+∞

∫
dxN−1...dx1

(√ me

2π~iϵ

)N

... (6.49)

可以理解为是对坐标空间中连接(xi, 0)与(xf , T )两个端点的所有路径进行

积分. 所以上面最终的结论(6.48)又叫做坐标空间(或者位形空间)的路径积

分。

(6.48)式的含义可以大致理解为：跃迁幅⟨xf , T |xi, 0⟩由所有以x(0) =

xi, x(T ) = xf为端点的坐标空间路径x(t)给出，每条路径的贡献是exp
(
iS[x(t)]/~

)
(其中S[x(t)] =

∫ T

0
dtL(x, ẋ)是坐标空间的作用量泛函), 将所有这些路径的

贡献都加起来(积分无非就是加起来)，即得到跃迁幅⟨xf , T |xi, 0⟩。可以示
意性地写作

⟨xf , T |xi, 0⟩ =
∑
x(t)

e
i
~S[x(t)]. (6.50)
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我们可以利用(6.50)式这个路径积分公式讨论量子力学与经典力学

间的对应关系。由于两条邻近路径的作用量之差近似为一阶变分δS，而

从(6.50)式的最后结果可以看出，当~ → 0时, 一般来说相邻路径的相位

差 δS
~ 是随着路径的微小变动快速振荡的，因此在~ → 0时，相邻路径通常

总是干涉相消的，除非我们考虑的是δS = 0这条路径的邻近路径。对于这

条δS = 0的路径，它和邻近路径的相位差近似为0，从而是干涉加强的。很

显然，这就是最小作用量原理，这条干涉加强的路径就是所谓的经典路径。

也即是说，当~ → 0时，坐标空间的路径积分即给出经典物理里的最小作

用量原理。不难明白，如果我们是对相空间路径积分进行这样的讨论，那

结果就是，当~ → 0时，相空间路径积分即给出经典物理里的相空间最小

作用量原理。从这些讨论我们看到，经典物理是量子物理在~ → 0时的极

限。

即使从数学上看，路径积分也是非常新颖的，因为它涉及到无穷重

的积分，或者说在一个无穷维的空间上进行多重积分。这是此前(费曼之

前)数学家所没有想象过的。正如读者从上面的推导中看到的，这种积分的

定义不是一件容易的事情，尤其是到了量子场论，相应路径积分的严格定

义是一个重大的数学难题。虽然缺乏严格定义，然而物理学家已经应用路

径积分得到了大量的重要结果，甚至包括一些困难的纯数学结果。所以，

这里的问题就有点像牛顿-莱布尼兹时代的微积分，物理学家能用它得到大

量结果，但是微积分的严格理论基础在牛顿时代是缺乏的。路径积分，尤

其是场的路径积分，其严格的数学基础今天也是缺乏的。某种意义上来说，

这也就是如何从数学上严格定义量子场论的问题，当前只有很少一部分相

对简单些的量子场论模型已经有了严格的数学基础，大多数量子场论在数

学上都是不严格的。但是，如果能严格定义路径积分，那大量量子场论模

型的严格定义问题就解决了。

附录：高斯积分

所谓高斯积分，是指形如下式的积分∫
dx exp

(
− 1

2
ax2 + bx

)
, (6.51)

式中的积分范围是从−∞到+∞. 换言之，高斯积分的指数上是一个二次项



第六章 波动方程与路径积分 17

系数小于零的二次函数。

为了算出这个积分，我们首先把指数进行配方，即有∫
dx exp

(
− 1

2
ax2 + bx

)
=

∫
dx exp

(
− 1

2
a(x− b/a)2 +

1

2

b2

a

)
= e

1
2

b2

a

∫
dx exp

(
− 1

2
ax2

)
= e

1
2

b2

a
1√
a

∫
dx exp

(
− 1

2
x2
)
, (6.52)

式中第二行的第一个等于号是进行了x− b/a → x的变量代换，第二等于号

是进行了
√
ax→ x的变量代换。所以，最终我们真正要算的只有

I =

∫
dx exp

(
− 1

2
x2
)
. (6.53)

为了算出这个结果，我们考虑I2，很显然它等于

I2 =

∫
dx exp

(
− 1

2
x2
) ∫

dy exp
(
− 1

2
y2
)

=

∫ ∫
dxdy exp

(
− 1

2
(x2 + y2)

)
. (6.54)

我们可以将这看成是两维(x, y)平面上的两重积分。为了算出它，我们可以

在(x, y)平面上取极坐标(r, θ)，从而dxdy = rdrdθ, x2 + y2 = r2, 从而上面的

积分变成

I2 =

∫ ∫
rdrdθe−

1
2
r2

= 2π

∫ +∞

0

rdre−
1
2
r2 = 2π

∫ +∞

0

dte−t = 2π. (6.55)

其中第二行利用了1
2
r2 = t的变量代换。所以最终得到I =

√
2π. 代入上面

的(6.52)式，即得∫
dx exp

(
− 1

2
ax2 + bx

)
=

√
2π

a
exp

(1
2

b2

a

)
. (6.56)

如果常数a, b中出现虚数，那你还是照常代上面的公式(6.56)。至于为

什么这个公式可以推广到虚数的情况，则需要复变函数的知识才能证明，

我们这里略去。


