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第二章 量子力学基本原理

上一章按照历史发展，从定态和定态的量子跃迁出发，通过引入跃迁

元和跃迁元乘法规则，最终建立起了量子力学的初步理论。但是，这里有

一个巨大的局限，就是我们的一切都基础于定态可能性，而定态虽然重要，

但却是比较特殊的，它限制了量子力学理论的灵活应用。这一章我们将从

这种局限中解放出来，获得更大的自由。

熟熟熟悉悉悉态态态矢矢矢量量量、、、希希希尔尔尔伯伯伯特特特空空空间间间、、、量量量子子子态态态内内内积积积以以以及及及算算算符符符等等等概概概念念念的的的读读读者者者，，，

请请请先先先假假假装装装忘忘忘记记记这这这些些些东东东西西西，，，它它它们们们对对对于于于本本本章章章的的的展展展开开开是是是不不不需需需要要要的的的，，，反反反而而而会会会干干干扰扰扰

我我我们们们理理理解解解本本本章章章的的的概概概念念念体体体系系系。。。作作作为为为本本本章章章的的的自自自然然然推推推论论论，，，这这这些些些东东东西西西会会会是是是下下下一一一章章章

的的的主主主题题题。。。

不过, 在具体开始本章之前，还是让我们重写一下上一章得到的跃迁

元乘法规则，任给物理量A,B，按照上一章最后介绍的新记号，我们有

⟨Em|ÂB̂|En⟩ =
∑
l

⟨Em|Â|El⟩⟨El|B̂|En⟩. (2.1)

式中物理量符号加一个帽子̂表示此物理量对系统的作用，它由一个正比
于这个物理量的微扰产生。相对于上一章，我们在记号上作了一点小改动，

我们用(En)而不是(n)来表示定态可能性, 它表示的就是能量取确定的量子

化值En的这么一个定态。

从上一章我们知道，一个量子系统所有定态可能性的集合构成一个可

确定区分可能性完备集，不妨记作E , 其中的可能性满足如下可确定区分性

⟨Em|En⟩ = δmn. (2.2)

式中⟨Em|En⟩表示物理量1的跃迁元，即⟨Em|En⟩ = ⟨Em|1|En⟩。
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第二章 量子力学基本原理 3

当然，作为物理可观测量，A,B的跃迁元均满足厄米条件，以物理

量A为例，

⟨Em|Â|En⟩ = ⟨En|Â|Em⟩∗. (2.3)

或者示意性地记作{
(Em)

A←− (En)
}
=

{
(Em)

A−→ (En)
}∗
. (2.4)

表示从(En)到(Em)的跃迁元等于从(Em)到(En)跃迁元的复数共轭。不过，

正如上一章说过的，虽然A, B均是物理量，均满足厄米条件，但它们的乘

积AB可不一定满足厄米条件。

本章我们将一般性地定义可确定区分可能性完备集的概念，并进一步

推广跃迁元，以及推广跃迁元的乘法规则。本章开始于对一类物理学实验

的考察，即所谓的施特恩-格拉赫实验。原始版本的施特恩-格拉赫实验的

确是物理学家真正做过而且重要的物理学实验，不过，本章考察的是它的

一种改版，这是费曼在其物理学讲义第三卷中引入的，可能并没有物理学

家真正做过这个费曼版的施特恩-格拉赫实验，因此，本章的考察实际上是

对一种假想实验的考察。之所以我们相信这种对假想实验的考察，是因为

我们相信量子力学的基本原理，比如本章将会着重讨论的不确定性和不可

区分性原理，这些原理在其它真实实验中是经受过检验的。实际上，本章

就是想通过假想实验来说清楚量子力学的基本原理。

2.1 可确定区分可能性完备集

在量子力学中，除了能量的量子化以外，另一种同样重要的量子化是

所谓的角动量量子化，它最早由玻尔在其氢原子模型中作为假设提出。不

过，玻尔的这条假设是半量子半经典的，真正完全符合量子力学原理的角

动量量子化则要复杂一些，本节将以一个例子对此展开讨论。

我们要讨论的例子是核外电子总角动量为1的原子，角动量为1只是通

常的一种简化说法，其具体意思我们马上就会讨论。由于核外电子带电，

其角动量就会产生一个磁矩，可以和磁场耦合，因此将这种原子放到一个

外磁场中，它就会受到磁场的作用，如果这外磁场是一个非均匀磁场，那
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么原子就会受到一个作用力。这个作用力和原子角动量在磁场取向方向上

的分量，以及磁场梯度的方向都有关系。施特恩和格拉赫的著名实验发现，

如果把一束这样的非极化原子(所谓的非极化原子，就是每个原子的总角

动量取向完全随机的一束原子)沿着水平方向通过如图(2.1)所示的一个装

置，它就会分裂成分立的三束(而不是连续的一片)。装置沿着水平方向(称

作y方向)放置，装置内有一个指向z方向的非均匀磁场，并且磁场的梯度也

是沿着z方向。

对这种分裂成量子化的分立三束的解释是：原子角动量的z分量Jz(也

就是沿着磁场方向的分量)有三种量子化的可能性，不妨分别记作+, 0,−吧(更

通常的说法是，Jz量子化为+~, 0,−~), 由于磁场存在梯度，原子会受到一
个z方向的作用力，但是不同的量子化可能性受到的力大小不同，所以通过

装置以后，原子就分裂成了三束。

图 2.1: 在施特恩-格拉赫实验中，角动量为1的原子会分裂成三束。

当然，原子除了有角动量以外，还有动量等等物理量，但是，从现在

开始，假设我们只关心原子的角动量，而忽略其动量等其它一切信息。这

时候，我们就可以说，z方向出现的+, 0,−这三种可能性，构成了原子的一
个可可可确确确定定定区区区分分分可可可能能能性性性完完完备备备集集集，所谓完备，意思就是，原子束分裂的时候只

有这三种可能性，只会分裂成三束，再没有其它可能性了，而所谓可确定

地区分，当然是因为这三种可能性的角动量Jz值不同，因此在分裂成理想

的三束的情况下可以百分之百地区分它们。这里我们看到，除了上一章着

重研究的定态可能性完备集以外，原子还可以有其他可确定区分可能性完

备集，比如这里沿着z方向的+, 0,−(假设只关心角动量)。

实验上怎么检验这三种可能性是否真的可确定地区分呢？为了更方便

研究这个问题，以及类似这样的其它一些问题，下面我们修改一下实验装

置。图(2.2)(a)就是改版之后的实验装置简图，它包括一连串三个非均匀磁
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场，左边的第一个就是通常的施特恩-格拉赫装置的磁铁，它把一束入射的

原子分裂成三束，第二个磁铁和第一个磁铁类似，但是磁场方向和第一个

相反，因此它施加在原子上的力也是反向的，会倾向于使得分裂的原子束

反向运动(即向着轴线方向运动)，并且我们设想这第二个磁铁比较长，比

方说是第一个磁铁的两倍那么长，第三个磁铁和第一个完全一样，它的作

用是使得分裂的原子束在从装置中出来的时候恰好重新汇聚在一起。最终，

原子束的运动路径如图(2.2)(b)所示。

图 2.2: (a)改版之后的施特恩-格拉赫实验装置。(b)角动量为1的原子的路

径。

我们设想原子束是从图(2.2)(a)左端的A点由静止开始运动的，经过左

端的准直孔入射到装置中，最终从右端的准直孔出射，然后在某种作用下

减速，并停止在右端的B点。由于最开始和最终了原子都是静止的，所以

这就使得我们可以忽略对原子运动的关注，而把注意力集中在原子的角动

量上。

我们把一台如图(2.2)(a)这样的，磁场在z方向上的装置称作装置S, 相

应的可能性完备集记作{(iS), i = +, 0,−}。后文我们还会考察旋转一个适
当角度(比如绕着水平y轴旋转一个适当角度)之后的同样装置，我们将称

旋转以后的装置为装置T , 原子通过它的时候当然也会在磁场方向(旋转后

的)上分裂成三束，相应的可能性完备集记作{(iT ), i = +, 0,−}。
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为了检验+, 0,−三种可能性是否真的可确定地区分，我们需要做一个
如图(2.3)所示的实验。我们要把两台S装置串联起来，使通过第一台装置

的原子束接着通过第二台装置。我们在第一台S装置里面放入挡板，挡去

三条分裂原子束中的两条，以确定从第一台装置中出来的原子束是三种

可能性中的哪一种，比如挡掉了0,−可能性，那我们就能确定从第一台装
置出来的原子束处于+可能性。我们再让从第一台装置出来的原子束接

着通过第二台一样的S装置，然后看原子束可以从原来的可能性跃迁到第

二台装置的哪种可能性，由此检验三种可能性的可确定区分性。 比如像

图 2.3: 串联两台S装置。

图(2.3)中所示的情形，在第一台装置中，通过利用挡板，过滤出了+可能

性的原子，因此再通过第二台装置的时候，这些原子就只会走最上面那条

路线。而如果第一台装置的挡板过滤出来的是0可能性的原子，那再通过第

二台装置时，它们就只会走中间的线路。同样，如果第一台装置过滤出来

的是−可能性原子，那它们再通过第二台装置时，就只会走最下面那条线
路。而像图(2.3)中第一台装置那样过滤出一种确定可能性的装置，我们就

叫它过过过滤滤滤器器器。

为了说得更具体一点，我们仿照费曼将改版以后的施特恩-格拉赫装置

示意性地记作 
+

0

−


S

, (2.5)

下标S表示这是一台S装置。进一步，我们在这个记号中引入∥，表示挡板。
比如我们挡住S装置的0,−两种可能性(从而构成一台+S过滤器)，那就记
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作 
+

0∥
−∥


S

. (2.6)

图(2.4)总结了这个示意性记号的各种可能性。 如果我们将两台装置串联，

图 2.4: 施特恩-格拉赫装置的示意性记号.

那我们就把两个这样的示意性记号紧接在一起，像这样
+

0∥
−∥


S


+

0

−


S

. (2.7)

注意，在这种写法中，原子束依然是从左边往右边通行的，也就是先通过

左边的装置，接着再通过右边的装置。

下面我们来讨论+, 0,−三种可能性可确定区分性的检验。首先，对于
下面这种情况, 

+

0∥
−∥


S


+

0∥
−∥


S

, (2.8)

从上面的讨论可知，这时必定有，从第一台装置通出的原子，最终也从

第二台装置通出的概率为百分之百。这时候我们说，原子从第一台装置

的(+S)可能性跃迁到第二台装置(+S)可能性的概率为百分之百，由于这种

跃迁不是在任何微扰作用下发生的，所以对应物理量1的跃迁元(当然，这

里跃迁和跃迁元的概念都被拓展了)，因此我们就可以把这个结果记成

⟨+S|+ S⟩ = ⟨+S|1|+ S⟩ = 1. (2.9)
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和第一章中一样，物理量1常常从记号中省略。类似的，当然也有

⟨0S|0S⟩ = ⟨−S| − S⟩ = 1. (2.10)

其次，对于下面的情况，以及其它类似的情况，
+∥
0∥
−


S


+

0∥
−∥


S

,


+

0∥
−∥


S


+∥
0∥
−


S

, (2.11)

很显然，最终将没有任何原子通出来，也即是说，这时候原子从第一台装

置确定下来的可能性跃迁到第二台装置确立的可能性的概率为零。

综上，即有

⟨iS|jS⟩ = δij, i, j = +, 0,−. (2.12)

式中，右边的|jS⟩叫做初态可能性，左边的⟨iS|叫做末态可能性。类似的分
析不仅适用于S装置，也适用于任何T装置，即对任何T装置，同样有

⟨iT |jT ⟩ = δij, i, j = +, 0,−. (2.13)

很显然，这两个式子是第一章中描述定态可能性可确定区分性的(2.2)式的

推广。

可可可确确确定定定区区区分分分可可可能能能性性性完完完备备备集集集

现在，我们可以把可确定区分可能性完备集的概念推广到任意的量子

系统。

首先，在量子力学的世界中，一个系统有多种可能性，我们将系统的

一组可以相互确定地区分的可能性完备集记作C = {(i), i = 1, 2, 3....}1。所
谓可能性的完备集，我们是指，在确保能收集到这些可能性所列举的信息

的同时，你不可能再额外收集到系统更多的信息，因此，只要你采用适当

1这里我们假设这些可能性是分立的，量子化的，当然，可确定区分可能性完备集的概

念可以推广到连续的非量子化的可能性，但这在数学表述上会带来一点复杂性，因此为了

理论表述的简洁性，我们限制于考虑分立的可能性。
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的方式观测这个系统，你总会发现它一定处在这些可能性中的某一个，从

某种意义上来说，这一完备集穷尽了你的观测所能收集到的所有可能性。

而所谓可以确定地区分，是指从C的任意一种可能性出发，在不受任
何微扰作用的情况下，系统只能百分之百地跃迁到这种可能性本身，跃迁

到C中任何别的不同可能性的概率都为零，也即满足

⟨j|i⟩ = δij, i, j ∈ C. (2.14)

换言之，假设一个系统处于C中的某些可能性，让你检测，而你检测到系统
处于可能性(j), 那你就能百分之百地断言，检测之前系统就处于可能性(j),

因为它不可能从一个不同的可能性跃迁到(j)从而让你检测到。因此，通过

检测，你总是可以100%地将C的这些可能性中的任何两个区分开来。
比如上面串联S装置中的第一台，就是通过引入适当的挡板过滤，从

而制备出处于可能性集{(iS), i = +, 0,−}中的原子，而第二台S装置就是对
这些可能性进行检测。通过检测，我们能百分之百地知道第一台装置制备

出来的是哪种可能性。

当然，第一章讨论的原子的定态可能性完备集就是这样一个可确定区

分可能性完备集。再比方说，在仅关心原子角动量时，一个角动量为1的原

子相对于z方向的+, 0,− 三种可能性也构成了一个可确定区分可能性完备
集。因此可确定区分可能性完备集可能是一个无限集，比如上一章的定态

可能性完备集，但也可能是有限集，比如本节的{+, 0,−}。而且，一个系
统的可确定区分可能性完备集不是唯一的，而是有无穷多组，比方说本节

的例子，对应装置S的{(iS), i = +, 0,−}是一个可确定区分可能性完备集，
但是对于任何一个装置T的{(iT ), i = +, 0,−}也都是可确定区分可能性完
备集。

2.2 玻恩定则，不确定性与不可区分性

回到改版的施特恩-格拉赫实验，现在，假设我们把一台S装置和一

台T装置串联起来，那会发生什么？为了明确起见，我们假设所考虑的T装

置相对于原来的S装置是绕着水平y轴旋转了一个适当角度α, 如图(2.5)所

示。
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图 2.5: 串联一台S装置和一台T装置。

假设我们做下面三组实验
+

0∥
−∥


S


+

0∥
−∥


T

,


+

0∥
−∥


S


+∥
0

−∥


T

,


+

0∥
−∥


S


+∥
0∥
−


T

. (2.15)

我们会发现，每一组实验都有原子从整个装置的右端出来，即使最初每次

从左端通进来的只有一个原子，在每一组实验中，它从右端出来的概率也

都不是零。这就说明，给定一个+S过滤器过滤出来的确定处于+S可能性

的原子，它跃迁到+T, 0T,−T这三种可能性的概率都不是零！
问题是相应的跃迁概率该怎么计算呢？为了回答这个问题，我们需要

推广一下物理量1的跃迁元概念，我们给这三组实验分别写下一个跃迁元，

为⟨+T |+ S⟩, ⟨0T |+ S⟩, ⟨−T |+ S⟩, 进一步，受上一章讲过的跃迁元的模方
决定跃迁概率的启发，我们宣称，这三种情况的跃迁概率分别由这三个跃

迁元的模方给出。从而，由于这三种情况的跃迁概率均非零，所以我们知

道⟨+T | + S⟩ ̸= 0, ⟨0T | + S⟩ ̸= 0, ⟨−T | + S⟩ ̸= 0。推而广之，即是，原子

从(iS)可能性跃迁到(jT )可能性的概率P (iS → jT )，由下式给出

P (iS → jT ) = |⟨jT |iS⟩|2, i, j = +, 0,−. (2.16)

注意，这个结论是从大量实验中归纳出来的，叫做玻恩定则，它不能从别

的地方推导出来。

完全类似于上面三组实验，0S可能性以及−S可能性到+T, 0T,−T三
种可能性的跃迁概率也都不是零，从而，任给i, j = +, 0,−, 均有P (iS →
jT ) = |⟨jT |iS⟩|2 ̸= 0，从而⟨jT |iS⟩ ̸= 0。给定初态可能性iS，末态必定跃



第二章 量子力学基本原理 11

迁到+T, 0T,−T三种可能性之一，也就是说，iS分别跃迁到这三种可能性
的概率总和必定等于1，从而有∑

j

|⟨jT |iS⟩|2 = 1. (2.17)

又由于任给j = +, 0,−均有⟨jT |iS⟩ ̸= 0，因此还能推论出⟨jT |iS⟩ ̸= 1(三个

正数加起来等于1，必定每个分别都不等于1)。

⟨jT |iS⟩当然是物理量1的跃迁元，但是请注意，和之前讨论的跃迁元

都不一样，现在这个跃迁元的初态可能性和末态可能性属于不同的可确定

区分可能性完备集，而不是属于同一个完备集。而且，也正由于这里涉及

到两套不同的可确定区分可能性完备集，所以1的跃迁元可以不是δij。1当

然是一种很特殊的物理量，所以也常常称相应的⟨jT |iS⟩这样的跃迁元为跃跃跃
迁迁迁幅幅幅。所以，玻恩定则告诉我们的就是，在不受任何微扰的情况下，跃跃跃迁迁迁

概概概率率率由由由相相相应应应跃跃跃迁迁迁幅幅幅的的的模模模方方方给给给出出出来来来。

确定原子的一种S可能性，比如像上面三组实验那样，通过+S过滤器

过滤出确定的+S可能性，那么由于⟨jT |iS⟩ ̸= 0, 1, 那原子的T可能性就是

不确定的！因为如果T可能性确定，那原子当然就只会百分之百地跃迁到

这种确定的T可能性，但现在原子由+S跃迁到+T, 0T,−T三种T可能性的
概率均非零，所以T可能性是不确定的。换言之，你把一个处于+S可能性

的原子输入一台T过滤器，你会发现，+T, 0T,−T三种情况原子通出的概
率都不是零，就像上面描述的那三组实验告诉我们的那样。所以，确定原

子的一种S可能性，那原子的T可能性就将不能确定。

一个问题是，假设我们先让原子通过一台+S过滤器，接着再通过一

台0T过滤器，那么我们是不是就能同时确定原子的S可能性和T可能性了

呢？当然，我们知道，这时候过滤出来的原子其T可能性一定是0T (因为

后通过的是0T过滤器)，问题是，它的S可能性还是不是原来确定的+S呢？

为此，我们接着把从0T过滤器出来的原子分别通入+S, 0S,−S过滤器，即
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做如下三组实验 
+

0∥
−∥


S


+∥
0

−∥


T


+

0∥
−∥


S

,


+

0∥
−∥


S


+∥
0

−∥


T


+∥
0

−∥


S

,


+

0∥
−∥


S


+∥
0

−∥


T


+∥
0∥
−


S

.

如果原子的S可能性同时保持为第一台过滤器过滤出来的+S, 那这三组实

验将只有第一组原子最终从整个装置右边出来的概率非零。但是，事实

是，三组实验，原子从右边出来的概率都非零。也即是说，原子的S可能

性和T可能性无法同时确定！

用量子跃迁很容易解释这个实验结果，首先，原子以非零的概

率|⟨0T | + S⟩|2从第一台装置的+S可能性跃迁到第二台装置的0T可能性。

但是，一旦跃迁到中间装置的0T可能性, 原来+S可能性的信息就失去了！

这时候，再让原子通过第三台装置，它就会接着从0T可能性跃迁到第三台

装置的各可能性，而原子分别跃迁到第三台装置的+S, 0S,−S的概率都不
是零，按照玻恩定则，这些概率分别由|⟨+S|0T ⟩|2, |⟨0S|0T ⟩|2, |⟨−S|0T ⟩|2给
出。当然，从这里我们也能推断出⟨+S|0T ⟩ ≠ 0, ⟨0S|0T ⟩ ≠ 0, ⟨−S|0T ⟩ ̸= 0。

假如将中间的0T过滤器换成+T过滤器或者−T过滤器，那么类似的实验还
将告诉我们⟨jS|iT ⟩ ̸= 0(任给i, j = +, 0,−)，进一步由

∑
j |⟨jS|iT ⟩|2 = 1还

能推论出⟨jS|iT ⟩ ̸= 1。

由于我们一直是用量子跃迁的思维来思考这个实验，所以你可能没反

应过来以上实验有多么神奇，它是经典物理完全无法解释的！在经典物

理上，如果你先过滤出一种可能性A, 那A就确定了，在这个基础上，你再

过滤出可能性B, 那A,B就同时确定了，这时候你再用第一种装置再去测

试A可能性，你将会发现它一定还是原来确定的A。经典的可能性是可以同

时确定的。
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但是，在我们现在描述的量子实验中，S可能性和T可能性无法同时确

定！

不仅如此，S可能性和T可能性还无法确定地区分。为了说清楚这是什

么意思，让我们设想有一些原子，只知道每一个均可能处于三个S可能性

之一，或者处于三个T可能性之一，我们想通过检测确定它们到底处于哪

种可能性。为此，我们分别将这些原子通入+S, 0S, −S过滤器(通入T过滤

器的分析是一样的)，然后比方说吧，我们检测到通入iS过滤器的原子从装

置右边出来了，由此我们能不能百分之百地推断出检测之前这个原子处于

哪一个可能性呢？回答是，推断不了，因为它既可能是由原来的iS可能性

跃迁来的(iS跃迁到iS的概率是1)，也可能是由原来的任何jT可能性跃迁来

的，因为前面说过⟨iS|jT ⟩ ̸= 0, 从而jT可能性跃迁到iS可能性的概率也不

是零。换言之，对于我们的检测而言，iS可能性与三个jT可能性无法百分

之百地区分，或者说无法确定地区分！从这个分析也可以看出，无法确定

区分的原因，就在于⟨iS|jT ⟩ ̸= 0, 1(或者⟨iT |jS⟩ ̸= 0, 1)。

玻玻玻恩恩恩定定定则则则，，，不不不确确确定定定性性性与与与不不不可可可区区区分分分性性性

下面把本节的讨论推广到任意量子系统。假设有一个任意的量子系统，

我们考察它的两个不同的可确定区分可能性完备集，分别记作C = {(i), i =
1, 2, 3, ....} 以及D = {(i′), i′ = 1′, 2′, 3′, ....}。所谓C和D不同，其意思就是，
存在某些可能性(m) ∈ C，以及某些可能性(n′) ∈ D, 使得

⟨n′|m⟩ ̸= 0, 1. (2.18)

这么定义C和D不同的原因在于，如果它们是同一个可确定区分可能性完备
集，则由可确定区分性的定义，就必然有，对于任何(i) ∈ C和(j′) ∈ D, 均
有⟨j′|i⟩要么等于0要么等于1，这时候，集合D实际上就只是集合C的一个重
排而已。

首先，玻恩定则告诉我们，系统在不受任何微扰时由(i) ∈ C可能性跃
迁到(j′) ∈ D可能性的概率由下式给出

P (i→ j′) = |⟨j′|i⟩|2, (2.19)

式中⟨j′|i⟩ = ⟨j′|1|i⟩称作由(i)到(j′)的跃迁幅。而由总概率等于1，我们还有∑
j′∈D

|⟨j′|i⟩|2 = 1. (2.20)
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其次，完全类似于上面对改版施特恩-格拉赫实验的讨论，也必然有，

如果⟨n′|m⟩ ̸= 0, 1, 则可能性(m) ∈ C与可能性(n′) ∈ D不可以同时确定，并
且，不存在检测手段可以将它们确定地区分开来。这就是所谓的不确定性

与不可区分性原理。它也可以表述成：如果C, D是系统两个不不不同同同的可确定
区分可能性完备集，则总体上，分属于这两个完备集的可能性不可以同时

确定，并且没有检测手段可以将它们百分之百地区分。所谓总体上，就是

不排除某些可能性可以同时确定以及百分之百地区分，但是，不可能所有

可能性都可以这样。

比如，一个粒子所有具有确定位置坐标的可能性构成粒子的一个可确

定区分可能性完备集，同样，一个粒子所有具有确定动量的可能性也构成

粒子的一个可确定区分可能性完备集。但是，这两个完备集是两个不同的

完备集，因此根据上面的不确定性和不可区分性原理，粒子的位置和动量

不可以同时确定，并且不存在检测手段能百分之百地检测出粒子是具有确

定的位置还是具有确定的动量。

2.3 跃迁幅乘法

继续我们的改版施特恩-格拉赫实验。假设我们在S装置和T装置的基

础上，再引入一个与这两者都不同(转过了一个不同的角度)的R装置。假设

我们来分析下面的实验
+

0∥
−∥


S


+

0

−


T


+

0∥
−∥


R

. (2.21)

注意原子是从左边往右边通行的。实验的结果是发现，中间的T装置并没

有起到影响实验的作用，换言之，
+

0∥
−∥


S


+

0∥
−∥


R

=


+

0∥
−∥


S


+

0

−


T


+

0∥
−∥


R

. (2.22)

我们发现以上实验结果是符合跃迁元乘法的，虽然要将这乘法稍作推

广。下面我们来分析原子从左边+S过滤器的+S可能性跃迁到右边+R可能
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性的跃迁幅(跃迁概率是它的模方)，即分析⟨+R| + S⟩。仿照第一章海森堡
引进跃迁元乘法的思想，我们发现这可以分解成+S先跃迁到中间iT可能性

的跃迁幅，再乘以从中间iT可能性跃迁到末尾+R可能性的跃迁幅，并且，

由于整个装置完全不能具体确定中间可能性是什么，所以，我们要对所有

中间可能性求和，从而我们写出

⟨+R|+ S⟩ =
∑
i

⟨+R|iT ⟩⟨iT |+ S⟩. (2.23)

这就是(2.22)告诉我们的一切。当然，这个式子涉及到的三个跃迁幅都是物

理量1的跃迁元，物理量1乘以物理量1，结果还是1，所以，跃迁幅乘以跃

迁幅，结果依然是跃迁幅，只是等式的右边要插入中间可能性并对之求和。

因此，这个式子反映的就是一种跃迁元乘法，只不过，和第一章不同，现

在的初态可能性、中间可能性以及末态可能性，分别属于三个不同的可确

定区分可能性完备集，而不是属于同一个完备集。

以上结论当然可以推广，比如我们可以写出下式

⟨jR|iS⟩ =
∑
k

⟨jR|kT ⟩⟨kT |iS⟩. (2.24)

它描述的依然是跃迁幅乘法，并且可以用完全类似于上面的实验来检验。

记跃迁幅⟨jR|iS⟩ = ψ, 我们发现它是三项的和，分别记这三项为ϕ+ =

⟨jR| + T ⟩⟨+T |iS⟩, ϕ0 = ⟨jR|0T ⟩⟨0T |iS⟩, ϕ− = ⟨jR| − T ⟩⟨−T |iS⟩, 从而
由(2.24)式，

ψ = ϕ+ + ϕ0 + ϕ−. (2.25)

式中ϕ+描写的是原子跃迁的时候从中间+T可能性经过的跃迁幅，ϕ0, ϕ−的

含义依此类推。

下面，我们来计算iS跃迁到jR的概率P，也即P = |⟨jR|iS⟩|2 = |ψ|2,
根据(2.25), 有

P =|ϕ+ + ϕ0 + ϕ−|2 = |ϕ+|2 + |ϕ0|2 + |ϕ−|2

+ (ϕ∗
+ϕ0 + ϕ∗

0ϕ+) + (ϕ∗
0ϕ− + ϕ∗

−ϕ0) + (ϕ∗
−ϕ+ + ϕ∗

+ϕ−). (2.26)

我们称|ϕ+|2为原子经过中间可能性+T跃迁到末态的概率，类似的，|ϕ0|2为
原子经过中间0T跃迁到末态的概率，|ϕ−|2为原子经过中间−T跃迁到末
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态的概率，但是，(2.26)式清楚地告诉我们，原子经过所有中间可能性跃

迁的概率P , 并不等于这三个概率的和！而是多出来6个两不同ϕ的交叉

项。通常称这些交叉项为干涉项，它描述了原子跃迁的时候，三个分跃迁

幅ϕ+, ϕ0, ϕ−之间的交叉干涉。

干涉项的存在，是量子力学不同于经典物理的本质特征之一，它来自

于哪里呢？我们将整个推导过程回溯一下就会发现，它正来自于跃迁幅乘

法的对所有中间可能性求和！注意，这个求和不是把|ϕ+|2、|ϕ0|2、|ϕ−|2这
三个概率求和，而是在模方算概率之前，对跃迁幅的几种可能性求和，正

是因此，才导致最终出现量子干涉项。

诡异的地方在于，你可能觉得，原子从初态可能性跃迁到末态可能性

的时候，总是要么经过中间可能性+T , 要么经过0T , 要么经过−T , 此外并
没有其它可能了。但，这样你就是在用经典物理进行思维，按照这种思维，

最终的概率P就应该等于这三种可能性的概率之和(要么要么要么，三个要

么的概率不就是相加么)，从而即有P = |ϕ+|2 + |ϕ0|2 + |ϕ−|2, 那就没有量子
干涉项了，而实验的结果是验证了干涉之存在的。

问题出在哪里呢？回答是，出在当你像(2.21)的装置那样安排实验的时

候，你对中间可能性是完全不能确定的，换言之，你根本无从知道原子是

如何经过中间可能性的。你说，难到不是要么经过+T , 要么经过0T , 要么

经过−T吗？但你也看到了，这样想是错的，这样想就无法解释量子干涉的
存在了。这样想错就错在，你没有对中间可能性进行观测，因此，你就甚

至连“要么经过+T , 要么经过0T , 要么经过−T”都不能说！
你可能说，不就是没有观测吗？那观测一下好了，因此你把(2.21)的实

验装置改装成 
+

0∥
−∥


S


+⊙
0⊙
−⊙


T


+

0∥
−∥


R

. (2.27)

其中符号⊙代表一个探测器，比方说一盏灯，它的工作机制是，如果原子
从T装置中最上面的路径经过(即+T可能性)，那最上面的那盏灯就闪一下，

原子从T装置中间的路径经过(0T可能性)，那中间的灯就闪一下，同样，

原子从最下面的路径经过，最下面的灯就闪一下。所以，你只要观测到底

是哪盏灯闪了，就能知道原子在T装置中到底是经过了哪个中间可能性。
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实验的结果是，的确，每次有一个原子成功从第一台装置出来的时候，

接着我们总是观察到中间的T装置要么最上面的灯闪了，要么中间的灯闪

了，要么最下面的灯闪了，从来不会有两盏灯同时闪。这当然因为每次通

过的只有一个原子，它并没有分身术。所以，现在，每一个原子从中间通

过的时候，通过观察三盏灯中哪一盏闪了，你的确就可以知道它通过的是

哪一种中间可能性了，因此你的确可以说原子“要么经过+T , 要么经过0T ,

要么经过−T”了，那最终还存在量子干涉吗？谢天谢地，就和之前我们推
理的那样，量子干涉不存在了(否则就真无法解释实验了)！这时候总概率

的确就是P = |ϕ+|2 + |ϕ0|2 + |ϕ−|2。
总结一下就是：如果我们原则上就不能确定原子是如何经过中间可能

性的，那我们就是按照跃迁幅乘法(2.24)来计算最终的跃迁幅，需要把跃迁

幅的中间可能性都加起来。但是，如果我们能够确定原子是如何经过中间

可能性的，那就不能按照跃迁幅乘法(2.24)来计算，而是要分别把每一种可

能性的概率(而不是跃迁幅)加起来，就像下面这样

P =
∑
k

|⟨jR|kT ⟩|2|⟨kT |iS⟩|2. (2.28)

所以，这一节我们得到了两条规则，跃迁幅乘法规则(2.24)，以及概率

求和规则(2.28)。上面的讨论也说清楚了什么情况下该使用哪一条规则。当

然，我们也能把这两条规则推广到任意的量子系统，这个推广是容易的，

这里就不再赘述了。

跃跃跃迁迁迁幅幅幅的的的一一一条条条性性性质质质

对于任意一个量子系统，考察它任意三个可确定区分可能性完备

集，分别记作I = {(i), i = 1, 2, 3, ....}, J = {(j′), j′ = 1′, 2′, 3′, ....}, 以
及K = {(k′′), k′′ = 1′′, 2′′, 3′′, ...}。则根据跃迁幅的乘法，有

⟨k′′|i⟩ =
∑
j′∈J

⟨k′′|j′⟩⟨j′|i⟩. (2.29)

特别的，取K = I, 注意到⟨i|i⟩ = 1(由集合I的可确定区分性)，从而也有

1 = ⟨i|i⟩ =
∑
j′∈J

⟨i|j′⟩⟨j′|i⟩. (2.30)
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另一方面，由总概率守恒方程(2.20), 又有

1 =
∑
j′∈J

|⟨j′|i⟩|2 =
∑
j′∈J

⟨j′|i⟩∗⟨j′|i⟩. (2.31)

比较(2.30)式和(2.31)式，不难发现，能够使得这两个式子总是同时成

立的最简单条件是

⟨i|j′⟩ = ⟨j′|i⟩∗. (2.32)

即，从(j′)到(i)的跃迁幅等于逆向(i)到(j′)的跃迁幅的复数共轭，或者示意

性地记作 {
(i)

1←− (j′)
}
=

{
(i)

1−→ (j′)
}∗
. (2.33)

(2.32)式是跃迁幅的一条最重要的性质。

2.4 跃迁元乘法以及物理量的测量

下面让我们一般性地推广跃迁元的概念，以及跃迁元乘法规则。还是

从改版的施特恩-格拉赫实验开始，
+

0∥
−∥


S

A



+∥
0

−∥


R

. (2.34)

中间的A是指任何一个施特恩-格拉赫装置的复杂组合，其中磁场可以转向

任何方向，甚至可以有额外的电场，也可以有各种挡板等等....总之，你可

以想象放进去任何东西。当然，原子是从整个装置的左边往右边通行的。

问题是，如何用一个量合适地描写这个实验从事的事情呢，即如何描写一

个由左边S过滤器过滤出来的+S原子，经过中间的复杂装置A的作用，最

终跃迁到右边R过滤器的0R可能性呢？受第一章跃迁元概念的启发，我们

可以写下如下量

⟨0R|Â|+ S⟩, (2.35)
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注意，这个式子是从右往左读的。式中Â表示装置A对原子的作用，在这个

符号上加上̂, 是为了把A在原子上的作用与装置A本身区分开来。
很明显，以上量可以推广到任意初始的S可能性，和任意末尾的R可能

性，进而即有

⟨jR|Â|iS⟩, i, j = +, 0,− (2.36)

我们称之为物理量A(或者装置A)的跃迁元！描写的是原子从初始(iS)可能

性出发，经过物理量A的作用，最终跃迁到(jR)可能性的过程(读式子的时

候，从右边往左边读)。跃迁的概率就取决于这个量的模方。特别的，A可

以是物理量1，这时候它就表示中间的装置对原子不起任何作用。

为了考察跃迁元的乘法，让我们假设装置C是由装置A和B串联而成，

原子先通过B，接着再通过A, 即C
 =

B


A
 , (2.37)

示意性地可以写作

Ĉ = ÂB̂, (2.38)

即C的作用等于B的作用再乘以A的作用(从右往左读)。

关键问题是ÂB̂这个乘法该怎么定义？为此，我们回到实验，也就是要

回到对量子跃迁过程的分析，结果表明
+

0∥
−∥


S

B


A



+∥
0

−∥


R

=


+

0∥
−∥


S

B



+

0

−


T

A



+∥
0

−∥


R

. (2.39)

根据这个结果，我们可以仿照海森堡的跃迁元乘法，写下

⟨0R|ÂB̂|+ S⟩ =
∑
k

⟨0R|Â|kT ⟩⟨kT |B̂|+ S⟩. (2.40)
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注意，原子是从左到右通行，但是式子的读法却是从右往左。

将上面的式子稍作推广，就得到

⟨jR|ÂB̂|iS⟩ =
∑
k

⟨jR|Â|kT ⟩⟨kT |B̂|iS⟩. (2.41)

这就是跃迁元乘法规则, 它的关键就是在等式右边插入中间可能性并求和。

式中涉及的S装置、R装置、以及T装置，都是任意的，特别的，三者当然

也可以选成同一种装置。相比于海森堡原始版本的跃迁元乘法规则，现在

的规则中，初态可能性、中间可能性，以及末态可能性，三者可以属于三

个不同的可确定区分可能性完备集。特别的，取Â = B̂ = 1, 那么这条规则

给出来的就是前面的跃迁幅乘法规则(2.24)。

实际应用中，常常将上式涉及的S,R, T三种装置取成同一种，比方都

取成T装置(这时候符号T就可以省略了)，那就有

⟨j|ÂB̂|i⟩ =
∑
k

⟨j|Â|k⟩⟨k|B̂|i⟩. (2.42)

这时候，人们习惯把⟨j|Â|i⟩这样的量排成矩阵，如下
⟨+|Â|+⟩ ⟨+|Â|0⟩ ⟨+|Â|−⟩
⟨0|Â|+⟩ ⟨0|Â|0⟩ ⟨0|Â|−⟩
⟨−|Â|+⟩ ⟨−|Â|0⟩ ⟨−|Â|−⟩

 . (2.43)

这时候相应的乘法(2.42)就变成了标准的矩阵乘法。

推推推广广广到到到任任任意意意量量量子子子系系系统统统

对于任意一个量子系统，考察它任意两个可确定区分可能性完备集，

分别记作I = {(i), i = 1, 2, 3, ....}, J = {(j′), j′ = 1′, 2′, 3′, ....}。则系统的任
何一个物理量A(或者装置A)都对应一组跃迁元，记作⟨j′|Â|i⟩。
在集合I,J的基础上，再添上一个新的可确定区分可能性完备集K =

{(k′′), k′′ = 1′′, 2′′, 3′′, ...}，并考虑两个物理量A,B, 则它们乘积的跃迁元由

下式给出

⟨k′′|ÂB̂|i⟩ =
∑
j′∈J

⟨k′′|Â|j′⟩⟨j′|B̂|i⟩. (2.44)
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这就是跃迁元乘法规则，正如前面说过的，其关键就是在等式右边的合适

地方插入中间可能性，并对之求和。特别的，取A = 1, B = 1,利用1 ·1 = 1,

即得一般性的跃迁幅乘法规则

⟨k′′|i⟩ =
∑
j′∈J

⟨k′′|j′⟩⟨j′|i⟩. (2.45)

而只取B = 1，则根据Â · 1 = Â, 即有

⟨k′′|Â|i⟩ =
∑
j′∈J

⟨k′′|Â|j′⟩⟨j′|i⟩. (2.46)

注意，所有这些结果中的初态可能性、中间可能性以及末态可能性，

三者可以分属三个不同的可确定区分可能性完备集。不过，实际应用中往

往不需要这么大的任意性，常常人们会将这三个可能性完备集取成同一个，

比方说都取成集合I, 那这时候上面的乘法规则就变成

⟨k|ÂB̂|i⟩ =
∑
j∈I

⟨k|Â|j⟩⟨j|B̂|i⟩. (2.47)

而物理量的跃迁元也就变成了⟨j|Â|i⟩这种形式，这时候人们常常把它排成
下面的矩阵形式 

⟨1|Â|1⟩ ⟨1|Â|2⟩ . . .

⟨2|Â|1⟩ ⟨2|Â|2⟩ . . .
...

...
. . .

 . (2.48)

这时候常常称可能性完备集I为I表表表象象象，上面的矩阵就称为物理量A在I表
象中的矩矩矩阵阵阵表表表示示示。而跃迁元乘法(2.47)当然也就成了矩阵乘法。

比如我们上一章所考察的定态可能性完备集E，就构成了所谓的能能能量量量
表表表象象象，上一章的所有讨论都是在能量表象中进行的。上一章的所有跃迁元

数据表都是相应物理量在能量表象下的表示矩阵。在历史上，海森堡最先

引入的，就是能量表象。但是，我们也可以用任何表象来处理量子力学问

题，因为正如马上我们就会看到的，量子力学的基本方程是表象无关的。

虽然上一章我们是在能量表象中推导出这些方程的，但结果却是，只要稍

作推广，就可以使得它们不依赖于任何具体的表象。
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物物物理理理量量量的的的值值值

那么能量表象特殊在哪里呢？回答是，特殊在哈密顿量在这个表象中

的表示矩阵为对角矩阵，用现在的符号来写即是(哈密顿量H对物理系统的

作用当然就记作Ĥ)
⟨E1|Ĥ|E1⟩ ⟨E1|Ĥ|E2⟩ . . .

⟨E2|Ĥ|E1⟩ ⟨E2|Ĥ|E2⟩ . . .
...

...
. . .

 =


E1 0 . . .

0 E2 . . .
...

...
. . .

 . (2.49)

或者简单地写作

⟨Em|Ĥ|En⟩ = Enδnm. (2.50)

也即是说，定态可能性(En)通过这个H的跃迁元只能跃迁到(En)自身，跃

迁到其它不同定态可能性的概率都是零。从而，当系统处于定态可能

性(En)时，其能量有确定值En。这就是任意定态可能性(En) ∈ E在物理上
的特殊性。

现在如果我们让系统处在一个(i) ∈ I可能性，我们问，系统的能量值
为多少呢？回答是，能量值是不确定的，当你去测量能量值的时候，系统

会随机地从(i)可能性跃迁到某个定态可能性(En), 一旦它跃迁到(En), 那你

测得的能量值就是En, 而根据玻恩定则，(i)跃迁到(En)的概率是

P (i→ En) = |⟨En|i⟩|2. (2.51)

所以，当系统处于(i)可能性时，如果你把系统复制多份(即制备很多份同样

处于(i)的系统)，然后分别去测量它们的能量值，则，每一次你测到的值都

可能不一样，你会随机地(以概率|⟨En|i⟩|2)得到不同能量值En。

由此也可以知道，在任意的I表象下，哈密顿量的表示矩阵可不是对
角矩阵！只有在能量表象中，哈密顿量的表示矩阵才是对角矩阵。

完全类似的，任何物理量A也都有一个这样特殊的表象，其中A的

表示矩阵是对角化的。不过，和此前讨论的表象不一样的是，由于物理

量A(t)在随着时间演化(这与哈密顿量不同，由于能量守恒，哈密顿量并不

随时间演化)，所以其对角化的表象也必定是相对于参考时刻t而定义的。
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不妨把这个相应的可确定区分可能性完备集记作At = {(a, t), a = 1, 2, 3, ...}
((a, t)表示相对于参考时刻t定义的可能性(a)), 则根据定义，它满足

⟨b, t|Â|a, t⟩ = λaδab, (2.52)

从而，当系统处于可能性(a, t)时，其物理量A(t)有确定值λa。但是，如果

系统处于任意的(i) ∈ I可能性，你去测量物理量A(t)的值，你会发现，这
个值是不确定的，你会以概率

P (i→ a, t) = |⟨a, t|i⟩|2 (2.53)

随机地得到值λa，而一旦你测得λa，系统也就从可能性(i)跃迁到了可能

性(a, t)。

由于物理量A(t)在随时间演化，所以一个自然的问题是，假设系统

在t1时刻处于可能性(a, t1)，从而其物理量A(t1)的值为λa, 那么它在t2时刻

跃迁到可能性(b, t2)(从而其物理量A(t2)的值为λb)的概率是多少？很显然，

这个概率将由下式计算

P (a, t1 → b, t2) = |⟨b, t2|a, t1⟩|2. (2.54)

特别的，物理上很重要的一种情形是，让t1 → −∞, 让t2 → +∞, 即考察系

统从无穷远过去的(a)可能性跃迁到无穷远将来的(b)可能性的概率，

P (a,−∞→ b,+∞) = |⟨b,+∞|a,−∞⟩|2. (2.55)

这时候⟨b,+∞|a,−∞⟩这样的跃迁元就被称之为S矩阵(和本章讨论的S装置

没有关系)，它在讨论粒子从无穷远过去入射，经过相互作用的散射，在无

穷远将来再出射出去，这样的粒子散射问题时很常用。

假设系统处于(i) ∈ I可能性上，我们把它复制很多份，然后多次重复
测量物理量A(t)的值，我们想知道，A(t)的平均值是多少？

记A(t)的平均值为⟨A⟩, 由于测量时我们是以概率|⟨a, t|i⟩|2随机得到λa，
所以很显然，

⟨A⟩ =
∑
a

λa|⟨a, t|i⟩|2 =
∑
a

λa⟨a, t|i⟩∗⟨a, t|i⟩, (2.56)
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利用跃迁幅的基本性质⟨a, t|i⟩∗ = ⟨i|a, t⟩即有

⟨A⟩ =
∑
a

λa⟨i|a, t⟩⟨a, t|i⟩ =
∑
a,b

⟨i|b, t⟩λaδab⟨a, t|i⟩. (2.57)

代入(2.52)式的⟨b, t|Â|a, t⟩ = λaδab, 即有

⟨A⟩ =
∑
a,b

⟨i|b, t⟩⟨b, t|Â|a, t⟩⟨a, t|i⟩, (2.58)

下面，对中间可能性(a, t)和(b, t)分别应用跃迁元乘法规则，具体来说，就

是应用与1 · Â · 1 = Â对应的跃迁元乘法规则，即有

⟨A⟩ = ⟨i|Â|i⟩. (2.59)

这就是我们最终要得到的公式，它告诉我们，对一个处于(i) ∈ I可能性的
系统进行重复测量，得到的物理量A的平均值等于跃迁元⟨i|Â|i⟩。

2.5 表象无关的量子力学方程

一个量子系统的可能表象有无穷多个，如果每个表象中的量子力学方

程都不同，那量子力学的复杂性就会让我们绝望。好在，利用跃迁元乘法

可以证明，量子力学方程具有一种表象无关性，并且，表象无关的方程可

以从我们上一章在能量表象下得到的量子力学方程推广而来。量子力学中

的表象就好比广义相对论中的局部坐标系，换表象就好比换局部坐标系，

而表象无关就好比广义相对论中的广义协变性。

厄厄厄米米米条条条件件件

让我们先来把下面物理量A的厄米条件推广成表象无关的形式，

⟨Em|Â|En⟩ = ⟨En|Â|Em⟩∗. (2.60)

为此，我们任取系统的两个可确定区分可能性完备集，I = {(i), i =

1, 2, 3, ....}和J = {(j′), j′ = 1′, 2′, 3′, ....}，并考察物理量A的跃迁元⟨j′|Â|i⟩.
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进一步取定态可能性完备集E为中间可能性集，并应用与Â = 1 · Â · 1相
应的跃迁元乘法，则有

⟨j′|Â|i⟩ =
∑
m,n

⟨j′|Em⟩⟨Em|Â|En⟩⟨En|i⟩, (2.61)

利用跃迁幅的基本性质(2.32式) ⟨j′|Em⟩ = ⟨Em|j′⟩∗, ⟨En|i⟩ = ⟨i|En⟩∗, 以及
能量表象中的厄米条件(2.60), 即可以得到

⟨j′|Â|i⟩ =
(∑

m,n

⟨Em|j′⟩⟨En|Â|Em⟩⟨i|En⟩
)∗

=
(∑

m,n

⟨i|En⟩⟨En|Â|Em⟩⟨Em|j′⟩
)∗

= ⟨i|Â|j′⟩∗. (2.62)

最后一个等于号我们再次利用了跃迁元乘法规则。注意，现在Â左右两边

的可确定区分可能性完备集是任意的两个，甚至，这两个集都可以不同。

正是在这个意义上，我们说，最终的厄米条件(2.62)是表象无关的！最终的

这个结果也可以示意性地记作{
(j′)

A←− (i)
}
=

{
(j′)

A−→ (i)
}∗
. (2.63)

如果取某一个特定的表象I, 那相应的厄米条件就成为

⟨j|Â|i⟩ = ⟨i|Â|j⟩∗. (2.64)

排列成矩阵的话，即是
⟨1|Â|1⟩ ⟨1|Â|2⟩ . . .

⟨2|Â|1⟩ ⟨2|Â|2⟩ . . .
...

...
. . .

 =


⟨1|Â|1⟩∗ ⟨2|Â|1⟩∗ . . .

⟨1|Â|2⟩∗ ⟨2|Â|2⟩∗ . . .
...

...
. . .

 . (2.65)

根据第一章中关于厄米矩阵的定义可知，这样的矩阵就是厄米矩阵。所以，

在一个确定的表象中，满足厄米条件的物理量的表示矩阵必定是厄米矩

阵。

海海海森森森堡堡堡运运运动动动方方方程程程
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下面我们来证明海森堡运动方程以及量子力学基本对易关系均可以推

广成表象无关的形式。为此，我们还需要先定义一下表象无关的跃迁元加

法(虽然它是比较显然的)，具体来说就是，任给物理量A,B, 它们对系统的

作用分别为Â和B̂, 我们要定义这两个作用的和Â + B̂。定义如下：任给可

能性(i) ∈ I, 以及可能性(j′) ∈ J , 定义

⟨j′|(Â+ B̂)|i⟩ ≡ ⟨j′|Â|i⟩+ ⟨j′|B̂|i⟩. (2.66)

进而也可以定义这两个作用的对易子为

⟨j′|[Â, B̂]|i⟩ ≡ ⟨j′|ÂB̂|i⟩ − ⟨j′|B̂Â|i⟩. (2.67)

更为显然的是Â的数乘，它可以定义为

⟨j′|λÂ|i⟩ ≡ λ⟨j′|Â|i⟩, (2.68)

式中λ为任意常数。

此外还有一些准备工作要做。首先，任给物理量A, 按照上一章的老记

号，它在能量表象中的表示矩阵依然是记为A(矩阵A), 从而，用上一章的

老记号，即有⟨Em|Â|En⟩ = [A]mn。另一方面，利用跃迁元乘法，我们有

⟨j′|Â|i⟩ =
∑
m,n

⟨j′|Em⟩⟨Em|Â|En⟩⟨En|i⟩

=
∑
m,n

⟨j′|Em⟩[A]mn⟨En|i⟩. (2.69)

类似的，根据老记号有
∑

l⟨Em|Â|El⟩⟨El|B̂|En⟩ =
∑

l[A]ml[B]ln = [AB]mn,

另一方面，再利用跃迁元乘法，即有

⟨j′|ÂB̂|i⟩ =
∑
m,l,n

⟨j′|Em⟩⟨Em|Â|El⟩⟨El|B̂|En⟩⟨En|i⟩

=
∑
m,n

⟨j′|Em⟩[AB]mn⟨En|i⟩. (2.70)

进而当然也有对易子之间的关系

⟨j′|[Â, B̂]|i⟩ =
∑
m,n

⟨j′|Em⟩[A,B]mn⟨En|i⟩, (2.71)
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假设记C = [A,B]为矩阵A,B的对易子，那么等式右边的[A,B]mn实际上就

是[C]mn.

下面来推广海森堡运动方程, 对于任意随时间演化的物理量A, 利用方

程(2.69), 即有

i~
d

dt
⟨j′|Â|i⟩ =

∑
m,n

⟨j′|Em⟩
(
i~
d

dt
[A]mn

)
⟨En|i⟩, (2.72)

进而根据上一章推导出来的能量表象中的海森堡运动方程i~ d
dt
[A]mn =

[A,H]mn, 即有

i~
d

dt
⟨j′|Â|i⟩ =

∑
m,n

⟨j′|Em⟩[A,H]mn⟨En|i⟩

= ⟨j′|[Â, Ĥ]|i⟩. (2.73)

式中第二行的等于号是倒过来应用了方程(2.71)。如果在形式上把上面结果

的左边写成i~ d
dt
⟨j′|Â|i⟩ = ⟨j′|(i~ d

dt
Â)|i⟩ (毕竟可能性(i)和(j′)又不依赖于时

间)，那最终的方程就可以写成

⟨j′|i~dÂ
dt
|i⟩ = ⟨j′|[Â, Ĥ]|i⟩. (2.74)

这就是表象无关的海森堡运动方程！所谓表象无关，是指它对任意的初态

可能性和任意的末态可能性均成立。

为了省事，也可以把初末态的这两个可能性省略不写(因为它们是任意

的)，进而把上面方程写作

i~
d

dt
Â = [Â, Ĥ]. (2.75)

当然，就本章而言，这样写只有形式上的意义，但是下一章我们会重新解

释物理装置对系统的作用，从而使得这种写法在数学上获得真正的意义。

假设在海森堡运动方程(2.74)中取末态可能性与初态可能性一样，即

取(j′) = (i), 则根据物理量平均值的计算公式(2.59), 不难看出

i~
d

dt
⟨Â⟩ = ⟨[Â, Ĥ]⟩. (2.76)

量量量子子子力力力学学学基基基本本本对对对易易易关关关系系系
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为了把量子力学基本对易关系推广成表象无关的形式，和上一章一样，

我们依然先考察一维系统，记粒子坐标为X, 动量为P，它们在量子系统上

的作用则分别记为X̂, P̂。则，根据方程(2.71)，立即有

⟨j′|[X̂, P̂ ]|i⟩ =
∑
m,n

⟨j′|Em⟩[X,P ]mn⟨En|i⟩. (2.77)

而又由上一章得到的[X,P ] = i~ · 1, 即有[X,P ]mn = i~δmn, 代入上面这个式

子，即有

⟨j′|[X̂, P̂ ]|i⟩ = i~
∑
m,n

⟨j′|Em⟩δmn⟨En|i⟩

= i~
∑
n

⟨j′|En⟩⟨En|i⟩

= i~⟨j′|i⟩ = i~⟨j′|1|i⟩. (2.78)

第三行的等于号是再一次利用了跃迁幅乘法。同样，可以省略初末态可能

性，写作

[X̂, P̂ ] = i~ · 1. (2.79)

这就是表象无关的量子力学基本对易关系。

推广到三维甚至任意有限自由度情形都是容易的，比方说，推广到三

维，那就有如下代数关系

[x̂a, p̂b] = i~δab, [x̂a, x̂b] = [p̂a, p̂b] = 0, a, b = 1, 2, 3. (2.80)


