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第三章 态和算符

从根本上来说，量子态是一个虚构的概念，态塌缩则更是。另一方面，

量子跃迁是量子力学的基本特征，反而幺正演化是构造出来的。――――――作

者

本本本章章章讨讨讨论论论如如如何何何从从从跃跃跃迁迁迁元元元以以以及及及跃跃跃迁迁迁元元元乘乘乘法法法中中中构构构造造造出出出态态态矢矢矢量量量、、、希希希尔尔尔伯伯伯特特特

空空空间间间以以以及及及算算算符符符等等等概概概念念念。。。从从从本本本章章章开开开始始始，，，我我我们们们省省省略略略Â这这这类类类符符符号号号上上上面面面的的的 ,̂ 如如如果果果

偶偶偶尔尔尔有有有和和和矩矩矩阵阵阵符符符号号号混混混淆淆淆的的的情情情况况况，，，则则则会会会另另另作作作说说说明明明。。。

我们已经看到，量子力学最核心的概念就是跃迁元，物理量A(或者说

物理装置A)的跃迁元可以记作

⟨j′|A|i⟩, (3.1)

其中右边的|i⟩叫作系统的初态可能性，它来自于一个可确定区分可能性完
备集I, 左边的⟨j′|叫做系统的末态可能性，它来自于另一个可确定区分可
能性完备集J , 中间的符号A代表装置A对系统的作用。所有的物理量都要
用跃迁元来表示，只有跃迁元是物理的。

为了测量一个跃迁元，通常我们需要三台装置，第一台装置用来把

系统制备到可能性(i)上，第二台装置就是我们希望分析的装置A, 第三

台装置是用来检测系统是否处于可能性(j′), 由这三台装置我们可以测出

系统从初态(i)跃迁到末态(j′)的概率，这个概率正好由跃迁元⟨j′|A|i⟩的模
方|⟨j′|A|i⟩|2决定。

两个不同物理量A,B相乘在物理上就是把它们的跃迁元相乘，跃迁元

的乘法规则是

⟨j′|AB|i⟩ =
∑
k′′∈K

⟨j′|A|k′′⟩⟨k′′|B|i⟩, (3.2)
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第三章 态和算符 3

其中k′′称作中间可能性，它来自第三个可确定区分可能性完备集K, 跃迁元
相乘的时候要对K中所有的中间可能性求和。

最为特殊的跃迁元就是物理量1的跃迁元，也就是中间装置对系统不起

任何作用时的跃迁元，这时候我们常把相应的跃迁元称作跃迁幅，并省略

中间的1，记为⟨j′|i⟩。跃迁幅的模方|⟨j′|i⟩|2就等于在中间装置不起任何作
用时(或者根本没有任何中间装置时) 系统从(i)跃迁到(j′)的概率(注意，是

等于而不仅仅是决定)，换言之，也就是你把系统制备到可能性(i)上，然后

却在可能性(j′)上检测到它的概率。也正因为这个原因，其它量子力学书常

常称跃迁幅为概率幅(虽然也有叫跃迁幅的)。它当然也满足相应的跃迁元

乘法，不仅如此，而且由于1 · 1 = 1，所以跃迁幅乘以跃迁幅，结果依然是

跃迁幅。

通常的量子力学几大公设里的做法是把态矢量、希尔伯特空间以及算

符作为第一公设。而本章的主要目的，就是要表明态矢量、希尔伯特空间

以及算符，这三者都可以自然地从跃迁元以及跃迁元乘法规则中构造出来。

采用量子跃迁以及跃迁元作为第一概念的好处是，它们和真实的物理关系

更密切，尤其是，我们会发现用这种概念体系来思考量子力学，则量子态

塌缩的概念自动就是不必要的，毕竟，态矢量本身已经只是一种有用的构

造而不是第一概念了！

值得强调的是，从历史的角度来看，本书的这种做法并不是异端，正

如在本书第一章中读者已经看到的，我们这种做法反而是更符合海森堡的

原创精神的，不仅如此，费曼在其物理学讲义第三卷中也曾经沿着这条路

子走了一大步，虽然费曼并没有彻底认识到这是一种构建现代量子力学的

不同方式，而我们只是把它进一步落实了下来，从中构建整个现代量子力

学的理论体系。

3.1 态叠加原理

以以以电电电子子子自自自旋旋旋为为为例例例

还是让我们从上一章介绍的改版施特恩-格拉赫实验开始讲起。不过，

这一次我们考察一种甚至更简单的情况，我们假设通过施特恩-格拉赫装置
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的原子只分裂成两两两束束束(也就是所谓的角动量等于1/2的情形, 这种角动量由核

外电子的自旋贡献)！因此相应的可确定区分可能性完备集中只有两种可能

性，同样，我们假设装置沿着水平的y轴放置，磁场的指向我们主要考虑

两种不同情况：如果磁场指向z轴，相应的两种可能性我们记作S = {↑, ↓}，
分别称作电子自旋向上和自旋向下，也就是电子自旋方向平行于z轴和逆

着z轴；而如果将装置绕着水平y轴转90度，使得磁场指向x轴，那相应的两

种可能性我们就记作T = {→,←}, 分别称作电子自旋向右和自旋向左。
实验测得，如下两种情况，原子的跃迁概率均为1/2。{

↑
↓ ∥

}{
→
← ∥

}
,

{
↑
↓ ∥

}{
→ ∥
←

}
(3.3)

用跃迁元的记号来写即是

|⟨→ | ↑⟩|2 = 1

2
, |⟨← | ↑⟩|2 = 1

2
. (3.4)

完全类似的实验也告诉我们

|⟨→ | ↓⟩|2 = 1

2
, |⟨← | ↓⟩|2 = 1

2
. (3.5)

当然，由于跃迁幅性质⟨j′|i⟩ = ⟨i|j′⟩∗, 进而|⟨j′|i⟩|2 = |⟨i|j′⟩|2, 所以我们也有

|⟨↑ | →⟩|2 = |⟨↑ | ←⟩|2 = |⟨↓ | →⟩|2 = |⟨↓ | ←⟩|2 = 1

2
. (3.6)

为了满足(3.4)式，通常可取

⟨→ | ↑⟩ = ⟨↑ | →⟩ =
√

1

2
, ⟨← | ↑⟩ = ⟨↑ | ←⟩ =

√
1

2
. (3.7)

另一方面由于集合S的可确定区分性，以及跃迁幅乘法(等式右边插入中间

可能性完备集T )，我们有

0 = ⟨↓ | ↑⟩ = ⟨↓ | →⟩⟨→ | ↑⟩+ ⟨↓ | ←⟩⟨← | ↑⟩. (3.8)

所以，作了(3.7)式的选取以后，为了同时满足(3.6)式和(3.8)式，⟨↓ | →
⟩和⟨↓ | ←⟩的选取就有所受限，不过显然可以取为

⟨↓ | →⟩ = ⟨→ | ↓⟩ =
√

1

2
, ⟨↓ | ←⟩ = ⟨← | ↓⟩ = −

√
1

2
. (3.9)
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为了更容易看清楚，不妨将上面得到的结果归纳如下[
⟨↑ | →⟩ ⟨↑ | ←⟩
⟨↓ | →⟩ ⟨↓ | ←⟩

]
=

1√
2

[
1 1

1 −1

]
. (3.10)

一个完整的跃迁元总是同时包含初态可能性与末态可能性，然而，有

时候我们并不关心系统最终跃迁到了哪种可能性，我们可以把这种情形用

如下装置来表示, {
↑
↓ ∥

}{
...

...

}
, (3.11)

其中省略号表示我们并不关心的末态可能性。与之相应的跃迁元就应该写

成

⟨...| ↑⟩. (3.12)

利用跃迁幅乘法(即插入中间可能性)，即有

⟨...| ↑⟩ = ⟨...| →⟩⟨→ | ↑⟩+ ⟨...| ←⟩⟨← | ↑⟩. (3.13)

当然，这个式子的含义就是，从初态可能性(↑)跃迁到某个末态可能性的跃
迁幅，等于通过两个不同中间可能性的跃迁幅的相干叠加。但是，如果我

们代入⟨→ | ↑⟩ = ⟨← | ↑⟩ = 1/
√
2, 则有

⟨...| ↑⟩ = ⟨...| →⟩ 1√
2
+ ⟨...| ←⟩ 1√

2
. (3.14)

由于我们并不关心末态可能性，所以上面的(3.13)式对任意的末态可能

性均成立。一个自然的想法是，将(3.13)式各项中的末态可能性符号⟨...|干
脆省略不写，从而得到一个跃迁元不完整的式子

| ↑⟩ = | →⟩ 1√
2
+ | ←⟩ 1√

2
. (3.15)

注意，其中| ↑⟩这样的表达式应该理解成不完整的跃迁元，或者向末态开放
的跃迁元，也就是说，要在心中想象给它左边配上某个末态可能性才完整，

只是由于整个等式每一项所配的末态可能性都一样，而且任意，所以我们

干脆将它统统省略了。
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但在另一方面，如果我们将注意力集中在这个省略了末态可能性的式

子(3.15), 我们发现，它也可以解读成是在初态可能性之间引入了某种叠叠叠加加加

原原原理理理，即，将可能性| →⟩和可能性| ←⟩ 以1/
√
2为权重进行叠加，即得到可

能性| ↑⟩. 当然，也需要说明，这只是某种有用的解读方式，因为(3.15)式

真正完整的写法应该是(3.13)式，而它的含义是，不同中间可能性的跃迁幅

的叠加，而不是初态可能性本身的叠加。

然而，可以在可能性之间引入某种叠加原理，这就是量子可能性与经

典可能性完全不同的地方！为了让读者看清这种不同，我们来考虑著名的

薛定谔的猫：假设有一只猫，它有两种可能性，(死猫)和(活猫)，如果这

是一只人们熟悉的经典猫，那这两种可能性显然是不能进行叠加的，(死

猫)+(活猫)没有任何意义。但是，如果这是一只量子的猫。那类比于上面

自旋的例子，我们就可以在相应的两种量子可能性之间引入叠加，也即是

说，我们可以考虑如下可能性

|N猫⟩ = |死猫⟩ 1√
2
+ |活猫⟩ 1√

2
. (3.16)

处在这种可能性的猫是一只什么猫呢？它当然不是死猫，但也不是活

猫，也不是半死不活的猫，甚至也不是既死又活的猫，所有这些说法都是

误导人的。实际上，它是日常概念无法描述的一只猫，因为我们的日常概

念是描述经典世界的，而这是猫的一种完全量子的可能性。当然，我们可

以说猫的这种可能性是死猫和活猫的叠加，但是，请注意，可能性的叠加

只是我们对跃迁元和跃迁元乘法的一种解读，它的真实含义是，处在这种

可能性的猫跃迁到(死猫)的概率为1/2，跃迁到(活猫)的概率也为1/2。

回到自旋的例子。不难明白，和前面类似的考虑，也有

| ↓⟩ = | →⟩⟨→ | ↓⟩+ | ←⟩⟨← | ↓⟩ = 1√
2

(
| →⟩ − | ←⟩

)
. (3.17)

而如果我们反过来，取| →⟩, | ←⟩为初态可能性，那就会有

| →⟩ = | ↑⟩⟨↑ | →⟩+ | ↓⟩⟨↓ | →⟩ = 1√
2

(
| ↑⟩+ | ↓⟩

)
| ←⟩ = | ↑⟩⟨↑ | ←⟩+ | ↓⟩⟨↓ | ←⟩ = 1√

2

(
| ↑⟩ − | ↓⟩

)
. (3.18)

其中我们代入了(3.10)式的结果。这些结果告诉我们，可能性| ↑⟩, | ↓⟩(S可
能性)是可能性| →⟩, | ←⟩(T可能性)叠加的结果，反过来也一样，| →⟩, | ←
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⟩也是| ↑⟩, | ↓⟩叠加的结果。这正好从另一方面反映了S可能性与T可能性的
不可以同时确定也不可以百分之百地区分的性质。

上面的(3.15)式、(3.17)式以及(3.18)式有一个自然的几何解释。即将| ↑
⟩、| ↓⟩以及| →⟩、| ←⟩看成是两维向量空间中的向量，而这几个叠加关系
就自然地成为这些向量之间的合成关系，如图(3.1)所示。 不仅如此，可确

图 3.1: S可能性与T可能性相互作为对方的向量合成

定区分性给出的⟨↑ | ↑⟩ = ⟨↓ | ↓⟩ = 1可以解释成向量| ↑⟩和向量| ↓⟩的模长均
为1，而⟨↓ | ↑⟩ = ⟨↑ | ↓⟩ = 0则可以解释成向量| ↑⟩和向量| ↓⟩正交。类似的
解释同样可以用于向量| →⟩和向量| ←⟩。关于跃迁幅的这些解释后文会进
一步展开讨论。

类似的讨论也可以用于末态可能性，比方说我们有

⟨→ | = ⟨→ | ↑⟩⟨↑ |+ ⟨→ | ↓⟩⟨↓ | = 1√
2

(
⟨↑ |+ ⟨↓ |

)
⟨← | = ⟨← | ↑⟩⟨↑ |+ ⟨← | ↓⟩⟨↓ | = 1√

2

(
⟨↑ | − ⟨↓ |

)
.

当然，这里我们是省略了每个式子右边的初态可能性。所以，这些末态可

能性也能进行叠加，因此也有类似的向量解释。

态态态叠叠叠加加加原原原理理理

现在把以上例子阐述的事情推广到一般情况。假设我们考察的是一个

任意的量子系统，记I = {(i), i = 1, 2, 3...}为它一个任意的可确定区分可
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能性完备集。另设ψ为属于系统某个可确定区分可能性完备集(一般来说不

是I)的可能性。假设我们把系统制备到ψ上，并且不关心它最终会跃迁到
哪个末态可能性，因此相应的跃迁幅可以写成⟨...|ψ⟩, 利用跃迁幅乘法插入
中间可能性，即有

⟨...|ψ⟩ =
∑
i∈I

⟨...|i⟩⟨i|ψ⟩. (3.19)

进一步，和上面例子中的相关处理一样，既然这个式子对于任意末态可能

性均成立，而我们又不关心末态可能性，那就可以从表达式中将它省略，

于是即有

|ψ⟩ =
∑
i∈I

|i⟩⟨i|ψ⟩. (3.20)

⟨i|ψ⟩当然是复数，不妨记为ai, 即ai = ⟨i|ψ⟩(给定ψ, ai就给定了)，因此即有

|ψ⟩ =
∑
i∈I

|i⟩ai =
∑
i∈I

ai|i⟩. (3.21)

我们可以把这个式子解读成，I中的各可能性以复数ai为权重进行叠加，即
得到可能性|ψ⟩。注意，之前都是先给定ψ, ai是由ψ决定的，但是，我们也
可以反过来，通过任意调节ai, 进而由(3.21)式得到相应的|ψ⟩。我们称这样
的定义了叠加运算的量子可能性为量量量子子子态态态。

既然可以以ai为权重进行叠加，当然也可以以λai为权重进行叠加, 结

果是, 因此， ∑
i∈I

(
λai

)
|i⟩ = λ

∑
i∈I

ai|i⟩ = λ|ψ⟩. (3.22)

这种将|ψ⟩乘以某个复数λ的运算称作量子态的数乘运算。任给λ ̸= 0，在

物理上，|ψ⟩和λ|ψ⟩描述的都是系统的同一个可能性(同一个量子态)，因为

这两个东西描述的到任意(i)态的跃迁概率都是|⟨i|ψ⟩|2 (这是因为总概率是

要归一的，因此一个整体的常数λ并不影响具体的概率分布情况)。总之，

|ψ⟩和λ|ψ⟩在物理上等价。
假设ψ1为系统的一个量子态，ψ2也为系统的一个量子态，且它们分别

由下式给出

|ψ1⟩ =
∑
i

ai|i⟩, |ψ2⟩ =
∑
i

bi|i⟩. (3.23)
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则我们当然也可以把ai和bi相加，假设将集合I中的各量子态以ai + bi为权

重进行叠加，结果即是∑
i

(ai + bi)|i⟩ =
∑
i

ai|i⟩+
∑
i

bi|i⟩ = |ψ1⟩+ |ψ2⟩. (3.24)

也即是说，任意两个量子态之间可以进行加法运算，结果是一个新的

量子态。既有加法又有数乘，因此|ψ1⟩和|ψ2⟩ 的任意线性叠加c1|ψ1⟩ +
c2|ψ2⟩(c1, c2为两个复数)也就有了定义。所以，所有可能的|ψ⟩之间可以进
行任意的线性叠加运算！数学上，这样的可以进行任意线性叠加的东西，

就叫做矢量，所以|ψ⟩是矢量，称作态态态矢矢矢量量量！！！ 所有态矢量所构成的矢量空
间，就叫做希希希尔尔尔伯伯伯特特特空空空间间间。

比如说前面电子自旋例子中，| ↑⟩, | ↓⟩, | →⟩, | ←⟩都是态矢量，而且正
如前面已经看到的，它们都是两维矢量空间里的矢量。但是，对于更一般

的量子系统，其态矢量可不是两维空间的矢量，当然更不是通常的三维欧

氏空间的矢量，态矢量是一种抽象的矢量，一般来说，它的矢量空间可以

是任意维的，甚至无穷维的。稍后我们会进一步讨论如何刻画这个希尔伯

特空间的维数。

注意，一个量子态ψ可以对应到任意的λ|ψ⟩，只要λ ̸= 0, 这些态矢量构

成态矢量空间中一条过原点的“直线”(原点要扣掉)1！所以，一个量子态

对应希尔伯特空间中一条过原点的“直线”(原点要扣掉)，因此，量子态

的空间就是所谓的射影希尔伯特空间。不过，在通常的表达中，我们可能

不会很注意区分量子态和态矢量这两个概念，虽然它们之间严格来说是一

对多的关系。

还是对于可能性ψ，如果我们让它作为系统的初态可能性，则按照上

面讲的，有

|ψ⟩ =
∑
i

ai|i⟩, ai = ⟨i|ψ⟩. (3.25)

但是，假设我们不是把系统制备到ψ上，而是检测到系统处于ψ，也就是

说，它是作为一个末态可能性. 则就有

⟨ψ| =
∑
i

⟨ψ|i⟩⟨i|. (3.26)

1之所以打引号，是因为同一方向的不同倍数是一个复数倍数，不是实数，所以这是一

条复直线。
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代入⟨ψ|i⟩ = ⟨i|ψ⟩∗ = a∗i (跃迁幅的性质)即有

⟨ψ| =
∑
i

a∗i ⟨i|. (3.27)

这就是与初态可能性|ψ⟩对应的末态可能性，其中叠加权重要取复数共轭。
同样的，也可以在末态可能性之间定义叠加运算，使得它们成为态矢

量，不过为了和初态可能性对应的态矢量进行区分，通常我们称|ψ⟩这样的
态矢量为右矢，而称与之相应的⟨ψ|为它的共轭左矢。注意，左矢和右矢是
以一一对应的，只不过，右矢用来描述初态可能性，而左矢则用来描述末

态可能性。而且，右矢与右矢可以叠加，左矢与左矢也可以叠加，但是，

右矢和左矢是不能叠加的！

任给一个右矢|ψ⟩, 一个左矢⟨ϕ|, 我们称从ψ到ϕ的跃迁幅为这两个矢量
之间的一种乘法，称为内积，依然记作⟨ϕ|ψ⟩. 因此，根据跃迁幅乘法，我
们有

⟨ϕ|ψ⟩ =
∑
i

⟨ϕ|i⟩⟨i|ψ⟩. (3.28)

另外，根据跃迁幅的性质，当然也有

⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗. (3.29)

不过，这里有一个细节值得一提，如果真是上一章处理的跃迁幅，

那ψ和ϕ都必定是系统的某个可能性，必定分别属于某两个可确定区分可能

性完备集，从而作为可确定区分性的要求，必定有

⟨ψ|ψ⟩ = ⟨ϕ|ϕ⟩ = 1. (3.30)

但是现在，作为态矢量|ψ⟩可以乘以任意的倍数λ, 从而成为λ|ψ⟩，相应的共
轭左矢则是λ∗⟨ψ|, 左矢和右矢的内积就成了|λ|2⟨ψ|ψ⟩, 由于λ任意，它当然
不一定等于1！换言之，态矢量内积的概念其实相比原来跃迁幅的概念略有

拓展，因为它可以允许一个态矢量与其共轭左矢的内积不等于1，这时候

我们就称⟨ψ|ψ⟩为矢量|ψ⟩的模长平方。不过，物理上，由于λ|ψ⟩和|ψ⟩等价，
所以我们总是可以通过适当调节这个λ，使得⟨ψ|ψ⟩ = 1, 这个过程就叫将态

矢量进行归一化。相应的，(3.30)式就称为归一化条件。归一化以后的态矢

量就是模长为1的态矢量。
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归一化条件并不能唯一确定态矢量，因为如果|ψ⟩满足归一化条件，
则eiθ|ψ⟩显然也满足归一化条件，而|ψ⟩与eiθ|ψ⟩在物理上则是等价的。通常
称这个定不下来的eiθ为相因子，因此，归一化条件只能把态矢量确定到相

差一个任意的相因子。

内积运算还有一条基本的性质，为了说清楚它，依然让我们考虑量子

态|ψ⟩和|ϕ⟩，利用跃迁幅乘法规则并将中间可能性取在完备集I中，有

⟨ϕ|ψ⟩ =
∑
i∈I

⟨ϕ|i⟩⟨i|ψ⟩. (3.31)

记⟨i|ψ⟩ = ai，从而|ψ⟩ =
∑

i∈I ai|i⟩, 代入上式左边，即有

⟨ϕ|
∑
i∈I

ai|i⟩ =
∑
i∈I

⟨ϕ|i⟩ai =
∑
i∈I

ai⟨ϕ|i⟩. (3.32)

左边第一个式子是先进行线性叠加然后再进行内积运算，而右边最后一个

式子则是先进行内积运算再进行线性叠加，因此这个结果清楚地告诉我们，

对于右矢而言，内积运算和线性叠加运算可以交换顺序。有时候也称这个

性质为，内积运算关于右矢是线性的。

严格来说，希尔伯特空间不仅是指态矢量所构成的矢量空间，还要求

态矢量之间能够进行内积！只有定义了内积的态矢量空间才是希尔伯特空

间。通常记一个量子系统的希尔伯特空间为H。
正如前面自旋的例子中提到过的，任给两个态矢量|ψ⟩, |ϕ⟩,如果⟨ϕ|ψ⟩ =

0, 我们就称这两个态矢量正正正交交交！按照上一章讲过的不可区分原理，对于任

意两个不同量子态|ψ⟩, |ϕ⟩，当且仅当它们正交时，两者才可以百分之百地
区分，或者说才可以确定地区分。因此用现在的术语来说，可确定区分可

能性完备集I的可确定区分性⟨i|j⟩ = δij就叫做正正正交交交归归归一一一性性性，也就是集合中

任意两个不同的态矢量正交，同一个态矢量则归一。用现在的术语，常常

也将与I中那些可能性(i)对应的态矢量|i⟩称作满足正交归一关系的基矢量。
根据(3.21)式，任意态矢量|ψ⟩都可以由这些基矢量叠加而成。

当集合I为一个有限集时，可以证明其元素的个数(也就是正交归一基

矢量的个数)是一个独立于I的不同选取的不变量2称之为希尔伯特空间的维

数，记作dim(H)。而当集合I为无限集时，则称希尔伯特空间为无穷维的，
即dim(H) = +∞.

2为了证明这个结论，不妨任选两个可确定区分可能性完备集I,J , 设I的元素个数为I,
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所以，通过对跃迁幅以及跃迁幅乘法进行适当的解读，我们构造出了

量子态的概念，也构造出了态矢量和希尔伯特空间的概念。但是，我们也

别忘了，真正有物理意义的，依然是跃迁幅和跃迁幅乘法。从这个意义上

说，态矢量是虚构的东西，如此看来，通常人们所谓的量子态塌缩当然也

是虚构的！

3.2 算符

以上我们考察了如何从跃迁幅以及跃迁幅乘法中构造出态矢量以及希

尔伯特空间。下面来进一步考察由更具一般性的跃迁元和跃迁元乘法中能

构造出什么。

为此，考察给定初态可能性ψ经物理量A作用的结果，同样，假设我们

不关心最终跃迁到的末态可能性，从而可以把这个过程的跃迁元写成

⟨...|A|ψ⟩, (3.35)

作为一个复数，假设这个跃迁元可以等效地由跃迁幅⟨...|ϕ⟩给出，从而即有

⟨...|A|ψ⟩ = ⟨...|ϕ⟩. (3.36)

由于我们不关心末态可能性，所以干脆，我们将它省略不写，从而即有如

下不完整的开放的方程

A|ψ⟩ = |ϕ⟩. (3.37)

这个方程可以自然地解读成，任给一个量子态|ψ⟩, 则在物理量A的作用之
下，就会得到一个新的量子态|ϕ⟩, 一般来说|ψ⟩不同，则最终得到的|ϕ⟩也不

J的元素个数为J , 下面考虑
∑

i∈I,j′∈J ⟨i|j′⟩⟨j′|i⟩，由跃迁幅乘法，有∑
i∈I,j′∈J

⟨i|j′⟩⟨j′|i⟩ =
∑
i∈I
⟨i|i⟩ =

∑
i∈I

1 = I, (3.33)

式中我们用到⟨i|i⟩ = 1(可确定区分性). 另一方面，同一个量调整一下相乘两因子的顺序，

则有 ∑
i∈I,j′∈J

⟨j′|i⟩⟨i|j′⟩ =
∑
j′∈J
⟨j′|j′⟩ =

∑
j′∈J

1 = J. (3.34)

既然这是同一个量的两种不同计算方式，所以I = J . 证明完毕.
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同。所以，我们可以把物理量A看作一台“机器”，每给这台机器输入一

个|ψ⟩, 则它就会输出一个|ϕ⟩, 这样的“机器”就叫做算符。所以，物理量
对系统的作用可以解释成算符对量子态的作用。

回到上面的(3.36)式，假设我们在等式左边应用A = A · 1的跃迁元乘
法，并且在可确定区分可能性完备集I中取中间可能性，则有

⟨...|A|ψ⟩ =
∑
i∈I

⟨...|A|i⟩⟨i|ψ⟩. (3.38)

记⟨i|ψ⟩ = ai, 从而|ψ⟩ =
∑

iI ai|i⟩, 代入上式左边，即有

⟨...|A
∑
i∈I

ai|i⟩ =
∑
i∈I

⟨...|A|i⟩ai =
∑
i∈I

ai⟨...|A|i⟩. (3.39)

从这个式子中省略末态可能性，即有

A
∑
i∈I

ai|i⟩ =
∑
i∈I

ai
(
A|i⟩

)
. (3.40)

等式左边是先进行量子态的线性叠加运算，再用算符A进行作用，而等式

右边则是先用算符A进行作用，再做线性叠加运算。所以，这个结果告诉

我们，算符A的作用和线性叠加运算可以交换顺序！

这样的算符就称作线性算符。由于上面考察的A是任意的，所以这就

说明，在在在量量量子子子力力力学学学中中中，，，每每每一一一个个个物物物理理理量量量都都都会会会对对对应应应一一一个个个线线线性性性算算算符符符。这个线性

算符是作用在态矢量上的，或者说是定义在希尔伯特空间H上的。
比如在上一节的自旋例子中，下面的方程就定义了一个线性算符X(请

和粒子的坐标X相区分，这根据上下文不难做到)

X| ↑⟩ ≡ | ↓⟩, X| ↓⟩ ≡ | ↑⟩. (3.41)

根据这个定义，可以计算出X在任意线性叠加态c1| ↑⟩+ c2| ↓⟩上的作用，如
下

X
(
c1| ↑⟩+ c2| ↓⟩

)
= c1X| ↑⟩+ c2X| ↓⟩ = c1| ↓⟩+ c2| ↑⟩. (3.42)

其中第一个等于号是线性算符的性质。
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为了具体计算算符A在量子态|ψ⟩上的作用，即具体应用方程A|ψ⟩ =
|ϕ⟩，我们常常需要选取一个表象I, 并考虑⟨i|A|ψ⟩ = ⟨i|ϕ⟩, 在等式左边应用
跃迁元乘法，即有 ∑

j∈I

⟨i|A|j⟩⟨j|ψ⟩ = ⟨i|ϕ⟩. (3.43)

人们常常把这个方程排成如下矩阵形式
⟨1|A|1⟩ ⟨1|A|2⟩ . . .

⟨2|A|1⟩ ⟨2|A|2⟩ . . .
...

...
. . .



⟨1|ψ⟩
⟨2|ψ⟩
...

 =


⟨1|ϕ⟩
⟨2|ϕ⟩
...

 . (3.44)

为了计算等式左边的矩阵乘法，我们需要把第一个矩阵的第i行和第二个矩

阵这单独的一列相乘，将结果作为第三个矩阵第i行的那个元素。单独只有

一列的矩阵也叫做列矢量。以上式子告诉我们，为了计算算符在量子态上

的作用，我们只需要先计算出算符在某个表象I中的表示矩阵，再把相应
的量子态表示成列矢量，然后计算算符的这个矩阵与这个列矢量相乘的结

果。这种方法有一个巨大的好处，就是你只需要计算一次算符的表示矩阵，

然后当考虑它在不同量子态上的作用时，你就把这同一个矩阵与对应量子

态的不同列矢量相乘就可以了。

比如上面对于自旋例子定义的X算符，其在{↑, ↓}表象中的表示矩阵即
是 [

⟨↑ |X| ↑⟩ ⟨↑ |X| ↓⟩
⟨↓ |X| ↑⟩ ⟨↓ |X| ↓⟩

]
=

[
⟨↑ | ↓⟩ ⟨↑ | ↑⟩
⟨↓ | ↓⟩ ⟨↓ | ↑⟩

]
=

[
0 1

1 0

]
, (3.45)

式中第一个等于号利用了X的定义，第二个等于号利用了基矢量的正交归

一性。

特别的，物理量1对应的算符就称作单位算符，依然记作1，不难证明，

在任何表象中，单位算符的表示矩阵都是单位矩阵(请读者想想为什么)。

前面定义算符的时候，我们都是让算符作用在右矢上，因为我们是通

过忽略末态可能性来定义算符的。但是完全一样的，也可以忽略跃迁元的

初态可能性，进而定义算符在左矢上的作用，也即是说，⟨ϕ|A这样的表达
式也是有意义的，它依然是一个左矢，其含义就在于(

⟨ϕ|A
)
|ψ⟩ ≡ ⟨ϕ|

(
A|ψ⟩

)
= ⟨ϕ|A|ψ⟩. (3.46)
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也即是说，跃迁元中的算符，无论理解成是作用在右矢上，还是理解成是

作用在左矢上，结果是等价的。

至于算符A与算符B的乘积AB, 其定义就是先用算符B对任意量子

态|ψ⟩进行作用，然后接着再用算符A进行作用。具体计算的时候当然还是
根据跃迁元乘法来乘，或者在选定了某个表象以后，算符的相乘就转换成

了相应表示矩阵的矩阵相乘。这些我们在上一章实际都已经交待过了，只

是那时候没提算符的概念。上面提到单位算符，当然，单位算符1乘以任何

算符，结果仍然是这个算符。

另外，上一章的最后实际上也已经定义了算符的加法，以及算符的数

乘，即对两个算符A,B定义了A+B，以及λA, 虽然那时候还没引入算符的

概念，但是我们已经通过跃迁元定义这两种运算了，由于算符的作用不过

就是跃迁元省略掉末态可能性，所以那里的定义当然可以照搬到这里。

有了加法，数乘以及算符乘法，那希尔伯特空间上所有线性算符在这

几种运算之下就构成一个封闭的算符代数。

任给一个线性算符(不一定是物理量算符)O，都有一个相应的厄米共
轭算符，记作O†, 其定义如下

⟨ϕ|O†|ψ⟩ = ⟨ψ|O|ϕ⟩∗. (3.47)

式中ψ, ϕ是系统的任意两个可能性(任意两个态)。或者示意性地记作{
ϕ

O†
←− ψ

}
=

{
ϕ

O−→ ψ
}∗
. (3.48)

因此不难看出，{
ϕ

(O†)†←−−− ψ
}
=

{
ϕ

O†
−→ ψ

}∗
=

{
ϕ

O←− ψ
}
. (3.49)

式中最后一个等于号用到复数共轭的复数共轭等于本身。这个结果清楚地

告诉我们

(O†)† = O. (3.50)

即厄米共轭的厄米共轭等于原算符本身。

根据厄米共轭算符的这个定义，可以得到，如果⟨ϕ|是与右矢|ϕ⟩对应
的共轭左矢，则⟨ϕ|O†就是O|ϕ⟩的共轭左矢。这是因为, 根据厄米共轭算
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符的定义式(3.47), 其等式左边可以理解成⟨ϕ|O†与|ψ⟩的内积，而等式右边
则可以理解成⟨ψ|与O|ϕ⟩的内积的复数共轭，根据内积符号的性质，它也
就是O|ϕ⟩的共轭左矢与|ψ⟩的内积，等式左边等于等式右边，因此⟨ϕ|O†就

是O|ϕ⟩的共轭左矢。
任给两个算符O1, O2，不难证明

(O1O2)
† = O†

2O
†
1. (3.51)

证明过程其实和第一章就厄米共轭矩阵相应结果的证明很类似。具体证明

如下

⟨ϕ|(O1O2)
†|ψ⟩ = ⟨ψ|O1O2|ϕ⟩∗ =

∑
i∈I

⟨ψ|O1|i⟩∗⟨i|O2|ϕ⟩∗

=
∑
i∈I

⟨i|O†
1|ψ⟩⟨ϕ|O

†
2|i⟩ =

∑
i∈I

⟨ϕ|O†
2|i⟩⟨i|O

†
1|ψ⟩ = ⟨ϕ|O

†
2O

†
1|ψ⟩. (3.52)

式中第一行的最后一个等于号是利用跃迁元乘法，第二行的第一个等于号

是利用厄米共轭算符的定义，最后一个等于号是再一次利用跃迁元乘法。

另一方面，根据物理量A的厄米条件⟨ϕ|A|ψ⟩ = ⟨ψ|A|ϕ⟩∗(式中ψ, ϕ为分
别取在某两个可确定区分可能性完备集中的可能性)，与刚才关于厄米共轭

算符的定义比较可知，这个厄米条件可以表达成

A† = A. (3.53)

这样的算符就叫做厄米算符，即其厄米共轭算符是自身的那种算符。所以，

物理量的厄米条件告诉我们，与物理量相对应的算符必定为厄米算符。

另一方面，由于定义了乘法、加法以及数乘，所以两个算符的对易子

也就有定义了, 即是[A,B] ≡ AB − BA。不难证明，算符对易子满足如下
恒等式

[A,BC] = [A,B]C +B[A,C]

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (3.54)

这两个恒等式形式上和第一章给出的矩阵的相应恒等式一模一样，证明也

完全一样。其中第二个恒等式就叫做雅可比恒等式。不难验证，如果A为

厄米算符，B也为厄米算符，则i[A,B]也必定为厄米算符！所以，所有厄米
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算符在求对易子并乘以虚数单位i的运算，以及加法和数乘运算之下，构成

一个封闭的李代数。总之，第一章关于矩阵代数(跃迁元数据表的代数)的

很多相应叙述都可以照搬到算符上来，这里不再赘述。

前面我们说过，左矢乘以右矢就是希尔伯特空间内积。那么，右矢乘

以左矢是什么呢？也就是说，下面这样的式子含义是什么呢

|u⟩⟨v|, (3.55)

式中|u⟩为某个右矢，⟨v|为某个左矢，注意在这个式子中，右矢在左边，左
矢在右边，这个顺序不能颠倒。我们发现，对这种式子的自然解释是，把

它理解成一个算符，为此我们定义(
|u⟩⟨v|

)
|ψ⟩ = |u⟩

(
⟨v| · |ψ⟩

)
= |u⟩

(
⟨v|ψ⟩

)
, (3.56)

我们把上面这样的推导过程看作是利用了左矢、右矢混合乘积的结合律！

由于最后式中的⟨v|ψ⟩为一个复数，所以最后的式子当然是一个正比于|u⟩的
量子态. 所以这个式子的含义就是，|u⟩⟨v|作用在量子态|ψ⟩上，最终得到了
一个正比于|u⟩的量子态，既然是把量子态映射到量子态，那|u⟩⟨v|就是一
个算符，而且，由于内积运算关于右矢的线性性质，不难验证，这个算符

还是一个线性算符。

特别的，前面根据跃迁幅乘法写过如下式子

|ψ⟩ =
∑
i∈I

|i⟩⟨i|ψ⟩, (3.57)

那现在，将结合律用上，这个式子就可以重新解释为

|ψ⟩ =
(∑

i∈I

|i⟩⟨i|
)
|ψ⟩. (3.58)

也即是说，算符
(∑

i∈I |i⟩⟨i|
)
作用在任何态|ψ⟩上，结果都还是|ψ⟩本身，那

这个算符就是一个单位算符。所以，我们有∑
i∈I

|i⟩⟨i| = 1. (3.59)

上面这个式子可以让我们重新理解跃迁元(以及跃迁幅)乘法，比方说

根据跃迁元乘法，我们有

⟨ϕ|AB|ψ⟩ =
∑
i∈I

⟨ϕ|A|i⟩⟨i|B|ψ⟩, (3.60)
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现在，我们可以把它重新理解成

⟨ϕ|AB|ψ⟩ = ⟨ϕ|A
(∑

i∈I

|i⟩⟨i|
)
B|ψ⟩, (3.61)

由于中间插入的这个算符是单位算符，所以这个式子当然是成立的。换言

之，跃迁元乘法可以理解成是在算符A,B中间插入了单位算符1，然后再把

单位算符1用(3.59)式来表达！值得强调的是，虽然从数学形式上这是一种

完全等价的看待问题的方式，但是，本书的逻辑是完全反过来的，我们是

先从海森堡的原创想法中引入了跃迁元乘法，然后在第二章中从物理上把

这种乘法推广成普遍形式，然后本章我们再表明，通常的那些数学形式，

包括量子态概念、量子态叠加、希尔伯特空间、以及算符的概念、尤其是

以及(3.59)式，这一切都可以从物理上的跃迁元概念以及跃迁元乘法中自然

地引导出来。

构造抽象态矢量和算符的最大好处是，它们深刻地把握住了量子力学

内在数学结构的表象无关性，代价就是如果过度延伸这些抽象构造的话，

就必然会引入一些非物理的东西。

3.3 海森堡绘景、薛定谔绘景以及量子力学幺正性

3.3.1 海森堡绘景与薛定谔绘景

利用算符的概念，就可以把上一章最后得到的，与表象无关的海森堡

运动方程以及量子力学基本对易关系重新用算符的形式写出来，其实上一

章已经写了，不过由于那时候我们还没有定义算符的概念，所以只是在形

式上写的，现在有了算符的概念，这些写法才获得了真正数学上的意义，

这里不妨重写一下。海森堡运动方程是

i~
dA

dt
= [A,H]. (3.62)

式中H就是哈密顿算符。量子力学基本对易关系是

[X,P ] = i~. (3.63)
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海森堡运动方程(3.62)有一个形式上的通解，我们先写出这个通解，之

后再进行解释和验证

A(t) = eiHt/~A0e
−iHt/~, (3.64)

式中A0是一个不随时间演化的算符。特别的，单位算符1自动满足海森堡运

动方程(3.62)，它当然不随时间演化，所以，在上式中代入A0 = A(t) = 1，

即有

1 = eiHt/~e−iHt/~. (3.65)

首先，我们解释一下把哈密顿算符放到指数上是什么意思，也就

是eB(式中B为某个算符)这样的表达式是什么含义，其含义就是

eB ≡ 1 +
1

1!
B +

1

2!
B2 +

1

3!
B3 + ... (3.66)

也即是说，这样的式子是按照指数函数的级数展开来理解的。根据这个定

义，不难验证(请读者自己动一下手)

eBe−B = 1. (3.67)

从而就具体验证了(3.65)式。另外，也不难验证BeB = eBB, 从而

eBBe−B = B. (3.68)

并且，根据上面那个定义，也不难得到

d

dt
eiHt/~ =

i

~
HeiHt/~ =

i

~
eiHt/~H. (3.69)

从而将表达式(3.64)对t求导，根据求导的莱布尼兹法则，即可以得到

i~
dA

dt
= −eiHt/~HA0e

−iHt/~ + eiHt/~A0He
−iHt/~

= −eiHt/~He−iHt/~eiHt/~A0e
−iHt/~ + eiHt/~A0e

−iHt/~eiHt/~He−iHt/~

= −HA(t) + A(t)H = [A,H]. (3.70)

式中第二行的等于号是利用了(3.67)式(从而e−iHt/~eiHt/~ = 1 = eiHt/~e−iHt/~),

第三行则是利用了(3.68)式(从而eiHt/~He−iHt/~ = H). 所以，我们就验证

了(3.64)式的确是(3.62)式的通解。
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另外，根据指数算符的级数展开定义，不难得到(
eB

)†
= eB

†
. (3.71)

由于哈密顿算符是厄米算符H† = H, 而且i† = −i, 所以(
e−iHt/~)† = eiHt/~. (3.72)

到此为止，在我们的观点中，都是认为量量量子子子态态态并并并不不不随随随时时时间间间演演演化化化(因为

最开始引入量子态的概念，即量子系统的可能性，本来就不依赖于时间)，

随随随时时时间间间演演演化化化的的的是是是代代代表表表物物物理理理量量量的的的算算算符符符。在量子力学中，这种观点叫做海海海森森森堡堡堡

绘绘绘景景景。实际上，还有一种与之等价的观点，即，认为物物物理理理量量量算算算符符符不不不随随随时时时间间间

演演演化化化，而是量量量子子子态态态在在在随随随时时时间间间演演演化化化，这种观点就叫做薛薛薛定定定谔谔谔绘绘绘景景景。

为了从海森堡绘景过渡到薛定谔绘景，我们考察如下跃迁元(注意，只

有跃迁元才是物理的，量子态和算符都是人为构造出来的)，

⟨ϕ|A(t)|ψ⟩. (3.73)

代入(3.64)式即有

⟨ϕ|eiHt/~A0e
−iHt/~|ψ⟩. (3.74)

很显然，如果我们定义如下随时间演化的量子态

|ψ(t)⟩ = e−iHt/~|ψ⟩, |ϕ(t)⟩ = e−iHt/~|ϕ⟩. (3.75)

则(3.74)式就可以写成⟨ϕ(t)|A0|ψ(t)⟩ (注意|ϕ(t)⟩ = e−iHt/~|ϕ⟩的共轭左矢⟨ϕ(t)|
是⟨ϕ|

(
e−iHt/~

)†
= ⟨ϕ|eiHt/~), 换言之，

⟨ϕ|A(t)|ψ⟩ = ⟨ϕ(t)|A0|ψ(t)⟩. (3.76)

也即是说，同一个物理的跃迁元，我们既可以认为，量子态不随时间演化，

是物理量算符A(t)在随时间演化，也可以等价地认为，物理量算符始终是

不随时间演化的A0, 随时间演化的是量子态，它们在按照(3.75)式随时间演

化，后一种观点就叫做薛定谔绘景。
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总之，在薛定谔绘景中，量子态按照|ψ(t)⟩ = e−iHt/~|ψ⟩的规律随时间
演化，而算符则是不演化的A0，它和海森堡绘景算符的关系由(3.64)式给

出。不难将薛定谔绘景的量子态对时间求导，并得到如下方程

i~
d

dt
|ψ(t)⟩ = H|ψ(t)⟩. (3.77)

这就是著名的薛薛薛定定定谔谔谔方方方程程程。

具体应用时，人们常常会选取一个表象I，并把薛定谔方程在这个表
象中表示出来，即

i~
d

dt
⟨i|ψ(t)⟩ =

∑
j∈I

⟨i|H|j⟩⟨j|ψ(t)⟩. (3.78)

假设记Ci(t) = ⟨i|ψ(t)⟩, 并把上述方程排列成矩阵的形式即

i~
d

dt


C1(t)

C2(t)
...

 =


⟨1|H|1⟩ ⟨1|H|2⟩ . . .

⟨2|H|1⟩ ⟨2|H|2⟩ . . .
...

...
. . .



C1(t)

C2(t)
...

 . (3.79)

根据海森堡绘景算符与薛定谔绘景算符之间的关系，不难得出，在薛

定谔绘景中，量子力学基本对易关系为

[X0, P0] = i~. (3.80)

式中X0,P0分别为薛定谔绘景中的坐标算符和动量算符。

3.3.2 量子力学幺正性

人们常常记

U(t) = e−iHt/~, (3.81)

并称之为时间演化算符，因为在薛定谔绘景中，它作用在0时刻的量子

态|ψ⟩上，就会得到演化到t时刻的量子态|ψ(t)⟩, 即|ψ(t)⟩ = U(t)|ψ⟩。很显
然，U(t)并不是一个厄米算符，其厄米共轭U †(t) = eiHt/~. 根据(3.67)式，

不难得到

U †U = UU † = 1. (3.82)
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这样的算符就称作幺正算符。因此人们也常常说，量子系统是随时间幺正

演化的。量子系统的这一性质就称之为幺正性。

那么量子系统的幺正性意味着什么呢？回答是意味着量子态的希尔伯

特空间内积不随时间变化，也就是任给|ψ(t)⟩ = U(t)|ψ⟩, |ϕ(t)⟩ = U(t)|ϕ⟩,
则

⟨ϕ(t)|ψ(t)⟩ = ⟨ϕ|U †U |ψ⟩ = ⟨ϕ|ψ⟩. (3.83)

特别的，在(3.83)式中取|ϕ⟩ = |ψ⟩, 并假设|ψ⟩已经归一化，则(3.83)式

告诉我们

⟨ψ(t)|ψ(t)⟩ = ⟨ψ|ψ⟩ = 1, (3.84)

即时间演化会保持量子态的归一化，初始归一的量子态将永远自动归一。

而如果在(3.83)式中取⟨ϕ|ψ⟩ = 0, 即两态正交，则(3.83)式告诉我们这两个

态将永远保持正交。由于正交性在物理上意味着可确定区分，所以这个结

果意味着，两个可确定区分的量子态任何时刻都将是可确定区分的！这两

点可以概括成，幺正性意味着时间演化保持量子系统任何可确定区分可能

性完备集的可确定区分性。

反过来，如果时间演化保持任何可确定区分可能性完备集的可确定区

分性，那就必然意味着相应的时间演化算符是幺正算符。为了说明这一点，

假设任取一个可确定区分可能性完备集I, 可确定区分性意味着

⟨i|j⟩ = δij, i, j ∈ I. (3.85)

另一方面，在薛定谔绘景中，|i⟩将演化成U(t)|i⟩, 因此如果时间演化保持可
确定区分性，那就意味着

⟨i|U †(t)U(t)|j⟩ = δij, (3.86)

这也就是说，算符U †(t)U(t)在表象I中的表示矩阵是一个单位矩阵，但是，
只有单位算符的表示矩阵才是单位矩阵。所以，这反过来说明U †(t)U(t)是

一个单位算符，即

U †(t)U(t) = 1. (3.87)
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这就说明，时间演化算符U(t)必定是一个幺正算符3。

其实，如果是在海森堡绘景中，那么(3.83)式就特别简单，因为它描述

的不过就是跃迁幅不随时间变化，而跃迁幅不过就是物理量1的跃迁元，而

在海森堡绘景中，物理量1本来就不随时间演化，它的跃迁元当然也不随时

间变化。

实际上，在海森堡绘景中，幺正性常常还指另一件事情。为了说清楚

这件事情，我们需要取两个不同的可确定区分可能性完备集I = {(i), i =
1, 2, 3...}, I ′ = {(i′), i′ = 1′, 2′, 3′, ...}, 考虑跃迁幅⟨j′|i⟩, 则根据跃迁幅乘法，
我们有 ∑

j′∈I′

⟨k|j′⟩⟨j′|i⟩ = ⟨k|i⟩ = δki,∑
j∈I

⟨k′|j⟩⟨j|i′⟩ = ⟨k′|i′⟩ = δk′i′ . (3.88)

记Sj′i = ⟨j′|i⟩, 并注意到⟨i|j′⟩ = ⟨j′|i⟩∗ = S∗
j′i, 就能把上面的结果写成∑

j′∈I′

S∗
j′kSj′i = δki,

∑
j∈I

Sk′jS
∗
i′j = δk′i′ . (3.89)

Sj′i当然描述的是I到I ′的变换关系，在海森堡绘景中，上面这个关于这一
变换关系的方程也叫做幺正性。这是因为，如果把Sj′i看成一个矩阵的话，

那么上面这个方程说的就是，这个变换矩阵是一个幺正矩阵！

量量量子子子不不不可可可克克克隆隆隆定定定理理理

下面我们利用薛定谔绘景讲述一个重要而有趣的结果，叫做量子不可

克隆定理。它大体说的是，不可能克隆(复制)一个任意的未知量子态，比

如说，如果不能事先确定你的量子态，那就不可能克隆出一个一模一样的

你，不是技术无法达到，而是在物理原理上就不可能。

为了讲清楚这个定理，我们需要做一些准备工作。第一个准备就是如

下引引引理理理：如果|ψ⟩, |ϕ⟩是系统任意两个已经归一化的量子态，则

|⟨ϕ|ψ⟩| ≤ 1, (3.90)

3严格来说，为了进一步导出幺正算符需要满足的另一个条件UU† = 1, 我们还需要假

设时间演化可逆。
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等于号仅当|ϕ⟩和|ψ⟩是同一个量子态时才成立。
下面给出一个物理上的证明，或者不叫证明，叫物理上的论证吧。由

于|ψ⟩, |ϕ⟩均已经归一化，所以我们可以将它们所描写的量子可能性分别
归入两个可确定区分可能性完备集，比方说ψ ∈ I = {(i), i = 1, 2, 3, ...},
ϕ ∈ J = {(j′), j′ = 1′, 2′, 3′, ...}, 当然I, J可能相同。则根据上一章讲述的
总概率等于1可知 ∑

j′∈J

|⟨j′|i⟩|2 = 1, (3.91)

根据I,J的取法，|⟨ϕ|ψ⟩|2必然是上面这个求和中对应某个i和某个j′的其中
一项，既然求和中的每一项都大于等于零，而对所有j′的求和才等于1，那

这其中的一项当然必定小于等于1，从而

|⟨ϕ|ψ⟩|2 ≤ 1⇔ |⟨ϕ|ψ⟩| ≤ 1. (3.92)

当等于号成立时，那就说明(3.91)式的求和中只有一项有贡献，相应

的|i⟩(即是|ψ⟩)和这一项之外的其余|j′⟩ (即|ϕ⟩之外的|j′⟩)均正交，根据集
合J的可确定区分性，这就说明|ψ⟩也属于集合J , 而且实际上和|ϕ⟩描述的
是同一个量子可能性，所以，这时候|ϕ⟩和|ψ⟩是同一个量子态。
我们要做的第二个准备工作是，要说清楚什么叫克隆(复制)。所谓的

克隆，就是有两个量子系统，我们把其中一个系统的量子态复制到另一个

系统上。比方说，让这两个系统中的第一个处于量子态|ψ⟩, 让第二个最初
处于某个参考量子态，不妨记作|0⟩吧。因此最初整个复合系统的量子态可
以记作

|ψ⟩|0⟩. (3.93)

所谓的复制，就是通过对整个复合系统进行某个操作，让它演化到如下量

子态

|ψ⟩|ψ⟩. (3.94)

既然复制从本质上是整个复合系统的一种量子演化，所以复制操作当然对

应某个幺正的时间演化算符UC，虽然与这个时间演化算符相应的哈密顿量
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可能很复杂，但我们并不需要知道具体的哈密顿量，只需要知道UC是一个

幺正算符。

现在，假设有系统1的两个未知量子态|ψ⟩, |ϕ⟩(设已经归一化), 如果能

够同时复制它们，也就是能够在同一个UC的作用下(同一个复制操作下)，

使得

UC

(
|ψ⟩|0⟩

)
= |ψ⟩|ψ⟩, UC

(
|ϕ⟩|0⟩

)
= |ϕ⟩|ϕ⟩. (3.95)

由于幺正演化保持量子态的内积不变，从而必定有(
⟨ϕ|⟨ϕ|

)(
|ψ⟩|ψ⟩

)
=

(
⟨ϕ|⟨0|

)(
|ψ⟩|0⟩

)
. (3.96)

注意到系统1的态只能和系统1的态进行内积，系统2的态也是和系统2的态

进行内积，并利用⟨0|0⟩ = 1，即可以得到(
⟨ϕ|ψ⟩

)2
= ⟨ϕ|ψ⟩. (3.97)

但这就意味着⟨ϕ|ψ⟩等于0或者等于1，如果⟨ϕ|ψ⟩ = 0, 那就说明|ψ⟩和|ϕ⟩正
交，而如果⟨ϕ|ψ⟩ = 1, 则根据前面的引理，就说明|ψ⟩和|ϕ⟩是同一个量子
态。

因此，如果|ϕ⟩和|ψ⟩既不是同一个量子态，也不正交，那这样的复制算
符UC就不可能存在！所以，不不不可可可能能能同同同时时时复复复制制制两两两个个个不不不同同同且且且不不不正正正交交交的的的未未未知知知量量量

子子子态态态！这就是量子不可克隆定理，值得说明的是，如果这两个量子态正交，

也就是可以确定地区分，那它们是可以同时被复制的！

3.4 算符与物理测量

3.4.1 本征可能性完备集

如果一个态矢量|un⟩满足如下方程

A|un⟩ = λn|un⟩, (3.98)

则|un⟩就称之为算符A的一个本征态，相应的λn就称之为算符A的本征值，
而这个方程就称作算符A的本征方程。算符A很可能有多个本征态，因此我
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们以指标n来区分，|un⟩就叫做A的第n个本征态，λn就叫做本征态|un⟩对应
的本征值。这里的本征态和本征值当然是一个数学概念，稍后我们会把这

些概念和物理联系起来。

如果选取一个表象I, 那么以上方程就可以表示成(通过配上左矢⟨i|并
利用跃迁元乘法) ∑

j∈I

⟨i|A|j⟩⟨j|un⟩ = λn⟨i|un⟩. (3.99)

如果排列成矩阵，那就是
⟨1|A|1⟩ ⟨1|A|2⟩ . . .

⟨2|A|1⟩ ⟨2|A|2⟩ . . .
...

...
. . .



⟨1|un⟩
⟨2|un⟩

...

 = λn


⟨1|un⟩
⟨2|un⟩

...

 . (3.100)

这就是矩阵的本征方程。

特别的，哈密顿算符的本征方程，就叫做定态薛定谔方程，因为正如

稍后将看到的，它的本征态就是能量有确定取值的定态，因此可以将定态

薛定谔方程写成

H|En⟩ = En|En⟩. (3.101)

物理上最重要的算符就是厄米算符，也就是满足A† = A的算符。这是

因为厄米算符可以表示物理量。前面说过，厄米算符满足如下厄米条件

⟨ϕ|A|ψ⟩∗ = ⟨ψ|A|ϕ⟩. (3.102)

厄米算符有一些很重要的特性，首先，厄米算符的本征值一定是实数，其

次，厄米算符不同本征值的本征态一定正交。

为了证明这两个性质，我们记厄米算符A的第i个本征态为|i⟩，相应的
本征值记为λi。因此，

λj⟨i|j⟩ = ⟨i|A|j⟩ = ⟨j|A|i⟩∗ = λ∗i ⟨j|i⟩∗ = λ∗i ⟨i|j⟩, (3.103)

这里第一个等号和第三个等号是利用本征态的定义，即A|i⟩ = λi|i⟩，第
二个等号是利用方程(3.102)。推导过程(3.103)告诉我们λj⟨i|j⟩ = λ∗i ⟨i|j⟩,
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取i = j，就可以知道λ∗i = λi, 因此厄米算符的本征值必为实数. 由此我们

进一步得到，(λj − λi)⟨i|j⟩ = 0, 因此当λi ̸= λj时，必有⟨i|j⟩ = 0, 即相应的

两个本征态必定正交。这其实就已经完成了我们需要的证明。

但有一个问题是，如果某两个本征态|i⟩, |j⟩有相同的本征值，即如
果λi = λj，这时候怎么办，这时候我们就不能证明这两个态正交了。这种

情况，我们就叫做这两个本征态简并，如果只有|i⟩, |j⟩两个本征态相简并，
我们就叫做本征值λi有二重简并(当然，如果有N个本征态都简并，我们就

叫做N重简并)。碰到这种二重简并的情况，我们注意到

A(c1|i⟩+ c2|j⟩) = c1A|i⟩+ c2A|j⟩ = λic1|i⟩+ λjc2|j⟩ = λi(c1|i⟩+ c2|j⟩),

最后一个等号我们用到了简并条件λi = λj。这个推导过程告诉我们，如

果|i⟩, |j⟩简并，则它们的任意线性叠加将依然是算符A的本征值为λi的本征
态，也就是说，{|i⟩, |j⟩}实际上张成了一个两维的线性子空间，这个子空
间里的任何态矢量都是A的本征值为λi的本征态，这样一个线性子空间就

称之为简并子空间。而在一个两维的线性子空间(可以将这样的两维矢量空

间想象成一个两维平面) 上我们总是可以重新选择两个相互正交的基矢量，

我们可以将这两个正交的基矢量重新定义为新的{|i⟩, |j⟩}态。类似的操作
当然也可以推广到多重简并的情况。

因此，这也就是说，碰到本征态简并的情况，我们总是可以对这些简

并的本征态进行重新选择，使得重新选择以后的本征态相互正交。因此，

对于厄米算符，我们总是可以选取一组两两正交的本征态，加上归一化条

件，就有

⟨i|j⟩ = δij. (3.104)

一般来说，对于在量子力学中出现的某个厄米算符A，由于它总是某

个物理量的表示，因此这组正交归一的本征态的线性叠加一定能构造出希

尔伯特空间里的任何态矢量，也就是说，它们是完备的。同时满足正交归

一性和完备性，这就意味着厄米算符A的这一组本征态{|i⟩, i = 1, 2, 3....}
可以构成整个希尔伯特空间的一组正交矢量基(常常也称本征态的线性

叠加结果为叠加态)。或者用物理的话说，相应的可能性完备集{(i), i =
1, 2, 3....}构成了一组可确定区分可能性完备集, 也称之为物理量A的本本本征征征可可可

能能能性性性完完完备备备集集集, 相应的可能性(i)就称之为物理量A的本本本征征征可可可能能能性性性。
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很明显，如果我们把物理量A以它的本征可能性完备集为表象表示出

来，则由于A|i⟩ = λi|i⟩以及正交归一关系⟨i|j⟩ = δij, 所以一定有
⟨1|A|1⟩ ⟨1|A|2⟩ . . .

⟨2|A|1⟩ ⟨2|A|2⟩ . . .
...

...
. . .

 =


λ1 0 . . .

0 λ2 . . .
...

...
. . .

 . (3.105)

也就是说，这个表示矩阵一定为对角矩阵！

进而由上一章的相关讨论可以知道。如果量子系统处在物理量A的本

征可能性(i)上，那A就有确定的取值λi, 这时候去测量物理量A，就会得到

值λi(特别的，哈密顿量的本征可能性就是能量有确定取值的可能性，因此

也就是定态可能性)。而如果系统处在一个任意的初态可能性ψ上，那A就

没有确定取值，这时候去测量A的值(也就是对系统的量子可能性进行适当

的检测)，那系统就会以概率|⟨i|ψ⟩|2随机地从ψ跃迁到某个本征可能性(i),

一旦它跃迁到(i), 当然就会测到值λi。

这也反过来可以说明为什么物理量要用厄米算符来表示。原因在于，

某个物理量有不同确定取值的量子态(本征可能性)之间，由于可以根据这

个物理量取值的不同来确定地区分，因此这些态必定是两两正交的。而厄

米算符刚好有类似的性质，因为根据我们在前面的数学证明，厄米算符不

同本征值的本征态必定是相互正交的。而如果系统不是处于物理量的本征

可能性，那物理量就没有确定取值。另一方面，厄米算符的本征值当然只

在本征态上有定义，如果系统处在某个厄米算符本征态的叠加态上，那当

然就谈不上本征值，而且厄米算符本身是一个抽象算符而不是一个实数，

因此也就是说，这时候厄米算符的值是没有定义。这些都刚好吻合物理量

所必须遵循的基本原理。因此，可以把物理量的本征可能性当作某个厄米

算符的本征态，把物理量的值当成某个厄米算符的本征值，也就是说，把

物理量用厄米算符来表示！而且，我们前面也证明过，厄米算符的本征值

刚好是实数，因此完全可以当成物理量的值，如果厄米算符的本征值可以

是复数的话，那将物理量表示成厄米算符就不合适了。

归纳一下就是，对于任何一个量子系统，如果对它某个物理量的值进

行检测，则测量值一定是相应算符的本征值。但除非系统原来就处在这个

物理量的本征可能性上，否则测得的值是不确定的，而是会随着量子跃迁

的结果，以概率|⟨i|ψ⟩|2随机地得到本征值λi。
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注意，没有什么测量引起的态塌缩，只有系统在初末两种量子可能性

之间的量子跃迁，而且量子跃迁与量子力学幺正性并不矛盾，相反，正如

前文已经表明的，包括态矢量的概念以及算符与幺正性的概念，都是从跃

迁元以及跃迁元乘法中构造出来的！从这个角度上说，量子跃迁才是量子

力学无可避免的根本特征，它和量子力学幺正性并没有什么冲突，之所以

通常人们认为有冲突，是因为过度延伸了人为构造出来的概念体系，包括

态矢量、态矢量的幺正演化，以及尤其是量子态的塌缩！

本章最后一小节会进一步讨论量子力学中的测量问题，尤其是讨论其

与幺正性之间的关系问题。

3.4.2 不确定原理与算符

还是让我们从电子自旋的例子开始，前面定义了算符X(请与粒子坐标

相区分)，即

X| ↑⟩ = | ↓⟩, X| ↓⟩ = | ↑⟩. (3.106)

另一方面，根据前面的(3.18)式, 我们有

| →⟩ = 1√
2

(
| ↑⟩+ | ↓⟩

)
, | ←⟩ = 1√

2

(
| ↑⟩ − | ↓⟩

)
. (3.107)

从而不难验证，| →⟩, | ←⟩均为算符X的本征态，本征值分别为+1,−1，即
有

X| →⟩ = | →⟩, X| ←⟩ = −| ←⟩. (3.108)

类似的，我们还可以定义一个算符Z, 它以| ↑⟩, | ↓⟩为本征态，本征值
也是+1,−1, 即

Z| ↑⟩ = | ↑⟩, Z| ↓⟩ = −| ↓⟩. (3.109)

所以，算符X和算符Z的本征态是完全不同的，X有确定取值时，Z的

取值就完全不确定，反之亦然。另一方面，不难验证X和Z不对易，比

如XZ| ↑⟩ = X| ↑⟩ = | ↓⟩, 而ZX| ↑⟩ = Z| ↓⟩ = −| ↓⟩, 即XZ| ↑⟩ = −ZX| ↑⟩,
类似的也有XZ| ↓⟩ = −ZX| ↓⟩，所以实际上

XZ = −ZX. (3.110)
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这个例子让我们想到，算符的不对易，和相应两物理量的值不能同时

确定，这两者之间有没有什么必然的联系呢？

另一方面，如果两个物理量的值总是可以同时确定(请注意总是这个

词)，那就意味着，不管系统处在任何初态可能性，每次检测这两个物理量

时，系统所跃迁到的末态可能性必然同时是这两个物理量的本征可能性。

并且，由于我们假设对任何初态可能性进行检测总能同时得到这两个物理

量的某个值，因此这也意味着这些共同的本征可能性必然可以张成希尔伯

特空间的一组矢量基(即任何量子态都可以写成这组共同本征态的线性叠

加)，因此，如果两个物理量的值总是可以同时确定，那就意味着它们必然

有一组共同的本征可能性完备集。

但是，我们已经看到，物理量是用厄米算符来表示的，那么从厄米算

符的角度来看，两个物理量的值总是可以同时确定的充要条件是什么呢？

答案很简单，是这两个算符的乘积要可以交换顺序，也就是这两个算符可

对易。

我们首先证明必要性。即假设两个物理量A,B的值总是可以同时确定，

也就是说它们有共同的本征可能性完备集，或者换句话来说共同的本征态

矢量基(不妨记作{|i⟩, i = 1, 2, 3...}，并记A的相应本征值为αi，B的相应本

征值为βi)，我们来证明相应的厄米算符A和B必定可对易，即AB = BA或

者说AB − BA = 0。证明很容易，首先由于{|i⟩, i = 1, 2, 3...}是希尔伯特空
间的矢量基，因此任何量子态|ψ⟩都必定可以写成|ψ⟩ =

∑
i ci|i⟩的形式，如

此一来就有

(AB −BA)|ψ⟩ =
∑
i

ci(AB −BA)|i⟩

=
∑
i

ci(βiA|i⟩ − αiB|i⟩) =
∑
i

ci(βiαi − αiβi)|i⟩ = 0. (3.111)

即(AB − BA)在任意态上的作用都等于零，因此即有AB − BA = 0。这就

完成了必要性的证明。

下面证明充分性(充分性的证明略微有一点复杂，并且纯粹是一个数学

定理，读者第一遍读的时候可以先略过)。即要证明如果两个物理量的厄米

算符满足AB = BA，则它们必有一组共同的本征态矢量基。首先，前文已

经说过，对于量子力学中考察的厄米算符而言，其本征态必定可以取作希

尔伯特空间的正交矢量基。所以真正需要证明的是，我们总是可以把这些
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本征态取成这两个算符共同的本征态。为此我们假设{|i⟩, i = 1, 2, 3...}为算
符A的一组本征态，本征值分别为αi(注意，αi可以有简并)，则由于

A(B|i⟩) = AB|i⟩ = BA|i⟩ = αiB|i⟩, (3.112)

因此我们可以知道B|i⟩必然也是算符A的本征值为αi的本征态。如果算

符A的αi这个本征值对应的本征态没有简并，那就必然有B|i⟩依然正比
于|i⟩这个态，假如把比例系数记为βi，从而也就有B|i⟩ = βi|i⟩, 这也就是
说|i⟩同时也是算符B的本征态。因此在这种情况下|i⟩就已经是A,B共同的
本征态了。

但是，如果算符A的本征值为αi的本征态有简并，那这时候由(3.112)式

我们就不能得出B|i⟩正比于|i⟩的结论了。比方说假设有二重简并(多重简并

的证明是类似的)，也即是说有某个αj = αi，从而相应的|j⟩态和|i⟩态有相
同的本征值αi。这就和我们前面证明总是可以将厄米算符的本征态取成正

交的时候碰到的简并情况是一样的。|i⟩和|j⟩简并的一个显然结果是，它们
的任意线性叠加c1|i⟩+ c2|j⟩都将是A的本征态，本征值都是αi，因此这就张

成了一个两维的简并子空间，我们可以把这个简并子空间记为Hαi
。那这

时候我们由(3.112)式就只能得出B|i⟩一定是这个两维的简并子空间里的某
个态矢量。不仅如此，由于

A[B(c1|i⟩+ c2|j⟩)] = B(c1A|i⟩+ c2A|j⟩)

= B(c1αi|i⟩+ c2αj|j⟩) = αi[B(c1|i⟩+ c2|j⟩)], (3.113)

这里最后一个等号我们利用了简并条件αj = αi。这个推导过程(3.113)就告

诉我们，[B(c1|i⟩ + c2|j⟩)]依然是A的某个本征值为αi的本征态，这也就是

说，B作用在简并子空间Hαi
里的任意态上，结果都依然还是简并子空间

里的态。因此我们就总可以在这个两维的简并子空间Hαi
里求解算符B的

本征方程，从而得到B的两个本征态|i′⟩和|j′⟩。前文引入厄米算符本征态
时的相关证明告诉我们，无论这两个态对应的B本征值相同还是不同，我

们总是可以让它们正交，从而成为二维简并子空间Hαi
新的正交基(因此

原来的|i⟩和|j⟩也都可以反过来写成这两个新的基矢量的线性叠加)。由

于|i′⟩和|j′⟩都属于A的简并子空间Hαi
，所以它们当然同时也是A的本征态，

这样它们就是A和B共同的本征态。也就是说，碰到这种二重简并的情况，
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我们只需要把原来的|i⟩, |j⟩态替换成新的|i′⟩和|j′⟩态就找到了这时候两个算
符的共同本征态。多重简并情形的推理和结论都是类似的。因此这就证明

了，A和B的共同本征态总是可以找到的。这样就完成了我们对充分性的证

明。这个充分性的证明告诉我们，如果两个算符可对易，那么它们相应的

物理量必然有一组共同的本征可能性完备集，从而这两个物理量的值总是

可以同时确定。

这个充分性命题的逆否命题就是，不可同时确定的两个物理量，它们

相应的算符必定不对易。

另外，必要性命题的逆否命题是，如果两个算符不对易，那么它们相

应的物理量就不可能有一组共同的本征可能性完备集。一个典型的例子就

是前面的自旋算符X(注意和粒子坐标相区分)和Z, 由于XZ = −ZX, 因此

两者不对易，从而正如我们已经看到的，它们没有共同的本征态。另一个

典型的例子就是位置算符和动量算符，即X,P，这两个算符的对易子就是，

[X,P ] = i~，即对易子是个常数，因此X和P必定没有共同的本征态。

3.4.3 再谈物理量的测量

前面讨论物理量的值，也就是相应算符本征值的时候，我们忽略了一

个细节。那就是，在海森堡绘景中，物理量算符是要随着时间演化的，这

个时候定义本征态的时候就需要考虑到时间因素。

具体来说即是, 给定一个海森堡绘景中的物理量算符A(t), 我们需要在

某个任意给定的参考时刻t0来定义它的本征态，因此相应的本征方程是

A(t0)|a, t0⟩ = λa|a, t0⟩, a = 1, 2, ... (3.114)

式中λa表示A(t0)的本征值，|a, t0⟩就是相应的本征态，它依赖于参考时刻t0.
根据前面讲述的海森堡运动方程的通解，我们有

A(t0) = eiHt0/~A0e
−iHt0/~, (3.115)

式中A0就是参考时刻为0时刻所对应的算符，当然它也是相应的薛定谔绘

景中的算符。根据这个关系式，我们可以构造出前面的本征态|a, t0⟩。为
此，假设|a⟩为A0的本征态，满足如下本征方程

A0|a⟩ = λa|a⟩, (3.116)
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则根据(3.115)式，不难验证eiHt0/~|a⟩为A(t0)的本征值为λa的本征态，换言
之，

|a, t0⟩ = eiHt0/~|a⟩. (3.117)

而且这个构造也说明了A(t0)的本征值λa本身并不依赖于t0.

注意，|a, t0⟩并不是一个随时间演化的量子态，它只是一个在参考时
刻t0定义的量子态，本身依然是不随时间演化的，否则就和薛定谔绘景中

的态演化概念相冲突了。

现在，假设任给系统的一个初态可能性|ψ⟩, 我们在参考时刻t0去检
测物理量A(t0)的值，当然，系统就会以跃迁幅⟨a, t0|ψ⟩从初态可能性跃迁
到A(t0)的某个本征可能性⟨a, t0| (作为检测的末态可能性)，一旦我们确定

系统跃迁到了⟨a, t0|, 我们就能推测出A(t0)的值为λa。也就是说，我们会以
概率|⟨a, t0|ψ⟩|2随机地测得值λa。

这里简单地提一下薛定谔绘景中是如何看待|⟨a, t0|ψ⟩|2这样的概率的。
很显然，由于|a, t0⟩ = eiHt0/~|a⟩，所以⟨a, t0| = ⟨a|e−iHt0/~, 所以

|⟨a, t0|ψ⟩|2 = |⟨a|e−iHt0/~|ψ⟩|2 = |⟨a|ψ(t0)⟩|2, (3.118)

式中最后一个等于号用到了薛定谔绘景量子态随时间的演化关系。

回到海森堡绘景。当然，参考时刻t0并不是时间的终点，所以|a, t0⟩会
成为新的初态可能性继续往下进行量子跃迁，直到某个最终的末态可

能性|ϕ⟩。所以，纵观从初态可能性|ψ⟩到最终的末态可能性⟨ϕ|的全过程，
(a, t0)就只是一个中间可能性。然而，由于我们能够确定系统在t0时刻跃迁

到了这个中间可能性，所以根据第二章讲述的量子力学基本原理，整个过

程的概率将由下式给出

|⟨ϕ|a, t0⟩|2|⟨a, t0|ψ⟩|2, (3.119)

注意，这时候并不能使用跃迁幅乘法规则，因为我们能够确定具体的中间

可能性是什么。相反，如果有多种能够确定的中间可能性都能导致相同的

最终末态，那我们就应该把上面的概率(3.119)(而不是跃迁幅)对这些中间

可能性求和。这当然就是第二章中讲述过的基本原理之一。

可见，整个分析并没有量子态幺正演化以及量子态塌缩什么事，当然

也就没有这两者之间的矛盾冲突！有的只是计算概率的两种不同方法：如
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果原则上就不能确定中间可能性，当然也就无从推测物理量A的值，相应

的就应该对中间可能性使用跃迁幅乘法规则来计算完整的跃迁幅⟨ϕ|ψ⟩，并
将这个跃迁幅模方得到概率。正如第二章中讲述过的，这时候各种中间可

能性之间就存在量子干涉。而如果原则上能够确定具体中间可能性是什么，

当然就能推测出这个中间时刻物理量的值是多少，但这时候就不能对这些

中间可能性使用跃迁幅乘法了，而应该是把各种不同中间可能性的概率(而

不是跃迁幅)相加，当然，这时候也就不存在量子干涉了。

如果想进一步统一这两种计算概率的方法，或者问，在对中间可能性

进行了测量的情况下，量子相干性是如何消失的？那就是另一个问题了，

这时候可能就需要把测量仪器以及观察者都包括进量子系统之中了。实际

上，这就是著名的退相干问题，对这个问题的研究构成了一个专门的研究

领域。退相干当然是一个物理问题，虽然不在本书的讨论范围之内。本书

只是想说，通常人们所认为的量子力学基本问题或者测量问题，其实不多

于退相干，退相干是物理的，但是量子态塌缩、多世界之类的想法则可能

是不必要的，是对一些人为的抽象构造进行了过度的延伸。

那么幺正性是怎么回事呢？按照本书观点的回答如下：如果原则上

不能确定中间可能性(比如不对中间可能性进行检测)，那就有完整的跃迁

幅⟨ϕ|ψ⟩, 幺正性说的无非就是这个跃迁幅不随考察时刻t而变化，这在海森
堡绘景中是平庸的。而如果原则上能确定中间可能性，那⟨ϕ|ψ⟩就没有定义
了！这时候只能分别考察跃迁幅⟨a, t0|ψ⟩和跃迁幅⟨ϕ|a, t0⟩, 它们当然也都不
随考察时刻t而变化。这时候你可以定义比方说⟨ϕ|ψ⟩a,t0 ≡ ⟨ϕ|a, t0⟩⟨a, t0|ψ⟩，
但是原来的能够对中间可能性使用跃迁幅乘法的⟨ϕ|ψ⟩是没有定义的。在能
确定具体中间可能性的情况下，如果硬要定义完整的跃迁幅⟨ϕ|ψ⟩, 那就只
能把测量仪器、观察者、甚至整个世界，都包括进量子系统之中了，但是

这样一来，初态可能性就不再是|ψ⟩了，而是整个世界的初态可能性，末态
可能性也一样，不再是⟨ϕ|了，而是整个世界的末态可能性。
但是，由于一定意义上的测量无时无刻不在进行，无时无刻不在引起

被测系统的退相干，所以，为了定义完整的跃迁幅，唯一的办法也许真是

考察整个世界的初态可能性和整个世界的末态可能性。

什么是整个世界的初态可能性呢？当然就是在整个世界的无穷远

过去定义的量子可能性，也就是在t1 = −∞的参考时刻定义的可能性，
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人们可以把它取在某个可确定区分可能性完备集I−∞ = {(i,−∞), i =

1, 2, 3, ...}中。同样，所谓整个世界的末态可能性，当然就是在整个世界
的无穷远将来定义的量子可能性，也就是在t2 = +∞的参考时刻定义
的可能性，类似的，也可以取在某个可确定区分可能性完备集I+∞ =

{(f,+∞), f = 1′, 2′, 3′, ...}中。
进而，整个世界完整的跃迁幅当然就是⟨f,+∞|i,−∞⟩, 沿用粒子物理

里面的说法，可以称之为整个世界的S矩阵，记为Sfi = ⟨f,+∞|i,−∞⟩. 那
么，所谓整个世界的幺正性，指的就是这个S矩阵(也就是I−∞到I+∞之间

的变换矩阵)必须是一个幺正矩阵，即满足∑
f∈I+∞

S∗
fkSfi = δki,

∑
i∈I−∞

SgiS
∗
fi = δgf . (3.120)

如果跃迁幅⟨f,+∞|i,−∞⟩的定义和计算完全没有问题，那这个幺正性必定
是自动满足的，因为它是跃迁幅乘法的结果。


