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本本本文文文是是是尝尝尝试试试用用用真真真正正正现现现代代代的的的思思思想想想和和和现现现代代代的的的处处处理理理方方方式式式，，，从从从零零零开开开始始始建建建立立立经经经典典典

力力力学学学的的的基基基本本本内内内容容容，，，尤尤尤其其其是是是，，，本本本文文文只只只假假假定定定读读读者者者学学学过过过微微微积积积分分分，，，并并并不不不假假假定定定读读读者者者

学学学过过过牛牛牛顿顿顿力力力学学学，，，也也也不不不假假假定定定读读读者者者学学学过过过大大大学学学物物物理理理甚甚甚至至至高高高中中中物物物理理理，，，即即即使使使学学学过过过，，，

也也也请请请先先先假假假装装装忘忘忘记记记，，，我我我们们们一一一切切切都都都从从从零零零开开开始始始。。。

简单来说，牛顿力学的核心概念是力和加速度，但在现代物理中无论

力还是加速度都不再是核心概念，相反能量和动量才是核心概念。因此，

作为一个现代人，也许我们应该探索如何以能量、动量为第一概念直接建

立力学体系的现代处理方式。这也就是本文将要进行的尝试。换言之，本

文考虑的是建立经典力学体系的另一种可能性，或者说另一种选择。实际

上，经典力学可以有三种建立体系的方式，最传统的是从牛顿力学开始建

立体系，这也是市面上大多数经典力学书采取的处理方式，其次是从最小

作用量原理开始建立拉格朗日力学然后过渡到哈密顿力学，这以朗道《力

学》为代表。

但是，本文加上它的后续《经典力学新讲》，找到了第三种建立经典力

学体系的方式，即直接从哈密顿力学开始，完全不依赖牛顿力学也不依赖

拉格朗日力学，直接从哈密顿力学开始。这里真正要解决的问题是在物理

上如何自然地从零出发，本文可以说就是在做这件事，它试图给哈密顿力

学建立一个更物理的基础，使哈密顿力学从一种数学方法变成第一性的物

理原理，而通常的牛顿力学反而成了推论。

市面上当然也有其它侧重哈密顿力学的经典力学书(尤其是一些数学家

写的)，但是，与本文不同，它们都不是真正从零开始的，而是在引入哈密

顿力学的时候都预设了牛顿力学或者拉格朗日力学，只是由于哈密顿力学

的数学结构更丰富而把主体篇幅放在了哈密顿力学而已。

其实，本文这种对经典力学的处理方式和牛顿式处理方式最大的不同也

许是世界观有所不同，牛顿式处理方式是一种机械式世界观，这可能多少

有些不适应于当前人工智能可以生成逼真视频的时代，而本文的世界观则

是和当前时代相适应的。

当然，本文只是经典力学的初步，本文的主要目的是带领读者品尝现代

物理的思维方式，至于更专门性的更进一步的进阶内容，可以参看我的另

一个讲义《经典力学新讲》。

1 状状状态态态与与与演演演化化化定定定律律律

经典力学的研究对象是多个运动粒子所构成的系统, 粒子之间一般来说存
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在相互作用，也就是相互影响，比如通过碰撞，或者如果是带电粒子的

话，通过它们之间的电磁力，即使不带电的粒子之间也还存在万有引力的

相互作用等等。如果这个系统与外界完全孤立，那就称作封闭系统，它也

是我们的核心关注点。如果一个系统与外界有相互作用，那只要扩大系

统，把外界这个参与相互作用的部分也包括进来，就总能使得整个大的系

统与世界的其余部分相孤立，从而构成一个封闭系统。所以，我们主要关

心封闭系统，以后如果未加特别说明，我们讨论的系统都默认指封闭系

统。

观察者是站在这个系统之外的，而且，我们假定，观察者对系统的观察

和测量并不会干扰系统本身(只要我们的测量进行得足够小心)。值得注意

的是，这个假定虽然非常符合我们的直觉，但它只在经典力学范畴内才成

立，量子力学的范畴得另作新的假定。

那么，什么是粒子呢？经典力学里的粒子可以是任何大小和形状而尤其

是内部结构都可以忽略的物体。比方说，当我们研究空气的运动时，空气

分子就可以看成是这样的粒子，而当我们研究行星绕太阳的运动时，行星

和太阳都可以看成是这样的粒子，甚至，当我们研究宇宙这个系统时，整

个星系(比如银河系)都可以看成是一个粒子。但是，如果你关心的是地球

的自转，那通常就不再能把地球看成一个粒子了，因为这时候它的大小就

不能忽略了。

总之，经典力学研究多个运动粒子所构成的系统。粒子的概念我们已经

解释了，运动的概念则要复杂得多，我们后面再进行解释。

最简单的经典系统(注意，没有力学这两个字)是所谓的一个比特，这

样的系统仅仅只有两个可能状态，可以记其中一个状态为0, 另一个状态

为1。比如说，人们通过抛硬币来作选择的时候，硬币就是一个比特，正面

向上就叫做0态，背面向上就叫做1态。如果是考虑两个比特，那系统的可

能状态就有四个，分别是00, 01, 10, 11，而如果考虑n个比特，那可能的状

态就有2n个。

当然，本文并不研究比特这样的经典系统，因为我们关心的是运动的粒

子。但是，道理是一样的，运动粒子的系统(也就是经典力学系统) 也会有

不同的状态，我们就是要找到这些状态随着时间的演化规律，这也就是所

谓的经典力学规律。

给定一个经典力学系统，我们称它所有可能状态所构成的空间为状状状态态态

空空空间间间，也称作相相相空空空间间间，记作Γ，系统的一个可能状态就是Γ中的一个点，一

般记作X。另外，不妨记系统在t时刻的状态为Xt, 与比特不同的是，比特

3



的状态是离散的，要么0要么1, 不能是0.5或者0.01这样的中间值，但是经

典力学系统的状态是连续的，因为粒子的运动总是连续的，所以其状态也

是连续变化的。总之，Xt在状态空间Γ中连续变化，我们就是要寻找Xt随

着时间t的演化规律。

这当然是一段很长的旅程，现在让我们开始第1步。在这第1步中，我们

不妨将时间离散化，从而将系统的演化过程离散化成视频画面那样的时间

帧，当然，相邻两帧之间的时间差很小。我们记第n帧的时间为tn, 它和下

一帧之间的时间相差一个小量ϵ, 即

tn+1 = tn + ϵ. (1)

经典力学系统满足所谓的决定论，也就是一种严格的因果关系，具

体来说即是，经典力学假定：下一帧的状态完全由上一帧状态决定！

同时，由于相邻两帧的时间只差一个小量ϵ, 所以状态的连续性就意味

着，Xtn+1和Xtn之间也只差一个一阶小量，即必定有

Xtn+1 = Xtn + ϵf(Xtn), (2)

式中f(X)为相空间Γ上的某组函数，它们当然和粒子的运动以及粒子间的

相互作用都有关系(因为粒子的状态显然受粒子运动以及粒子间相互作用影

响)，找到这组函数的物理意义，并决定这组函数的具体形式将是整个这篇

文章的核心课题之一。

之所以说f(X)是一组函数，而不是一个函数，原因在于，对于一个多

粒子系统，其状态X当然不可能仅用一个变量来刻画，通常是要用多个变

量来刻画的，因此方程(2)并不是一个而是一组方程，f(X)当然也就是一组

函数。怎么引入合适的变量来刻画状态X是稍后将会讨论的内容，这里暂

且搁置一下。

当然，真实的时间是连续的，所以下面取ϵ → 0的连续时间极限，很显

然，根据(2)式和(1)式，我们有

dXt

dt
= lim

ϵ→0

Xtn+1 −Xtn

ϵ
= f(Xt). (3)

也就是说，经典力学系统的演化规律应该是关于时间t的一组一阶微分方

程！

如果你学习过牛顿运动定律，那你可能知道牛顿定律是二阶微分方程，

因此你可能对上述结论有点疑问，别着急，牛顿定律当然是对的，但是，

上述结论也没错，两者之间的关系我们最终会澄清的。
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2 状状状态态态变变变量量量

芝诺问他的学生：“一支射出的箭是动的还是不动的？”

“那还用说，当然是动的。”

“确实是这样，在每个人的眼里它都是动的。可是，这支箭在每一个瞬间

里都有它的位置吗？”

“有的，老师。”

“在这一瞬间里，它占据的空间和它的体积一样吗？”

“有确定的位置，又占据着和自身体积一样大小的空间。”

“那么，在这一瞬间里，这支箭是动的，还是不动的？”

“不动的，老师”

“这一瞬间是不动的，那么其他瞬间呢？”

“也是不动的，老师”

“所以，射出去的箭是不动的？”

以上就是著名的飞矢不动悖论，它是古希腊哲学家提出来的。假设我们

把箭换成一个粒子(因此没有体积)，那这个悖论说明了什么呢？回答是，

说明了，如果我们仅仅只用位置这一种变量来刻画粒子的状态，那运动将

是不可能的，或者说粒子的状态演化将是不可能的。

当然，纯粹从数学上来说，仅仅只有位置变量，它也可以随时间演化，

但是，飞矢不动悖论告诉我们，数学上可能，物理上却是不可能的。

所以，为了正确描述运动，我们必须假设，运动在每一个瞬间都存在，

并额外引入一种状态变量来刻画粒子在瞬间的运动。传统的方法是通过微

积分来定义粒子的瞬时速度，这样做的好处是相对比较直观，但是，在现

代物理中有一个比速度更为基本的量，更适合用来刻画粒子瞬时的运动，

这就是动量。请忘记动量的传统定义，忘记它和速度之间的关系(如果你知

道的话)，在这里我们纯粹是把它作为一个抽象的量而引入的。动动动量量量的的的定定定

义义义就就就是是是，，，运运运动动动的的的量量量，不是运动着的量，而是量化运动的一个基本量，简称

运动的量(这里的用法类似于物质的量)，也就是动量。

至于动量和速度之间具体有什么关系则并不是这个定义的一部分，因

为根据这里的定义，我们并不能预先假定动量和速度之间的具体关系是什

么，实际上，目前我们并没有也不需要定义速度的概念。动量和速度之间

的具体关系会在后文中由经典力学系统的演化定律推导出来。换言之，目

前我们只知道存在这么一个刻画运动的量，我们称之为动量，当然我们也
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知道它的一些比较明显的性质，至于这个量具体怎么计算怎么测量，则我

们打算放到本文比较靠后的位置再来确定。我们想强调的是，仅仅这个存

在性，已经足够建立起整个经典力学大厦了，因此，怎么计算怎么测量它

的问题完全可以放到最后再来解决。这也是因为，动量的存在性才是最具

有普遍性的，它具体怎么计算则多少有一些特殊性，即不同情况下计算方

法会有些不同，比方说，相对论中对动量的计算方法和非相对论下的计算

方法就有所不同。

总之，为了刻画运动粒子在一个瞬间的状态，我们需要两种状态变量，

也就是位置和动量。下面我们进一步引入对位置和动量的数学描述。

为了精确地刻画动量，我们需要注意到运动具有相对性。比如相对于高

铁来说，乘客是静止的，动量为零，但是相对于地面来说，乘客则是运动

的，动量不为零。这就是运动的相对性，或者说动量的相对性。因此，为

了精确地刻画某个粒子的动量，我们需要先选择一个参照物，也即是说，

所谈的动量都是相对于这个参照物而言的。参照物的选取是任意的，可以

怎么方便就怎么选，比如你可以选高铁为参照物，也可以选地面为参照

物。

为了进一步量化位置和动量，我们还需要建立坐标系。具体方法是: 先

选定一个参照物K, 然后在K上选定一个点O作为坐标原点，最后再建立一

个固连在K上的笛卡尔坐标系，如图(1)所示。参照物K再加上固连于其上

的坐标系，合起来就叫做一个参参参考考考系系系，通常仍然记作K。

Figure 1: 以参照物K上某点O为坐标原点，建立一个固连于其上的参考系.

假设某个粒子位于A点，如图(1)所示。有了参考系以后我们就可以

精确地量化其位置坐标，也就是图中的(x, y, z)三个分量，通常也简记
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为x = (x, y, z), 并称之为粒子的位置矢量，直观上也就是一个从原点O指

向A点的有方向的量。

粒子相对于参照物K的动量记为p, 它同样是一个矢量，一般来说其方

向就是粒子运动的方向。p也可以分解成三个分量，记为p = (px, py, pz)。

所以，有了参考系以后，粒子的状态就可以用其位置矢量和动量矢量来刻

画，记作X = (x,p) = (x, y, z, px, py, pz), x,p就称作粒子的状态变量，所

以，对于单个粒子，其状态变量用分量来表示的话一共有6个独立分量。换

言之，对于单个粒子，其状态空间Γ是一个6维空间！

注意，我们谈到了两个不同的空间，一个是普通的三维空间，这个空

间指的是物理上时间和空间的那个空间。其中的矢量我们用黑体字母来表

示。另外一个空间就是状态空间，或者说相空间，即Γ，这个空间是数学

描述上的空间，它当然可以是高维的。

对粒子状态的刻画具有相对性, 以位置矢量为例，如图(2)所示，位于

点A的粒子相对于参考系K的位置矢量为x，但是相对于参考系K ′，其位置

矢量则为x′。

Figure 2: 图中r和r′在正文中分别是x和x′.

以上考虑的是单个粒子。下面假设我们的系统中有多个粒子，比方

说N个粒子，这时候系统的状态X又该如何刻画呢？

当然，先还是要建立参考系，有了参考系以后，就可以刻画每个粒

子的位置和动量，比方说，对于第i个粒子，可以记其位置矢量为xi =

(xi, yi, zi), 记其动量为pi = (px,i, py,i, pz,i)。为了确定整个系统的状态，我们

只需同时确定系统中每一个粒子的状态，所以，整个系统的状态就可以刻
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画为X = (x1,x2, ...,xN ,p1,p2, ...,pN)，或者更清楚地写成

X = (x1, y1, z1, ..., xN , yN , zN , px,1, py,1, pz,1, ..., px,N , py,N , pz,N). (4)

也即是说，刻画系统的每一个可能状态都需要6N个独立变量，从而系统的

状态空间Γ为一个6N维空间。

通常记状态空间(或者说相空间)Γ的维数为2n(因为它一定是偶数)，从

而

2n = dim(Γ) = 6N. (5)

很显然，2n当然是偶数。通常还称这样确定的n为系统的自由度数目，也

就是完全确定系统中每一个粒子的位置(不包括动量)所需要的独立变量的

个数从而对于一个N粒子的经典力学系统，其自由度数目为

n = 3N. (6)

为了简化记号，同时更是为了从整个系统的角度，平等地看待其中的每

一个粒子，我们可以引入一个具有n个分量的变量xµ, 定义为

xµ = (x1, y1, z1, x2, y2, z2, ..., xN , yN , zN), (7)

式中µ = 1, 2, 3, ..., 3N只是一个指标(而不是表示幂次)，式中的等于号是

一种示意性的写法，它表示，当µ = 1, 2, 3时，xµ分别指的是第1个粒子

的三个位置坐标分量，当µ = 4, 5, 6时，xµ则分别指第2个粒子的三个位置

坐标分量，等等，依此类推。按照这个规则，比如有，x1 = x1, x
2 = y1,

x3 = z1, x
4 = x2, x

5 = y2,....

类似的，还可以引入另一个具有n个分量的变量pµ, 定义为

pµ = (px,1, py,1, pz,1, px,2, py,2, pz,2, ..., px,N , py,N , pz,N). (8)

同样，µ是一个指标，且等于号的含义和上一段类似。比如它表示，p1 =

px,1，p2 = py,1, p3 = pz,1, p4 = px,2, p5 = py,2,... 至于为什么在位置变量xµ中

用上指标，而在动量变量pµ中则用下指标，则完全是由于约定俗成，在物

理上并没有必然的理由。

有了这些记号以后，系统的状态就可以简单地刻画为

X = (xµ, pµ). (9)
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这当然是一个示意性的记号，其更准确的写法应该是

X = (x1, x2, ..., x3N , p1, p2, ..., p3N). (10)

而系统在某个时刻t的状态Xt就可以刻画成

Xt =
(
xµ(t), pµ(t)

)
=

(
x1(t), ..., x3N(t), p1(t), ..., p3N(t)

)
. (11)

式中xµ(t)和pµ(t)都是时间t的函数。而所谓寻找系统的演化规律，也就是

寻找状态变量xµ(t)和pµ(t) 所满足的那组一阶微分方程。

3 伽伽伽利利利略略略相相相对对对性性性原原原理理理

上一节说到，为了刻画系统状态，需要选择一个参考系。但是假如任意选

择参考系，则系统状态的演化规律可能会表现得非常复杂，以致于我们很

难直接发现这些规律。因此，如何选取适当的参考系以使得演化规律尽量

简单，就是头等重要的事情。

任意参考系的复杂性在于两点：第一，时间相对于这样的参考系可能表

现得不均匀，即不同的时刻在物理上不等价。为了说清楚这个问题，不妨

设想你的参考系是一个巨大的秋千，你是一边荡着秋千一边做力学实验，

假设这个秋千如此巨大，以至于从高处荡到最低处需要一个小时，很显

然，受秋千的影响，你一个小时前当秋千在高处时做的力学实验和一个小

时后秋千在低处时做的同一实验不会有相同的结论，也即是说，相对于秋

千这样的参考系，不同时刻在物理上不等价。第二，相对于任意参考系，

空间可能也表现得不均匀，甚至不各向同性。所谓空间不均匀，指的是空

间不同位置在物理上不等价，空间不各向同性指的则是空间的不同方向在

物理上不等价。一个简单的例子就能说明白这个结论，假设你在高铁上，

以高铁为参考系，而高铁在朝前加速，这时候你会发现放在桌子上的小球

会自动朝后滚，也就是说，在高铁参考系中，前后位置在物理上并不等

价，因为小球会自动从前面滚向后面。

但是，伽利略通过思想实验发现，的确存在一种特殊的参考系，叫做惯惯惯

性性性参参参考考考系系系，相对于这种参考系，时间是均匀流逝的，空间也是均匀并且各

向同性的。并且，这样的参考系不止一个，而是有无数多个，因为任何相

对于惯性系作匀速直线运动的参考系同样也是惯性系。伽利略发现，所有

的惯性系在物理上都等价，也即是说，经典力学系统的演化规律在所有这

些惯性系中都一样，这就是所谓的伽伽伽利利利略略略相相相对对对性性性原原原理理理。
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1632年，伽利略在他的名著《关于托勒密和哥白尼两大世界体系的对

话》中是这么描述其相对性原理的：

把你和一些朋友关在一条大船甲板下的主舱里，让你们带着几只苍蝇、

蝴蝶和其他小飞虫，舱内放一只大水碗，其中有几条鱼。然后，挂上一个

水瓶，让水一滴一滴地滴到下面的一个宽口罐里。船停着不动时，你留神

观察，小虫都以等速向舱内各方向飞行，鱼向各个方向随便游动，水滴滴

进下面的罐中，你把任何东西扔给你的朋友时，只要距离相等，向这一方

向不必比另一方向用更多的力。你双脚齐跳，无论向哪个方向跳过的距离

都相等。当你仔细地观察这些事情之后，再使船以任何速度前进，只要运

动是匀速，也不忽左忽右地摆动，你将发现，所有上述现象丝毫没有变

化。你也无法从其中任何一个现象来确定，船是在运动还是停着不动。即

使船运动得相当快，在跳跃时，你将和以前一样，在船底板上跳过相同的

距离，你跳向船尾也不会比跳向船头来得远。虽然你跳到空中时，脚下的

船底板向着你跳的相反方向移动。你把不论什么东西扔给你的同伴时，不

论他是在船头还是在船尾，只要你自己站在对面，你也并不需要用更多的

力。水滴将像先前一样，滴进下面的罐子，一滴也不会滴向船尾。虽然水

滴在空中时，船已行驶了许多柞。鱼在水中游向水碗前部所用的力并不

比游向水碗后部来得大; 它们一样悠闲地游向放在水碗边缘任何地方的食

饵。最后，蝴蝶和苍蝇继续随便地到处飞行。它们也决不会向船尾集中，

并不因为它们可能长时间留在空中，脱离开了船的运动，为赶上船的运动

而显出累的样子。

这是物理学史上最具有洞察力最动人的一段描述。在伽利略的这一段描

述中，静止的船和匀速行驶的船都是惯性系，伽利略详细描述了相对于这

种参考系空间的均匀和各向同性。而你之所以无法从船中的现象来判断船

是静止还是在匀速前进，正好说明了不同惯性系在物理上的等价性，或者

说，不同惯性系中世界的演化规律是完全一样的！

值得说明的是，惯性系的概念以及相对性原理本身即使在狭义相对论

中也都是对的，狭义相对论中真正需要修改的是后文将会介绍的伽利略变

换，而不是相对性原理本身。

从现在开始，除非特别说明，否则我们都默认是在惯性参考系中考察问

题。
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4 能能能量量量守守守恒恒恒定定定律律律

在任意给定惯性参考系中，经典力学系统演化所满足的最重要物理学定律

是所谓的能量守恒定律。这是支配着自然界的一条最基本最普遍的物理学

定律，迄今为止人们从来没有发现过这条定律有什么例外。能量守恒定律

指出，在自然界所经历的种种变化之中，有一个称之为能量的物理量是不

变的，或者更具体地说，在任何封闭系统的时间演化中(相对于某个惯性

系)，有一个称之为能量的物理量是保持不变的。

那么，什么是能量？回答是，这是一个抽象的状态量，也就是只和系统

的特定状态X有关，而与演化过程无关的量，这个量描述了封闭系统的这

么一个奇怪事实，即对于任何封闭物理系统，起先，对于系统的一个给定

状态，我们可以计算出某一个数值，然后在系统的状态经历过种种复杂的

演化之后，我们再按照同样规则计算一遍这个数值，我们会发现，结果和

起先的计算结果一样。

著名物理学家费曼在他的《费曼物理学讲义》中打过这么一个比方：

设想有一个孩子，叫做丹尼斯，他有一堆积木，这些积木是绝对不会损

坏的，也不能分成更小的东西，并且每一块都一模一样。让我们假定他共

有28块积木。每天早上他的母亲把他连同28块积木一起留在一个房间里。

到了晚上，母亲出于好奇心很仔细地点了积木的数目，于是发现了一条规

律――无论丹尼斯怎么玩积木，积木的数目一直是28块！这种情况持续了

好几天。直到有一天她发现，积木只有27块了，但是稍微调查一下就发现

地毯下面还有一块――为了确信积木的总数没变，她必须到处留神。然

而，某一天积木的数目看来有些变化，只有26块了！仔细的调查表明：窗

户打开了，再朝窗外一看，就发现了另外两块积木。又有一天，经过仔细

清点发现总共有30块积木！这使她非常惊愕。后来才了解到有个叫布鲁斯

的孩子曾带着他的积木来玩过，并留下了几块在丹尼斯房间里。自从丹尼

斯的母亲拿走了多余的积木，把窗户关上，并且不再让布鲁斯进来以后，

一切都归于正常。

直到有一次，母亲清点时发现只有25块积木。然而，在房间里有一个玩

具箱，母亲走过去要打开这个箱子，但是孩子大声叫喊道：“不，别打开

我的箱子”，不让她打开玩具箱。这时他母亲十分好奇，也比较机灵，她

想出了一种办法，她知道一块积木重3盎司，有一次当她看到积木有28块时

曾经称过箱子的重量为16盎司，这次她想核对一下，就重新称了一下箱子
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的重量，然后减去16盎司，再除以3，于是就发现了以下式子

(所见到的积木数) +
(箱重)− (16盎司)

3盎司
= 28. (12)

不久之后，好像又出现了某种新的偏差，但是仔细的研究表明，浴缸

里脏水的高度发生了变化，孩子正在把积木扔到水里，只是她看不见这些

积木，因为水很混浊，不过在她的公式里再添上一项她就可以查明在水中

有几块积木了。由于水的高度原来是6英寸，每一块积木会使水升高1/4英

寸，因而这个新的公式将是

(所见到的积木数) +
(箱重)− (16盎司)

3盎司
+

(水的高度)− (6英寸)

1/4英寸
= 28. (13)

在母亲的这个复杂性逐渐增加的世界里，她发现了一系列的项来计算积

木块数的方法，这些积木藏在不准她去看的那些地方。结果，她得出了一

个用于计算某个量的复杂公式，无论孩子怎么玩耍，总数永远是28.

在这个比喻中，积木的数目就是能量，总数目28就是系统的总能量，

当系统封闭时这个总数是不变的，而母亲关于积木数目的计算公式中的每

一项就代表能量的一种形式，能量有很多形式，每一种形式有一个计算规

则，但是在任意给定惯性系中，封闭系统各种形式能量的总和是一个不变

的数！费曼的这个比方当然也有不确切的地方，因为在讨论物理系统能量

的时候，根本就没有“积木”，能量并不是某种实体物质的数目，而是一

种更加抽象的东西。在今天的物理学中，并没有人懂得能量到底是个什么

东西，人们知道的是，任何封闭系统都一定存在一种这样的计数方式，当

把各种不同形式加总起来的时候，总数目是保持不变的！

能量的不同形式可以分类成：动能、势能、热能、化学能等等。不过，

正如后文会进一步讨论的，经典力学系统涉及的只有动能和势能，其中势

能又可以进一步分类成弹性能、引力势能等等形式。对了，爱因斯坦发

现，质量也是一种能量，不过，这是相对论范畴的概念，和本文没有多大

关系，而且，我们还没有引入质量的概念呢！

经典力学系统的总能量是系统状态X的函数，通常记作H(X), 称作哈

密顿函数，或者哈密顿量。在任意给定惯性系中，我们当然可以用状态

变量来刻画经典力学系统的状态，所以哈密顿量也就是状态变量xµ和pµ的

函数，从而可以记为多元函数H(xµ, pµ)。如果写得更清楚一点的话，那

就是H(x1, x2, ..., x3N , p1, p2, ..., p3N)，或者写成H(x1, ...,xN ,p1, ...,pN)。当

然，无论是将哈密顿量写成H(X)也好，还是写成H(xµ, pµ)也好，还是写
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成H(x1, ...,xN ,p1, ...,pN)也好，它们表示的都是同一个东西，只是不同的

写法而已。能量守恒就意味着当系统状态随时间演化时，H(Xt)是一个不

依赖于时间t的常数，因此，演化定律(3)不能是任意的，而是必须满足如

下限制，即确保

dH(Xt)

dt
= 0. (14)

后文将会看到，上式给演化定律施加了很强的限制，它基本上使得我们

可以合理猜测出演化定律(3)中的待定函数组f(X)与哈密顿量H(X)之间的

关系。这里我们不妨先指出，f(X)和H(X)都是状态量，所以两者之间才

可能有联系。

值得强调的是，时间相对于惯性系的均匀性意味着，任意给定惯性系中

的哈密顿量不能显式地依赖于时间t, 即哈密顿函数只能是H(X)，而不可能

是H(X, t), 否则不同的时刻对于这个函数就不等价了，从而时间也就不均

匀了。除此之外，不同惯性系中测到的系统总能量很可能并不相同，因为

不同惯性系对系统状态的刻画并不相同，所以H(X)的值是依赖于具体惯

性系的。比如说一个不受相互作用的自由粒子在某个惯性系中是静止的，

那它在这个惯性系中的能量就可以定义为零，但是换一个惯性系，这个粒

子就是在作匀速直线运动，因此能量当然不是零，所以能量的值是依赖于

具体惯性系的。不过，伽利略相对性原理告诉我们，不同惯性系中的演化

定律(3)形式上得一样。

对于一个给定的经典力学系统，具体决定其哈密顿函数的表达式当然也

是一个重要的问题，这个问题需要引入一些额外的线索来解决。类似于前

面对动量的讨论，目前我们只知道任何经典力学系统都存在这么一个刻画

能量的哈密顿量，知道它是状态量，知道它一定是守恒的，这才是最具有

普遍性的，至于这个量具体怎么计算，我们放到后面慢慢确定，因为存在

性(以及它的一些性质)本身足够我们建立起整个经典力学大厦了！

能能能量量量的的的可可可加加加性性性

假设定义了某个函数H(X)为经典力学系统的总能量，那很显然，H(X)

乘上一个任意常数c，结果的cH(X)同样也满足守恒定律(14)，所以cH(X)同

样有权被称之为能量。实际上，能量定义的这种标度不唯一性正反映了能

量单位选取的任意性(比如卡和焦耳之间就相差一个热功当量常数)，只要

具体选定了一种能量单位，那能量函数就不再能乘以任意的标度因子c了。

这其实是量纲分析的基本知识。
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除此之外，能量的定义还有一种不确定性，即如果H(X)是系统的能

量，那么H(X) + c(c为一个常数)同样可以作为系统的能量。为了消除这种

不确定性，通常的处理办法是，当系统中所有粒子都相距很远以至于粒子

间的相互作用可以忽略，同时每个粒子都静止不动时，在这种情况下，我

们要求系统的总能量等于零(当然，在狭义相对论中，由于有静止能量的

概念，所以处理稍微有点不同)，这就把上面那个可调节的常数c确定下来

了。

更重要的是，正如上文丹尼斯的比喻所暗示的，能量不仅是守恒，而

且还有一种非常特殊的性质，我们称作可加性，就像积木的数目那样可

加，这有两层含义：第一，不同形式的能量是相加的。因此定义不同形式

能量的时候，我们需要统一其单位，换言之，不同形式能量必须同时乘以

同样的标度因子c，不能各自乘各自的标度因子。第二，假设整个系统可

以分解成A、B两部分，且两部分之间没有相互作用，那么整个系统的能

量H(X)将为两部分的能量之和，即

H(X) = HA(XA) +HB(XB), (15)

式中，XA和XB分别表示A、B两个子系统的状态，HA、HB分别表示其能

量。同样，HA和HB需要统一单位。

还是以HA、HB分别表示两个子系统A、B单独存在时的能量，那么，

如果A、B之间存在相互作用我们该如何表示整个系统的总能量呢？

回答是，根据上述可加性的两层含义，我们可以引入一种新的能量形

式V (XA, XB)，它代表A、B之间的相互作用能量，进而将总能量H(X)写

成如下形式

H(X) = HA(XA) +HB(XB) + V (XA, XB). (16)

V (XA, XB)当然得满足这样的条件，即当A、B两部分相距很远，以至于相

互作用可以忽略时，V (XA, XB)得趋于零。

能能能量量量有有有下下下界界界

如果我们的系统是一个量子力学系统，这时候哈密顿量H(X) 就要变

成所谓的哈密顿算符(读者不用管算符是什么东西)。这时候对这个哈密顿

算符还有一条额外的要求，就是它必须有下界。换言之，任何量子力学系

统都必须有一个有限的最低能量，不能趋于负无穷。这是因为，在通常的
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条件下，量子系统会趋向于从高能级向低能级进行跃迁，如果能量没有下

界，那系统就会向下无限地跃迁下去，永远不能稳定，这当然是不可能

的。

经典力学系统的哈密顿量H(X)虽然理论上可能无下界，但在实际应用

中，真到了能量趋于负无穷的时候，那早就超过经典力学的适用范围了。

所以，实际的，在合理适用范围之内的H(X)其实都是有下界的。值得说

明的是，能量是有下界，通常可不需要有上界！

5 对对对称称称性性性与与与哈哈哈密密密顿顿顿量量量

一个经典力学系统的哈密顿量H(X)可能具有何种形式呢? 对这个问题的回

答将会把我们带到物理学中的对称性话题。

那么，什么是对称性？简单而言，所谓的对称性就是研究对象在某种操

作下的不变性。比方说，考虑一个圆周，它在绕圆心的旋转操作下显然保

持不变，所以我们就说圆周具有绕圆心的旋转对称性，或者旋转不变性。

当然，圆周在过某条直径的左右翻转之下也是不变的，我们称圆周还具有

反射对称性。旋转和反射的区别就在于，旋转可以连续地进行，或者说依

赖于一个连续的参数θ，也就是旋转角度，而反射则是一种离散的操作。像

旋转这样依赖于某个连续参数的对称性，就是所谓的连续对称性，而像反

射这样的对称性就称作分立对称性。

时时时间间间平平平移移移不不不变变变性性性和和和空空空间间间平平平移移移不不不变变变性性性

前面我们说过，时间相对于惯性系是均匀的。这也是一种对称性，

物理系统的对称性，那么它反映的是什么不变性呢？回答是，反映的

是惯性系下系统哈密顿量的时间平移不变性，也就是当将时间作一个平

移t → t+ c(c为任意常数)，系统的哈密顿量要保持不变，即

H(X, t) = H(X, t+ c), (17)

很显然，这就说明了哈密顿量并不显式地依赖于t, 这个前面其实说过了，

所以哈密顿量才记作H(X).

类似的，空间相对于惯性系的均匀性也是一种对称性，具体来说就是哈

密顿量的空间平移不变性。也即是说，当我们将整个系统在三维空间中作

一个平移，从而每个粒子的位置矢量都作了一个同步的平移，即

xi → xi + a, (18)
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式中a = (ax, ay, az)为一个任意的常矢量(即它的三个分量都是常数)，而两

个矢量的加法就是将对应的分量分别相加。在这个平移之下，系统的哈密

顿量保持不变，即，将系统作一个平移不影响系统的总能量。注意，空间

平移并不影响每个粒子的运动，也即是说，在空间平移之下，每个粒子的

动量都不会变，即

pi → pi. (19)

从而空间平移不变性意味着

H(x1, ...,xN ,p1, ...,pN) = H(x1 + a, ...,xN + a,p1, ...,pN). (20)

显然，这是对哈密顿量可能形式的一个很强限制。

为了进一步看清楚这种限制，我们不妨取a = ϵ⃗为一个无穷小矢量，也

就是说，考虑一个无穷小的空间平移，则上面的(20)式告诉我们

0 = H(x1 + ϵ⃗, ...,xN + ϵ⃗,p1, ...,pN)−H(x1, ...,xN ,p1, ...,pN)

=
N∑
i=1

∂H

∂xi

· ϵ⃗ =
( N∑

i=1

∂H

∂xi

)
· ϵ⃗. (21)

这个推导中用到了对无穷小量进行泰勒展开，并忽略展开的高阶项(因为它

们是高阶小量)，只保留泰勒展开的一阶项。上式意味着

N∑
i=1

∂H

∂xi

= 0. (22)

上面推导中的一些记号规则需要简单解释一下，首先，对于任何函

数g(x)， ∂g
∂x
是一个三维矢量，它表示

∂g

∂x
= (

∂g

∂x
,
∂g

∂y
,
∂g

∂z
). (23)

而 ∂g
∂x

= 0这样的方程当然实际上是三个方程

∂g

∂x
= 0 ⇔ ∂g

∂x
= 0,

∂g

∂y
= 0,

∂g

∂z
= 0. (24)

其次，对于任意两个三维矢量a,b, 假设a = (ax, ay, az), b = (bx, by, bz), 那

么a · b称之为这两个矢量的点乘，结果是一个标量，它的定义是

a · b = axbx + ayby + azbz = b · a. (25)
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不难证明a · b = |a||b| cos θ, 这里θ表示a、b之间的夹角，|a|表示矢
量a的模长，也即

|a| =
√

a2x + a2y + a2z, (26)

|b|的含义当然类似。为了证明上面这个结果，不妨假设适当地旋转笛卡尔
坐标系，使得a, b都躺在x − y平面上，并且使得a正好沿着x轴正方向，即

在此坐标系中有

a = |a|(1, 0, 0), b = (bx, by, 0) = |b|(cos θ, sin θ, 0). (27)

则很容易按照(25)式的定义算得

a · b = |a||b| cos θ. (28)

由此不难看出，如果a · b = 0, 那就意味着这两个矢量的方向相互正交(垂

直)。

空空空间间间旋旋旋转转转对对对称称称性性性

另外，空间相对于惯性系还是各向同性的，这当然也是一种对称

性，它反映的是没有哪个空间方向是特殊的，也即是说，将系统整

体旋转一个任意的角度，系统的能量将保持不变。换言之，哈密顿

量H(x1, ...,xN ,p1, ...,pN)在空间旋转之下保持不变。

这对于哈密顿量同样是很强的限制，比方说，它意味着哈密顿量中不能

含a · p1这样的项，因为a是一个固定的常数矢量(不是变量), 它和旋转没有

关系，而动量p1则是变量，它在空间旋转之下是要变的，因此a · p1这样的

项在空间旋转之下会变，从而不满足空间旋转不变性。实际上，空间旋转

不变性意味着，哈密顿量H(x1, ...,xN ,p1, ...,pN)必须是如下这些标量组合

的函数

pi · pj, xi · xj, xi · pj. (29)

这当然是因为虽然矢量变量在空间旋转下会变，但是矢量的模长和矢量间

的夹角在同步的空间旋转之下都不会变，从而根据(28)式，由矢量变量点

乘所构造的标量必定是空间旋转不变的。

由空间旋转不变性，也能推导出一个H(x1, ...,xN ,p1, ...,pN)必须满足

的，类似于(22)式那样的微分方程。只不过推导过程稍微要复杂一点，我

们放在后面要用到它的时候再进行介绍。

17



时时时间间间反反反演演演对对对称称称性性性和和和空空空间间间反反反演演演对对对称称称性性性

以上所谈对称性都是连续对称性，经典力学系统还满足一些分立对称

性，具体来说就是时间反演对称性和空间反演对称性。

让我们先来考虑时间反演(比方说将电影倒着放映)，即

t → −t. (30)

很显然，粒子的位置在时间反演下是不变的，但是粒子的运动方向则会刚

好变成相反方向，所以，在时间反演之下，我们将有

x → x, p → −p. (31)

上一段只考虑了一个粒子，对于多粒子系统，不妨记系统状态X =

(xµ, pµ)的时间反演状态为X，则由于时间反演之下粒子的位置保持不变而

动量反向，所以很显然有

X = (xµ,−pµ). (32)

注意，X和原来的X并不相同，也即是说，经典力学系统的状态本身不是

时间反演不变的。

但是，系统的能量是时间反演不变的！因为既然能量是一个守恒量的

话，那你像倒放电影那样将“世界倒带”当然不应该影响世界的总能量，

也即是说必然有

H(X) = H(X). (33)

或者用状态变量来描述的话即是

H(xµ,−pµ) = H(xµ, pµ). (34)

这可以看成是任何经典力学系统的哈密顿函数都必须满足的又一个强制性

要求。

类似的，我们也可以考虑空间反演，也就是考虑某种“镜像世界”（之

所以叫镜像世界，是因为空间反演虽然并不直接就是照镜子，但却和照镜

子有密切的关系），对于单个粒子，空间反演的定义是

x → −x, p → −p, (35)
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即位置和动量同时反号。推广到多粒子系统，当然就是X → −X, 或者说

xµ → −xµ, pµ → −pµ. (36)

一般认为“镜像世界”的能量和原来世界的能量应该是一样的，也即是

说，哈密顿函数也得空间反演不变，即满足

H(−X) = H(X), (37)

或者也可以写成

H(−xµ,−pµ) = H(xµ, pµ). (38)

6 哈哈哈密密密顿顿顿量量量的的的一一一般般般形形形式式式

即使考虑到上一节中讨论的所有对称性对哈密顿量H(X)的限制，它的可

能形式也还是太多了。不过，如果我们进一步考虑到哈密顿量的可加性，

以及其它一些合理的物理假设，那就能把经典力学系统哈密顿函数的一般

形式确定下来。

为此，我们先考虑一个粒子，即整个系统只由一个粒子构成，其位

置为x，动量为p，由于只有一个粒子，那当然就没有其它粒子和它相互

作用，从而这实际上是一个自由粒子。这时候粒子的哈密顿量当然就

是H(x,p)，空间平移不变性的要求(22)这时候意味着

∂H

∂x
= 0, (39)

即实际上这个粒子的能量不能依赖于位置变量x，而只能是动量p的函数。

而由单独的动量p只能构造出一个标量，即p2 = p · p, 所以进一步考虑到空
间旋转对称性的话，哈密顿量就只能是p2的函数，记作

H = T (p2), (40)

称函数T为这个粒子的动能，因为它完全由粒子的运动决定。

下面考虑一个N粒子系统，当然每一个粒子都会有一个动能Ti(p
2
i ), 从

而根据能量的可加性，如果这些粒子之间没有相互作用，那么系统的哈密

顿量将是

H =
N∑
i=1

Ti(p
2
i ). (41)
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实际的多粒子之间当然会存在相互作用，所以可以额外添加一项V来表示

相互作用的能量。一般来说，V当然既依赖于每个粒子的位置，也依赖于

粒子的动量，V的具体形式要通过实验来确定。但是实际上人们发现，相

互作用依赖于粒子动量的情况很少见！也即是说，我们可以合理地假设相

互作用能量只是粒子位置的函数，即具有V (x1,x2, ...,xN)的形式。当然，

这种形式意味着只要给定所有粒子的位置，那么它们瞬间就会有相互作

用，换言之，相互作用不需要传播时间，所以它只适用于非相对论的低

速(与光速相比)世界。这样假设以后，多粒子系统的哈密顿量就具有如下

一般形式

H(X) =
N∑
i=1

Ti(p
2
i ) + V (x1,x2, ...,xN). (42)

称V (x1,x2, ...,xN)为系统的相互作用势能。

注意，相互作用能量依赖于粒子动量的情形是很少见，而不是绝对没

有。实际上可以证明，对于多个带电粒子相互作用的系统，如果考虑到相

对论修正，那么其相互作用能量就依赖于粒子的动量。这其实是因为运动

的带电粒子会产生磁场，这个磁场会作用在另一个运动粒子身上，使得两

个粒子之间产生磁相互作用，这种磁相互作用能就依赖于粒子的运动情

况，从而依赖于粒子动量。具体的理论推导可以参见我的讲义《经典场论

新讲》，在第七章的最后。即使不考虑相对论修正，只在非相对论极限下

考虑问题，也不难构造出相互作用能依赖于粒子动量的模型。但问题是，

在非相对论极限下，我们不知道实验上如何实现这种依赖于粒子动量的相

互作用。总之，通常我们只需要考虑V (x1,x2, ...,xN) 这种只依赖于粒子位

置的相互作用能。

将(42)式这个哈密顿量的一般形式代入空间平移不变性的要求(22)，即

有

N∑
i=1

∂V

∂xi

= 0. (43)

这实际上意味着相互作用势能V (x1,x2, ...,xN)只能依赖于不同粒子的位置

之差，这当然是因为虽然位置矢量在空间平移下会变，但是位置之差却是

平移不变的。另外，不难验证，(42)式的这个一般形式自动满足时间反演

对称性。

在经典力学的范畴内，V (x1,x2, ...,xN)只能通过实验来确定，比方说，

牛顿根据开普勒总结出来的行星运动三定律，推测出任意两个粒子之间应
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该都存在万有引力相互作用，并且万有引力势能反比于两粒子之间的距

离|xi − xj|(i ̸= j)。

为了确定动能T (p2)的具体函数形式，我们需要求助于另一种对称性，

即伽利略相对性原理。伽利略相对性原理也是经典力学系统的一种对称

性，不过这种对称性不表现为哈密顿量的不变性(因为不同惯性系的能量是

不同的)，而表现为系统演化定律的不变性，即不同惯性系下的演化定律得

是一样的。后文将会看到，利用伽利略相对性原理，以及演化定律的一般

形式，我们可以确定动能函数T (p2)。

已经学过牛顿力学的读者可能知道粒子动能的表达式，那么请暂时忘

记它，因为它是通过牛顿定律推导出来的，而由于本文是从零开始建立力

学，所以我们目前还没有牛顿定律可用，为了确定粒子动能的表达式，我

们必须得另想办法。实际上，本文的逻辑和牛顿力学的逻辑刚好是反的，

因为后文我们会先通过伽利略相对性原理确定粒子动能的表达式，然后再

由此推导出牛顿定律。

如果考虑到狭义相对论，这时候动能T (p2)同样不难处理，也可以通过

相对性原理来确定，虽然由于具体的变换不再是伽利略变换而是所谓的洛

伦兹变换，导致相对论的动能与非相对论情形有所不同，但两者同样都

是p2的函数，即均具有T (p2)的形式。狭义相对论里面真正复杂的是如何

处理相互作用，因为在狭义相对论中粒子间的相互作用不再是瞬时传播

的，所以不能简单地用势能函数V (x1,x2, ...,xN)来刻画它。实际上，这时

候真正自洽的处理是引入场的概念，即粒子间通过动力学场来进行相互作

用，比如带电粒子之间要通过电磁场来相互作用。换言之，这时候系统内

将不仅仅有粒子，还需要有场，从而系统的能量将不仅包含粒子的能量，

还需要将传递相互作用的场的能量包含进来。对粒子间如何通过场进行相

互作用的具体考察可以参见我的《经典场论新讲》。

7 哈哈哈密密密顿顿顿正正正则则则方方方程程程

这一节我们来对经典力学系统的演化定律进行一个合理的猜测，也就

是猜出本文第一节(3)式中函数组f(Xt)的形式。到目前为止，我们发现

对f(Xt)的唯一限制就是，由它给出的(3)式必须得满足如下能量守恒定律

d

dt
H(Xt) = 0. (44)
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如果用状态变量xµ和pµ来刻画哈密顿量，那也就是

0 =
d

dt
H
(
x1(t), ..., x3N(t), p1(t), ..., p3N(t)

)
=

3N∑
µ=1

[ ∂H
∂xµ

dxµ

dt
+

∂H

∂pµ

dpµ
dt

]
. (45)

我们就是要由这个式子出发，猜出dxµ

dt
和dpµ

dt
应该由什么关系式给出。

dxµ

dt
和dpµ

dt
所满足的方程就是经典力学系统的演化定律。这是因为，一方

面xµ和pµ正是状态变量，另一方面，根据第一节的(3)式，经典力学系统的

演化定律本来就应该是一组一阶微分方程。

单单单自自自由由由度度度系系系统统统

为了完成猜测出经典力学系统状态演化定律的任务，让我们从最简单

的情形开始，也就是考虑一个n = 1的单自由度系统，比方说单个粒子沿

着x轴作直线运动的情形1。对这种单自由度系统，状态变量只有两个，

即位置坐标x和动量p, 所以系统的相空间是两维的，如图(3)所示。系统的

哈密顿量是一个二元函数H(x, p), 我们可以在相空间中画出系统的等H曲

线，也就是能量为常数的等能量曲线。

能量守恒意味着，系统的状态演化必然是沿着等H线进行的，也就是两

维的相空间矢量(dx
dt
, dp
dt
)必然和等H线相切，如图(3)所示。由于是单自由度

系统，所以这时候能量守恒方程(45)将简化成

0 =
dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂p

dp

dt
= (

∂H

∂x
,
∂H

∂p
) · (dx

dt
,
dp

dt
), (46)

式中最后一个等于号右边的式子表示两个相空间矢量的点点点乘乘乘。上式意味

着，相空间矢量(∂H
∂x

, ∂H
∂p

)与(dx
dt
, dp
dt
)正交！由于(dx

dt
, dp
dt
)沿着等H线的切向，

所以(∂H
∂x

, ∂H
∂p

)必然沿着等H线的法向，如图(3)所示。

现在，我们将相空间矢量(∂H
∂x

, ∂H
∂p

)逆时针旋转90度，变成与之正交

的(∂H
∂p

,−∂H
∂x

), 不难验证

(
∂H

∂x
,
∂H

∂p
) · (∂H

∂p
,−∂H

∂x
) = 0. (47)

由于(∂H
∂x

, ∂H
∂p

)既与(dx
dt
, dp
dt
)正交又与(∂H

∂p
,−∂H

∂x
)正交(比较(46)式和(47)式)，这

就意味着，(dx
dt
, dp
dt
)必然与(∂H

∂p
,−∂H

∂x
)在一条线上，也就是成正比，即

(
dx

dt
,
dp

dt
) ∝ (

∂H

∂p
,−∂H

∂x
). (48)

1可以给这个系统加上一个来自于系统之外的外势场，也就是势能V (x)，这时候虽然系

统严格来说不再是封闭系统了，但是能量守恒定律依然成立。
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Figure 3: 单自由度系统的相空间.

使得这个式子得以满足的最最最简简简单单单情情情况况况就是取(dx
dt
, dp
dt
) = ±(∂H

∂p
,−∂H

∂x
), 其

中±号取−号的情形相当于将取+号情形的H替换成−H，事实表明它会导

致哈密顿量H没有下界(虽然纯从数学上，这样取完全可以)！所以最简单

的情形只能取

(
dx

dt
,
dp

dt
) = (

∂H

∂p
,−∂H

∂x
). (49)

实际上，对于更一般的成正比情形

(
dx

dt
,
dp

dt
) = k(x, p)(

∂H

∂p
,−∂H

∂x
). (50)

我们可以通过重新标度时间，具体来说即是通过将
∫
k(x(t), p(t))dt定义

为新的时间，从而使得重标度以后的等式左边额外出现一个k(x, p)(根据

对t求导的链式法则)，进而在等式两边将比例系数k(x, p)约掉。总之，为

了自动满足能量守恒定律，最终我们总是可以将单自由度系统的演化方程

取为如下形式，

dx

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂x
. (51)

这就是我们对单自由度系统演化定律的合理猜测！

多多多自自自由由由度度度情情情形形形

很容易将上面的演化定律(51)推广到任意的多自由度情形，也就是

从2维相空间推广到2n = 6N的情形，其实就是添上一个指标µ的事, 即有

dxµ

dt
=

∂H

∂pµ
,

dpµ
dt

= − ∂H

∂xµ
, µ = 1, 2, ..., 3N. (52)
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这组漂亮之至的方程就是著名的哈密顿正则方程，它就是我们对任何多自

由度系统演化定律的合理猜测！很容易验证，这组方程能确保系统的能量

守恒，因为

d

dt
H =

3N∑
µ=1

[ ∂H
∂xµ

dxµ

dt
+

∂H

∂pµ

dpµ
dt

]
=

3N∑
µ=1

[ ∂H
∂xµ

∂H

∂pµ
− ∂H

∂pµ

∂H

∂xµ

]
= 0. (53)

上式第二行我们代入了哈密顿正则方程(52).

由于xµ = (x1,x2, ...,xN)，pµ = (p1,p2, ..,pN)，所以当然也可以将哈密

顿正则方程(52)写成

dxi

dt
=

∂H

∂pi

,
dpi

dt
= −∂H

∂xi

, i = 1, 2, ..., N. (54)

当然，严格来说，哈密顿正则方程只是我们对经典力学系统演化定律的

猜测，虽然这种猜测是合理的，因为它是最简单的能够确保能量守恒定律

总是成立的方程。但猜测毕竟只是猜测，作为物理定律，它到底对不对当

然要靠实验来检验。好消息是，迄今为止的实验的确验证了哈密顿正则方

程的成立。

哈密顿正则方程(52)和(54)不仅形式上非常对称和优美，而且正如后文

将会看到的，由它还可以推导出著名的牛顿定律，所以一切验证了牛顿定

律的实验，也间接验证了哈密顿正则方程的成立。实际上，按照我们今天

的理解，哈密顿正则方程的适用范围甚至比牛顿定律更加广泛，因为牛顿

定律只适用于粒子，可不适用于场，而哈密顿正则方程简单推广一下就同

样可以适用于场。也就是说，按照我们今天的理解，哈密顿正则方程可以

说是整个经典物理学最基本的方程，它不仅适用于经典的多粒子系统，

而且也适用于经典场(比如说电磁场)，当然，经典场不是本文要讨论的内

容。

哈哈哈密密密顿顿顿正正正则则则方方方程程程的的的对对对称称称性性性

(5)节讨论了哈密顿量的一些对称性，这些哈密顿量的对称性会进一步

给出哈密顿正则方程的对称性，也就是哈密顿正则方程在变换下的不变

性。
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不妨先讨论时间反演对称性。(5)节讲过，在时间反演t → −t之下，xµ →
xµ, pµ → −pµ, 但是哈密顿量保持不变。因此，在时间反演之下哈密顿正则

方程将变换为

dxµ

dt
=

∂H

∂pµ
,

dpµ
dt

= − ∂H

∂xµ

→ dxµ

−dt
=

∂H

−∂pµ
,

−dpµ
−dt

= − ∂H

∂xµ

⇒dxµ

dt
=

∂H

∂pµ
,

dpµ
dt

= − ∂H

∂xµ
. (55)

这说明，哈密顿正则方程在时间反演之下保持不变。时间反演不变性说

明，经典力学系统的演化是可逆的！

经典力学系统演化定律的可逆性意味着，在经典力学的层次上，时间并

没有一个明确的发展方向，过去和未来没有本质的区别。但是，日常生活

经验告诉我们，过去和未来是决然不同的，时间的流动是单向的，只能像

一个箭头一样从过去到未来，不可能反过来。那么，这种时间箭头到底是

如何起源的呢？对这个问题的不同回答有许多，人们依然有一些争论，不

过，一个基本的共识是，时间的单向性应该和热力学第二定律有关系，也

即是说，是热力学而不是经典力学层次上的问题。

其实，哈密顿正则方程是一组一阶微分方程，其解Xt = (xµ(t), pµ(t))是

相空间中的一些以时间为参数的曲线，称作相空间路径。由微分方程解的

唯一性可知，过相空间任意给定点，有且仅仅只有一条相空间路径，特别

的，不同的相空间路径不会相交。也即是说，给定相空间路径上在过去的

任意一点，整个相空间路径的未来演化都将被唯一决定。不仅如此，哈密

顿正则方程的时间反演不变性进一步告诉我们，给定相空间路径在未来的

任意一点，相空间路径的整个过去也会倒过来被唯一决定。通常我们称经

典力学系统的这一性质为满满满足足足决决决定定定论论论！

18世纪伟大的物理学家拉普拉斯曾这样说道：我们可以把宇宙当前的状

态看作其过去的果和未来的因。假使一种智能可以知道在某一时刻造成自

然运动的所有力和构成自然的所有物质的位置，假使这种智能也足够强大

到有能力对这些数据进行分析，那么在宇宙里，从最大的物体到最小的粒

子，它们的运动都将能被一个简单公式描述。对于这个智能来说，不存在

不确定性，并且未来只会像过去一样呈现在它的眼前。

类似的，也可以证明，哈密顿正则方程具有空间反演不变性。也即是说

互为“镜像”的两个世界满足同样的演化规律！
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为了验证哈密顿正则方程具有空间平移不变性，我们注意到，在空间平

移之下，xi → xi + a, pi → pi, 而哈密顿量保持不变，所以在平移之下

dxi

dt
=

∂H

∂pi

,
dpi

dt
= −∂H

∂xi

→d(xi + a)

dt
=

∂H

∂pi

,
dpi

dt
= − ∂H

∂(xi + a)
. (56)

注意到a是一个常矢量，以及 ∂
∂(xi+a)

= ∂
∂xi

, 很容易看出哈密顿正则方程的

确在空间平移下保持不变。这种空间平移不变性说明，将系统作一个整体

的平移，其演化规律保持不变。换言之，无论你的系统是放在南昌，还是

平移到北京，你从实验中得出的结论都不会变。

下面以方程dxi

dt
= ∂H

∂pi
为例来解释哈密顿正则方程的空间旋转不变性，

对另一个方程dpi

dt
= − ∂H

∂xi
的讨论是完全类似的。只需注意到，在空间旋转

之下，哈密顿量保持不变，因此方程左边的dxi

dt
和右边的 ∂H

∂pi
都是三维空间

矢量，从而在空间旋转之下左右两边按完全一样的规则变，这就说明，方

程dxi

dt
= ∂H

∂pi
在空间旋转之后的结果与原方程完全等价，从而具有空间旋转

不变性。这种空间旋转不变性告诉我们，将系统整体旋转一个任意的角

度，系统的演化规律不会变。当然，和空间平移的情形一样，演化规律的

这种空间旋转不变性也是来自于系统哈密顿量的空间旋转不变性。

8 诺诺诺特特特定定定理理理

除了能量守恒之外，经典力学系统还满足其它一些重要而基本的守恒定

律，比方说总动量守恒，再比方说总角动量守恒(稍后会给出角动量的定

义)。不仅有这些守恒量，而且可以证明，它们分别是空间平移对称性和空

间旋转对称性的必然后果。实际上，著名的女数学家诺特曾经证明过一个

数学定理，即，经典力学系统任何一个连续对称性都必然对应着一条守恒

定律，这就是诺特定理。关于诺特定理的一般讨论可以参见我的《经典力

学新讲》相关内容。这里我们仅仅限于讨论空间平移对称性如何导出总动

量守恒，以及空间旋转对称性如何导出总角动量守恒。

不妨先讨论空间平移对称性与总动量守恒。首先，根据空间平移对称

性，我们有(22)式，不妨重写一下

N∑
i=1

∂H

∂xi

= 0. (57)
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其次，我们定义系统的总动量P如下

P =
N∑
i=1

pi. (58)

进而利用哈密顿正则方程(54)的第二个式子，即有

dP

dt
=

N∑
i=1

dpi

dt
= −

N∑
i=1

∂H

∂xi

= 0. (59)

所以，系统的总动量是一个常矢量，即守恒。很明显，之所以有总动量守

恒，就是因为系统具有空间平移对称性。

由于动量的物理含义就是运动的量，是对运动的一种度量，所以动量守

恒的物理含义就是系统的运动总量是守恒的。在物理学史上，动量守恒的

提出甚至比牛顿定律更早，早在牛顿之前，笛卡尔就提出“上帝创造了广

延，并把运动放进了宇宙，此后听其自然地进行。所以宇宙运动的总量必

定是常数。”后来惠更斯(也在牛顿之前)通过对碰撞过程的研究，进一步

明确了动量是一个矢量，进而完善了动量守恒定律。

动量守恒定律用途非常广泛，比如说，考虑两个小球的碰撞过程，假设

这两个小球可以用粒子模型来描述，尤其是内部结构可以忽略。假设碰撞

之前两粒子(两小球)的动量分别为p1,p2，碰撞之后的动量分别为p′
1,p

′
2, 则

动量守恒定律告诉我们

p1 + p2 = p′
1 + p′

2. (60)

由于小球的内部结构可以完全忽略，这说明碰撞过程没有能量能转换成小

球的内能，从而这两个小球的碰撞必定是所谓的弹性碰撞，假设它们仅仅

在碰上的那一刻才有相互作用，碰前和碰后两粒子都是自由的，没有相互

作用(后文将会看到，自由粒子的动量必定是常矢量), 则能量守恒还会告诉

我们

T1(p
2
1) + T2(p

2
2) = T1(p

′2
1 ) + T2(p

′2
2 ). (61)

实际上，这就是惠更斯首先发现的，弹性碰撞过程的动能守恒。在历史

上，莱布尼茨非常重视惠更斯的这一发现，并首先将今天所谓的动能命名

为“活力”，进而提出“活力”守恒定律。事实表明，不少时候我们只需

要用这些守恒定律就足够把问题研究清楚了。
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为了考虑空间旋转对称性，我们首先需要引入矢量叉乘的概念。假设有

两个三维空间矢量a = (ax, ay, az)和b = (bx, by, bz)，其叉乘结果是一个新的

三维空间矢量，记作a× b，其定义是

a× b = (aybz − azby, azbx − axbz, axby − aybx), (62)

请注意各分量指标的规律，比如叉乘结果的x分量完全由a,b的y, z分量

给出，y分量由z, x分量给出，z分量由x, y分量给出。不难看出，b × a =

−a × b, 从而矢量的叉乘并不满足交换律，所以要注意顺序。另外，不难

看出a × a = 0，反过来，如果a × b = 0，则说明b ∝ a, 即矢量b的方向

和a的方向在同一直线上。

另外，可以证明，|a × b| = |a||b| sin θ，式中θ为a、b之间的夹角，

且a × b的方向可以用右手法则来确定。为了证明这个结论，不妨设想合

适地旋转笛卡尔坐标系，使得a, b都躺在x − y平面上，并且使得a正好沿

着x轴正方向，即在此坐标系中有

a = |a|(1, 0, 0), b = |b|(cos θ, sin θ, 0). (63)

则很容易按照(62)式的定义算得

a× b = |a||b|(0, 0, sin θ). (64)

很显然, 的确有|a × b| = |a||b| sin θ, 而且a × b的结果正好沿着z轴方向(既

和a垂直，又和b垂直)，完全符合右手法则。

进一步，利用上面关于矢量叉乘的定义以及之前关于矢量点乘的定义，

不难直接证明如下矢量混合积结果

(a× b) · c = a · (b× c). (65)

把这个式子两边都按照本文给出的定义展开，然后两边比较就可以证明

了。

现在，假设我们将系统绕着某个任意的转轴n⃗(n⃗为单位矢量)转过一个无

穷小角度δϕ，记n⃗δϕ = δ⃗ϕ。如图(4)所示，设某个三维空间矢量x转到了x′,

转动前后的改变量为δx = x′ − x。 从图中很容易看出|δx| = δϕ|x| sin θ, 也
容易看出δx的方向正好是n⃗叉乘x的方向，因此即有

δx = δ⃗ϕ× x. (66)
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Figure 4: 绕任意转轴旋转δϕ角。

根据上述结果可知，在无穷小三维空间旋转之下，系统中每一个粒子的

位置矢量和动量都会有一个无穷小改变，具体来说，xi → x′
i = xi + δxi,

pi → p′
i = pi + δpi, 按照上一段的结果

δxi = δ⃗ϕ× xi, δpi = δ⃗ϕ× pi. (67)

空间旋转对称性意味着，系统的哈密顿量在上述无穷小三维空间旋转之

下保持不变，即有

H(x1 + δx1, ...,xN + δxN ,p1 + δp1, ...,pN + δpN) = H(x1, ...,xN ,p1, ...,pN).

将这个结果按照无穷小量进行泰勒展开，并保留到一阶小量(忽略高阶小

量)，即有

0 =
N∑
i=1

[
δxi ·

∂H

∂xi

+ δpi ·
∂H

∂pi

]
=

N∑
i=1

[
(δ⃗ϕ× xi) ·

∂H

∂xi

+ (δ⃗ϕ× pi) ·
∂H

∂pi

]
=

N∑
i=1

δ⃗ϕ ·
[
xi ×

∂H

∂xi

+ pi ×
∂H

∂pi

]
. (68)

上式最后一行利用了矢量混合积的公式(65). 由于δ⃗ϕ的任意性，且与指

标i无关，所以上述结果就意味着

N∑
i=1

[xi ×
∂H

∂xi

+ pi ×
∂H

∂pi

]
= 0. (69)
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这就是空间旋转不变性告诉我们的哈密顿量必然满足的微分方程。

下面我们定义角动量的概念，第i个粒子相对于参考系原点的角动量定

义为xi × pi, 从而系统的总角动量L为

L =
N∑
i=1

(xi × pi). (70)

进而利用哈密顿正则方程(54)，即有

dL

dt
=

N∑
i=1

(
dxi

dt
× pi + xi ×

dpi

dt
)

=
N∑
i=1

(
∂H

∂pi

× pi − xi ×
∂H

∂xi

)

= −
N∑
i=1

(pi ×
∂H

∂pi

+ xi ×
∂H

∂xi

) = 0. (71)

上式最后一行我们利用了旋转不变性的(69)式。

上面的结果明确地告诉我们，只要有空间旋转不变性，就必然有系统的

总角动量守恒！

值得注意的是，角动量的定义依赖于参考系的坐标原点，假设把参

考系的坐标原点平移一下，使得i粒子在移动之后的参考系中的位置矢量

为x′
i = xi + a, 则移动之后，系统的总角动量L′为

L′ =
∑
i

(x′
i × pi) =

∑
i

(xi × pi) + a×
∑
i

pi = L+ a×P. (72)

可见，坐标原点平移以后，系统的总角动量也会变。但是，这并不影

响角动量守恒定律的成立，因为根据总动量守恒可知，移动之后多出来

的a × P项也是守恒的。当然，如果我们的参考系是使得总动量P = 0的参

考系，那总角动量的定义就和坐标原点的选取无关了！

星系就是一个很好的总角动量守恒的例子。具体来说，一个星系可以

近似看成是一个封闭系统，星系中的恒星和气体云围绕着星系中心旋转，

整个星系的总角动量是守恒的，坐标原点常常选为星系中心。按照右手法

则(四指沿着旋转方向)确定的垂直于星系盘的方向就是总角动量的方向，

角动量守恒意味着这个方向是不变的。这也是为什么星系盘通常呈现出扁

平形状的原因，因为角动量守恒会导致物质在旋转过程中向盘面分布。
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与能量守恒定律类似，动量守恒定律和角动量守恒定律也是自然界最为

基本的定律。上面我们通过利用哈密顿正则方程把它们和空间的对称性联

系起来，这一方面解释了这两个守恒定律为什么这么基本，因为它们是空

间对称性的必然推论，另一方面，成功地得到这两个守恒定律，也是对哈

密顿正则方程正确性的一个重要检验。

空间平移对称性和空间旋转对称性是任意封闭系统在惯性系中都具有的

对称性，从而动量守恒和角动量守恒也是任意封闭系统都具有的守恒量。

但是，对于某些特定的经典力学系统，由于其相互作用势能的特殊形式，

从而可能会存在更多的隐藏着的对称性，进而会有更多的守恒量。甚至，

这些守恒量可以多到使得我们能够解析求解出系统在相空间的演化路径，

这样的系统就称作可积系统，数学家或者数学物理学家对这种系统研究得

更多一些。

9 惯惯惯性性性定定定律律律以以以及及及力力力和和和力力力矩矩矩的的的概概概念念念

惯惯惯性性性定定定律律律

由哈密顿正则方程，立即就能推导出伽利略著名的惯性定律，常常也称

作牛顿第一运动定律。为此，假设我们研究的封闭系统由单独一个粒子组

成，其状态变量是(x,p), 由于只有一个粒子，所以没有其它粒子和它相互

作用，这是一个自由粒子，从而根据第(6)节可知，其哈密顿量为

H = T (p2). (73)

代入哈密顿正则方程(54)，即有(利用求导的链式法则)

dx

dt
= 2T ′(p2)p,

dp

dt
= 0. (74)

式中T ′(p2)表示函数T对自变量p2求导。从上面第2个式子知，自由粒子的

动量p为常矢量，代入第一个式子，进而又知，dx
dt
为常矢量。

dx
dt
是粒子位置矢量随时间的变化率，又称之为粒子的速度，常常记

作v，

v =
dx

dt
. (75)
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所以，自由粒子的速度v为常矢量，这意味着，自由粒子的运动方向不会

改变，并且运动的快慢也不会变，也即是说，自由粒子必定作匀速直线

运动(静止看作速度为零的匀速直线)！当然前提是，我们的参考系是惯性

系。这就是惯性定律。

根据上面对速度的定义可知，(74)式的第一个式子给出了自由粒子动量

和速度之间的关系！换言之，动量和速度之间的关系本身是由经典力学系

统的演化定律(也就是哈密顿正则方程)给出的，再次强调，它并不是本文

前面对动量这一概念定义的一部分。而且，对于自由粒子，这个关系显然

依赖于动能T (p2)的具体形式，而目前我们还没有决定T (p2)的表达式，所

以严格来说，我们还不知道自由粒子动量和速度之间的具体关系。只知

道，根据惯性定律，它们都是常矢量。

惯性定律和伽利略相对性原理是自洽的，因为粒子只要相对于一个惯性

系中作匀速直线运动，那么它相对于所有的惯性系都是作匀速直线运动，

虽然在不同惯性系中，它的速度并不相同。

在历史上，惯性定律的发现是一件非常了不起的事情，因为它相当反直

觉。根据我们日常生活的直觉，一个物体我们对它施加作用，它才会动，

一旦作用停止，它就会慢慢停止下来。看起来似乎是，其它物体的作用，

是一个物体运动的原因。从亚里士多德开始，上千年人们都是这么认为

的。但是，伽利略发现，运动本身不需要原因，自由粒子完全可以一直作

匀速直线运动。

伽利略发现惯性定律的过程当然和我们不一样。为了大体领略伽利略的

思路，不妨设想你在冰面上推一个小木块，你推，小木块就会运动，你停

止推，木块就会慢慢停止下来，不是立即停止，而是继续运动一小段再停

止。因此伽利略就想，如果把冰面弄得更光滑会怎么样呢？很显然，木块

的速度会减小得更慢，从而会运动得更远才停止。那么，如果冰面绝对光

滑会怎么样呢？伽利略的推论是，木块的速度将不会减小，而是会一直匀

速运动下去，永远不会停止。绝对光滑就意味着木块不受任何摩擦力，是

一个不受外界作用的自由粒子，所以，伽利略就得到了惯性定律。

注意，伽利略不是简单的对现象进行归纳，而是应用了正确的科学思维

方法，就是将现象外推到理想化的极限情形，即使这个绝对光滑的理想化

极限实验室里并不能实现。其实，伽利略发现相对性原理也同样应用了这

种进行理想化外推的思维方法。

可以说，正确地重复出伽利略惯性定律，是对哈密顿正则方程正确性的

一个重要检验。
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力力力的的的概概概念念念

运动本身不需要原因，那么什么需要原因呢？哈密顿正则方程同样能告

诉我们这个问题的答案。为此，考虑一般的多粒子系统，根据第(6)节，系

统的哈密顿量为

H =
∑
i

Ti(p
2
i ) + V (x1,x2, ...,xN). (76)

代入哈密顿正则方程(54)的第二个式子，即有

dpi

dt
= −∂V

∂xi

. (77)

可见，粒子间的相互作用(由相互作用势能V描述)，是粒子动量改变的原

因，或者说是粒子运动改变的原因！

所以，运动不需要原因，运动的改变才需要原因。

这里我们可以定义一个新的概念，记

Fi = −∂V

∂xi

, (78)

称之为第i个粒子受到的其它粒子对它的作用力！如此一来就可以将(77)式

重写为

dpi

dt
= Fi. (79)

其含义就是，粒子受到的力是其运动改变的原因。这个方程基本上就是牛

顿第二运动定律了，但其实离真正的牛顿定律还有点距离，因为我们还不

知道动量pi和粒子速度之间的具体关系！因此还无法引入加速度等概念。

这个问题将会在后文解决。

从力的这个定义(78)可以看出，所谓的力，无非就是相互作用势能随着

粒子位置变化的剧烈程度。显然，根据定义，力是一个三维空间矢量。

根据空间平移对称性，
∑N

i=1
∂V
∂xi

= 0((43)式)，进而即有

N∑
i=1

Fi = −
N∑
i=1

∂V

∂xi

= 0. (80)

即一个封闭系统所有粒子受到的力的总和等于零！由于每一个粒子受到

的力都来自于系统中的其它粒子，而不是来自于系统之外(因为是封闭系
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统)，所以每一个力都是所谓的内力，所以结论就是，一个系统所有内力的

总和等于零！这是空间平移对称性的必然推论。

不难看出，从力的总和等于零也能推导出系统的总动量守恒。不过，这

个推导依赖于(76)式这个哈密顿量的形式，而上一节对动量守恒的推导只

依赖于空间平移对称性，因此上一节的推导更加具有一般性。

如果将整个系统分成A、B两部分，则系统的相互作用势能V就可以

约化成V = VA + VB + VAB，其中VA和VB分别表示A、B各自内部的相互

作用，VAB则表示A、B两部分之间的相互作用。空间平移不变性将意味

着VA、VB以及VAB分别都是空间平移不变的。则由VA的空间平移不变将导

出A部分自己的内力之和等于零，同样VB的平移不变将导出B部分自己的

内力之和等于零。而VAB的空间平移不变性将导出

N∑
i=1

FAB
i = 0, (81)

式中上标AB表示这里的力是A、B两部分之间的相互作用力。这就说

明B对A的合力等于负的A对B的合力，即∑
i∈A

FAB
i = −

∑
j∈B

FAB
j . (82)

这也就是两部分之间的作用力和反作用力大小相等，方向相反。通常也称

这个结论为牛顿第三定律。

特别的，如果只有两个粒子进行相互作用，势能为V (x1,x2)，则有

F1 = −F2. (83)

根据力的定义，F1是粒子2对粒子1的作用力，而F2则是粒子1对粒子2的作

用力，也称作1对2的反作用力。所以结论就是，两粒子间的作用力和反作

用力大小相等，方向相反。这当然是牛顿第三定律的特殊情况。

两粒子系统也称作两体系统，多粒子系统就是多体系统。一般来说，多

体间的相互作用可能同时和三个或三个以上粒子有关系，这时候可以谈某

个粒子受到的作用力，但是一般来说，不能清楚地说，这个作用力是来自

于哪个粒子，因为它同时和多个粒子有关。

在物理学的一些领域中，多体相互作用是可以出现的，比如在描述

如图(5)所示的三原子共价键的键角振动中，就可以用到三体相互作用势

能。具体来说，图(5)左图所示的三个原子通过两个共价键(图中的实线)形
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成一个分子，其中2原子位于中间，1原子和3原子分别位于左上角和右上

角，1-2之间有一个共价键，2-3之间也有一个共价键，两个共价键的夹角

记为θ123, 平衡时θ123 = θ0123, θ
0
123当然是固定的常数，但是θ123不是，因为它

可以在平衡位置θ0123附近振动。 很明显，如果以x1,x2,x3分别标记三个原

Figure 5: 左图是键角振动原理图，右图是键角势能V (θ123)。

子的位置矢量，则

θ123 = arccos
( x12 · x32

|x12||x32|

)
, (84)

式中x12 = x1 − x2, x32 = x3 − x2。在最简单的模型中，这种键角振动的势

能可以用如下三体相互作用势V (θ123)来描述，

V (x1,x2,x3) = V (θ123) =
1

2
k123(θ123 − θ0123)

2. (85)

式中k123为某个常数。

不过，在更多的情形中，多粒子间的相互作用其实都可以约化为两体相

互作用，即相互作用势能V (x1,x2, ...,xN)具有如下形式

V (x1,x2, ...,xN) =
∑
i,j|j>i

Vij(xi,xj). (86)

Vij表示两体相互作用势能，式中的求和是对所有的两体势能求和，也就

是对所有满足j > i的i, j求和(同时对i和j求和。j < i就不需要再求和了，

否则就重复了)。那这时候就可以清楚地定义j粒子对i粒子(j ̸= i)的作用

力Fij为,

Fij = − ∂

∂xi

Vij(xi,xj). (87)
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而i对j的反作用力Fji则是

Fji = − ∂

∂xj

Vij(xi,xj). (88)

这时候系统的空间平移不变性就会进一步要求两体势能Vij(xi,xj)也是空间

平移不变的。进而就可以推导出

Fji = −Fij. (89)

这时候，系统内力的总和等于零这一结论就可以理解为，粒子间的作用力

和反作用力成对的消去了！但是，值得强调的是，即使粒子间的相互作用

不能约化成两体相互作用，系统内力的总和也必然为零，因为这是空间平

移不变性的必然推论。

常见的两体相互作用势能比如有反比于两粒子间距的势能，即

V12(x1,x2) =
k12

|x1 − x2|
, (90)

式中k12为一个常数。万有引力势能和电荷之间的库伦势能就属于这种类

型。对于这种势能，根据力的定义，不难得到

F12 = − ∂

∂x1

( k12
|x1 − x2|

)
=

k12
|x1 − x2|2

e12, (91)

式中e12 = x1−x2

|x1−x2|为从粒子2指向粒子1的单位矢量(即模长为1的矢量)。为

了算出这个结果，你只需注意到

|x1 − x2| =
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2]1/2, (92)

然后将 ∂
∂x
按照分量( ∂

∂x
, ∂
∂y
, ∂
∂z
)分别求导即可。这个结果表明，两粒子之间

的相互作用力反比于距离|x1−x2|的平方，并且，如果k12 > 0，那么2对1的

力方向是从2指向1的，即沿着两粒子连线向外的，从而是一种排斥力。相

反，如果k12 < 0，结果就是一种吸引力。万有引力的确反比于距离平方，

而且，我们知道万有引力是一种吸引力，这就说明，对于万有引力情形，

必然有k12 < 0。即万有引力势能是负的！

还有一种常见的两体相互作用是所谓的汤川势，其两体势能函数为

V (x1,x2) =
k

|x1 − x2|
e−

|x1−x2|
d , (93)
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式中d > 0。与上一种情况相比，这种两体势能多了一个指数衰减因

子e−
|x1−x2|

d 。由于有这个衰减因子，所以这种相互作用只在两体之间的距

离小于d时才很明显，一旦距离明显超过d，相互作用就会迅速衰减为零。

正因为如此，常常称参数d为这种相互作用的力程。像这样具有一个有限

力程的相互作用就称作短程力相互作用。与之相反，像万有引力这样的与

距离成反比的势能，虽然相互作用也随着距离的增加而衰减，但不是指数

衰减，而是比较缓慢的衰减，而且它显然相当于力程d → +∞极限下的汤
川势，因此像这样的相互作用就称作长程力相互作用。很显然，万有引力

和库伦相互作用力都是长程力。

力力力矩矩矩的的的概概概念念念

有了力的概念，我们还可以进一步定义力矩的概念。系统中第i个粒子

相对于坐标原点的力矩Mi定义为

Mi = xi × Fi. (94)

类似的，我们记第i个粒子的角动量为Li，从而

Li = xi × pi. (95)

另一方面，根据哈密顿量的一般形式(76), 代入哈密顿正则方程(54)，

不难得出

dxi

dt
= 2T ′

i (p
2
i )pi,

dpi

dt
= Fi. (96)

注意，这个结果用到了势能函数V与粒子动量无关的假设。又由于，

dLi

dt
=

dxi

dt
× pi + xi ×

dpi

dt
, (97)

代入(96)式, 并注意到pi × pi = 0, 即有

dLi

dt
= xi × Fi = Mi. (98)

即粒子角动量随时间的改变完全由粒子受到的力矩决定！

将(98)式对所有的粒子求和，并利用总角动量守恒，立即有

N∑
i=1

Mi = 0, (99)
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即系统所有内力的力矩总和为零！这个结论也可以直接从空间旋转对

称性得出。为此只需注意到在哈密顿量的一般形式H =
∑

i Ti(p
2
i ) +

V (x1,x2, ...,xN)中，动能项已经是空间旋转不变的，从而哈密顿量的空

间旋转不变性就意味着，势能函数V (x1,x2, ...,xN) 自身也得是空间旋转不

变的。进而仿照上一节对(69)式的推导，立即就能得出

N∑
i=1

(xi ×
∂V

∂xi

) = 0 ⇒
N∑
i=1

(xi × Fi) = 0. (100)

注意，这个推导也用到了势能函数V (x1,x2, ...,xN)与粒子动量无关的假

设。

同样，可以将整个系统分成A、B两部分，则由VAB的空间旋转不变性

可以导出：A对B的力矩之和等于负的B对A的力矩之和。这也是牛顿第三

定律的一部分。很显然，这个结论的成立也依赖于势能函数VAB与粒子动

量无关的假设。

特别的，对于1、2两个粒子之间的两体相互作用，势能为V (x1,x2)，即

有

M1 = −M2 ⇒ x1 × F1 + x2 × F2 = 0. (101)

又注意到F2 = −F1，进而即有

(x1 − x2)× F1 = 0. (102)

这个式子说明F1 = −F2 ∝ (x1 − x2), 即两体相互作用力必然沿着两粒子

连线的方向！这当然是空间平移对称性和空间旋转对称性共同作用的结

果。实际上，由空间平移对称性，V (x1+a,x2+a) = V (x1,x2)，从而两体

势能必然只能依赖于两体位置矢量之差，即为V (x1 − x2)的形式，而由矢

量x1 − x2得出的空间旋转不变量只有|x1 − x2|，从而说明，两体相互作用
势能必然具有V (|x1 − x2|)的形式。这就说明，两体之间的相互作用只能沿
着两体连线的方向，有时候把这也当作牛顿第三定律的一部分。当然，这

个结论依赖于两体势能V (x1,x2)与两粒子动量无关的假设。

值得再次说明的是，尤其在考虑到相对论修正以后，两体势能依赖于

粒子动量是完全有可能的。这里不妨再举一个例子，比如核外电子绕原子

核运动这样一个两体问题。由于原子核比核外电子重很多，可以近似看作

是位于坐标原点不动的，所以只需要考虑核外电子的动力学变量。考虑到
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相对论效应，这时候除了电子的位置x和动量p以外，还有第三种动力学变

量，即电子的自旋，记作S。那这时候考虑到相对论修正，电子和原子核

之间的相互作用势能就会有一个自旋轨道耦合项，如下

A

r3
L · S. (103)

式中A为某个常数，r = |x|为电子与原子核的距离，L = x × p为电子的

角动量。显然，这样一个自旋轨道耦合项依赖于粒子动量p(因为它依赖

于L = x× p), 不仅如此，它还依赖于电子自旋。当然，我们只是提一下这

个例子，因为对自旋的自洽处理通常要放到量子力学课程之中。这里真正

值得注意的是，在这些相互作用能依赖于粒子动量(或者自旋)的情形下，

通常都没有两体间的相互作用力一定沿着两粒子连线的结论！

更更更多多多的的的两两两体体体相相相互互互作作作用用用势势势

当然，可以考虑更多的两体相互作用势能V (r), 式中r = |x1 − x2|为两
体之间的距离。比方说，两个中性原子或中性分子之间的V (r)常常满足，

当距离r很小时，势能随r的减小而急剧增加，表现为一种排斥力，而当距

离r比较大时，V (r)则随r减小而减小，表现为一种吸引力，当然，如果r非

常大，则吸引力会逐渐减弱，V (r)会趋于零。这样的势能V (r)会有一个极

小值，不妨记极小值处的r为rc。

符合上述特征的典型模型比方有Lennard-Jones势VLJ(r)(如图(6)所示)，

它可以由下式给出

VLJ = 4ε
[(σ

r

)12 − (σ
r

)6]
, (104)

式中的ε是一个有限的参数(注意，不是表示无穷小量)，σ也是一个参数。

由dVLJ

dr
= 0不难求出其势能极小值位置，为

rc = 21/6σ. (105)

由势能函数V (r)不难求出两体间的相互作用力F1

F1 = − ∂V

∂x1

= −V ′(r)
∂r

∂x1

= −V ′(r)e12, (106)

式中V ′(r) = dV
dr
。很显然，在rc处，两粒子之间的相互作用力等于零, 从而

为平衡位置。
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Figure 6: Lennard-Jones势

如果两粒子待在平衡位置rc附近，则我们可以将V (r)在rc附近作泰勒展

开(注意到泰勒展开的一阶项自动为零)，进而有

V (r) = a+
1

2
k · (r − rc)

2 + ... (107)

式中常数a = V (rc)，常数k = d2V
dr2

|rc。并且，由于rc是极小值位置，所以显

然k > 0。忽略泰勒展开高阶项得到的这种二次函数型的势能就是所谓的谐

振子势，因为它可以用来描述弹簧振子的简谐振动。的确，根据(106)式不

难算得平衡位置附近的相互作用力

F1 = −k · (r − rc)e12, (108)

很显然，这个力的大小与粒子离开平衡位置的距离成正比，方向则始终指

向平衡位置，正好类似于弹簧弹力！不过，值得注意的是，这种谐振子势

只在平衡位置附近才成立，在距离更大或者更远的地方，它都不成立。

自然界中会不会出现更奇怪的两体相互作用势呢？回答是，会！比方

说，有一种相互作用势能，即使在两粒子之间距离很大时，也不会衰减为

零，反而，距离越远相互作用势越大！不妨称这种势能为禁闭势。因为它

意味着，这两个相互作用的粒子永远无法真正分开得很远，因为做到这一

点需要趋于无穷大的能量，因此这两个粒子是相互禁闭着的。实际上，

正-反两个夸克(记作qq) 之间的相互作用势能就属于这种类型，在最简单的

模型中，正-反夸克之间的势能可以写作

Vqq(r) = −αs

r
+ σr. (109)
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其中第一项是普通的库伦势，而第二项是随着两夸克之间的距离r线性增长

的，是禁闭势。怎么从理论上理解这种禁闭势，依然是当前量子色动力学

研究的前沿课题。

10 非非非封封封闭闭闭系系系统统统

这一节我们把前面的一些结论推广到非封闭系统。同样，我们考察的

是N个粒子组成的系统，其位置矢量分别为x1,x2, ...,xN , 不过现在我们假

设在这个系统之外有一些环境粒子，它们和这N个粒子之间有相互作用，

从而这N个粒子的系统并不是一个封闭系统，因为它们和环境之间存在相

互作用。当然，如果把环境粒子也包括进来，考虑系统和环境所构成的整

个总的系统，那当然又是一个封闭系统。换言之，非封闭系统总是可以看

成更大的封闭系统的子系统。

为了简单起见，不妨假设只有一个环境粒子，其位置矢量记作xe，推广

到多个环境粒子的情形是容易的，我们留给读者自己考虑。

记整个总系统的相互作用势能为V (x1, ...,xN ,xe), 一般来说，它由很多

项组成，假设把所有这些项中与xe无关的项放在一起，记作VI(x1, ...,xN),

剩下与xe有关的项就记作Ve(x1, ...,xN ,xe), 即

V (x1, ...,xN ,xe) = VI(x1, ...,xN) + Ve(x1, ...,xN ,xe). (110)

很显然，相互作用势能VI描写的是N粒子系统内部的相互作用，而Ve描述

的是N粒子系统与环境之间的相互作用。作为整个总系统的相互作用势

能，V当然有空间平移对称性和空间旋转对称性，由于V = VI + Ve，所以

进而可以假设，VI和Ve分别也都具有空间平移对称性和空间旋转对称性。

由VI的空间平移对称性和空间旋转对称性可以得出N粒子系统的内力之

和等于零，内力矩之和也等于零。不妨将这个结果概括成

N∑
i=1

FI
i = 0,

N∑
i=1

MI
i = 0, (111)

其中上标符号I表示这些力和力矩都来自于N粒子系统内部。

而由Ve导出来的力是N粒子系统与环境之间的相互作用力，我们以加了

上标e这样的符号来表示，力就是Fe，力矩就是Me。
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根据Ve的空间平移对称性，我们有

N∑
i=1

Fe
i + Fe

e = 0, (112)

式中Fe
e = −∂Ve

∂xe
是N粒子系统对环境粒子的反作用力，Fe

i的定义则是显然

的。
∑N

i Fe
i当然就是环境粒子对N粒子系统的合外力，不妨简记作Fe，

即Fe =
∑N

i Fe
i。从而，根据上面推出来的式子，我们有

Fe = −Fe
e. (113)

类似的，由Ve的空间旋转对称性，我们有

N∑
i=1

Me
i +Me

e = 0, (114)

式中Me
e = xe × Fe

e为N粒子系统对环境的反作用力矩。类似的，可以定

义Me =
∑N

i=1M
e
i为环境粒子对N粒子系统的外力矩之和，从而

Me = −Me
e. (115)

N粒子系统的哈密顿量H可以自然地定义为

H =
N∑
i=1

Ti(p
2
i ) + VI + Ve, (116)

也即是说，我们把系统与环境之间的相互作用能Ve也算作系统能量的一部

分。整个总系统的哈密顿量Htotal毫无疑问是

Htotal =
N∑
i=1

Ti(p
2
i ) + Te(p

2
e) + VI + Ve = H + Te(p

2
e), (117)

式中pe表示环境粒子的动量，Te表示环境粒子的动能。

由于整个总的系统是封闭系统，从而当然有哈密顿正则方程成立，进而

dxi

dt
=

∂Htotal

∂pi

=
∂H

∂pi

. (118)

式中第一个等于号来自于总系统的哈密顿正则方程，第二个等于号来自

于Htotal = H + Te(p
2
e), 且Te与pi无关！类似的，也有

dpi

dt
= −∂Htotal

∂xi

= −∂H

∂xi

. (119)
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这两个结论清楚地告诉我们，虽然N粒子系统本身不是封闭系统，但只要

将它和环境之间的相互作用能算作系统能量的一部分，那么它也满足哈密

顿正则方程！这就推广了哈密顿正则方程的适用范围。

不过，虽然N粒子系统也满足哈密顿正则方程，但是，它的能量通常

可不守恒！这是因为现在H不仅和N粒子有关，还和环境粒子的xe有关(通

过H中的Ve项)，从而

dH

dt
=

∑
i

(∂H
∂xi

· dxi

dt
+

∂H

∂pi

· dpi

dt

)
+

∂H

∂xe

· dxe

dt

=
∑
i

(∂H
∂xi

· ∂H
∂pi

− ∂H

∂pi

· ∂H
∂xi

)
+

∂Ve

∂xe

· dxe

dt

= −Fe
e · ve = Fe · ve ̸= 0. (120)

式中ve = dxe

dt
为环境粒子的速度。通常称Fe · ve为外力对系统做功(也就是

环境粒子对系统做功)的功率，记作Pe

Pe = Fe · ve. (121)

从而上面的推导结果即是

dH

dt
= Pe. (122)

即系统能量随时间的变化率等于外力对系统做功的功率。这就是所谓的功功功

能能能原原原理理理。

从Pe的定义可以清楚地看到，环境粒子对N粒子系统功率依赖于环境粒

子自身的速度，如果环境粒子的速度均为零，那它们就不会对N粒子系统

做功，即使它和N粒子系统之间存在相互作用。在这种情况下，N粒子系

统的能量就依然守恒。

一种特别重要的情况就是环境粒子非常重，以至于N粒子系统对它的反

作用也难以使它运动，即xe是一个常矢量，在这种情况下，N粒子系统的

能量就依然守恒。常见的例子是环境粒子和系统之间只存在两体相互作用

的情况，即

Ve(x1, ...,xN ,xe) =
N∑
i=1

Ve,i(xi,xe), (123)

这时候，由于xe是常矢量，所以也常常省略它不写，进而称相应的Ve,i(xi)

为i粒子感受到的外势场。换言之，如果N粒子系统受到一个静态的外势场
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的作用，即

Ve =
∑
i

Ve,i(xi), (124)

那么，即使这时候系统不是一个封闭系统，也依然有能量守恒。

比方说，太阳系的行星系统就是这样的例子，与行星相比，太阳太重，

其运动可以忽略，进而可以看成是一个提供外势场的环境粒子，各个行星

就是在太阳的引力场中运动。这时候行星系统的能量是守恒的，当然，前

提是得把行星和太阳之间的外有引力势能包括进来。最简单的，比如只考

虑一颗行星，比如地球，地球在太阳的引力场中运动，它本身不是一个封

闭系统，但是依然有能量守恒。

再比方说，相比于地面上的物体，地球就是很重的“环境粒子”，它

为地面上的每一个运动物体提供了一个重力势能。这时候能量守恒就意味

着，在地面物体的运动过程中，动能和重力势能的总和是不变的。当然，

我们现在依然不知道动能的具体计算公式，也许你在中学学过，但在本文

的理论框架中，我们是一切从零开始，所以暂时我们还不能使用它，因为

我们还没有从基本原理出发推导出它。

定义N粒子系统总动量为P =
∑N

i=1 pi, 由于受到外界的作用，P现在也

是不守恒的。利用刚才推导出来的哈密顿正则方程，或者引用前面推导出

来的(79)式，即有

dP

dt
=

∑
i

dpi

dt
=

∑
i

FI
i +

∑
i

Fe
i = Fe. (125)

式中我们已经用到了N粒子系统的内力之和等于零。这个结果告诉我

们，N粒子系统总动量随时间的变化率等于系统受到的合外力，这就是所

谓的动动动量量量定定定理理理！

类似的，也可以定义N粒子系统的总角动量L =
∑

i(xi × pi) =
∑

i Li,

则引用前面推导出来的(98)式，即有

dL

dt
=

∑
i

dLi

dt
=

∑
i

MI
i +

∑
i

Me
i = Me, (126)

同样，我们用到了系统内力矩之和等于零的结论。这个结果就是所谓的角

动量定理。

不妨将N粒子系统的动量定理和角动量定理重新概括如下

dP

dt
= Fe,

dL

dt
= Me. (127)
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有时候环境对系统虽然有作用，但是合外力为零，那么系统的总动量就

依然守恒。另有一些时候，外力虽然不是零，但是外力矩之和为零，那么

系统的总角动量就守恒。不妨举一个例子，考虑一颗行星绕太阳的运动。

太阳很重近似是不动的，不妨取其位置为坐标原点，记行星的位置矢量

为x。太阳为行星提供了一个外势场，Ve(x), 由于太阳在坐标原点不动，总

系统绕坐标原点的空间旋转不变性就意味着，

x× ∂Ve

∂x
= 0 ⇒ x× Fe = 0. (128)

换言之，太阳对行星的外力矩必然等于零，从而，只要以太阳为坐标原

点，那么行星绕太阳运动的角动量就必定守恒，实际上这就是所谓的开普

勒第二定律。

11 伽伽伽利利利略略略变变变换换换和和和牛牛牛顿顿顿第第第二二二定定定律律律

我们知道，经典力学系统的状态是相对的，不同参考系看到的系统状态并

不相同。本节首先是要研究系统状态在不同惯性系之间的变换关系。当

然，我们这里只研究非相对论情形下的变换关系，也就是所谓的伽利略变

换。

其次，本节还将把伽利略变换与伽利略相对性原理结合起来，进而确定

粒子动能T (p2)的具体表达式，以及确定粒子动量的具体计算公式，也就是

确定动量和速度之间的关系。进而，我们将由哈密顿正则方程推导出完整

版的牛顿第二定律。

伽伽伽利利利略略略变变变换换换

假设有两个惯性系K和K ′, 其中K系相对于K ′系以速度V匀速运动，如

图(7)所示。首先，我们假定两个参考系的时间是一样的，即

t′ = t. (129)

这就是所谓的绝对时间假设，它只在低速(与光速相比)的非相对论世

界才成立，在狭义相对论中并不成立。 其次，为了方便起见，我们假

设t = 0时，这两个参考系完全重合。

现在，考虑一个粒子，其在K系中的状态为(x,p), 在K ′系中的状态

为(x′,p′), 所谓的伽利略变换，就是关于这两个不同状态之间的变换关系。
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Figure 7: K系相对于K ′系以速度V匀速运动，且t = 0时两参考系完全重

合。

从图(7)中不难直观地看出

x′ = x+Vt. (130)

为了找到动量之间的变换关系，我们注意到由于K系相对于K ′系以速

度V匀速运动，从而粒子相对于K ′系的运动相比于它相对于K系的运动，

必然多了一个速度V的成分。由于动量是对粒子运动的刻画，因此，这就

意味着，粒子在K ′系中的动量p′必然比其在K系中的动量p多了一个正比

于速度V的成分，不妨记这个比例系数为m, 从而即有

p′ = p+mV. (131)

我们称m衡量的是这个粒子运动的惯性，它是粒子自身所具有的一个特征

常量，也称之为粒子的质量，这就是我们对质质质量量量的的的定定定义义义。而(131)式就是粒

子动量的伽利略变换关系式。

特别的，考虑两参考系之间的相对速度V为一个无穷小量的情形是很有

用的，这也就是考虑V = ϵ⃗(⃗ϵ代表一个无穷小速度) 的无穷小伽利略变换。

这时候，粒子状态的变换关系就成为

x′ = x+ ϵ⃗t, p′ = p+mϵ⃗. (132)

确确确定定定粒粒粒子子子动动动能能能表表表达达达式式式
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现在考虑一个自由粒子，在K系中其哈密顿量为H = T (p2), 代入哈密

顿正则方程，即有

dx

dt
= 2T ′(p2)p,

dp

dt
= 0. (133)

式中T ′表示T对作为自变量的p2进行求导。当然，其实前文讨论惯性定律

时，我们已经见过这个结果了。

相对性原理告诉我们，经典力学系统的演化规律在不同的惯性系中应

该保持不变，也即是说演化规律在伽利略变换前后应该保持等价。类似

于K系中自由粒子的演化方程(133)，K ′系中的演化方程当然就成了

dx′

dt
= 2T ′(p′2)p′,

dp′

dt
= 0. (134)

那么它和原来K系中的(133)式在什么情况下才等价呢？

为了回答这个问题，我们假设K ′系相对于K系是一个无穷小伽利略变

换，因此代入(132)式，并注意到m和ϵ⃗均为常数，即有

dp′

dt
= 0 ⇔ dp

dt
= 0. (135)

即(133)式的第二个方程的确和(134)式的第二个方程等价。当然，由这第二

个方程可知，p为常矢量。

对于(134)式的第一个方程，代入无穷小伽利略变换(132)以后，即有

dx

dt
+ ϵ⃗ = 2T ′(p2 + 2mp · ϵ⃗)(p+mϵ⃗), (136)

式中利用了p′2 = (p +mϵ⃗)2 = p2 + 2mp · ϵ⃗, 这里我们只保留了一阶无穷小
量。将上面这个结果再次对含无穷小量ϵ⃗的项进行泰勒展开，并保留到一阶

无穷小量为止，即有

dx

dt
+ ϵ⃗ = 2T ′(p2)p+ 2mT ′(p2)⃗ϵ+ 4mT ′′(p2)(p · ϵ⃗)p, (137)

式中T ′′表示T对自变量p2的二阶导数。为了讨论清楚这个结果什么时候

和(133)式的第一个方程等价，我们将它减去(133)式的第一个方程(等式两

边分别相减)，即有

ϵ⃗ = 2mT ′(p2)⃗ϵ+ 4mT ′′(p2)p(p · ϵ⃗). (138)
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注意到，相对性原理对于两个相对作任意匀速运动的惯性系都成立。这

就意味着，(138)必须对指向任意方向的ϵ⃗都成立。因此，不妨取ϵ⃗与p相垂

直(注意p是一个常矢量)，即取

p · ϵ⃗ = 0. (139)

则这时候(138)式就成了

ϵ⃗ = 2mT ′(p2)⃗ϵ. (140)

很显然，这个式子要成立的话，就必然有

2mT ′(p2) = 1. (141)

将它再次对p2求导，并注意到m为常数，即有

T ′′(p2) = 0. (142)

很显然，(141)式和(142)式的成立就意味着(138)式恒成立！

归纳一下，以上推导说明，(134)式的第一个方程如果要和(133)式的第

一个方程等价，充分必要条件就是(141)式要成立！而很显然，对(141)式积

分，即给出

T (p2) =
p2

2m
+ C, (143)

式中C为积分常数。注意到T (p2)的含义为粒子动能，也即是说，当粒子静

止, 即p = 0时，它应该等于零，由此就可以定出常数C = 0。从而我们最

终得到

T (p2) =
p2

2m
. (144)

即，自由粒子的演化定律满足相对性原理的充分必要条件是，其动能表达

式由(144)式给出。所以，最终我们通过伽利略变换和伽利略相对性原理得

到了粒子动能的表达式。

从而，自由粒子的能量为H = p2

2m
, 由于能量必须要有下界，从而这就意

味着参数m必须大于零，即

m > 0. (145)
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所以，粒子的质量必须是一个大于零的常量。

将动能的表达式(144)反代入(133)式的第一个方程，并注意到粒子速

度v = dx
dt
，即可以得到自由粒子动量和速度之间的关系

p = mv. (146)

值得指出的是，在狭义相对论中，情况有所不同，因为伽利略变换要替换

成所谓的洛伦兹变换，这时候会得出T (p2) =
√
(mc2)2 + (pc)2(或者也可

以将静止能量mc2减掉)，式中c为光速。由于本文并不打算仔细讨论狭义

相对论，所以我们就不给出这个结论的推导了。如果将狭义相对论中的这

个T (p2)反代入(133)式的第一个方程，就会得出

p =
mv√
1− v2

c2

. (147)

很显然，狭义相对论的这个结果与非相对论结果(146)有所不同。其实，即

使在非相对论的伽利略变换情形，如果考虑到粒子间的相互作用，也能构

造出动量p并不简单地等于mv的模型，后面我们会给出例子。

牛牛牛顿顿顿定定定律律律与与与伽伽伽利利利略略略不不不变变变性性性

上面通过对自由粒子的考察得到了动能的表达式，下面将之应用到相

互作用着的多粒子系统。当然，系统中的每个粒子都会有自己的质量，

不妨记i粒子的质量为mi, 它的动能当然就是Ti(p
2
i ) =

p2
i

2mi
, 则系统的哈密顿

量H就可以写成

H =
N∑
i=1

p2
i

2mi

+ V (x1, ...,xN). (148)

代入哈密顿正则方程，即有

dxi

dt
=

pi

mi

,
dpi

dt
= −∂V

∂xi

= Fi. (149)

这就是系统状态随时间的演化规律。将这两个式子联立，不难推出

mi
d2xi

dt2
= Fi. (150)

这就是著名的牛顿第二定律。注意到vi =
dxi

dt
为粒子的速度，进而可以引入

所谓加速度的概念，它也就是速度随时间的变化率，记作ai

ai =
dvi

dt
=

d2xi

dt2
. (151)
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则牛顿第二定律也可以重写成

miai = Fi. (152)

这个式子清楚地告诉我们，给定粒子的受力，粒子的加速度和质量成反

比，也即是说，其速度改变的难易程度与质量成反比，质量越小，速度改

变越容易，反之则越难。正因为如此，我们才说mi衡量了粒子运动的惯

性，质量越大则惯性越大，其速度改变也就越难。

那么牛顿第二定律，或者与之等价的演化规律(149)，它们是否满足伽

利略相对性原理呢？也即是说，它们在伽利略变换之下是否保持不变呢？

为了考察这个问题，我们不妨以两粒子系统为例来进行分析，推广到多

粒子情形是容易的，我们留给读者自己考虑。对于两粒子系统，其哈密顿

量为

H =
p2
1

2m1

+
p2
2

2m2

+ V (x1,x2). (153)

空间平移不变性意味着

V (x1 + c,x2 + c) = V (x1,x2), (154)

式中c为任意常矢量。也即是说，实际上，两粒子相互作用势能只依赖于其

位置矢量之差，因此有时候也写作V (x1 − x2)。

不妨将注意力集中于粒子1, 由哈密顿正则方程得出其演化规律

m1
dx1

dt
= p1,

dp1

dt
= − ∂V

∂x1

= F1. (155)

下面我们就是要验证它在伽利略变换之下保持不变。

为此，考虑伽利略变换

x1 → x′
1 = x1 +Vt, p1 → p′

1 = p1 +m1V

x2 → x′
2 = x2 +Vt, p2 → p′

2 = p2 +m2V. (156)

相互作用势能在此变换下，将有

V (x′
1,x

′
2) = V (x1 +Vt,x2 +Vt) = V (x1,x2). (157)

最后一个等于号是根据平移不变性的结果(154)(将Vt理解为c), 即相互作用

势能具有伽利略不变性。另外，注意到x′
1 = x1 +Vt, 所以由求导的链式法
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则不难看出，变换以后的 ∂
∂x′

1
作用在V上面就等于 ∂

∂x1
作用在V上面。由此即

知，力F1是伽利略不变的！(同样，F2也伽利略不变)

因此，在伽利略变换之下，1粒子的演化规律(155)将变换为

→ m1
dx′

1

dt
= p′

1,
dp′

1

dt
= F1,

⇒ m1(
dx1

dt
+V) = p1 +m1V,

dp1

dt
= F1, (158)

显然，结果依然是原来的演化定律(155)。因此，演化定律(155)具有伽利略

不变性，类似的可以验证，粒子2的演化规律也具有伽利略不变性。

推广到任意多粒子系统，也都具有伽利略不变性，也即是说，经典力学

系统的演化规律的确满足相对性原理。

以上结论当然依赖于相互作用势能V (x1 − x2)与粒子动量无关的假定。

但是，即使允许它依赖于粒子动量，也不难构造出满足伽利略相对性原理

的模型，比方说，我们可以取V为如下形式的函数，

V = V (
p1

m1

− p2

m2

,x1 − x2). (159)

不难验证，这种相互作用势能同样也具有伽利略不变性。

但是，如果取上面这种势能，那么由哈密顿正则方程给出的粒子演化规

律将成为

dx1

dt
=

p1

m1

+
∂V

∂p1

,
dp1

dt
= − ∂V

∂x1

. (160)

2粒子的演化规律是类似的。很显然，这时候并没有p1 = m1v1这样的结

论了！而且也没有简单的F1 = m1a1了(假设我们采用F1 = − ∂V
∂x1
的力的

定义)！不过，不难验证，由于V的伽利略不变性，这种演化规律也是伽

利略不变的！而且，由于空间平移对称性，这个模型也满足动量守恒，

即p1 + p2是守恒的，但是m1v1 +m2v2并不守恒。

当然，实际中也许并没有人采用V ( p1

m1
− p2

m2
,x1 − x2)这样的相互作用势

能，也许是因为人们不知道如何在实验中实现它。

几几几个个个物物物理理理量量量的的的伽伽伽利利利略略略变变变换换换

回到通常的多粒子系统，其哈密顿量为

H =
N∑
i=1

p2
i

2mi

+ V (x1, ...,xN). (161)
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我们现在来考察这个哈密顿量在如下伽利略变换之下如何变

xi → x′
i = xi +Vt, pi → p′

i = pi +miV. (162)

记变换以后的哈密顿量为H ′，由于相互作用势能是伽利略不变的(上面两

粒子情形的推广)，因此有

H ′ =
N∑
i=1

p′2
i

2mi

+ V =
N∑
i=1

p2
i

2mi

+
N∑
i=1

V · pi +
1

2

N∑
i=1

miV
2 + V. (163)

注意到
∑

i pi = P为系统总动量，并记
∑

i mi = m为系统总质量！则上述结

果可以写成

H ′ = H +V ·P+
1

2
mV2. (164)

因此，哈密顿量本身并不是伽利略不变的，这当然是因为不同惯性系中观

察到的系统能量是不同的。

虽然哈密顿量并不伽利略不变，但是它在伽利略变换之下的变换规律非

常确定，它必须要按照(164)式这样的变换规则变。另外，伽利略变换当然

是经典力学系统的一种对称性，这种对称性虽然不反映为哈密顿量的不变

性，但是它反映为系统演化规律的不变性。

当然，系统总动量也不是伽利略不变的，事实上，在伽利略变换下，它

将变为

P′ =
∑
i

p′
i =

∑
i

pi +
∑
i

miV = P+mV. (165)

特别的，我们称总动量等于零的参考系为系统的质心系，假设它相对于

实验室系以速度Vc匀速运动，并记实验室系中的总动量为P, 则根据上面

的结果，我们有

P = 0 +mVc ⇒ Vc =
P

m
. (166)

换言之，从实验室系整体看整个系统的话，其总动量就好像一个质量

为m =
∑

i mi的粒子以速度Vc匀速运动的动量。

记Vc =
dxc

dt
, 式中xc就是质心系的坐标原点在实验室系中的位置矢量，

也称作质心位置。注意到P =
∑

i pi =
∑

imi
dxi

dt
(xi为i粒子在实验室系中的

位置矢量)，并将(166)式对时间积分(取积分常数等于零)，即可以得到

xc =

∑N
i=1mixi

m
. (167)
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这就是计算质心位置的公式。

下面考虑系统总角动量L =
∑

i(xi × pi)的伽利略变换规律。这次我

们和前面的习惯反过来(主要是为了避免符号的混淆)，我们从K ′系变换

到K系，即设K ′系相对于K系以速度V运动。并且，由于角动量与坐标原

点的选取有关，所以为了更具一般性，不妨假设t = 0时刻，K ′系原点

在K系中的位置为b，从而xi = x′
i + b + Vt, pi = p′

i + miV。记变换之

前K ′系的总角动量为L′, 变换以后K系的总角动量为L，很显然

L =
∑
i

(xi × pi) =
∑
i

[(x′
i + b+Vt)× (p′

i +miV)]

= L′ + (b+Vt)×
∑
i

p′
i +

∑
i

(mix
′
i)×V + (b+Vt)×V

∑
i

mi

= L′ + (b+Vt)×P′ +mx′
c ×V + (b+Vt)×mV. (168)

式中x′
c为K ′系中的质心位置。注意，其中b+Vt就是t时刻K ′系原点在K系

中的位置。

特别的，假设取K ′系为质心系，记其中的总角动量为Lc, 取实验室系

为K系，记其中的总角动量为L。注意到质心系中的总动量为零(即上面式

子中P′ = 0)，以及按照定义质心系中的质心位置就是其坐标原点(即上面

式子中x′
c = 0)，而上面式子中的b+Vt当然就是t时刻质心在实验室系中的

位置，因此可以记为xc。又注意到，这时候上面式子中的mV就是mVc, 因

此就是系统在实验室系中的总动量P。所以上面的结果就成为了

L = Lc + xc ×P. (169)

也即是说，系统相对于实验室系的总角动量，由一个内禀角动量Lc和一个

系统整体运动的角动量xc ×P共同组成。

12 力力力学学学相相相似似似性性性以以以及及及位位位力力力定定定理理理

力力力学学学相相相似似似性性性

如果力学系统的相互作用势能函数是各粒子位置矢量的齐次函数，那

么，在不用具体求解系统演化方程的前提下，我们也能推导出系统必须满

足的一些有趣性质。
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所谓势能函数是位置矢量的齐次函数，我们指的是，假设各粒子位置矢

量作如下变换

xi → αxi, (170)

式中α > 0为任意的正常数，则相互作用势能将随之而变换为

V (x1, ...,xN) → V (αx1, ..., αxN) = αnV (x1, ...,xN). (171)

式中n为某个整数，称之为势能函数的齐次度。

很显然，在上述假设之下，由于系统哈密顿量H =
∑

i
p2
i

2mi
+V中动能项

为粒子动量的二次函数，所以，如果在xi → αxi的同时，让粒子动量pi如

下变换

pi → αn/2pi. (172)

则系统的哈密顿量将变换为

H → αnH. (173)

假设我们同时将时间t变换为t → βt, 其中β为另一个常数。即，假设我

们考虑如下变换

xi → αxi, pi → αn/2pi, t → βt. (174)

则在本节的假设之下，哈密顿正则方程dxi

dt
= ∂H

∂pi
的左右两边将分别变换

为dxi

dt
→ β−1αdxi

dt
和 ∂H

∂pi
→ αn/2 ∂H

∂pi
。很显然，如果取

β = α1−n/2, (175)

则在变换(174)之下，方程两边多出来的常数倍数将刚好约去，从而方

程dxi

dt
= ∂H

∂pi
将保持不变(即变换以后方程依然成立)。类似的不难验证，只

要保持β = α1−n/2, 另一个正则方程dpi

dt
= − ∂H

∂xi
也将同样在变换之下保持不

变。

上述推导告诉我们，只要相互作用势能是位置矢量的齐次函数，齐次度

为n, 则力学系统的相空间路径将具有某种力学相似性。即，对于每一条相

空间路径，都存在一些与之力学相似的相空间路径，它们的位置坐标是原
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来路径的α倍，动量坐标是原来路径的αn/2倍。当然，为了将两条力学相似

的相空间路径对应起来，我们需要取两者的时间比为

t′/t = (l′/l)1−n/2, (176)

式中l′和l分别为这两条相似路径的位置空间尺寸, l′/l就是上面的α。记系统

的能量为E, 注意到哈密顿量就是系统能量, 从而根据上面的推导，也有

E ′/E = (l′/l)n, (177)

式中E ′和E分别为两相似路径的能量。类似的，对于动量和角动量L =

x× p，也有

|p′|/|p| = (l′/l)n/2, |L′|/|L| = (l′/l)1+n/2. (178)

以上结论有一些有趣的应用。比如说对于一个谐振子，其势能为谐

振子势，即为位置坐标的二次函数(n = 2)，则由上面的(176)式可以看

出，t′/t = 1, 即谐振子的振动周期与其在位置空间的振幅无关！

再比方说，对于万有引力相互作用的行星绕太阳运动情形(假定太阳

远远比行星重)，这时候万有引力势能函数反比于行星离太阳的距离，也

即n = −1。则从(176)式不难得到, t′/t = (l′/l)3/2, 从而，t′2/l′3 = t2/l3, 即

行星轨道周期的平方与轨道尺寸三次方的比值与轨道尺寸无关！这，就是

开普勒第三定律。不仅如此，注意到行星绕太阳的角动量L和能量E均为守

恒量，而根据(177)式和(178)式，又有

E ′/E = (l′/l)−1, |L′|/|L| = (l′/l)1/2, (179)

很显然，E ′L′2/(EL2) = 1, 即与行星轨道的空间尺寸无关！而，行星绕太

阳为椭圆轨道，它由空间尺寸和离心率唯一决定，EL2与空间尺寸无关，

就意味着它只取决于椭圆轨道的离心率。或者反过来说，行星绕太阳椭

圆轨道的离心率取决于EL2，这或许可以称之为“开普勒第四定律”！当

然，在历史上，开普勒并没有提出过这条定律。

位位位力力力定定定理理理

当力学系统作周期运动或者有限运动时，还可以推导出一个有意思的结

果，叫做位力定理。这里所谓的有限运动，是指在系统在相空间中的演化

始终限制于相空间的一个有限大区域内。
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为了推导位力定理，依然让我们考察N粒子系统，并记xµ = (x1,x2, ...,xN)

为系统的位置坐标，同时记pµ = (p1,p2, ...,pN)为系统的动量坐标。对于

系统的任何物理量A(t)，定义其时间平均值A如下：如果系统作周期运

动，周期为T , 则

A ≡ 1

T

∫ T

0

dtA(t); (180)

如果系统不是作周期运动，但是有限运动，则

A ≡ lim
T→+∞

1

T

∫ T

0

dtA(t). (181)

下面，考察物理量

σ(t) ≡ d

dt
(
3N∑
µ=1

pµx
µ). (182)

注意到
∫ T

0
dtσ(t) = (

∑3N
µ=1 pµx

µ)|T0 , 对于周期运动，很显然结果为零，而对
于非周期的有限运动，很显然结果为有限值。从而根据时间平均值的定

义，不难得出，无论哪种情况，均有

σ = 0. (183)

另一方面,很显然，σ(t) =
∑3N

µ=1(x
µ dpµ

dt
+pµ

dxµ

dt
),应用哈密顿正则方程，

则有

σ(t) = −
3N∑
µ=1

xµ ∂H

∂xµ
+

3N∑
µ=1

pµ
∂H

∂pµ
. (184)

则根据上面的(183), 立即有

3N∑
µ=1

xµ
∂H

∂xµ
=

3N∑
µ=1

pµ
∂H

∂pµ
. (185)

这就是位力定理。

一般来说，哈密顿量可以分解成动能与势能之和H = T + V，其中

动能T (注意和前面的周期T相区分)通常是动量的二次函数并且与位置坐

标xµ无关，而势能V则仅依赖于位置坐标而与动量无关，从而 ∂H
∂xµ = ∂V

∂xµ ,
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∂H
∂pµ

= ∂T
∂pµ

, 又利用齐次函数的欧拉定理(见本节最后的讲述)，有
∑

µ pµ
∂T
∂pµ

=

2T , 从而在这种情况下，上面的位力定理即给出

2T =
∑
µ

xµ
∂V

∂xµ
. (186)

进一步，如果和前面对力学相似性的讨论一样，势能V是位置坐标xµ的

齐次函数，齐次度为n，则同样根据齐次函数的欧拉定理，有∑
µ

xµ ∂V

∂xµ
= nV. (187)

代入上面的(186)式，即有

2T = nV . (188)

又由于总能量E守恒，从而始终为常数，进而E = E = H = T + V , 结合上

面的结果，不难得到

T =
n

n+ 2
E, V =

2

n+ 2
E. (189)

特别的，对于谐振子，n = 2, 从而

T = V =
1

2
E, (190)

即动能的周期平均与势能的周期平均相等。而对于万有引力，n = −1, 从

而

T = −1

2
V = −E, (191)

由于动能始终为正，从而这就说明，在万有引力情形，仅当系统的总能

量E为负，系统才可能做有限运动！

下面讲一些定性上成立的有趣结论。首先，我们将定性地论证引力系

统是一个负热容系统。所谓的引力系统，指的是，一大团粒子通过粒子间

的万有引力相互作用而束缚在一起的系统，比方说太阳就是一个这样的系

统，太阳就是一个通过自引力相互作用而束缚在一起的大气团。正因为这

些粒子是相互束缚在一起的，所以每一个粒子都是在作有限运动，所以，

位力定理适用于这样的引力系统，所以根据(191)式，我们有

T = −E. (192)
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当然，E < 0。

上式就能定性地说明，引力系统是一个负热容系统。为此，我们设想

给这样的引力系统输入能量，从而使得系统总能量负得少一些，进而根

据(192)式，即有，随着能量的输入，系统的平均动能将减少！而，根据统

计物理，平均动能反应了系统的温度(虽然这里并不严格要求系统处于热平

衡态)，平均动能减少就会导致系统温度降低。换言之，越给这样的引力系

统输入能量，它的温度将越低，从而系统的热容是负的。

这也是最初人们用来反驳宇宙热寂说的一个核心要点。早期有一些人将

热力学第二定律应用于整个宇宙，认为根据热力学第二定律，整个宇宙的

熵会不断增加，最终会达成一个温度处处一样的热平衡态(熵最大)，从而

生命也就不可能存在了，宇宙最终会“热寂”！反驳的人则认为，宇宙中

主要都是引力系统，它们的热容是负的，所以如果一个高温的星球向一个

低温星球传热(也就是输送能量)，那么高温系统的温度会越来越高，而低

温星球的温度会越来越低，它们永远也不可能热平衡！所以，热寂就是不

可能的。

齐齐齐次次次函函函数数数的的的欧欧欧拉拉拉定定定理理理

下面我们给出齐次函数的欧拉定理及其证明。为此，考察齐次函

数f(x1, x2, ..., xm), 假设齐次度为n, 从而对于任何α > 0, 有

f(αx1, αx2, ..., αxm) = αnf(x1, x2, ..., xm). (193)

由于α为任意大于零的常数，不妨取α = 1 + ϵ(ϵ为无穷小量)，代入上式，

即有

f(x1 + ϵx1, x2 + ϵx2, ..., xm + ϵxm)

=(1 + ϵ)nf(x1, x2, ..., xm) = (1 + nϵ+ ...)f(x1, x2, ..., xm). (194)

将上式两边对无穷小量进行泰勒展开，并保留到一阶无穷小为止，即有

f(x1, x2, ..., xm) + ϵ

m∑
a=1

xa
∂

∂xa

f(x1, x2, ..., xm) = (1 + nϵ)f(x1, x2, ..., xm).(195)

两边比较，最终即有
m∑
a=1

xa
∂

∂xa

f(x1, x2, ..., xm) = nf(x1, x2, ..., xm). (196)

这个最终的结果就是齐次函数的欧拉定理。
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13 相相相流流流以以以及及及刘刘刘维维维尔尔尔定定定理理理

相相相空空空间间间速速速度度度场场场与与与相相相流流流

这一节我们回到对哈密顿正则方程的一般讨论。让我们先从单自由度

情形开始，记位置变量为x，相应的动量为p，(x, p)就构成两维相空间的坐

标。为了具体一点，假设给这个单自由度系统加上一个固定的外势场，相

应的势能函数为V (x), 比方说它由如图(8)所示的势能曲线描述。

Figure 8: 势能曲线，相应势能函数为V (x)。

当然，这个单自由度系统的哈密顿量就是

H(x, p) =
p2

2m
+ V (x). (197)

我们知道，这样的系统虽然不是封闭系统，但是同样满足哈密顿正则方

程，并且也满足能量守恒定律。相应的哈密顿正则方程可以写为

(
dx

dt
,
dp

dt
) = (

∂H

∂p
,−∂H

∂x
). (198)

其中等式两边都是表示相空间向量。

由于作为相空间坐标x和p地位是平等的，所以我们可以引入新的两分

量相空间坐标记号(X1, X2)，并令X1 = x,X2 = p, 则方程(198)就可以写成

(
dX1

dt
,
dX2

dt
) =

( ∂H

∂X2
(X),− ∂H

∂X1
(X)

)
, (199)

很显然，dXα

dt
, α = 1, 2完全类似于速度的定义，不过是一种相空间速度，

因此不妨干脆定义相空间速度

V α =
dXα

dt
, α = 1, 2 (200)

59



请注意，α只是一个两分量指标，不表示幂次。进而，哈密顿正则方

程(199)式的右边告诉我们，它实际上是在每一个相空间点X都定义了一个

这样的相空间速度，所以V α实际上是分布在整个相空间上的，是一个相空

间速度场，有时候也记作V α(X)。

人们常常将这样的相空间速度场看成是某种相空间流体的流速场，而且

由于哈密顿量不显含时间，所以速度场V α(X)也不随时间变化，因此这种

相空间流体是一种稳定流动的相空间流体，常常称作相相相流流流。很明显，一个

相空间初始点跟着相流流动的过程，就描述了给定相应初态的系统随时间

演化的过程，所以相流的流线就是描述系统演化的相空间轨道。比方说，

对于图(8)给出的势能函数V (x), 其相流大体如图(9)所示。

Figure 9: 与上面势能函数V (x)相应的相流。注意，能量守恒意味着，相流

只能沿着 p2

2m
+ V (x) =常数的等能量线流动。

推广到任意的2n维相空间，这时候哈密顿正则方程为

dxµ

dt
=

∂H

∂pµ
,

dpµ
dt

= − ∂H

∂xµ
, µ = 1, 2, ..., n. (201)

同样，可以定义2n分量相空间坐标Xα, α = 1, 2, ..., 2n

(X1, X2, ..., X2n) = (x1, ..., xn, p1, ..., pn). (202)

它也可以示意性地写成如下形式

Xα = (xµ, pµ). (203)

进而可以定义2n分量的相空间速度V α, α = 1, 2, .., 2n

V α =
dXα

dt
= (

dxµ

dt
,
dpµ
dt

). (204)
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哈密顿正则方程告诉我们，V α也是分布在整个相空间上的，是一种相空间

速度场，可以看作某种稳定流动的相空间流体的流速场。当然，这就是相相相

流流流。

刘刘刘维维维尔尔尔定定定理理理

前面说了，哈密顿正则方程定义了一种相空间“流体”，或者说相流。

实际上，这种相空间“流体”还是一种非常特殊的相空间流体，即它是一

种所谓的不可压缩“流体”。这就是刘维尔定理要告诉我们的结论。

具体来说就是，假设初始t = 0时刻在相空间任取一个区域D0, 假设这

个区域跟随相空间“流体”的流动演化到t时刻变成了区域Dt, 即D0内的

点在t时刻“流到”了Dt。则刘维尔定理说，这种流动的体积不可压缩，

即Dt的体积等于D0的体积，记为

Vol(Dt) = Vol(D0). (205)

如图(10)所示，区域Dt相对于D0可以发生很大的形变，但是体积不变。 下

Figure 10: Vol(Dt) = Vol(D0).

面的部分就是要证明这个结论。

我们先来为证明做一些准备工作。首先介绍一下著名的高斯定理，

先以三维空间的版本为例。如图(11)所示，考虑三维空间中一块区域D,

其边界记为∂D, 很显然，∂D是一个封闭的两维曲面。在∂D上任取一个

面积为dS的面积微元(简称面积元)，则我们可以引入所谓的面积元矢

量dS = (dS1, dS2, dS3), 它是一个三维空间矢量，其模长就是这个面积元的

面积dS, 其方向规定为这个面积元的法向，并且是指向外侧的法向。

下面考虑三维空间中的任意一个矢量场A = (A1, A2, A3)(注意1, 2, 3只是

表示分量的指标)。不妨记x = (x1, x2, x3)为三维空间的坐标。则所谓的高
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Figure 11: 面积元矢量dS的定义.

斯定理说的是 ∫
∂D

3∑
α=1

AαdSα =

∫
D

dτ

3∑
α=1

(∂αA
α). (206)

式中∂α = ∂
∂xα ,

∫
∂D
表示在整个两维曲面∂D上进行积分，而

∫
D
表示在三维区

域D上积分，dτ = dx1dx2dx3表示三维体积元。注意，根据矢量点乘的定

义
∑3

α=1A
αdSα = A1dS1 +A2dS2 +A3dS3其实就是A · dS，而在很多教科书

上也把
∑3

α=1(∂αA
α)记作∇ ·A, 所以(206)在教科书上也常常写作∫

∂D

A · dS =

∫
D

dτ∇ ·A. (207)

这个定理的证明请大家参考高数书的多变量微积分部分。

高斯定理很容易推广到任意的d维空间，记xα = (x1, x2, ..., xd)为d维

空间的坐标。类似的，这时候D为d维空间的一个区域，其边界∂D当然

就是一个d − 1维的封闭曲面，在∂D上任取一个面积元(当然是d − 1维

的面积元)，很显然这个面积元也有一个唯一的指向外侧的法向，所以

同样可以引入面积元矢量dSα = (dS1, dS2, ..., dSd)。考虑任意一个向量

场Aα = (A1, A2, .., Ad), 则我们有(206)式的推广∫
∂D

d∑
α=1

AαdSα =

∫
D

dτ
d∑

α=1

(∂αA
α). (208)

式中dτ = dx1dx2...dxd为d维体积元。依然称这个推广结果为高斯定理。

以上是第一项准备工作。为了介绍第二项准备工作，让我们还是从三维

空间开始，假设空间上有一种流体，流速场为vα = (v1, v2, v3) = v。t时刻
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Figure 12: 流体中某个区域随着流体流动经过dt时间之后的体积改变.

在流体中取一块区域Dt，其边界为∂D, 跟随流体的流动，t + dt时刻，假

设这个边界流到了∂D′, 如图(12)所示。 很显然，图中∂D与∂D′之间所夹的

区域就是dt时间之内所取区域随着流体的流动增加的部分，因此Dt在dt时

间之内的体积增加量Vol(Dt+dt) − Vol(Dt)就等于∂D与∂D′之间所夹区域的

体积。显然，这个增加的体积就是∂D上的各面元dS在dt时间之内随着流

速v扫出来的体积，因此就等于
∫
∂D

(dtv · dS) = dt
∫
∂D

∑3
α=1 v

αdSα, 从而即

有

d

dt
Vol(Dt) =

Vol(Dt+dt)− Vol(Dt)

dt
=

∫
∂D

3∑
α=1

vαdSα. (209)

以上结果当然也可以推广到任意的d维空间，这时候流速场为vα =

(v1, v2, ..., vd), 从而有

d

dt
Vol(Dt) =

∫
∂D

d∑
α=1

vαdSα =

∫
Dt

dτ
d∑

α=1

(∂αv
α). (210)

式中最后一个等于号我们对流速场vα使用了上面的高斯定理。

准备工作已经完备，现在回到刘维尔定理的证明上来。这时候所要考察

的空间就是2n维相空间，其坐标是Xα = (xµ, pµ),同样，我们记∂α = ∂
∂Xα。

这时候要考虑的速度场当然就是相空间速度场V α

V α =
dXα

dt
= (

dxµ

dt
,
dpµ
dt

). (211)

为了证明刘维尔定理的(205)式。我们显然只需证明 d
dt
Vol(Dt) = 0, 通过
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引用(210)式，这个证明如下

d

dt
Vol(Dt) =

∫
Dt

dτ

2n∑
α=1

(∂αV
α)

=

∫
Dt

dτ

n∑
µ=1

[ ∂

∂xµ
(
dxµ

dt
) +

∂

∂pµ
(
dpµ
dt

)
]

=

∫
Dt

dτ

n∑
µ=1

[ ∂

∂xµ
(
∂H

∂pµ
)− ∂

∂pµ
(
∂H

∂xµ
)
]
= 0. (212)

式中第二行的等于号是因为Xα = (xµ, pµ), 且V α = (dx
µ

dt
, dpµ

dt
), 而第三行的

等于号是代入了哈密顿正则方程。证明完毕！

14 参参参考考考文文文献献献

影响本文的参考文献主要有以下几篇：

首先，对本文影响最多的是朗道《力学》，本文关于惯性系的定义就是

源自于它，本文关于力学相似性的讨论也是源自于它。不过，与本文不同

的是，朗道《力学》试图从拉格朗日力学开始建立整个经典力学体系，而

本文则完全不涉及拉格朗日力学。

其次，L. Susskind 理论最小值系列的《经典力学》也对本文有影响，

主要是影响了本文的第一小节。

再次，本文是我长期思考的产物，这种思考最初源自于写作《经典力学

新讲》之时。当然，在技术内容上，《经典力学新讲》应该看作是本文的

后续。

最后，如果读者有足够的数学基础，那么阅读过本文以及《经典力学新

讲》以后，也可以进一步阅读我的《从哈密顿力学到辛几何》。本文是讨

论哈密顿力学的物理基础，而《从哈密顿力学到辛几何》则是深挖哈密顿

力学背后的数学结构。
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