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Abstract

系统地讲述哈密顿力学及其背后的辛几何结构。物理上基础于相

空间最小作用量原理，数学上的核心概念是辛同胚。物理和数学两条

线索的交汇地是哈密顿向量场的概念。
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本文要求读者学过一些微分流形的知识，大体相当于Loring W. Tu 的

《流形导论》水平，比如你得知道单参微分同胚和李导数之间的关系。

没有相关基础的读者推荐参考Loring W. Tu的这本书，讲得还是比较清楚

的。原则上本文的读者可以没有学过哈密顿力学，但要会变分法，而实际

上当然最好是学过经典力学教科书水平的哈密顿力学。总之，本文是一个

比阿诺德《经典力学的数学方法》更简短、语言更现代也更适合物理读者

的辛几何初步。当然，这里的辛几何离当前数学家真正关心的辛几何差得

很远，不过，本文的目的也不是介绍数学前沿(这超出作者能力范围了)，

而是要对哈密顿力学进行一个更高数学抽象层次的提升。

1 哈哈哈密密密顿顿顿力力力学学学

1.1 相相相空空空间间间最最最小小小作作作用用用量量量原原原理理理和和和哈哈哈密密密顿顿顿正正正则则则方方方程程程

经典力学系统可以由所谓的哈密顿力学描述。在哈密顿力学中，我们

用一些共轭的正则变量来描述一个力学系统的运动状态。对于一个n自

由度的系统，可以记这些正则变量为qa, pa, a = 1, 2, ..., n, 其中qa称作系

统的广义坐标，pa称作系统的广义动量。一个力学系统所有可能运动状

态所构成的空间就称作相空间，一个运动状态就是相空间中的一个点。

也即是说，n自由度力学系统的相空间是2n维的，其坐标就是qa, pa, a =

1, 2, ..., n。

力学系统的动力学演化完全由其哈密顿量决定，在物理中，所谓的哈密

顿量，就是相空间的一个特定函数，可以记作H(q, p)，它的特殊性在于，

它描述的是系统的能量。换言之，力学系统在给定状态下哈密顿量的值，

即是系统在这个状态下的总能量。

力学系统的演化即是其运动状态随时间的变化，因此任何演化都会在

相空间中划出一条路径，当然，给定系统的初态，真实的演化路径只有一

条，它由系统的哈密顿量决定。哈密顿量如何决定真实演化路径呢？回答

是根据一个所谓的相空间最小作用量原理。这是整个哈密顿力学的基本原

理。

为了应用相空间最小作用量原理，我们需要考察所有在t = 0时刻具有

给定初始广义坐标qai，同时在t = T时刻具有给定末尾广义坐标qaf的相空

间路径{q(t), p(t)}。我们给每一条这样的相空间路径指定一个相空间作用
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量S[q(t), p(t)]，它由下式给出

S[q(t), p(t)] =

∫ T

0

[padq
a −H(q, p)dt]. (1)

相空间最小作用量原理说，真实的演化路径即是使得作用量泛函取稳定值

的路径，也即是使得作用量变分等于零的路径，即

δS = 0. (2)

当然，我们要求任何给定路径附近的变分在初始时刻和末尾时刻都等于

零，即要求

δqa(0) = δpa(0) = 0, δqa(T ) = δpa(T ) = 0. (3)

值得指出的是，(1)式的形式并不能唯一性地决定相空间作用量，因为

我们完全可以给它加上一个全微分项的积分，即加上如下项

+

∫ T

0

dF = F (T )− F (0), (4)

式中F为q, p的任意函数，F (T )代表F (q(T ), p(T )), F (0)的意思与此类似。

很显然，由于路径的变分在初末两个时刻都等于零，因此加上的这一项实

际上对最小作用量原理没有任何影响。

不要问为什么有相空间，为什么有相空间最小作用量原理，也不要问相

空间作用量为什么具有(1)式给出的形式，这些是整个理论的基本出发点，

是基本公设，关键是要看由这些公设导出来的结论是否符合实验。当然，

公设也不是任意选取的，我们这么选取公设的原因是因为它有一些巨大的

优点，比如由它导出的方程自然地满足能量守恒定律，再比如它被实验证

实具有最大的普适性。

下面对(1)式给出的作用量进行变分，即有

0 = δS =

∫ T

0

[δpadq
a − δqadpa − δH(q, p)dt]

=

∫ T

0

dt[(q̇a − ∂H

∂pa
)δpa − (ṗa +

∂H

∂qa
)δqa]. (5)

这个推导带来两个结果：其一是，从推导的第二行可知，真实的演化路径

必然满足如下方程

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
, (6)
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这就是著名的哈密顿正则方程。注意，哈密顿正则方程一共有2n个分量方

程，它们都是一阶微分方程，所以在给定qai和qaf共2n个边界条件时，这组

方程的解是唯一的。哈密顿正则方程告诉我们，物理的时间和物理的能量

是一对共轭的量，系统能量函数(也就是哈密顿量)所生成的相空间演化就

是按照物理时间进行的演化。后文也会考虑按照其它参数(虽然也称作时

间，但只是数学意义上的时间，不是物理的时间)进行的相空间演化。

哈密顿正则方程的一个巨大优点是自然满足能量守恒定律，因为

dH

dt
=

∂H

∂qa
q̇a +

∂H

∂pa
ṗa =

∂H

∂qa
∂H

∂pa
− ∂H

∂pa

∂H

∂qa
= 0. (7)

(5)式推导过程的第二个结果是，从推导的第一行中可知，对于结果有

决定性的δpadq
a − δqadpa关于q, p是反对称的。这种反对称性告诉我们，哈

密顿正则方程的形式其实取决于如下相空间的2-形式ω,

ω = dpa ∧ dqa. (8)

ω就称作相空间的辛形式。具有辛形式的相空间就称之为定义了辛结构的

相空间。

通常还会引入所谓的辛势Θ, 它由下式给出，

Θ = padq
a. (9)

由辛形式ω的表达式(8)不难看出

ω = dΘ. (10)

从而很显然，辛形式ω是一个闭形式，满足

dω = 0. (11)

利用辛势，即可以把相空间作用量S[q(t), p(t)]重写作

S =

∫ T

0

[Θ−Hdt]. (12)

1.2 正正正则则则变变变换换换、、、余余余切切切丛丛丛、、、以以以及及及拉拉拉格格格朗朗朗日日日力力力学学学

1.2.1 正正正则则则变变变换换换

我们可以把相空间记作M，它当然是一个微分流形，正则坐标{qa, pa}就是
这个流形上的一组特殊局部坐标，更具一般性的局部坐标我们稍后讨论，
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现在暂且把注意力放在正则坐标上。即使是这样，正则坐标也不是唯一的,

我们完全可以另选一组新的正则坐标{q′a, p′a}, 进而有新的辛势

Θ′ = p′adq
′a. (13)

注意到哈密顿量是M上的一个标量，它在坐标变换下是不变的，因此新的
作用量S ′为，

S ′ =

∫ T

0

[Θ′ −Hdt]. (14)

正如前面讲过的，为了保证最小作用量原理在新旧两种正则坐标下同时

成立，S ′和S的被积函数只能相差一个全微分项，即S ′ = S +
∫ T

0
dF , 比

较(12)式和(14)式，很显然，这意味着在正则坐标的变换下必然有

Θ′ = Θ+ dF. (15)

正则坐标的变换就称作正则变换。很显然，(15)式意味着，在正则变

换下辛势可以相差一个规范变换，换言之，辛势本身应该看作是相空

间M上的一个阿贝尔规范场，或者用数学的话来说，辛势是M上某个复线
丛L → M的联络。根据(15)式，我们也有

ω′ = dΘ′ = dΘ = ω. (16)

也即是说，辛形式ω在正则变换下是保持不变的！换言之，ω应该看作是与

规范势Θ相对应的阿贝尔规范场强，或者等价地说，ω是复线丛L → M的
曲率，它是规范不变的。

比方说，qa → q′a = pa, pa → p′a = −qa就是一个正则变换，因为这个变

换满足

Θ′ = p′adq
′a = −qadpa = padq

a + d(−paq
a) = Θ + d(−paq

a). (17)

即相当于在(15)式中取函数F = −paq
a。

一般来说，任何一个给定的函数F都能根据(15)式生成一个正则变换，

因此在经典力学教科书中也称之为正则变换的生成函数。比方说，我们可

以取F形如F (q, q′)，则根据(15)式有, p′adq
′a = padq

a + ∂F
∂qa

dqa + ∂F
∂q′a

dq′a, 比

较dq, dq′的系数，很显然只要取

pa = − ∂F

∂qa
(q, q′), p′a =

∂F

∂q′a
(q, q′), (18)

就可以得到一组(q, p)到(q′, p′)的坐标变换。由于它自动满足(15)式，也就

是保证相空间最小作用量原理在新旧两种坐标中同时成立，或者说保持哈

密顿正则方程的形式不变，因此这就是一组正则变换。
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1.2.2 相相相空空空间间间作作作为为为余余余切切切丛丛丛

有一类特殊的正则变换值得专门说一下，即由下式给出的正则变换

qa → q′a, pa → p′a = pb
∂qb

∂q′a
. (19)

不难验证，在这个变换下

Θ = padq
a → Θ′ = p′adq

′a = padq
a = Θ. (20)

即这个变换保持辛势Θ不变，这当然是(15)式的特殊情况，因此当然是正

则变换。

(19)式给出的正则变换有一个漂亮的解释，即将q, q′看作是相空间M的
某个子流形Q(称作位形流形)的局部坐标，将pa看作是Q的余切空间里的向
量，将 ∂qb

∂q′a
看作相应的余切丛T ∗Q 在底流形局部坐标变换q → q′下的转移函

数。这样看的话，相空间局部坐标(q, p)其实就是余切丛T ∗Q的局部坐标，
其中q参数化底流形，p参数化余切空间，换言之p是纤维坐标。因此，相空

间M就可以被看作是位形流形Q的余切丛T ∗Q，即

M = T ∗Q. (21)

值得注意的是，将相空间解释成位形流形余切丛的做法仅在我们限于考

虑(19)式所给出的这一类特殊正则变换时才是好用的。如果我们考虑的是

更一般的相空间局部坐标变换，那这种解释对我们就没有什么帮助。

1.2.3 拉拉拉格格格朗朗朗日日日力力力学学学

下面，我们进一步讨论一下把相空间看作位形流形余切丛的观点。在这种

观点之下，相空间作用量就没有任何含糊之处，完全由下式给出

S[q(t), p(t)] =

∫ T

0

dt[paq̇
a −H(q, p)]. (22)

利用相空间最小作用量原理的话，当然就既要对底流形的q(t)变分，也要

对纤维空间的p(t)进行变分。

不过，不妨让我们先对纤维空间的p(t)变分求极值，然后将所得结果再

对底流形的q(t)进行变分。很显然，先对p(t)变分求极值将会得到如下底流

形上的作用量S[q(t)],

S[q(t)] =

∫ T

0

dtextremp[paq̇
a −H(q, p)], (23)
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式中extremp表示对变量p求极值。实际上，这个过程就是所谓的勒让德变

换，它自然地定义了所谓的拉格朗日量L(q, q̇)

L(q, q̇) = extremp[paq̇
a −H(q, p)]. (24)

而位形空间作用量S[q(t)]就是拉格朗日量对时间的积分，即

S[q(t)] =

∫ T

0

dtL(q, q̇). (25)

然后，将S[q(t)] 进一步对q(t)变分的话就是所谓的位形空间最小作用量原

理，也是通常最为人们熟知的最小作用量原理。位形空间最小作用量原理

给出来的就是所谓的拉格朗日方程

d

dt

( ∂L
∂q̇a
)
=

∂L

∂qa
. (26)

这里我们看到，拉格朗日力学完全可以作为哈密顿力学的自然结果而出

现，而不是像通常经典力学教科书里那样要先引入拉格朗日力学，然后再

过渡到哈密顿力学。与之相反，从我们的观点来看，先引入哈密顿力学也

许更符合理论本身的逻辑。

1.3 伽伽伽利利利略略略对对对称称称性性性如如如何何何决决决定定定哈哈哈密密密顿顿顿量量量

所以，相空间最小作用量原理可以作为整个经典力学的出发点，其中相空

间作用量取如下形式

S[q(t), p(t)] =

∫ T

0

dt
[
pq̇ −H(q, p)

]
. (27)

其中哈密顿量H(q, p)的含义就是系统的能量。

而且我们也说过，作用量中的pq̇ −H并不唯一，而是可以相差一个全微

分项，即是说，它可以替换成

pq̇ −H(q, p) +
dF

dt
, (28)

式中F (q, p)是q, p的任意函数。

从相空间最小作用量原理出发的确不错，问题是，给定一个力学系统，

我们如何写出其哈密顿量呢？特别是，假设预先并不知道牛顿定律、不知

道动量和速度之间的关系，不知道机械能的表达式，如何决定非相对论多
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粒子系统的哈密顿量呢？回答是，可以根据对称性！空间平移、空间旋转

以及伽利略对称性足以决定非相对论多粒子系统的哈密顿量，下面我们就

来说明这一点。

单单单个个个自自自由由由粒粒粒子子子

首先，让我们从单个粒子开始，假设没有外场(否则通常会破坏空间平

移对称性)，因此是一个自由粒子。假设在某个惯性系K中，记粒子的广

义坐标为三维空间矢量x, 记相应的广义动量为p，它也是一个三维空间矢

量。由于没有外场，所以粒子的能量只有所谓的动能，从而哈密顿量仅

仅依赖于动量p，又由于空间旋转不变性，哈密顿量H应该不依赖于p的方

向，即是说，H应该是p2的函数，记为H(p2)。从而自由粒子的相空间作

用量就是

S[x(t),p(t)] =

∫ T

0

dt
[
p · ẋ−H(p2)

]
. (29)

下面我们另外再考虑一个惯性参考系，K ′系，它相对于原来的参考系

以V的速度匀速运动。两个参考系的时间当然是一样的，这也就是牛顿的

绝对时间假设。但是，两个参考系的坐标按下式变换

x′ = x+Vt, (30)

同时，两个参考系的相对动量显然依赖于两者的相对速度V，另外，动量

还与粒子的惯性有关，因此可以假设它如下变换

p′ = p+mV, (31)

式中m是一个反映粒子惯性的比例常数，按照通常的概念，我们称之为粒

子的质量。以上两个变换关系，就是所谓的伽利略变换。

伽利略相对性原理，或者说伽利略对称性，可以表述为，粒子的运动方

程不依赖于特定参考系，换言之，在伽利略变换之下，作用量的被积项最

多只能相差一个全微分项。

不妨考察一个无穷小伽利略变换，即取V = ϵ⃗为无穷小量。从而(下面的

8



推导全都忽略高阶无穷小量)

S[x′(t),p′(t)] =

∫ T

0

dt
[
p′ · ẋ′ −H(p′2)

]
=

∫ T

0

dt
[
p · ẋ+mẋ · ϵ⃗+ p · ϵ⃗−H(p2 + 2mp · ϵ⃗+m2ϵ⃗2)

]
= S[x(t),p(t)] +

∫ T

0

dt
[
mẋ · ϵ⃗+ p · ϵ⃗− 2m

∂H

∂p2
(p · ϵ⃗)

]
(32)

式中mẋ · ϵ⃗ = d
dt

(
mx · ϵ⃗

)
的确为一个全微分项，因此为了使得作用量的被积

函数只差全微分项，式中的非全微分项p · ϵ⃗− 2m ∂H
∂p2 (p · ϵ⃗)应该相互抵消。

从而即有

p · ϵ⃗ = 2m
∂H

∂p2
(p · ϵ⃗) ⇔ 1 = 2m

∂H

∂p2
, (33)

从而即可以得到自由粒子的哈密顿量

H =
p2

2m
. (34)

由于这个能量只取决于粒子的动量，所以也称作动能。

相相相互互互作作作用用用的的的多多多粒粒粒子子子系系系统统统

根据能量的可加性，容易将上述结果推广到n个自由粒子，相应的哈密

顿量为 ∑
i

p2
i

2mi

. (35)

如果粒子间有相互作用，那为了反映相互作用能，我们可以引入一个依赖

于粒子坐标的函数V (x1,x2, ...,xn)。

由于空间平移对称性，V (x1,x2, ...,xn)应该只依赖于相对坐标之差，从

而可以重写为V (...,xi − xj, ...)(i ̸= j)。从而相互作用粒子体系的哈密顿量

必定可以写成

H =
∑
i

p2
i

2mi

+ V (...,xi − xj, ...). (36)

式中的函数V就称作势能。所以多粒子的哈密顿量就是总动能再加上相互

作用势能。
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完全类似于单个粒子情形，不难验证，由上述哈密顿量描述的多粒子体

系同时也满足伽利略对称性！对(36)式给出的哈密顿量进行勒让德变换，

会得到pi = miẋi，进而即可以得到多粒子体系的拉格朗日量，为

L =
∑
i

1

2
miẋ

2
i − V (...,xi − xj, ...) = T − V. (37)

牛牛牛顿顿顿定定定律律律

将多粒子的哈密顿量(36)代入下面的哈密顿正则方程

ẋi =
∂H

∂pi

, ṗi = −∂H

∂xi

, (38)

即可以得到

ẋi =
pi

mi

, ṗi = −∂V

∂xi

, (39)

称− ∂V
∂xi
为i粒子受到其它粒子施加的相互作用力，记作Fi = − ∂V

∂xi
, 并联立上

面推导出来的两个方程，即可以得到

mi
d2xi

dt2
= Fi. (40)

这就是著名的牛顿运动定律。也即是说，本文的理论框架并不预先假定牛

顿定律成立，相反，我们假定的是相空间最小作用量原理和伽利略对称

性，然后牛顿定律是由它们自动推导出来的后果。这样处理的原因在于，

从很大程度上来说，相空间最小作用量原理以及随之而来的哈密顿正则方

程比牛顿定律要更为基本。因为它不仅适用于非相对论粒子体系，也同样

适用于相对论体系，甚至类似的框架也适用于场论体系。

另外，由于相互作用势能只依赖于粒子相对坐标之差，由此就能导出一

部分牛顿第三定律，即导出作用力等于负的反作用力。具体如何推导我们

留给读者自己思考。这里只是指出，这个结论其实是空间平移对称性的结

果。

1.4 任任任意意意局局局部部部坐坐坐标标标中中中的的的哈哈哈密密密顿顿顿力力力学学学

回到我们的n自由度哈密顿系统。前面说过，相空间M是一个2n维的流

形，这么看的话，正则坐标还是过于特殊了，一般来说，我们似乎没有
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必要将相空间坐标分成q, p两类，因此可以考虑在M上选取任意的局部坐
标xi, i = 1, 2, ..., 2n。注意到辛势Θ是一个1形式，所以在这个任意的局部坐

标x中，我们可以把它写成

Θ = Θi(x)dx
i. (41)

这时候相空间的作用量就可以写成

S[x(t)] =

∫ T

0

[Θidx
i −H(x)dt]. (42)

可以选择给定相空间路径x(t)的任意2n个边界条件(x(t)在0时刻和T时刻的

边界值共有4n个，我们只给定其中2n个)，对于符合边界条件的任意相空

间路径x(t)，可以要求在它附近的变分δx(t)满足

δxi(0) = δxi(T ) = 0, i = 1, 2, ..., 2n. (43)

为了对作用量S[x(t)]进行变分，首先不难得出δ
∫ T

0
Θidx

i =
∫ T

0
dtωijδx

iẋj,

式中

ωij(x) = ∂iΘj − ∂jΘi. (44)

进而可知，(42)式作用量的变分为

δS =

∫ T

0

dt[ωijẋ
j − ∂iH]δxi. (45)

由δS = 0即可以得到如下方程

ωijẋ
j = ∂iH, (46)

这就是任意相空间局部坐标中的哈密顿正则方程。正如正则坐标下的形式

所显示的那样，由于哈密顿量要能完全决定相空间演化，所以反对称矩

阵ωij必然要可逆，记其逆矩阵为ωij, 它当然也是一个反对称矩阵，满足

ωijωjk = δik. (47)

利用这个逆矩阵，就能把方程(46)写成如下等价的形式

ẋi = ωij∂jH. (48)
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这个形式清楚地显示了，哈密顿量完全决定了相空间演化规律。

ωij能够定义一个2形式ω = 1
2
ωijdx

i ∧ dxj, 由于ωij(x) = ∂iΘj − ∂jΘi, 所

以显然有

ω = dΘ. (49)

所以，ω正是前面第(1.1)小节中引入的辛形式，只不过现在是在任意的

局部坐标中写它。值得注意的是，(49)式只是在局部上成立，在整个流

形M上未必成立，因为辛势的定义依赖于局部坐标。由于有(49)式，所以

很显然ω是一个闭形式

dω = 0. (50)

另外，满足ωij可逆的ω就是所谓非退化的。

完全类似于(1.2.1)节中的论证可知，在局部坐标变换x → x′下，辛势可

以相差一个规范变换，即

Θ → Θ′ = Θ+ dF. (51)

而辛形式ω则是规范不变的，

ω → ω′ = ω. (52)

这再次说明，辛势可以看作是流形M上某个复线丛L → M的联络，而辛
形式则是相应的曲率。

装备有一个非退化的闭2形式的流形在数学上就称作辛流形，相应的2形

式ω就称之为辛流形上的辛结构。所以，经典力学系统的相空间M是一个
辛流形！

力学系统按照哈密顿正则方程进行的相空间演化就在相空间M上划出
一些路径，正则方程解的唯一性告诉我们，不同的相空间路径永不相交。

所以，形象的，这些相空间路径可以被想象成是某种相空间流体的流线，

动力学演化过程就可以看成是这种相空间流体的流动过程，所以也称之为

相流。沿着相流的流线可以定义一个切向量场XH(即流速场)

XH = ẋi∂i. (53)

由于哈密顿正则方程(46)可以写作−ωjiẋ
j = ∂iH, 利用切向量场X和微分形

式的内乘iX , 不难看出这个方程可以写成如下漂亮的坐标无关的形式

−iXH
ω = dH. (54)
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在这种漂亮的坐标无关形式中，能量守恒定律的证明如下

dH

dt
= XH(H) = iXH

(dH) = −iXH
iXH

ω = −ω(XH , XH) = 0. (55)

另外，用坐标无关的语言来说，ω非退化的条件即是：当且仅当切向

量X = 0时，才有iXω = 0。

哈密顿正则方程相流的流动过程就在相空间定义了一个单参微分同胚

映射ϕt : x(0) → x(t)(注意x(0)本身并不是一个点，而是可以在M上变动，
这个式子的意思是每给一个初始的x(0)，ϕt映射就决定一个x(t)), 参数t就

是物理的时间。与ϕt对应的流速场就是前面的XH。记ϕt对辛形式ω的拖回

映射为ϕ∗
t (ω), 由于XH为相流的切向量场，所以根据李导数的定义，我们

有(稍后会给出证明)

ϕ∗
t

(
LXH

ω
)
=

d

dt
ϕ∗
t (ω). (56)

因此，一方面是有(56)式，另一方面，根据嘉当魔法公式LX = iXd +

diX , 注意到dω = 0, 所以我们有

LXH
ω = diXH

ω = −ddH = 0, (57)

在这个推导过程中我们利用了方程(54), 从而这就说明，在正则方程的相流

之下，有 d
dt
ϕ∗
t (ω) = 0, 从而

ϕ∗
t (ω) = ω. (58)

即系统的动力学演化保持相空间的辛结构不变！这样的单参微分同胚也称

作辛同胚。所以，哈密顿系统的动力学演化过程是相空间的一种单参辛同

胚映射。

插插插入入入一一一点点点数数数学学学

现在给出(56)式的证明。证明之前，先作点推广。对于流形上任意切向

量场X所生成的单参微分同胚群φt : x(0) → x(t) (注意，没说是辛流形，更

没说是辛同胚)，它满足群乘法φt ◦ φs = φt+s。那么沿着X的积分曲线有

d

dt
φt(x) = X(φt(x)). (59)

这些积分曲线当然可以看作流形上某种流体的流线，X就是相应的流速

场，所以也称φt为流形上的一个流。
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注意，上式中的t只是积分曲线的参数，数学上可以称作时间，但它

通常不不不是是是真真真正正正物物物理理理上上上的的的时时时间间间，因为相应的切向量场X不一定是由哈密顿

量H生成的XH , 更何况，这里的流形也不一定是经典力学的相空间。

(56)式的推广是，对任意p形式α，均有

φ∗
t

(
LXα

)
=

d

dt
φ∗
t (α). (60)

这个式子基本上是李导数的定义，但可能和数学书上原始的李导数定义略

有出入，因此我们简单证明一下。很简单，利用φt的群性，我们有

d

dt
φ∗
t (α) =

d

ds
φ∗
t+s(α)|s=0 =

d

ds
φ∗
t ◦ φ∗

s(α)|s=0

= φ∗
t ◦

d

ds
φ∗
s(α)|s=0 = φ∗

t (LXα). (61)

(60)式有一个很漂亮的应用。假设A为流形中一个p维曲面，其边界

为∂A, 其在单参微分同胚群作用下映射为φt(A), 则我们有

d

dt

∫
φt(A)

α =
d

dt

∫
A

φ∗
t (α) =

∫
A

d

dt
φ∗
t (α)

=

∫
A

φ∗
t (LXα) =

∫
φt(A)

LXα. (62)

利用嘉当魔法公式LX = iXd+ diX以及斯托克斯公式，即有

d

dt

∫
φt(A)

α =

∫
φt(A)

LXα =

∫
φt(A)

iXdα +

∮
φt(∂A)

iXα. (63)

关于这个结果的有趣应用，可以参见知乎的这篇文章

https://zhuanlan.zhihu.com/p/547766124

刘刘刘维维维尔尔尔定定定理理理

回到哈密顿力学。2n维辛流形M的体积形式Vol可以定义为

Vol ≡ 1

n!
ωn, (64)

式中ωn表示将n个ω通过外积乘起来。不难直接验证，如果取的是正则坐

标，即ω = dpa ∧ dqa, 那么Vol即是，

Vol = dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ ... ∧ dpn ∧ dqn. (65)
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由于相流ϕt保持辛结构，所以很显然

ϕ∗
t (Vol) =

1

n!
(ϕ∗

t (ω))
n =

1

n!
ωn = Vol. (66)

即相流也保持相空间的体积形式。由此即有所谓的刘刘刘维维维尔尔尔定定定理理理：即考虑相

空间的一块区域D, 记ϕt(D)为D随相流演化到t时刻的相应区域，则有

Vol(ϕt(D)) = Vol(D), (67)

即相空间的体积在相流演化下保持不变。

证明很简单，

Vol(ϕt(D)) =

∫
ϕt(D)

Vol =

∫
D

ϕ∗
t (Vol) =

∫
D

Vol = Vol(D). (68)

同样的论证也可以用于相空间的任何2k(k ≤ n)维曲面S2k, 假设将其

“面积元”定义为 1
k!
ωk, 则同样有：在相流的演化之下，这个曲面的“面

积”保持不变。

特别的，在相空间取一条闭合回路C, 则我们可以定义一个规范不变

量IC如下，

IC ≡ 1

2π

∮
C

Θ. (69)

由于在规范变换之下
∮
C
Θ →

∮
C
(Θ + dF ) =

∮
C
Θ, 所以IC显然是规范不变

的。进而我们也有

Iϕt(C) = IC . (70)

证明同样很简单，取C为两维曲面Σ的边界，即∂Σ = C, 则我们有

Iϕt(C) =
1

2π

∮
C

ϕ∗
t (Θ) =

1

2π

∫
Σ

d
(
ϕ∗
t (Θ)

)
=

1

2π

∫
Σ

ϕ∗
t (dΘ)

=
1

2π

∫
Σ

dΘ =
1

2π

∮
C

Θ = IC . (71)

正正正则则则坐坐坐标标标再再再讨讨讨论论论

我们知道，在正则坐标中辛形式ω可以写成ω = dpa ∧ dqa。现在假设

取局部坐标xi为正则坐标，即取xi = (q1, ..., qn, p1, ..., pn)，前n个i指标代
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表广义坐标q，后n个i指标代表广义动量p。并将正则坐标中的辛形式ω写

成1
2
ωijdx

i ∧ dxj的形式，则不难知道，这时候式中的ωij

ωij =

(
0n×n −1n×n

1n×n 0n×n

)
. (72)

式中1n×n表示n× n的单位矩阵。很显然，这时候逆矩阵ωij就是

ωij =

(
0n×n 1n×n

−1n×n 0n×n

)
. (73)

这两个矩阵都是常数矩阵。但是，在更一般性的相空间局部坐标中，ωij一

般来说是依赖于x的。

2 辛辛辛几几几何何何

相信前面关于哈密顿力学的讲述已经为进一步讨论辛流形提供了足够的动

机。本节我们进一步考察辛流形上的几何学，所谓的辛流形，就是装备了

一个非退化的闭2形式ω的流形，我们依然记作M。不过，一般的辛流形不
一定能看作余切丛，因为余切丛一定是非紧致流形，而除了余切丛以外还

有很多紧致的辛流形，比如两维球面S2，比如复n维射影空间CP(n), 甚至
比如复n维凯勒流形都是辛流形，它们基本上都不能看作是某个子流形的

余切丛。

辛流形的研究并不容易，因为单纯的辛结构携带的几何信息太少，数学

家们研究辛流形的常用方法是在它上面加上和辛结构相容的额外结构，通

常是加上所谓的近复结构，对于凯勒流形，这个近复结构甚至是可积的，

就成为了所谓的复结构，这使得凯勒流形同时也是一个复流形。不过，考

察这些额外的结构超出了本文的范围，因为本文考察的辛几何依然是为物

理上的哈密顿力学服务的，是想通过对辛流形的进一步考察，进而推广哈

密顿力学的适用范围，这时候对我们唯一重要的数学结构就是辛结构。所

以，我们将限于考察单纯的辛结构。

2.1 辛辛辛同同同胚胚胚

我们首先要考察的一个核心概念就是辛同胚，前面关于哈密顿力学的考察

也已经提供了进一步考察辛同胚的动机。从一定的意义上来说，辛同胚刻
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画的是辛流形本身的对称性。辛同胚的一般定义是：对于辛流形M到其自
身的一个微分同胚映射φ : x → x′, 如果它同时保持辛结构，也就是满足

φ∗(ω) = ω, (74)

那么我们就称φ为一个辛同胚。

这里要澄清的一点是，搞物理的人常常采用所谓主动的观点看待局部坐

标变换，即将x到x′的局部坐标变换看成是从x点到x′点的局部微分同胚映

射(而在局部坐标变换的观点中，x和x′原来描述的是同一点，只是两个不

同局部坐标)，这时候当然也有辛形式的规范不变性，即ω′ = ω, 但这不是

保持辛结构不变！因为，所谓的ω′ = ω指的是

ω′
ij(x

′)dx′i ∧ dx′j = ωij(x)dx
i ∧ dxj. (75)

而因为在局部微分同胚φ : x → x′下，有φ∗(ω) = 1
2
ωij(x

′)∂x
′i

∂xk
∂x′j

∂xl dx
k ∧ dxl,

所以φ∗(ω) = ω的条件相当于要求

ωij(x
′)dx′i ∧ dx′j = ωij(x)dx

i ∧ dxj. (76)

请看仔细了，这和(75)式并不相同，在等式左边的ωij上差了一个
′。所以，

坐标变换在主动观点下的确可以看作局部微分同胚变换，但，一般来说，

它并不是局部辛同胚！

不过，如果限制于正则坐标，那么正则变换在主动观点下的确是局部辛

同胚。因为在正则坐标下ω′ = ω的条件相当于

dp′a ∧ dq′a = dpa ∧ dqa. (77)

不难发现，这正好满足φ∗(ω) = ω的要求！这当然是因为，在正则坐标

中，ωij是一个常数矩阵。总之，正正正则则则变变变换换换在在在主主主动动动观观观点点点下下下就就就是是是一一一种种种局局局部部部辛辛辛

同同同胚胚胚！

当然，这里有一个小小的漏洞，即对于一般的辛流形，是否存在正则

坐标。回答是肯定的，正如后文将会给出证明的，著名的达布定理告诉我

们，对于任何辛流形，局部上来说，正则坐标总是存在的！不仅如此，这

些局部的正则坐标还并不唯一，而是可以相差一个任意的局部正则变换。

不过，一般来说，辛流形上可能并不存在整体性的正则坐标。

由于局部上总存在正则坐标，所以所有2n维辛流形的辛形式局部上都

可以取成ω = dpa ∧ dqa, 换言之，所有2n维辛流形局部上看起来都一样，
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将不同辛流形区分开来的主要是整体拓扑性质。这和黎曼流形有本质的不

同，不同黎曼流形局部上就是不同的，它们局部上的曲率不同，黎曼曲率

张量就刻画了这种局部上的不同。但是辛流形可没有像黎曼曲率张量这样

的局部不变量。

考察辛流形M的某个辛同胚φ, 局部上φ∗(ω) = ω就等价于φ∗(dΘ) = dΘ,

由于φ∗(dΘ) = dφ∗(Θ), 所以即有d
(
φ∗(Θ)−Θ

)
= 0, 这个结果既然是在局部

区域上成立，那么由庞加莱引理，即有

φ∗(Θ)−Θ = dF. (78)

也即是说，辛势在辛同胚下会相差一个规范变换！式中的F就称作辛同胚

的生成函数，很显然，如果限制于正则坐标，那它就是正则变换的生成函

数。

还有一个重要的结论也值得讲一下。从前面对刘维尔定理的相关讲述可

以看到，刘维尔定理的成立只依赖于相流是辛同胚，因此它显然可以推广

到任意的辛同胚情形。也即是说，辛同胚总是保持辛流形体积的，即对于

任意的辛同胚φ, 以及辛流形上的任意区域D，总有

Vol
(
φ(D)

)
= Vol(D). (79)

特别的，正则变换总是保持辛流形体积的！类似的，当然也有

Iφ(C) = IC . (80)

另外，我们知道，辛形式ω局部上可以由辛势Θ给出，即ω = dΘ, 但是

通常来说，这个关系不可能在整体上成立。特别的，如果辛流形M为紧致
流形(从而没有渐近边界)，那么ω = dΘ必定不可能在整体上成立，因为否

则的话，我们就有∫
M

Vol =

∫
M

1

n!
ωn =

∫
M

1

n!
d(ωn−1Θ) = 0. (81)

这当然是不可能的。

2.2 辛辛辛向向向量量量场场场与与与哈哈哈密密密顿顿顿向向向量量量场场场

任给辛流形M上的一个切向量场X, 现在考虑由它生成的单参微分同胚

群φt : x(0) → x(t)(再次强调，t只是数学上的时间，是微分同胚群的参
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数，不是物理上真正的时间)。很显然，φt是单参辛同胚(即满足φ∗
t (ω) =

ω)的充要条件为

LXω = 0. (82)

我们称这样的切向量场为辛辛辛向向向量量量场场场！

现在，可以推推推广广广相相相流流流的概念，即：如果以上φt为辛同胚，我们就称它

为M上的一个相流。注意，即使这个相流的时间t不是物理上真正的时

间，我们也称之为相流。而哈密顿正则方程的相流(也就是真正随物理时间

演化的相流)只是这个一般化相流概念的特例。

任给两个辛向量场X1, X2以及常数c1, c2, 由于Lc1X1+c2X2 = c1LX1 +

c2LX2 , 不难看出必然也有Lc1X1+c2X2ω = 0, 即c1X1 + c2X2必定也是一个

辛向量场。所以，M上所有辛向量场的集合构成了一个向量空间！又由于

L[X1,X2] = LX1LX2 − LX2LX1 . (83)

所以不难看出，如果X1, X2均为辛向量场，则必定也有L[X1,X2]ω = 0,

即[X1, X2]也必定为辛向量场。所以，M上所有辛向量场的集合构成了
一个封闭李代数。又由于辛向量场是辛同胚群的生成元，所以这意味

着，M的辛同胚群必定是一个李群！
任给辛向量场X。利用嘉当魔法公式LX = iXd + diX , 以及dω = 0的条

件，不难看出，(82)式相当于

d(iXω) = 0. (84)

根据庞加莱引理，这意味着，1形式iXω在局部上必定是一个恰当形式，即

局部上必定存在某个M上的函数G(x)，使得局部上有(式中的负号不是最

关键的，只是一种约定)

−iXω = dG. (85)

很显然，这个式子非常类似于哈密顿正则方程的坐标无关形式(54), 所以

我们把满足这个式子的向量场X称作局局局部部部哈哈哈密密密顿顿顿向向向量量量场场场，所以，任何辛向

量场都必定是局部哈密顿向量场。在(85)式中函数G起到了哈密顿正则方

程(54) 中哈密顿量H的作用，当然G不一定是物理上的哈密顿量，但它也

会在局部上生成X的相流，只是因为G不一定是H, 所以这个相流的演化时

间t也不一定是真正物理的时间。
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如果(85)式不仅是在局部上成立，而是在整个M上都成立(比如M的1阶de

Rahm上同调群H1(M) = 0的情形，这时候任何辛向量场X必定都在整体

上满足(85)式)，则我们就称相应的辛向量场X为哈哈哈密密密顿顿顿向向向量量量场场场，并将之记

作XG, 同时也称相应的相流为哈哈哈密密密顿顿顿相相相流流流。从而，哈密顿向量场必定在整

体上满足

−iXG
ω = dG. (86)

这时候G就称作哈密顿相流的生成元。不难看出，这个方程的局部坐标形

式为ωijX
j
G = ∂iG, 或者写成，

XG = X i
G∂i = (ωij∂jG)∂i. (87)

也即是说，哈密顿向量场完全是由生成元G决定的，这就是为什么我们把

它记作XG而不是X的原因。当然，相差一个常数c的两个生成元决定的哈

密顿向量场是相同的，即

XG+c = XG. (88)

而且根据(87)式，很显然，对于任意常数c1, c2, 有

Xc1G1+c2G2 = c1XG1 + c2XG2 . (89)

特别的，X−G = −XG。

根据切向量场XG的积分曲线方程(也就是相流的流线方程)，沿着流线

也有

ẋi(t) = X i
G = ωij∂jG. (90)

显然，这个结果完全类似于哈密顿正则方程的局部坐标形式(48), 当然这里

的时间t是每个相流各自的时间。有时候，我们也称这个方程为函数G生成

的相流方程，并记相应的哈密顿相流为φt,G, 从而方程(90)更严格的数学写

法是

d

dt
φt,G(x) = XG(φt,G(x)). (91)

这两个方程的记号不要混淆了，这里的x其实是x(0),而(90)式中的x是x(t)。
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另外，不难看出，在局部正则坐标中，相流方程(90)可以写作

q̇a =
∂G

∂pa
, ṗa = − ∂G

∂qa
. (92)

在经典力学教科书上，这个方程通常是通过所谓的无穷小正则变换来推导

的。不过，由于正则变换是辛同胚，所以教科书上的推导和这里的推导本

质是相通的。

当然，最为特殊的生成元就是能量函数H, 也就是哈密顿量，它所生成

的哈密顿相流就是真正按物理时间演化的相流，前文我们将之记作ϕt, 当然

按照这里的记号即有ϕt = φt,H！

利用公式i[X,Y ] = LXiY − iYLX , 不难证明，若XG1 , XG2均为哈密顿向量

场，则

−i[XG1
,XG2

]ω = iXG2
LXG1

ω − LXG1
iXG2

ω = −LXG1
iXG2

ω

= LXG1
(dG2) = d(iXG1

(dG2)) = d(XG1(G2)). (93)

所以，[XG1 , XG2 ]也为哈密顿向量场，相应的生成函数为XG1(G2)。

换言之，M上所有哈密顿向量场的集合也构成一个封闭李代数，很显
然，它是辛向量场李代数的子代数。

单单单参参参辛辛辛同同同胚胚胚的的的生生生成成成函函函数数数

给定一个哈密顿相流φt,G, 考虑它由x发出的一条流线φt,G(x), 仿照哈密

顿力学中的作用量概念，我们可以定义沿着这条流线的一个“作用量函

数”St(x)，

St(x) =

∫ t

0

ds[Θiẋ
i −G(x(s))]. (94)

当然，式中的x(s)满足相流方程(90), 而且x(0) = x。由于起点x完全决定了

整条流线，所以St(x)是x的函数。

现在，假设起始点x发生了一个微小的改变δx，则整个流线都会跟着发

生微小的改变，这时候求St(x)的改变量就需要对(94)式进行变分，不难算

得

δSt(x) = (Θiδx
i)|t0 +

∫ t

0

ds[ωijẋ
j − ∂iG(x)]δxi(s). (95)
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由于x(s)满足相流方程(90)，所以等式右边第二项其实为零，从而有δSt(x) =

(Θiδx
i)(t)− (Θiδx

i)(0)。由于一切均由起始点x的微分引起，所以可以将变

分符号改成标准的微分符号，同时也需要将t时刻的x(t)拖回到起始的x位

置(因为x(t)完全由x(0) = x决定)，从而即可以将最终结果写成

dSt = φ∗
t,G(Θ)−Θ. (96)

这个式子告诉我们，“作用量函数”St(x)是单参辛同胚φt,G的生成函数。

2.3 泊泊泊松松松括括括号号号

对于辛流形M上任意给定的微分形式α，以及哈密顿向量场XG的相流φt,G,

根据前面证明过的(60)式，当然就有

d

dt
φ∗
t,G(α) = φ∗

t,G(LXG
α). (97)

特别的，当α为标量函数F时，我们有

d

dt
φ∗
t,G(F )|t=0 = LXG

F = XG(F ). (98)

通常将这个结果定义成G和F的泊松括号，记作{G,F}, 即

{G,F} ≡ d

dt
φ∗
t,G(F )|t=0. (99)

因此有{G,F} = XG(F )。

根据以上这个定义，即有，给定辛流形M上的两个函数G1(x), G2(x),

它们的泊松括号{G1, G2}也是M上的一个函数，它由下式给出

{G1, G2} = XG1(G2). (100)

对于任意常数c1, c2，显然有

{G, c1G1 + c2G2} = c1{G,G1}+ c2{G,G2}. (101)

另外，由(100)式以及求导的莱布尼兹法则，不难得到

{G1, G2G3} = {G1, G2}G3 +G2{G1, G3}. (102)
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进一步，根据哈密顿向量场的定义，XG1(G2) = iXG1
(dG2) = −iXG1

iXG2
ω =

−ω(XG2 , XG1) = ω(XG1 , XG2), 所以我们也有

{G1, G2} = ω(XG1 , XG2). (103)

很显然，它满足如下性质

{G1, G2} = −{G2, G1}. (104)

由于在局部坐标中XG = (ωij∂jG)∂i, 所以不难发现(100)式在局部坐标中

可以写作

{G1, G2} = −ωij∂iG1∂jG2. (105)

如果我们取的是局部正则坐标，则代入正则坐标中相应的ωij(这时候为常

数矩阵)，即有

{G1, G2} =
∂G1

∂pa

∂G2

∂qa
− ∂G1

∂qa
∂G2

∂pa
. (106)

这就是哈密顿力学教科书中标准的泊松括号(可能差个负号)。

另外，前面说过，[XG1 , XG2 ]也为哈密顿向量场，相应的生成函数

为XG1(G2)，而根据(100)式, XG1(G2) = {G1, G2}，所以根据哈密顿向量场
的记号规则，立刻即有

[XG1 , XG2 ] = X{G1,G2}. (107)

将这个式子两边均作用在函数G3上，再反复利用(100)式和(104)式，不难

得出

{G1, {G2, G3}}+ {G2, {G3, G1}}+ {G3, {G1, G2}}. (108)

这就是所谓的雅可比恒等式。它告诉我们，辛流形M上所有函数的集
合在泊松括号运算下形成了一个李代数！不仅如此，(107)式还告诉我

们，G → XG的映射是函数在泊松括号下的李代数到哈密顿向量场李代数

的同态。
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2.4 达达达布布布定定定理理理与与与拉拉拉格格格朗朗朗日日日子子子流流流形形形

达达达布布布定定定理理理

下面我们来证明，对于任何辛流形，局部上正则坐标总是存在的。

达达达布布布定定定理理理: 设M是一个任意的2n维辛流形，ω为其辛形式。则在M上任
意点p附近的某个开集中，总是能找到一组正则坐标(q, p)使得辛形式ω在这

个开集中能写成

ω = dpa ∧ dqa. (109)

在具体证明之前，我们先来证明一个引引引理理理：设φt为显含时间的向量

场Vt生成的流，即φt满足如下方程

d

dt
φt(x) = Vt(φt(x)). (110)

则类似于(60)式，我们也有.

d

dt
φ∗
t (α) = φ∗

t (LVtα). (111)

不过，这个式子的证明不能沿用(60)式的证明，因为φt不再有群性

了(由于Vt显含t)。

下面给出引理的证明，由于李导数满足莱布尼兹法则，所以显然只需要

就α = f和α = df(式中f为标量函数)情形给出证明就可以了。ω = f时的证

明如下

φ∗
t (LVtf)(x) = LVtf(φt(x)) = V i

t (φt(x))∂if(φt(x))

=
dφi

t(x)

dt
∂if(φt(x)) =

d

dt
f(φt(x)) =

d

dt
φ∗
t (f)(x). (112)

ω = df时的证明如下(利用了dLX = LXd以及拖回映射和外微分运算可交换

的性质)

φ∗
t (LVtdf) = φ∗

t (d(LVtf)) = d
(
φ∗
t (LVtf)

)
= d
( d
dt
φ∗
t (f)

)
=

d

dt
φ∗
t (df). (113)

下面给出达达达布布布定定定理理理的的的证证证明明明：这个证明是基于所谓的Moser技巧。由于任

何2n维流形局部上都同胚于R2n, 所以我们只要就M = R2n的情形给出证明

即可以了。不失一般性的，我们假定p点为R2n的原点。
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设辛形式为

ω =
1

2
ωij(x)dx

i ∧ dxj. (114)

并记ω0 = 1
2
ωij(0)dx

i ∧ dxj。很显然，有d(ω − ω0) = 0, 所以根据庞加莱引

理，在0点附近的局部上，有ω − ω0 = dβ, 其中β为某个1形式。下面定义

ωt = ω0 + tdβ. (115)

很显然dωt = 0, ω1 = ω。现在取所考察的局部区域足够小，以使得对于任

意t ∈ [0, 1], ωt在这个局部区域上均非退化。在这个局部区域上，通过下式

定义一个显含时间t的向量场Vt

iVtωt = −β. (116)

由于(ω − ω0)|x=0 = 0, 所以β(0) = 0, 由于ωt非退化，从而有Vt(0) = 0。

记φt为由Vt生成的流，则由于Vt(0) = 0，所以φt(0) = 0。取所考察的局

部区域足够小，以使得对于任意t ∈ [0, 1], φt在这个局部区域上均有定义。

利用上面的引理，我们有

d

dt
φ∗
t (ωt) = φ∗

t (LVtωt +
∂

∂t
ωt) = φ∗

t (diVtωt + dβ) = φ∗
t (−dβ + dβ) = 0.(117)

因此

φ∗
t (ωt) = ω0 ⇒ φ∗

1(ω) = ω0 ⇔ ω = (φ−1
1 )∗ω0. (118)

设φ−1
1 为

φ−1
1 : x → y. (119)

则(118)式意味着

ω =
1

2
ωij(x)dx

i ∧ dxj =
1

2
ωij(0)dy

i ∧ dyj. (120)

由于ωij(0)已经是反对称的常数矩阵，所以线性代数的知识告诉我们，

对yi进行一个合适的线性变换，就能将ωij(0)变成(72)式给出的形式，从而

线性变换以后的y坐标就是正则坐标，即有

ω = dpa ∧ dqa. (121)
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证明完成。

拉拉拉格格格朗朗朗日日日子子子流流流形形形

在经典力学中，位形流形Q是相空间M的一个子流形，Q的维数刚
好是M的一半，而且由于辛形式ω = dpa ∧ dqa, 所以将ω限制在Q上(即

取pa = 0)会得到零。这样的子流形即是所谓的拉格朗日子流形。

一般地，拉格朗日子流形的定义是：假设L为2n维辛流形M的一个n维

子流形(即维数刚好是一半)，那么如果ω|L = 0, 即辛形式在L上的限制为
零，我们就称L为M的一个拉拉拉格格格朗朗朗日日日子子子流流流形形形。
我们可以在正则坐标中刻画拉格朗日子流形的局部性态。为此在2n维

辛流形M上取局部正则坐标(qa, pa), 并通过下式局部地定义一个n维子流

形L

L := {(qa, pa) ∈ M|pa = fa(q), a = 1, 2, ..., n}, (122)

式中fa(q)为q坐标的函数，与p坐标无关。

为了看清楚上面定义的L什么时候成为拉格朗日子流形，我们注意到

ω|L = dpa ∧ dqa|L = ∂afb(q)dq
a ∧ dqb =

1

2
(∂afb − ∂bfa)dq

a ∧ dqb. (123)

要求这个结果等于零，即有

∂afb − ∂bfa = 0. (124)

很显然，这等价于

df = 0, (125)

式中f = fa(q)dq
a。根据庞加莱引理，即有

f = fa(q)dq
a = dF, (126)

式中F (q)为q坐标的任意函数。上式相当于

fa(q) =
∂F (q)

∂qa
. (127)

满足这个条件的L就是拉格朗日子流形。正因为如此，人们也常把函
数F (q)称作拉格朗日子流形的生成函数。很显然，经典力学中的位形流形

只是拉格朗日子流形的一个特例(相当于取F (q) = 0)。
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2.5 应应应用用用举举举例例例：：：经经经典典典自自自旋旋旋

学物理的读者也许要问，那么这一套抽象的辛几何在经典力学有什么用

呢？回答是，用处在于：首先，它完美化了哈密顿力学的数学结构。其

次，更重要的是，它大大推广了哈密顿力学的适用范围，原来我们只能处

理相空间为余切丛的经典力学系统。但是，现在，我们可以把经典力学的

相空间推广到任意辛流形，比方说，推广到紧致辛流形。

下面我们给一个传统哈密顿力学无法描述的例子，那就是对自旋的经典

描述。经典上所谓的自旋，指的是三维空间一个给定长度的向量(相当于自

旋的大小给定) J = (J1, J2, J3)，这个向量的所有可能空间取向就构成了经

典自旋的相空间。不妨取合适的单位，使得|J| = 1, 从而自旋的相空间满

足如下方程

J2
1 + J2

2 + J2
3 = 1. (128)

这就是两维单位球面S2, 它是一个紧致流形，而不是一个余切丛，从而用

传统的方法很难描述。

下面我们看如何用辛几何的方法来描述这个系统。为此我们在相空

间S2上取面积形式为辛形式，即取

ω = J1dJ2 ∧ dJ3 + J2dJ3 ∧ dJ1 + J3dJ1 ∧ dJ2

= (J1dJ2 − J2dJ1) ∧ dJ3 + J3dJ1 ∧ dJ2. (129)

下面定义J±如下

J+ = J1 + iJ2, J− = J1 − iJ2. (130)

不难算得

(J1dJ2 − J2dJ1) =
i

2
(J+dJ− − J−dJ+), dJ1 ∧ dJ2 =

i

2
dJ+ ∧ dJ−. (131)

为了在相空间上找到一组更好处理的坐标，下面将单位球面S2球极投

影到复平面，即定义

J+ =
2z

1 + |z|2
, J− =

2z

1 + |z|2
, J3 =

1− |z|2

1 + |z|2
, (132)

27



式中z为复平面的复坐标。不难算得

i

2
(J+dJ− − J−dJ+) = 2i

zdz − zdz

(1 + |z|2)2
i

2
dJ+ ∧ dJ− = 2i

1− |z|2

(1 + |z|2)3
dz ∧ dz

dJ3 = −2
zdz + zdz

(1 + |z|2)2
. (133)

利用所有这些公式，即可以将辛形式ω用复坐标表示成

ω = 2
idz ∧ dz

(1 + |z|2)2
. (134)

从这个表达式可以读出ω的分量ωij, 其中非零分量为ωzz = −ωzz = 2i
(1+|z|2)2 ,

它可以排成如下矩阵形式

2i

(1 + |z|2)2

(
0 1

−1 0

)
. (135)

很明显，逆矩阵为

i

2
(1 + |z|2)2

(
0 1

−1 0

)
. (136)

从而可以得到ωij，其非零分量如下

ωzz = −ωzz =
i

2
(1 + |z|2)2. (137)

进而根据X i
G = ωij∂jG, 即可以得到

Xz
G =

i

2
(1 + |z|2)2∂zG, Xz

G = − i

2
(1 + |z|2)2∂zG. (138)

特别的，将G分别用J1, J2, J3代进去，即可以得到

XJ1 =
i

2
(1− z2)∂z −

i

2
(1− z2)∂z,

XJ2 = −1

2
(1 + z2)∂z −

1

2
(1 + z2)∂z,

XJ3 = −iz∂z + iz∂z. (139)
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进而根据{G1, G2} = ω(XG1 , XG2)，即可以算得如下泊松括号关系

{J1, J2} = J3,

{J2, J3} = J1,

{J3, J1} = J2. (140)

这正是标准的角动量的泊松括号代数关系。但是，请注意，在传统的哈密

顿力学中，对于轨道角动量(相应的角动量可以由广义坐标和广义动量表达

出来)，我们的确可以很容易推导出这个代数关系，但是，对于自旋角动

量，我们是无从推导这个关系的。现在，我们利用辛几何的表述，就能够

推导出这个代数关系了！

2.6 哈哈哈密密密顿顿顿力力力学学学与与与对对对称称称性性性

2.6.1 哈哈哈密密密顿顿顿系系系统统统的的的一一一般般般定定定义义义

有了辛几何的准备以后，我们就可以将哈密顿力学推广到最一般的情形。

我们可以这样定义一个哈密顿力学系统(简称哈密顿系统)：一个哈密顿系

统就是一个辛流形(M, ω)(ω为辛形式)加上一个哈密顿量H(x), 其中辛流形

为这个系统的相空间，而哈密顿量H(x)为辛流形上的一个特定函数，这个

函数描写系统的能量，它所生成的相流ϕt就是系统在相空间上按照物理时

间进行的演化。因此，一个哈密顿系统就是一个三元组(M, ω,H)。

注意，按照这个定义，不是所有的哈密顿系统都有对应的拉格朗日力学

系统，一个哈密顿系统要有对应拉格朗日系统，一个必要条件是，相应的

辛流形M得是一个余切丛。而正如我们前面提到过的，大量的辛流形都不
是余切丛(比如所有紧致辛流形)，因此从这个意义上来说，大量的哈密顿

系统都没有对应的拉格朗日力学系统。

记t为哈密顿系统(M, ω,H)的物理时间，记ϕt为H所生成的相流，G(x)

为M上的一个任意函数，也称作一个物理量，则有

d

dt
ϕ∗
t (G) = ϕ∗

t (LXH
G) = ϕ∗

t ({H,G}). (141)

物理学家喜欢把这个方程简写成(只要记住我们是沿着相流ϕt的流线对t求

导)

d

dt
G = {H,G}. (142)
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特别的，如果dG
dt

= 0，我们就称G为一个守恒量，很显然，守恒量G必定满

足

{G,H} = 0. (143)

称作G和H泊松对易。

利用泊松括号的雅可比恒等式不难证明，若G1和G2均为守恒量(即两者

均与哈密顿量H泊松对易)，则{G1, G2}也必定为守恒量。所以一个哈密顿
系统所有守恒量的集合在泊松括号运算下构成一个封闭的李代数。

2.6.2 对对对称称称性性性与与与诺诺诺特特特定定定理理理

考察一个李群在辛流形上的作用是很有用的。在物理中，比如这个辛流形

是某个哈密顿系统的相空间，那么比如将这个物理系统旋转一个角度的操

作就会自然地诱导出在相空间上的一个作用，所有可能的旋转当然构成一

个旋转群，所以这就是一个典型的李群作用在辛流形上的例子。

一般来说，设G为一个李群，其李代数为g, 对于任何群元g ∈ G，其在

辛流形M上的作用就是由g定义的一个微分同胚ρg : x → x′, 通常也将x′记

作g · x，即

ρg : x → g · x. (144)

对于李群来说，这样的作用会在M上诱导出一个向量场，其定义为

VA(x) =
d

dt

(
etA · x

)
|t=0, (145)

式中A ∈ g。A → VA就定义了一个李代数g到向量场李代数的同态，即满足

[VA, VB] = V[A,B], A,B ∈ g. (146)

特别重要的情形是，微分同胚ρg同时是辛同胚的情形，而且，最重要的

是不仅是辛同胚，而且向量场VA还是一个哈密顿向量场的情形，这时候即

有

iVA
ω = −dGA. (147)

由于A → VA是李代数同态，而根据(2.3)小节，GA → VA也是一个李代数同

态，只不过这个时候GA只能决定到相差一个常数。因此，我们不难合适地

选择这些未定常数，使得A → GA也是一个李代数同态，即满足

{GA, GB} = G[A,B]. (148)
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记GA所生成的相流为φs,A, s为这个相流的时间，则如果对于任意A ∈ g,

相流φs,A都保持系统的哈密顿量H不变，即有

φ∗
s,A(H) = H. (149)

则我们就称李群G是这个哈密顿系统的一个对称群，相应的GA就称作这个

对称性在相空间作用的生成元。很显然，根据这个定义，我们有

0 =
d

ds
φ∗
s,A(H)|s=0 = {GA, H}. (150)

即，GA与哈密顿量H泊松对易。但，这就意味着GA是一个守恒量。所以

哈密顿系统的任意一个连续对称性，都必然对应一个守恒量，而且这个守

恒量正好是这个对称群在相空间作用时的生成元。这，就是所谓的诺诺诺特特特定定定

理理理。

值得一提的是，数学家常常称

A → GA (151)

的映射为动量映射，或者矩映射(momentum map)。当然，更严格来说，

数学上的动量映射是这个映射的对偶。

下面举一个例子，假设辛流形M = R2n, 辛形式为

ω = dpa ∧ dqa. (152)

不妨记

q =

q1

...

qn

 , p =

p1

...

pn

 . (153)

考虑SO(n)群的作用为

O :

(
q

p

)
→

(
Oq

Op

)
, O ∈ SO(n). (154)

显然，这个群作用保持辛形式不变，所以为辛同胚。

对于SO(n)李代数中的每一个元素A(它为n×n的反对称矩阵,满足Aab =

−Aba)，我们有

VA =
d

dt

(
etAq

)a|t=0
∂

∂qa
+

d

dt

(
etAp

)a|t=0
∂

∂pa
,

= Aab

(
qb

∂

∂qa
+ pb

∂

∂pa

)
(155)
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从而

iVA
ω = −Aabq

bdpa + Aabpbdq
a = −d(Aabq

bpa). (156)

因此

GA = Aabq
bpa. (157)

取反对称矩阵A为第a行第b列等于−1，第b行第a列为+1，其它矩阵元均为

零的矩阵Eab, 则显然

GEab
= qapb − qbpa. (158)

这就是三维空间角动量的推广。所以如果SO(n)是相应哈密顿系统的一个

对称性，那么这些推广的角动量就是守恒量。这正反映了，旋转对称性对

应于角动量守恒。
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