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第十五章 球对称恒星及其演化

陈陈陈童童童

前面的章节中我们系统讲述了黑洞这种最为奇异的天体，当然今天我

们知道黑洞是存在的，然而由于广义相对论的黑洞解中总是存在时空奇

性(即时空曲率发散的地方)，而奇性的存在本身意味着广义相对论在此处

失效，所以关于黑洞解是否描写了真实存在的天体(还是仅仅只有数学意

义) 就曾经是一个很难确定的难题(比如白洞通常就被认为是不存在的)。尤

其是，如果黑洞真实存在，那它是如何形成的呢？这一章的目的之一就是

要讨论这个问题。

结果表明，对黑洞如何形成的一个回答是，它可以作为恒星演化的可

能归宿之一而出现。因此这就把我们带到一个同样重要而且有意思的课题，

即利用广义相对论来探讨恒星的演化。当然，动态演化过程研究起来比较

困难，但是考虑到恒星的演化通常是在天文学时间尺度上进行的，所以我

们不妨从研究恒星的平衡态开始，具体来说，我们将从研究一颗静态球对

称恒星开始。

15.1 星体结构微分方程

对于一颗静态球对称恒星，其外部的时空当然由施瓦西解所描述，所

以关键是要研究星体的内部。而星体内部是有物质分布的，因此内部时空

满足的显然不是真空爱因斯坦方程，而是有物质分布的爱因斯坦方程。
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第十五章 球对称恒星及其演化 3

星体内部的物质分布可以看作是微观上由大量粒子所构成的理想流体，

因此具有如下能量动量张量

Tµν = (ρ+ p)uµuν + pgµν . (15.1)

很显然T = gµνTµν = 3p − ρ。由于星体被假定为静态的，从而描述物质分

布的理想流体也是静态的，这意味着协变流速场u = uµ∂µ将正比于静态基

林向量场ξ = ∂t。

根据第八章中的分析，静态球对称度规必定可以取成如下形式

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2. (15.2)

u正比于∂t就意味着uµ只有时间分量，进一步根据归一化条件gµνu
µuν =

−1，即可以定出在(t, r, θ, ϕ)坐标中，

uµ = A− 1
2 (1, 0, 0, 0), uµ = A

1
2 (−1, 0, 0, 0). (15.3)

代入(15.1)式，即得能动张量的非零分量为

Ttt = ρ(r)A(r), Trr = p(r)B(r)

Tθθ = p(r)r2, Tϕϕ = sin2 θTθθ. (15.4)

另一方面，根据第八章的计算，静态球对称度规的里奇张量为

Rtt =
A′′

2B
+

A′

rB
− A′

4B

(A′

A
+

B′

B

)
Rrr = −A′′

2A
+

B′

rB
+

A′

4A

(A′

A
+

B′

B

)
Rθθ = 1−

( r
B

)′ − r

2B

(A′

A
+

B′

B

)
Rϕϕ = sin2 θRθθ. (15.5)

进而由爱因斯坦场方程Rµν = κ(Tµν − 1
2
gµνT )即可以得到

Rtt =
A′′

2B
+

A′

rB
− A′

4B

(A′

A
+

B′

B

)
= κ

1

2
(ρ+ 3p)A (15.6)

Rrr = −A′′

2A
+

B′

rB
+

A′

4A

(A′

A
+

B′

B

)
= κ

1

2
(ρ− p)B (15.7)

Rθθ = 1−
( r
B

)′ − r

2B

(A′

A
+

B′

B

)
= κ

1

2
(ρ− p)r2. (15.8)
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注意，只有三个方程，因为θθ分量和ϕϕ分量所给出的方程是同一个。

考虑以上三个方程的组合Rtt

A
+ Rrr

B
+ 2Rθθ

r2
, 不难得到

1

r2

(
1−

( r
B

)′)
= κρ. (15.9)

积分这个式子，即可以得到 r
B
= r− 2Gm(r)+ c, 式中c为积分常数，m(r)为

m(r) = 4π

∫ r

0

ρ(r′)r′2dr′. (15.10)

为了定出积分常数c，我们注意到度规在r = 0处必定是有限的，从

而B(0)有限，进而在 r
B

= r − 2Gm(r) + c中取r = 0, 即可以得到c = 0，

即有

1

B
= 1− 2Gm(r)

r
. (15.11)

假设恒星的半径为R, 恒星外面施瓦西解的质量参数为M , 即恒星外部的度

规满足B =
(
1 − 2GM

r

)−1
, 则很显然，为了衔接恒星内部和外部的解，必然

有

M = m(R) = 4π

∫ R

0

ρ(r)r2dr. (15.12)

注意，上面的M并不是星体内部所有物质分布的总能量(虽然表达式看

起来很像)，由于径向空间的弯曲，星体内部所有物质分布的总能量应该由

下式给出

4π

∫ R

0

√
B(r)ρ(r)r2dr. (15.13)

很显然，这和上面的M并不同。实际上，正如后面的章节中将会证明的，

上面的M是整个时空所有东西(包括星体内部的物质分布和整个时空的引力

场) 的总能量，它当然和物质分布的能量是不同的。

一共三个独立方程，我们才处理完一个，为了继续进行下去，我们

把(15.9)式代入(15.8)式以消去其中的ρ，进而得到

1−
( r
B

)′ − r

B

(A′

A
+

B′

B

)
= −κp(r)r2. (15.14)

整理一下，可以得到

r

B

d lnA

dr
= (1− 1

B
) + kpr2. (15.15)
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代入(15.11)式，即可以得到

d lnA

dr
=

2G
(
m(r) + 4πp(r)r3

)
r
(
r − 2Gm(r)

)
=

2Gm(r)

r2

(
1 +

4πr3p(r)

m(r)

)(
1− 2Gm(r)

r

)−1

. (15.16)

现在只剩下最后一个独立方程要处理了，但是直接从前面那三个独立

方程组合出最后这个方程的话有些繁琐，一个简洁的办法是利用能动量守

恒方程DµT
µν = 0 (由于爱因斯坦张量满足比安基恒等式，所以这个式子必

定成立) 来得到最后这个独立方程。第四章我们推导过矢量场的协变散度

必定可以写成DµA
µ = 1√

|g|
∂µ(

√
|g|Aµ), 完全类似的推导可以得到

DµT
µν =

1√
|g|

∂µ(
√
|g|T µν) + Γν

µρT
µρ. (15.17)

将DµT
µν = 0用到理想流体的能动张量，并注意到Dµg

µν = 0, 即有

0 =
1√
|g|

∂µ
(√

|g|(ρ+ p)uµuν
)
+ Γν

µρ(ρ+ p)uµuρ + gµν∂µp. (15.18)

注意到uµ仅仅只有时间分量非零，同时注意到球对称性的假设意味着ρ和p

都仅仅是r的函数，进而即可以从上式得到

0 =
ρ+ p

A
Γν
tt + grν

dp

dr
. (15.19)

根据第八章对克里斯托夫联络的计算可知，Γν
tt中只有Γr

tt =
1
2
A′

B
非零，因此

在上式中取ν = r，即可以得到

dp

dr
= −1

2
(ρ+ p)

d lnA

dr
. (15.20)

代入(15.16)式，即可以得到

dp

dr
= −Gm(r)ρ(r)

r2

(
1 +

p(r)

ρ(r)

)(
1 +

4πr3p(r)

m(r)

)(
1− 2Gm(r)

r

)−1

. (15.21)

这就是著名的，相对论星体结构的Tolman-Oppenheimer-Volkoff方程。

Tolman-Oppenheimer-Volkoff方程就是最主要的一个星体结构微分方

程。另一个关键的结构方程是对(15.10)式的重新改写，改写为

dm(r)

dr
= 4πρ(r)r2. (15.22)
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很显然，这个方程的初始条件是

m(0) = 0. (15.23)

但是，方程(15.21)和方程(15.22)还不够，因为这只有两个方程，但是

未知的变量有ρ(r), p(r)和m(r)三个，所以还缺了一个方程。这个所缺的方

程就是星体物质分布的物态方程。一般性的物态方程当然很复杂，因为它

可能和物质的比熵分布以及化学成分都有关系。但在最简单和最有用的情

况下，我们可以假定所谓的物态方程，就是压强p作为能量密度ρ的一个给

定函数关系，即我们假定

p(r) = p(ρ(r)). (15.24)

通常还要求物态满足下面的合理要求

ρ ≥ 0, p ≥ 0. (15.25)

补上了这样的物态方程，方程的数目就够了。

为了联立求解星体结构方程(15.21),(15.22) 以及物态方程(15.24), 我们

还需要知道初始条件，m(r)的初始条件为m(0) = 0，另一个初始条件就

是ρ(0)，不妨假定

ρ(0) = ρ0, (15.26)

并记相应的p(0)为

p(0) = p(ρ(0)) = p0. (15.27)

利用初始条件求解微分方程，就可以得到函数ρ(r), p(r)以及m(r)。有了

这三个函数，再代入方程(15.11)和方程(15.16)就能求出时空度中待定

的A(r)和B(r)。

注意，星体不是黑洞，它内部不可能含有视界，所以通常来说

A(r) > 0, B(r) > 0, (15.28)

换言之，必定有

2Gm(r) < r. (15.29)
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进一步，对于ρ ≥ 0, p ≥ 0的合理物态，由Tolman-Oppenheimer-Volkoff方

程可以知道，星体从内向外，其压强p(r)必定是单调下降的，到星体的表

面上，这个压强将下降为零。所以，星体的半径R可以定义为，使得下式

成立的最小R

p(R) = 0. (15.30)

15.2 牛顿近似以及均匀密度星

牛顿近似

下面考虑星体结构微分方程的牛顿近似。这是指：1. 首先，时空弯曲

可以忽略，比方说B(r)近似等于1，从而

2Gm(r) ≪ r. (15.31)

2. 其次，物质粒子的动能远远小于静止能量，由于压强是由动能导致的，

从而这意味着

p ≪ ρ ⇒ pr3 ≪ ρr3 ∼ m(r). (15.32)

不难看出，在牛顿近似下，Tolman-Oppenheimer-Volkoff方程可以近似

为

dp

dr
= −Gm(r)ρ(r)

r2
. (15.33)

这个方程当然也可以在牛顿引力的框架下推导出来，为此你只需要在星体

内部考虑一个厚度为dr的薄球层，由球层内外压力差(内部压力高)与球层

所包围物质对它的万有引力之间的平衡，也就是所谓压强梯度与星体自引

力之间的平衡，就可以导出方程(15.33), 如图(15.1).

另外，同样不难看出，在牛顿近似下，方程(15.16)将近似为

d lnA

dr
=

2Gm(r)

r2
. (15.34)

实际上，这个结果说明，在牛顿近似下

lnA = 2φ(r), (15.35)
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图 15.1: 由一个薄球层内外压力差与球层内部物质对它的万有引力的平衡

可以导出方程(15.33).

式中φ(r)表示牛顿引力势。

为了看出这一点，我们只需要注意到牛顿引力势φ(r)满足泊松方

程∇2φ = 4πGρ。在球对称的情况下，这个方程将成为

1

r2
d

dr

(
r2
dφ

dr

)
= 4πGρ(r). (15.36)

将这个方程积分一次，即有r2 dφ
dr

= 4πG
∫ r

0
ρ(r′)r′2dr′ = Gm(r), 进而即有

dφ

dr
=

Gm(r)

r2
. (15.37)

比较这个结果和(15.34)式，即知lnA = 2φ(r)。

施瓦西内解

星体结构微分方程通常无法解析求解，只能求数值解。不过，对于一

种最简单的假想物态，最早在1916年施瓦西就已经求得了其解析解，这就

是所谓的施瓦西内解。这种最简单的情况就是所谓的均匀密度星，即其物

态方程是

ρ(r) = ρ0 =常数. (15.38)

很显然，这时候

m(r) =
4π

3
ρ0r

3. (15.39)
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特别的，总能量M为

M =
4π

3
ρ0R

3. (15.40)

由于ρ为常数，这时候Tolman-Oppenheimer-Volkoff方程可以写成

− p′(r)

[ρ0 + p(r)][ρ0
3
+ p(r)]

= 4πGr
[
1− 8πGρ0r

2

3

]−1

. (15.41)

从星体表面向内积分(因为星体表面的压强已知为0), 即可以得到

p(r) + ρ0
3p(r) + ρ0

=
[1− 8πGρ0R

2/3

1− 8πGρ0r2/3

]1/2
. (15.42)

代入ρ0 = 3M/(4πR3), 即可以得到Tolman-Oppenheimer-Volkoff方程的一种

解析解

p(r) = ρ0
(1− 2GM/R)1/2 − (1− 2GMr2/R3)1/2

(1− 2GMr2/R3)1/2 − 3(1− 2GM/R)1/2
. (15.43)

这时候，星体中心的压强p0为，

p0 = ρ0
1− Y

3Y − 1
, (15.44)

式中

Y = (1− 2GM/R)1/2. (15.45)

由于物质压强要大于零，所以从上面p0的表达式可知，必然要求1/3 <

Y < 1。不难验证dp0/dY < 0, 进而可知，中心压强p0随着GM/R的增加而

增加。这不难理解，因为在R一定时，若M越大，则星体的自引力就越强，

为了抗衡自引力，星体的压强梯度就越大，由于R一定，则中心压强p0就

必然越大。反之，若M一定，则R变小，则为了产生所需的压强梯度也需

要更大的p0。

当GM/R大到使得Y = 1/3时，显然就有p0 → +∞。因此对于均匀密
度星，其GM/R有上限，由Y = 1/3可知，这个上限为

(GM/R)max = 4/9. (15.46)

在广义相对论中，星体质量上限的存在并非均匀密度星特有的结论，可以

证明，只要假定ρ(r) ≥ 0, 并且dρ/dr ≤ 0, 则任何球对称星体的GM/R都得
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以4/9为上限！这个结论的证明可以参见温伯格《引力和宇宙学》第11章

第11.6节。

实际上，普通星体的GM/R远小于4/9。为做数值估算，恢复光速c，

即考察GM/c2

R
。以太阳为例，其GM⊙/c

2 ≈ 1.5km, 其R⊙ ≈ 7 × 105km, 所

以，对于太阳

GM⊙/c
2

R⊙
≈ 2× 10−6 ≪ 4/9. (15.47)

15.3 恒星演化

下面我们来简单概述恒星的演化过程，并弄清楚为何说黑洞是大质量

恒星演化的可能归宿之一。我们将看到，恒星演化大体有三种可能的归宿，

其一是最终成为白矮星，其二是成为中子星，最后一种可能归宿就是成为

黑洞。对于演化形成白矮星的这种归宿，由于密度并不十分高，引力场也

不足够强，所以实际上用牛顿引力就足够了。但是对于中子星和黑洞，广

义相对论是不可或缺的。

在恒星形成之前，起初是一团密度不均匀的气体，以氢为主。在自引

力的作用下，密度较大的地方就开始吸聚周围的气体，逐渐形成一个球对

称的气团。同样是由于自引力，这个气团会不断收缩，气团收缩的过程会

使得引力势能不断转化成热能，因此气团的温度T就不断升高。根据理想

气体压强公式p = nkBT (n为粒子数密度)，随着温度的升高，气团的压强

也不断增大，压强的梯度也不断增大，看来好像有可能和自引力达成平衡。

但是，如果气团本身没有能源，一切热能都来自于引力势能转化的话，那

这种平衡是不可能的。原因在于，即使某个时刻暂时平衡下来，但由于气

团会通过热辐射损失能量,而它自身又没有能源，那它的温度就会降低，压

强梯度就会减小，那就会继续收缩。总体来看就是，气团必须不断收缩，

以使得引力势能不断转化成热辐射出去的能量。因此没有能源的话，平衡

是不可能的。

经过一段时间的缓慢收缩，气团中心的温度和密度终于高到足以点

燃热核反应(也就是氢聚合成氦的核聚变反应)的程度了。这个温度大约只

要1500万度左右(以太阳为例)就够了，当然，本来这个温度是不够高的，

但是考虑到量子隧穿效应，它已经有不可忽视的概率使得两个氢核克服库

伦排斥力而聚合成氦核了。气团中心附近(一个称作星星星核核核的中心球体) 的这

种核聚变反应能释放巨大的能量，从而提供能量来平衡热辐射损失的能量，
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这样，气团就能不再收缩，达成一种平衡态。这时候，气团就成为一颗恒

星，其内的压强梯度满足平衡条件(15.33)。

太阳目前就处在这种普通恒星阶段，据估计，太阳的星核部分氢变氦

的聚变反应已经在稳定状态中持续了约45亿年，而且大约还能保持这种状

态50亿年。

总有一天，星核内部的氢会全部聚变成氦，只有星核周围的一薄层氢

还在聚变燃烧，如图(15.2)所示。 当星核的温度尚未达到进一步点燃氦(使

图 15.2: 星核内部氢燃烧完后的情况.

之再次聚变成更重元素)的核聚变反应时，这时候星核就没有进一步的核聚

变能源可用了，那就如氢尚未被点燃时类似，核心的氦球将在自引力作用

下再次开始收缩，同时变得更热。这会使星核周围薄层的氢燃烧加剧，从

而导致星体更外层的部分膨胀和冷却，变成一个红红红巨巨巨星星星！“红”是由于星

体表面的温度降低了，“巨”则是因为星体膨胀变得很大。红巨星阶段的星

体会大量抛出其外层物质。

当然，氦核收缩导致的高温可能会进一步点燃氦的聚变反应，也就是

烧氦变碳或氧的聚变反应，所释放的能量可以再次使得星核达到平衡。不

过，这种靠氦燃烧维持的平衡所持续的时间远小于氢燃烧的情形。当星核

的氦全部变成碳或氧时，星核又会再次收缩！

恒星晚年的命运因其抛出物质以后剩余的质量而定，对于质量较小的

恒星，比如说太阳，星核的收缩已经不能提供足够的温度使碳和氧发生核

聚变，因此靠核聚变来维持平衡就变得不再可能。那么，这时候还有没有

什么力量提供足够的压强梯度来抗衡星体的自引力呢？

在经典物理的范畴的确是找不到抗衡力量了，不过，量子物理为我们

提供了新的可能。这是因为，量子物理为我们找到了一种新的即使在零温

下都能存在的压强产生机制，那就是所谓的电子简并压。具体来说，星体
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由氢、氦以及其它元素组成，之前的高温会使得原子都处于电离状态，因

此星体可以看成是离子和电子的理想气体。以电子气为例，根据量子物理，

电子气中每个电子的能量都会量子化成许多密集的能级，而由泡利不相容

原理，每一个能级最多被两个电子占据，一个自旋向上、一个自旋向下。

T = 0时，电子会优先占据能量为零的最低能级，一个能级占满了就会接着

往上占据更高的能级，最终，电子气中的所有电子将占满从最低能级到某

个能量为EF的能级的所有状态。EF就叫费米能，其值随密度的增大而增

大，因为星核的密度很高，所以EF非常大，以致于相比于EF我们可以忽

略温度的效应(kBT ≪ EF )，即可以看作零温(即使从通常的观点来看，这

时候星核的温度还是很高)。

也就是说，和经典物理的结论不同，T = 0时，电子不能全部集中在

最低能态(也就是能量为0的能级)，而是也有正的能量，因此也有运动，而

且这个运动的能量(虽然不是热运动的动能)还可能很高，由此产生的压强

就叫电电电子子子简简简并并并压压压，相应的电子气就叫简简简并并并电电电子子子气气气。在普通密度下，EF很

小(常见金属中自由电子气的EF只有几个电子伏特)，因此电子简并压也很

小。但是，前面说了，星核内部的EF可以非常大，导致电子简并压也非常

大，进而可能抗衡星体的自引力，使星体保持平衡，永不收缩(因为这种抗

衡不需要能源)。这种靠电子简并压维持的稳定星体就是白白白矮矮矮星星星。

一个孤立星体一旦演化成白矮星就不再会有重要的进一步演化，因此

白矮星是恒星的可能归宿之一。因为温度比外界高，白矮星会不断辐射出

能量，而又由于没有能源支持，所以热辐射会导致它的温度不断降低，直

至温度接近外界温度而再也看不见，就成了一颗所谓的“黑矮星”。

人类早已观测到白矮星的存在，天狼星B就是人类发现的第一颗白矮

星。至于白矮星的“矮”字，则是指这些星的半径比普通恒星小得多(部分

原因是由于其密度高)，白矮星的半径约在3千到2万公里之间。据估计，初

始质量小于6 ∼ 8M⊙的恒星都将经过红巨星阶段并抛出大量物质，最终成

为剩余质量约为0.5 ∼ 0.6M⊙的白矮星。

当然，剩余质量越大的恒星其自引力就越强，因此，只有质量足够小

的恒星其自引力才能被电子简并压所平衡。因此可以想见，白矮星的质量

应该有一个上限，钱德拉塞卡最早求得了这个质量上限，大约为1.4M⊙, 称

作钱德拉塞卡极限。

如果剩余质量大于钱德拉塞卡极限，那么电子简并压将不足以维持星

体平衡，星体会在自引力作用下继续收缩，并一级一级地点燃星核内部的

核聚变反应，直至将元素都聚合成铁和镍。这两者是结合得最紧密(也就
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是核子的平均结合能最大)的原子核，它们要再进行核聚变成为更重的原

子核的话，那就不是释放能量了，而是要吸收能量，因此就不能成为星体

平衡的能源了。于是，星核就会在自引力作用下急剧收缩，密度和温度都

急剧升高。这时，自引力已经强到使得牛顿近似不再适用了，我们需要使

用完整的Tolman-Oppenheimer-Volkoff方程(15.21)。注意到(15.21)式右边的

绝对值总是大于牛顿近似下(15.33)式右边的绝对值，因此这时候为达到平

衡所需要的中心压强将更大，平衡将更难以实现。在这样的高温高密下，

高能光子会将铁、镍原子核打碎成中子、质子和轻核，而且电子也将通过

逆β衰变同质子反应，生成中子和中微子。当然，中微子会逸出星体之外。

于是，中子在星核内将占据主导地位，注意，中子和电子一样，也是费米

子，也服从泡利不相容原理，因此也会有一个费米能EF , 也会产生中中中子子子简简简

并并并压压压！在星核达到原子核密度(∼ 1017kg ·m−3)时，中子的费米能也会远大

于热能kBT , 因此这时候的中子可以看成是零温的简并中子气。简并中子气

的中子简并压也有可能抗衡星体自引力，使得星体达到平衡，这种靠中子

简并压支撑的星体就称作中中中子子子星星星。

和白矮星类似，中子星当然也会有一个质量上限，超过这个质量上限

星体自引力就会压倒中子简并压，使得星体进一步坍缩。不过，由于中子

星的密度甚至超过了原子核密度，人们对这种密度下的物态了解得不够确

切，这给中子星质量上限的计算带来了一些不确定性。总之，按照今天人

们的了解，中子星的质量上限大约为2 ∼ 3M⊙。

中子星比白矮星还要小很多，典型中子星的半径只有10km。除了密度

甚至超过原子核之外，中子星还有很多非常特别的表现：比如异常强的磁

场、比如高速的自转(频率从1Hz到1000Hz)、比如接近光速的声速、甚至比

如超流的内部等等。

中子星的理论模型最早是由Oppenheimer和Volkoff在1939年提出的。

但是中子星的存在一直要到1967年发现脉冲星才得到观测证实。脉冲星是

一种在地球上观测到的周期性电磁波信号的信号源，周期约为1秒甚至更

短。对脉冲星的可信解释就是：这是一颗旋转着的中子星，其表面的强磁

场导致磁偶极辐射，辐射的方向性和旋转效应的结合就使得地球上接收到

周期性信号。只有中子星由于半径足够小，而且自引力足够强，才能在如

此高速的旋转中免于“散架”。

星核在形成中子星之前的收缩非常急剧，可以称之为引力坍缩，这种

急剧的引力坍缩一旦被中子简并压所遏止，其强大的能量将表现为向外的

冲击波，并使得星体的外层物质向四周飞出，形成能量急剧释放的超超超新新新星星星
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爆爆爆发发发。著名的超新星爆发遗址蟹状星云中就发现了中子星，这是对上述理

论的支持。世界上最早记录下对超新星爆发观测的国家就是中国，其中宋

史志卷九关于公元1054年(北宋期间) 观测到的超新星爆发(SN1054)的记录

特别受到国际上的重视，而蟹状星云也正是这次超新星爆发的遗址。

超新星爆发抛出的物质会形成星云(比如蟹状星云)，这些星云中有大

量的氢、也有一些比较重的元素(比如铁)。实际上，地球上的重元素就是

这么来的，宇宙大爆炸的原初核合成中并没有这些重的元素，它们是来自

于超新星爆发。爆发后的气团遗址当然又可以开始集聚，形成新一代的恒

星，从而开始新一轮的恒星演化。据估计，我们的太阳就是这样的第三代

恒星。

如果在超新星爆发抛出物质之后，星体的剩余质量依然大于中子星质

量上限，那中子简并压也将无法抗衡星体自引力，实际上，这时候就没有

任何力量可以抗衡星体自引力了，星体会急剧地坍缩下去，直至形成一个

密度无穷大的奇点，外面再包裹一个事件视界，这也就是形成黑洞。所以

黑洞是大质量恒星演化的可能归宿之一。但是，由于它涉及到无穷大的物

质密度，所以早期人们一直很抗拒这种可能性。当然，如果密度大到(或者

说尺寸小到)这个程度，那就需要考虑量子引力了，人们一般相信，考虑到

量子引力以后奇点可能就不再是奇点了，不过，由于完整的量子引力理论

今天还没有，所以奇点处到底会发生什么，今天依然是不知道的。

估算钱德拉塞卡极限

对于钱德拉塞卡极限的一个大致估计可以通过研究引力能和费米能

之间的竞争来进行。为此，不妨假定半径为R的球对称星核包含N个电子

和N个质子(所以整体是电中性的)。质子当然比电子重得多，因此承载了

星核的绝大部分质量，而更轻的电子气则承载了大部分的压强。

既然电子之间相互排斥，我们不妨假定每个电子占据一个特征尺度

为λ的体积, λ就是电子的波长。由于半径R之内共有N个电子，所以λ ∼
R/N1/3。利用德布罗意关系式p = 2π~/λ，相应的电子特征动量(也就是费

米动量)pF为，

pF ∼ ~/λ ∼ N1/3~/R. (15.48)

假如星核被压缩，R缩小，从而pF就会增大，相应的费米能也会增大，

因此为了完成这种压缩就必须有一个外力做功，这个外力当然就是星核

的自引力。为了简单起见，不妨假设这种压缩已经进行到如此地步，以
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致于每个电子都在做高速的极端相对论运动，换言之，每个电子的能量

为E = [(pF c)
2 +(mec

2)2]1/2 ≈ pF c。实际上，最重的白矮星正好满足这个假

定。因此，星核中的总费米能EF (注意，和上面不同，这里不是每个电子

的费米能)就近似为

EF ∼ N(pF c) ∼ N4/3~c/R. (15.49)

另一方面，质子提供了绝大部分质量，因此提供了绝大部分引力

能EG，它大约为

EG ∼ −G(mpN)2/R. (15.50)

其中mp是一个质子的质量，mpN就是总质量。注意，引力能是负的。

费米能和引力能都正比于1/R, 但是两者对N的依赖关系不同。如

果N足够大，则负的引力能将占上风，星核就会坍缩，反之，则是费米能

占上风。不难得到，临界的N值为

Ncrit ∼
(
~c/Gm2

p

)3/2 ∼ 1057. (15.51)

相应的星核质量为

Mcrit ∼ Ncritmp ∼ M⊙. (15.52)

当然，更精确的计算表明，这个质量约为1.4M⊙, 这就是钱德拉塞卡极限。

精确细致的计算参见温伯格《引力和宇宙学》第11章第11.3节。


