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第十四章 再谈能量动量张量

陈陈陈童童童

所有物质的共同特性是，有一个守恒的能量动量张量，通过这个张量，

物质才能发出引力场并弯曲时空。物质的能动张量并非任意的，而是要满

足一些合理的物理要求，比方说，任何观察者测到的能量密度都应该大于

等于零。这些物理要求就是所谓的能量条件，它们就是本章的核心话题。

另外，本章还要讨论一个物理模型，即所谓的理想流体模型。

14.1 能量条件

14.1.1 能动张量的本征值分解

压压压强强强

我们知道T ij,i, j = 1, 2, 3为动量流密度，但其实还有另外一个看待它们

的角度。为了说清楚这一点，不妨假设我们是在平坦的闵可夫斯基时空中

考察问题。这时候，能动张量所满足的守恒方程为∂µT
µν = 0。取一个空间

区域V，则这个区域内的总协变动量pνV为pνV =
∫
V
d3xT 0ν(x)。根据守恒方

程∂µT
µν = 0有， d

dt
pνV =

∫
V
d3x∂tT

0ν(x) = −
∫
V
d3x∂iT

iν = −
∫
∂V

dSiT
iν , 式

中∂V表示区域V的边界，dSi为三维空间的面积元矢量。取ν = j, 则有

d

dt
pjV = −

∫
∂V

dSiT
ij. (14.1)

2



第十四章 再谈能量动量张量 3

根据牛顿第二运动定律可知，T ij为单位面积上的力，也就是压强！具

体来说，T ij为作用在i方向的面积元dSi上，并向着j方向推的压强。根

据T ij = T ji可知，这个压强也等于作用在j方向的面积元dSj上，并向着i方

向推的压强。

能能能动动动张张张量量量的的的本本本征征征值值值分分分解解解

将能量动量张量T µν看作是一个4 × 4的对称矩阵，可以求解本征方

程gνσT
µνeσ = λeµ得到它的四个本征向量。最常见的情形是，有一个本征

向量类时(记作eµ0), 三个本征向量类空(记作eµi , i = 1, 2, 3), 其它情形(比方说

有本征向量类光的情形)比较罕见，这里不作讨论。作为对称矩阵的本征向

量，这四个向量eµa , a = 0, 1, 2, 3当然两两正交，因此可以正交归一化为

gµνe
µ
ae

ν
b = ηab, (14.2)

式中ηab = diag{−1, 1, 1, 1}是标准的闵可夫斯基度规。将方程(14.2)看作矩

阵方程，然后两边取逆，即可以由正交归一关系得到如下完备性关系，

ηabeµae
ν
b = gµν . (14.3)

假设记T µν的四个相应本征值为ρ, p1, p2, p3，则线性代数的知识告诉我

们，T µν必定可以分解成

T µν = ρeµ0e
ν
0 + p1e

µ
1e

ν
1 + p2e

µ
2e

ν
2 + p3e

µ
3e

ν
3. (14.4)

根据上面关于压强的讨论可知，pi, i = 1, 2, 3作为三个类空方向的本征值，

它的物理含义当然也是三个类空方向的压强(注意这里的pi不是表示粒子动

量)，而ρ作为a = 0方向(也就是类时方向)的本征值，它的含义当然就是能

量密度。

特别的，如果某种物质满足p1 = p2 = p3 ≡ p，则它就可以看作是一种

理想流体，eµ0即可以看作是这种理想流体的流速场，记作eµ0 = uµ。这时候，

能动张量可以写成

T µν = ρeµ0e
ν
0 + p

(
eµ1e

ν
1 + eµ2e

ν
2 + eµ3e

ν
3

)
= ρeµ0e

ν
0 + p(gµν + eµ0e

ν
0)

= (ρ+ p)uµuν + pgµν , (14.5)
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式中第二行的等于号是利用了完备性关系。最终的表达式T µν = (ρ +

p)uµuν + pgµν 就称作理想流体的能动张量。

上述理想流体定义的物理解释在于：在跟着流体一起以速度uµ运动的

参考系中，也就是在四个正交归一矢量场{eµa}所构成的活动标架中(以加′来

表示)，流体的能动张量T ′ab具有球对称的形式，即T ′00 = ρ, T ′0i = T ′i0 = 0,

T ′ij = pδij, 变换到实验室系中，即有T µν = T ′abeµae
ν
b = (ρ + p)uµuν + pgµν。

不难看出，对于理想流体，有

T = T µ
µ = 3p− ρ. (14.6)

也可以利用eµa将任何一个四维速度vµ分解成

vµ = vaeµa , (14.7)

注意，记号vµ和va不止是换了一下指标，两者根本就是不同的。则很显

然(利用正交归一关系)

gµνv
µvν = ηabv

avb. (14.8)

从而对于类时的速度场，可以归一为

vµ = γ(eµ0 + aeµ1 + beµ2 + ceµ3), γ = (1− a2 − b2 − c2)−
1
2 , (14.9)

式中a2 + b2 + c2 < 1。而对于一个未来指向的类光向量kµ, 此时它的归一化

可以相差一个任意的常数，因此可以取

kµ = eµ0 + a′eµ1 + b′eµ2 + c′eµ3 , a′2 + b′2 + c′2 = 1. (14.10)

很显然，在相差一个无穷大的正归一化常数的前提下，类光向量可以看

成是类时向量的极限，即将式a2 + b2 + c2 < 1中的小于号改成小于等于

号a2 + b2 + c2 ≤ 1。

14.1.2 弱能量条件和类光能量条件

弱弱弱能能能量量量条条条件件件

弱能量条件说的是，时时时空空空中中中任任任何何何观观观察察察者者者所所所测测测到到到的的的能能能量量量密密密度度度必必必须须须非非非负负负。

假设以vµ表示观察者的四维速度(它当然是一个类时向量)，则弱能量条件

说的是，对于任意这样的类时vµ, 必有

Tµνv
µvν ≥ 0. (14.11)
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由于类时向量可以任意接近于类光向量，所以根据连续性，上述条件对于

类光向量也成立。代入(14.4)式和(14.9)式，即有

ρ+ p1a
2 + p2b

2 + p3c
2 ≥ 0. (14.12)

由于a, b, c任意，所以可以取a = b = c = 0, 即有ρ ≥ 0。或者取b = c =

0, a → 1(即a趋于1, 注意到a2+ b2+ c2 ≤ 1), 即有ρ+ p1a
2 ≥ 0 → ρ+ p1 ≥ 0。

因此ρ+ p1 ≥ 0。对p2, p3也有类似的结论。综上可知，弱能量条件意味着

ρ ≥ 0, ρ+ pi ≥ 0. (14.13)

特别的，负压强是允许的，只要它别负得太多，即满足pi ≥ −ρ。

弱能量条件要求能量密度大于等于零。但是，在有些情况下，负能

量密度也是有物理意义的，比如负的宇宙学常数。我们知道，宇宙学常

数Λ对应于能动张量TΛ
µν = − Λ

8πG
gµν , 即对应能量密度ρΛ为

ρΛ =
Λ

8πG
. (14.14)

因此负的宇宙学常数就对应负能量密度。但是，负宇宙学常数的确是有物

理意义的，比如它对应反德西特时空。因此，弱能量条件是可以破坏的，

反德西特时空就破坏了弱能量条件。

我们也可以用标量场来构造破坏弱能量条件的例子。我们知道，标量

场ϕ的能动张量为

Tµν = ∂µϕ∂νϕ− gµν
(1
2
∂σϕ∂σϕ+ U(ϕ)

)
. (14.15)

因此弱能量条件相当于

(vµ∂µϕ)
2 +

1

2
∂σϕ∂σϕ+ U(ϕ) ≥ 0. (14.16)

式中第一项总是正的，但是第二项可正可负。但事实上，前两项结合起来

总是正的，为了看清楚这一点，我们引入如下与vµ正交的矢量Xµ

Xµ = ∂µϕ+ vµ(v
ν∂νϕ), (14.17)

满足vµXµ = 0。则由于vµ类时，所以Xµ必定类空(或类光)，因此满足XµX
µ ≥

0。不难验证，弱能量条件(14.16)可以重写为

1

2
(vµ∂µϕ)

2 +
1

2
XµX

µ + U(ϕ) ≥ 0. (14.18)
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现在，前两项都是正的了！很明显，如果势能U(ϕ) ≥ 0，那么弱能量条件

就是满足的。但是，如果U(ϕ) < 0, 那弱能量条件就会被破坏(只要取一

个∂µϕ足够小的平缓场位形，以使得前两项足够小)。然而，物理上并没有

什么强烈的理由禁止U(ϕ) < 0的势函数出现，所以弱能量条件是可以破坏

的！

类类类光光光能能能量量量条条条件件件

所谓的类光能量条件，和弱能量条件类似，只是将向量vµ改成任意未

来指向的类光向量kµ, 即

Tµνk
µkν ≥ 0. (14.19)

由于弱能量条件中的vµ本身可以为类光向量，所以很显然，类光能量条

件比弱能量条件更弱，换言之，弱能量条件蕴含着类光能量条件。代

入(14.4)式和(14.10)式，即有

ρ+ p1a
′2 + p2b

′2 + p3c
′2 ≥ 0, (14.20)

取b′ = c′ = 0, a′ = 1，则有ρ+ p1 ≥ 0。类似的也有ρ+ pi ≥ 0。因此，类光

能量条件意味着

ρ+ pi ≥ 0. (14.21)

14.1.3 强能量条件和主能量条件等等

强强强能能能量量量条条条件件件

所谓的强能量条件，即是对任意类时向量场vµ, 要求

Rµνv
µvν ≥ 0. (14.22)

实际上，这个条件是为了确保初始时相互平行的类时测地线簇经过足够长

时间以后总是会开始汇聚，这可以看作是要求引力总是作为一种吸引力出

现。利用爱因斯坦场方程的等价形式Rµν = 8πG
(
Tµν − 1

2
Tgµν

)
, 可知，强能

量条件等价于 (
Tµν −

1

2
Tgµν

)
vµvν ≥ 0. (14.23)
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或者Tµνv
µvν ≥ −1

2
T。

值得注意的是，强能量条件并不一定比弱能量条件更强，当然也不一

定比弱能量条件更弱，它只是一个不同的能量条件，之所以称之为强能量

条件，完全是由于历史的原因。

代入(14.4)式和(14.9)式，即有

γ2
(
ρ+ p1a

2 + p2b
2 + p3c

2
)
≥ 1

2
(ρ− p1 − p2 − p3). (14.24)

选取a = b = c = 0(从而γ = 1)，即有ρ+ p1 + p2 + p3 ≥ 0。另外，将上面不

等式写作

γ2
(
ρ+ p1a

2 + p2b
2 + p3c

2
)
+

1

2
(p1 + p2 + p3 − ρ) ≥ 0, (14.25)

然后取b = c = 0, a → 1(从而γ → +∞), 即知上式趋于ρ + p1 ≥ 0。类似的，

当然也有ρ+ pi ≥ 0。综上可知，强能量条件意味着

ρ+ p1 + p2 + p3 ≥ 0, ρ+ pi ≥ 0. (14.26)

很显然，强能量条件并没有蕴含弱能量条件。对于理想流体，这个条件即

是

ρ+ 3p ≥ 0, ρ+ p ≥ 0. (14.27)

同样，不难找到强能量条件被破坏的物理情形。特别的，宇宙学常

数Λ > 0破坏了强能量条件。这是因为，TΛ
µν = − Λ

8πG
gµν，与理想流体能动

量张量比较可知，宇宙学常数对应

ρΛ =
Λ

8πG
, pΛ = −ρΛ, (14.28)

式中pΛ为宇宙学常数对应的压强，很显然，当Λ > 0时，这是一种负压强！

而且很显然破坏了ρ+ 3p ≥ 0的要求。所以大于零的宇宙学常数破坏了强能

量条件。实际上，这一点很容易理解，因为在Λ > 0的德西特时空中，类时

测地线簇并不会汇聚，而是会被宇宙膨胀效应拉开，所以当然破坏强能量

条件。

主主主能能能量量量条条条件件件

所谓的主能量条件，其物理含义即是物质应该沿着类时或者类光世

界线流动。更精确地说，这个要求相当于，对于任意协变速度为vµ的观察
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者(vµ为未来指向类时向量), 其观察到的能量流Jµ必定是一个未来指向的类

时或者类光向量，这里

Jµ = −T µνvν . (14.29)

由此可知

JµJ
µ ≤ 0. (14.30)

代入(14.4)式和(14.9)式可知，上式相当于要求

−ρ2 + p21a
2 + p22b

2 + p23c
2 ≤ 0. (14.31)

取a = b = c = 0, 即有ρ2 ≥ 0, 进一步要求相应Jµ为未来指向的，则可推

出ρ ≥ 0。反过来，如果取b = c = 0, a → 1, 则有−ρ2 + p21 ≤ 0, 进一步要求

相应Jµ为未来指向的，则可以推出ρ ≥ |p1|。类似的，当然也有ρ ≥ |pi|。因
此，主能量条件意味着

ρ ≥ 0, ρ ≥ |pi|. (14.32)

平平平均均均类类类光光光能能能量量量条条条件件件

但是，以上能量条件均是对经典物质的要求，如果考虑到量子力学，

那么以上所有能量条件都可能变得不再成立。具体来说，我们可以将量子

物质通过下面的方程耦合到时空动力学，

Gµν + Λgµν = 8πG⟨Tµν⟩, (14.33)

式中⟨Tµν⟩表示物质场能量动量张量在特定量子态上的算符期望值。量子场
论的计算表明，以上所有能量条件在相当标准的量子场论中均不成立。然

而，有一个更弱的能量条件在量子场论中却总是成立的，那就是所谓的平

均类光能量条件。具体来说，可以证明：沿着任意一条无穷长的非时序类

光测地线，任何合理的量子场论均满足如下条件∫ +∞

−∞
dλ⟨Tµν⟩kµkν ≥ 0. (14.34)

式中λ是这条类光测地线的仿射参数，kµ是它的切向量，满足kµ = dxµ/dλ。

而所谓的非时序，指的是，这条类光测地线上任意两点都不可能用类时曲

线连接起来。
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14.2 理想流体

上一节讲到理想流体模型，其能动张量为

T µν = (ρ+ p)uµuν + pgµν . (14.35)

如果是在平坦时空中，那理想流体的能动张量即是

T µν = (ρ+ p)uµuν + pηµν . (14.36)

那么，什么物理系统可以看作理想流体呢？这就是本节首先要讨论的问

题。

14.2.1 能作为理想流体的两类物理系统

下面我们讨论两类能看作理想流体的物理系统。

无无无结结结构构构的的的质质质点点点气气气

我们要讨论的第一类系统是(为简化起见，限制在平坦时空中进行讨

论)：由许多质点组成的理想气体，这些质点的内部结构可以忽略，并且它

们仅仅只在相互碰撞的一瞬间有相互作用，其余时间都是自由运动的。

根据本书第二章的相关讨论可知，以上质点气的能动张量为

T µν =
∑
n

pµnp
ν
n

p0n
δ3(x− xn). (14.37)

在跟着流体一起运动的参考系中对上式进行统计平均，注意到⟨pin⟩ =

0, ⟨p
i
np

j
n

p0n
⟩ = 1

3
⟨p

2
n

p0n
⟩δij, i, j = 1, 2, 3(式中pn为粒子的三维动量，⟨·⟩表示统计平

均)，易知，平均以后的能动张量的确有球对称的形式(因此满足理想流体

的定义)，其中压强p和能量密度ρ分别为

p =
1

3

3∑
i=1

⟨T ii⟩ = 1

3

∑
n

⟨p
2
n

En

δ3(x− xn)⟩,

ρ = ⟨T 00⟩ =
∑
n

⟨Enδ
3(x− xn)⟩, (14.38)

式中En = p0n为粒子的能量。由相对论关系式ηµνp
µ
np

ν
n = −m2

n ⇒ p2
n +m2

n =

E2
n(mn为粒子质量)可知p2

n ≤ E2
n，进而可以推出

0 ≤ p ≤ 1

3
ρ. (14.39)
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对于冷的非相对论性气体，可以作如下近似

En ≃ mn +
p2
n

2mn

. (14.40)

故由(14.38)式，可得

ρ ≃ ρ0 +
3

2
p. (14.41)

式中ρ0为质量密度(静能密度)的统计平均值，由下式给出

ρ0 =
∑
n

⟨mnδ
3(x− xn)⟩. (14.42)

而对于热的极端相对论性气体，我们有

En ≃ |pn| ≫ mn. (14.43)

故由(14.38)式知

ρ ≃ 3p ≫ ρ0. (14.44)

特别的，光子的质量为零，所以光子气当然是极端相对论性的，从而对于

光子气有ρ = 3p。

一般来说ρ和p之间的函数关系就称作物态方程。很显然，对于极端相

对论性气体，其物态方程为

p = wρ, w = 1/3. (14.45)

当然，这时候有T = T µ
µ = 3p− ρ = 0。而对于非相对论性理想气体，其物

态方程为p = 2
3
(ρ− ρ0), 式中ρ− ρ0是理想气体动能密度的平均值。进一步，

根据非相对论性统计物理的能量均分定理，可知⟨ p2
n

2mn
⟩ = 3

2
kBT (T为温度)，

进而可以算得

ρ− ρ0 =
∑
n

⟨ p2
n

2mn

δ3(x− xn)⟩ =
∑
n

⟨ p2
n

2mn

⟩⟨δ3(x− xn)⟩

=
3

2
kBT

∑
n

⟨δ3(x− xn)⟩ =
3

2
kBTn(x). (14.46)

式中n(x) =
∑

n⟨δ3(x − xn)⟩为粒子数密度的统计平均值。从而有，非相对
论理想气体的物态方程为

p = n(x)kBT. (14.47)
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这当然是非相对论统计物理中的标准结论, 其中温度T不能太高，否则粒子

的平均动能就会大到需要考虑相对论效应。特别的，在很多应用中，可以

近似认为T = 0, 从而将这种极端冷的非相对论气体的物态方程写作

p = wρ, w = 0. (14.48)

弯弯弯曲曲曲时时时空空空中中中的的的标标标量量量场场场

实际上，弯曲时空中的标量场也能看作理想流体。为了看清楚这一点，

我们首先写出标量场的能动张量

T µν = ∂µϕ∂νϕ− gµν
[1
2
(∂ϕ)2 + U(ϕ)

]
, (14.49)

式中(∂ϕ)2 ≡ ∂µϕ∂
µϕ。为了将这个能动张量写成标准的理想流体形式，我

们令

∂µϕ ∝ uµ ⇒ ∂µϕ = Kuµ. (14.50)

为了确定其中的比例系数K, 我们注意到(∂ϕ)2 = K2u2, 利用u2 = −1, 即

有K2 = −(∂ϕ)2。进而可以将上面的标量场能动张量写成如下形式

T µν = −(∂ϕ)2uµuν − gµν
[1
2
(∂ϕ)2 + U(ϕ)

]
. (14.51)

与标准的T µν = (ρ+ p)uµuν + pgµν比较，即知

ρ+ p = −(∂ϕ)2, p = −
[1
2
(∂ϕ)2 + U(ϕ)

]
⇒ p = −1

2
(∂ϕ)2 − U(ϕ), ρ = −1

2
(∂ϕ)2 + U(ϕ). (14.52)

这就是我们要讲的第二类能看作理想流体的物理系统。

14.2.2 理想流体的运动方程

平平平坦坦坦时时时空空空中中中质质质元元元组组组成成成的的的理理理想想想流流流体体体

在平坦时空中，理想流体的能动张量为

T µν = (ρ+ p)uµuν + pηµν . (14.53)
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这时，式中的归一化四维速度不妨取作

u0 =
1√

1− v2
, ui =

vi√
1− v2

, i = 1, 2, 3. (14.54)

在平坦时空中，能动量守恒方程为∂µT
µν = 0，即

∂νp+ (ρ+ p)uµ∂µu
ν + {∂µ[(ρ+ p)uµ]}uν = 0. (14.55)

将这个方程分开写作三维矢量方程和标量方程是方便的，其中的矢量方程

就是通常流体力学中著名的欧拉方程的相对论版本，为了得到它，我们可

以在方程(14.55)中取ν = i, 然后再利用ν = 0时的方程(14.55)，就可以得到

∂v

∂t
+ (v · ∇)v = −(1− v2)

ρ+ p

[
∇p+ v

∂p

∂t

]
. (14.56)

至于标量方程，我们限制于在理想流体微观上由许多质点组成(也就

是上面的第一类理想流体)的情形下研究它，因为这种情形下它可以写

成特别简单的形式。在这种情形下，可以定义一个粒子数四维矢量nµ =

n(x)uµ(x), 式中n(x)就是所谓的粒子数密度。粒子数守恒告诉我们，nµ满

足如下连续性方程

0 = ∂µn
µ = ∂µ(nu

µ). (14.57)

或者写成

∂t
( n√

1− v2

)
+∇ ·

( nv√
1− v2

)
= 0. (14.58)

另外，由于uνuν = −1，所以还有0 = ∂µ(u
νuν) = 2(∂µu

ν)uν , 即

(∂µu
ν)uν = 0. (14.59)

为了得到标量方程，我们用uν去和(14.55)式收缩，再利用刚才的(14.59)式，

即有

∂µ[(ρ+ p)uµ] = uµ∂µp. (14.60)

下一步，我们利用连续性方程(14.57)来将(14.60)式改写作∂µ[(ρ+p)uµ] =

∂µ
[
(ρ+p

n
)nuµ

]
= nuµ∂µ(

ρ+p
n
) = nuµ∂µ(ρ/n) + npuµ∂µ(1/n) + uµ∂µp, 进而有

uµ∂µ(ρ/n) + puµ∂µ(1/n) = 0. (14.61)
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注意到ρ/n为每粒子能量，而1/n为每粒子占据的体积。而根据热力

学第一定律，我们有dE + pdV = TdS，S为热力学熵。定义s为每粒子的

熵(比熵)，则热力学第一定律可以写成

d(ρ/n) + pd(1/n) = Tds. (14.62)

沿着理想流体的流线，我们有微分d = uµ∂µ, 从而由上述热力学第一定律即

有

uµ∂µ(ρ/n) + puµ∂µ(1/n) = Tuµ∂µs. (14.63)

代入(14.61)式，即可以得到最终的标量方程为

uµ∂µs = 0 ⇔
( ∂
∂t

+ v · ∇
)
s = 0. (14.64)

即比熵s在任何随流体运动的点上不随时间变化！这个结果有时候也称作能

量方程或绝热方程。

所以，对于平坦时空中由质元组成的理想流体，其满足的基本微分方

程有三个，第一，连续性方程(14.57)，第二，欧拉方程(14.56), 第三，绝热

方程(14.64)。除此之外，为了研究这样的理想流体，我们还需要合适的物

态方程。

在常见的应用中绝热方程可以进一步简化。就像通常遇到的那样，如

果比熵s在某个初始时刻处处相同，则根据绝热方程，在此后的流动中s将

保持处处相同并且不随时间变化。因此，这时候就可以将绝热方程简单地

写作

s =常数. (14.65)

这时候根据热力学第一定律，即有

d(ρ/n) + pd(1/n) = 0. (14.66)

相相相对对对论论论性性性流流流体体体中中中的的的声声声速速速

作为一个例子，让我们来计算在均匀静态的相对论性流体中的声速。

假设在未扰动的状态中，n = n, ρ = ρ, p = p均是常数，而且v = v = 0。现

在，考虑声波引起的小扰动，从而n = n + δn, ρ = ρ + δρ, p = p + δp, v =
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0 + δv。准确到扰动的一阶小量，连续性方程(14.58)和欧拉方程(14.56)分

别成为

∂δn

∂t
+ n∇ · δv = 0 (14.67)

∂δv

∂t
= − ∇δp

p+ ρ
. (14.68)

另外，由绝热方程(14.66), 有

− 1

n2 (p+ ρ)d(δn) +
1

n
d(δρ) = 0

⇒− p+ ρ

n
δn+ δρ = 0. (14.69)

定义

c2s ≡
(δp
δρ

)
=

(∂p
∂ρ

)
s
, (14.70)

式中的下标s表示绝热。则可以将方程(14.69)重写作

−p+ ρ

n
δn+

1

c2s
δp = 0 ⇒ δp

p+ ρ
=

c2s
n
δn. (14.71)

代入(14.68)式，即有

∂δv

∂t
= −c2s

n
∇δn. (14.72)

联立此式和上面的(14.67)式，即有

[ ∂2

∂t2
− c2s∇2

]
δn = 0. (14.73)

这是一个标准的波动方程，它表明声波的传播速度为cs，恰如在非相对论

性流体中那样。

在非相对论流体中声速远小于光速1，但是声速随着温度增高而增高，

因而值得检验一下是否在由高度相对论性质点(例如高于1013K的氢)所组成

的流体中，声速cs能否超过1。此时，由于p = 1
3
ρ，所以根据cs的定义，即

有

cs =
1√
3
< 1. (14.74)
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弯弯弯曲曲曲时时时空空空中中中的的的理理理想想想流流流体体体

对于弯曲时空中的理想流体，其能动张量为

T µν = (ρ+ p)uµuν + pgµν . (14.75)

相应的能动量守恒方程为

DµT
µν = 0. (14.76)

由此不难得到

Dνp+ (ρ+ p)uµDµu
ν + {Dµ[(ρ+ p)uµ]}uν = 0. (14.77)

用uν去收缩这个方程，并利用(Dµu
ν)uν = 0 (成立的理由和平坦时空中的相

应方程一样)，即有uνDνp = Dµ[(ρ+ p)uµ], 或者也可以写成

uµDµρ+ (ρ+ p)Dµu
µ = 0. (14.78)

另外，将uνDνp = Dµ[(ρ+ p)uµ]反代入(14.77)式，即有

(ρ+ p)uµDµu
ν = −(gµν + uµuν)Dµp. (14.79)

当然，这就是弯曲时空中的欧拉方程。欧拉方程再加上面的方程(14.78) 就

构成了弯曲时空中理想流动的基本运动微分方程。


