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第十一章 时空对称性

陈陈陈童童童

11.1 基林向量场以及最大对称空间

11.1.1 基林向量场

前面在求解施瓦西解的时候，我们已经看到了对称性的力量，在那里，

正因为假设了时空度规具有球对称性，所以对爱因斯坦场方程的求解可以

大大简化。真空爱因斯坦场方程的平凡解，即平坦的闵可夫斯基时空，更

是一个具有很高对称性的例子，实际上，它是一个所谓的具有最大对称性

的例子，它具有洛伦兹变换下的对称性以及时空平移对称性，两者合起来

也称作庞加莱对称性。也即是说，闵可夫斯基时空的度规ηµν在庞加莱变换

下保持不变。

任何一个给定的时空都有一个给定的度规场，在广义相对论中这个度

规场当然是爱因斯坦场方程的解，因此人们常常将给定时空记作(M, g), 其

中M就表示时空流形，而g就是其上的那个给定度规场(当然它在不同的局

部坐标中有不同的分量形式)。不过，物理文献中也常常会省略符号M，而

直接称给定的度规场gµν为给定时空。进而，更一般的时空对称性可以定

义如下：一个给定时空度规gµν(x) 在微分同胚变换ϕ : x → x′之下称作不

变的，如果变换以后的度规场g′µν 对同一时空点x的函数依赖与变换之前

的gµν(x)相同，即

g′µν(x) = gµν(x) 对任意x. (11.1)
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第十一章 时空对称性 3

这样的微分同胚变换ϕ就称作等度规变换。

一个给定时空gµν(x)所有的等度规变换构成一个群，称作等度规群，

或者时空对称群。也即是说，假设ϕ : x → x′是一个等度规变换，ϕ′ : x′ →
x′′也是一个等度规变换，那么ϕ和ϕ′的函数复合ϕ′ ◦ϕ : x → x′′必然也是一个

等度规变换。另外，id : x → x的恒等变换显然是一个等度规变换。而且，

对于任何一个等度规变换ϕ : x → x′，其逆变换ϕ−1 : x′ → x显然也是一个

等度规变换。等度规变换的这几条性质都可以很容易地根据定义验证。满

足这几条性质的等度规变换的集合就称作构成了一个等度规群，每一个等

度规变换都是这个群里的一个元素，函数的复合运算◦就称作群的乘法，而
恒等变换id就称作群的单位元。

很多时候，我们可以考虑无穷小等度规变换xµ → xµ + ϵµ(x), 式

中ϵµ(x)为无穷小向量场。根据上面对等度规变换的定义，可知，无穷小等

度规变换必然使得变换前后度规场的无穷小改变量为零，即δgµν = 0。而

根据第四章关于微分同胚变换和李导数的讨论δgµν = −Lϵgµν , 所以对于无

穷小等度规变换，必定有

Lϵgµν = 0. (11.2)

可以记ϵµ(x) = ϵXµ(x)，式中ϵ为无穷小常数，Xµ(x)为一个正常的向量场，

那这也即是说，每一个无穷小变换都可以由一个正常的向量场生成。因此，

无穷小等度规变换所对应的向量场Xµ必然满足

LXgµν = DµXν +DνXµ = 0. (11.3)

这样的生成等度规变换的向量场Xµ就称作基林向量场！上述方程就称作基

林方程，基林向量场就是满足基林方程的向量场。

实际上，根据第六章对微分同胚群的讨论，可知每一个基林向量

场X = Xµ∂µ都会生成一个连续的单参微分同胚变换ϕτ , 只要取X为单参变

换曲线(流线)的切向量，即满足X = ∂τ。很显然，这些单参微分同胚变换

都是等度规变换！

对于任意基林矢量X，设ϕτ为它所生成的单参等度规变换，则有X =

∂τ。在时空流形上选取合适的局部坐标，使得参数τ为此局部坐标的一个独

立坐标分量。从而由李导数的原始定义，在此局部坐标系中，基林方程变

成

0 = LXgµν = ∂τgµν . (11.4)
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又由于黎曼曲率张量和里奇张量均由度规张量及其偏导决定，进而有，

在此特殊的局部坐标系中，LXRρσµν = ∂τRρσµν = 0(里奇张量与此类似)，

但LXRρσµν是一个张量，它在一个特殊的坐标系中为零，就必然在任意坐

标系中都为零。也即是说，对于任意基林向量X，必定有

LXRρσµν = 0, LXRµν = 0, LXR = 0. (11.5)

假设X为基林向量场，Y也为基林向量场，则X与Y的任意线性组

合c1X + c2Y也必定为基林向量场(式中c1, c2为任意的两个常数)，因为根据

李导数的性质有

Lc1X+c2Y gµν = c1LXgµν + c2LY gµν = 0. (11.6)

也即是说，一个时空所有基林向量场的集合构成一个线性空间。不仅如此，

正如后文将要证明的，它还必定是一个有限维线性空间。

实际上，不仅是构成线性空间，而且基林向量场的集合构成了一个李

代数。因为根据第六章证明的重要代数关系[LX ,LY ] = L[X,Y ]可知，若X为

基林向量场，Y也为基林向量场，则[X, Y ]必定为基林向量场，因为有

L[X,Y ]gµν = [LX ,LY ]gµν = LXLY gµν − LYLXgµν = 0. (11.7)

所以基林向量场的集合在李括号[X, Y ]下构成一个李代数。这说明，基林

向量场生成的等度规群为一个李群。与微分同胚群是一个无穷维李群不同，

由于基林向量场的李代数是有限维的，所以这个等度规李群也必定为有限

维的。

对于任意基林向量ξρ，根据黎曼曲率张量的定义，我们有

DµDνξρ −DνDµξρ = −ξσR
σ
ρµν . (11.8)

利用基林方程Dµξρ = −Dρξµ即有

DµDνξρ +DνDρξµ = −ξσR
σ
ρµν . (11.9)

将指标(µνρ)进行轮换，可得

DµDνξρ +DνDρξµ = −ξσR
σ
ρµν

DνDρξµ +DρDµξν = −ξσR
σ
µνρ

DρDµξν +DµDνξρ = −ξσR
σ
νρµ.
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将这三式的第一式加上第二式再减去第三式，即有

2DνDρξµ = −ξσ
(
Rσ

ρµν +Rσ
µνρ −Rσ

νρµ

)
. (11.10)

利用黎曼曲率张量的代数性质Rσ
ρµν +Rσ

µνρ +Rσ
νρµ = 0，即可得

DνDρξµ = ξσR
σ
νρµ. (11.11)

方程(11.11)是一个二阶微分方程，它的一个重要推论是，给定ξµ和

Lµν ≡ Dµξν在时空点x0的值，则就决定了ξµ在任意时空点x的值。为了

看清楚这一点，我们取一条任意的连接x0, x两点的曲线，设曲线的参数

为τ，设v = ∂τ = vρ∂ρ为这条曲线的切向量，进而我们可以把二阶微分方

程(11.11) 改写成如下一阶常微分方程组

Dξν
Dτ

≡ vµDµξν = vµLµν

DLνρ

Dτ
≡ vµDµLνρ = vµξσR

σ
µνρ. (11.12)

进而只要沿着这条连接x0, x两点的曲线积分这一组常微分方程，就能

由ξµ和Lµν在x0点的初始值得到ξµ在点x处的值。

以上结果立即有如下推论： (1). 假如基林向量和它的一阶协变导数

在某点均为零，则此基林向量场在任意时空点都恒等于零。(2). 在一

个D = n维的时空流形上，由于根据基林方程Lµν的两指标反对称，从

而Lµν只有n(n − 1)/2个独立分量，加上ξµ有n个独立分量，所以基林向量

场只有n + n(n − 1)/2 = n(n + 1)/2个独立的初始值。由于某些初始值可

能没有相应的满足基林方程的基林向量场，从而，n维时空流形上最多

只有n(n + 1)/2个线性独立的基林向量(从而证明了前面提到的基林向量

场所构成的线性空间为有限维)，换言之，n维时空的等度规李群最多只

有n(n+ 1)/2维。

具有n(n + 1)/2个线性独立基林向量场的时空就称作最最最大大大对对对称称称时时时空空空，

或者称作最最最大大大对对对称称称空空空间间间。这里所谓的空间是一个数学概念，指的当然就

是时空。也就是说，在最大对称时空中，对于任意ξµ(x0) = aµ(aµ为任意向

量) 和任意Lµν(x0) = bµν(bµν为任意反对称矩阵)，均存在一个与之相应的

基林向量场。
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11.1.2 最大对称空间

最大对称空间的定义

最大对称空间的一个例子是闵可夫斯基时空，也就是黎曼曲率张量为

零的n维时空。这时候，可以选择通常的n维笛卡尔直角坐标系，使得度规

张量为ηµν = diag{−1, 1, ..., 1}(diag表示对角矩阵), 而联络系数均为零。在

这种坐标系中，基林向量满足的方程(11.11)变成

∂ν∂ρξµ = 0. (11.13)

很显然，这个方程的解为(取初始位置x0 = 0)

ξµ(x) = aµ + bµνx
ν ⇔ ξµ(x) = aµ + bµνxν , (11.14)

式中aµ和bµν为常数。代入基林方程，即有

bµν = −bνµ. (11.15)

从而bµν的独立分量个数为n(n− 1)/2。

若取系数bµν = 0, 取无穷小量ϵµ = ϵaµ, 式中ϵ为无穷小量，则等度规

变换xµ → xµ + ϵµ 为无穷小时空平移。很显然独立的无穷小时空平移共

有n个。时空平移对称性意味着闵可夫斯基时空是均匀的。通过合适地

选取一组aν(µ) = δνµ，我们可以得到如下n个线性独立的时空平移基林向量

场Pµ = aν(µ)∂ν = ∂µ，即

Pµ = ∂µ. (11.16)

若取系数aµ = 0, 取无穷小量ϵµν = ϵbµν，则等度规变换xµ → xµ + ϵµνx
ν

为无穷小洛伦兹变换，独立的无穷小洛伦兹变换有n(n − 1)/2个。洛伦兹

对称性意味着闵可夫斯基时空关于x = 0的原点是各向同性的，因为洛

伦兹对称性意味着时空绕原点“旋转”对称。通过合适地选取一组反对

称bρσ(µ,ν) = −δρµδ
σ
ν + δρνδ

σ
µ ,我们可以得到如下n(n−1)/2个线性独立的“旋转”

基林向量场Mµν = bρσ(µ,ν)xσ∂ρ, 即

Mµν = xµ∂ν − xν∂µ. (11.17)

闵可夫斯基时空有n个独立的平移对称性，n(n − 1)/2个独立的洛伦兹

对称性，从而一共有n + n(n − 1)/2 = n(n + 1)/2个线性独立的基林向量，
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从而闵可夫斯基时空为最大对称时空。简单的计算表明，闵可夫斯基时

空n(n+ 1)/2个线性独立基林向量场Pµ,Mµν满足如下代数关系

[Pµ, Pν ] = 0, [Mµν , Pσ] = −ηµσPν + ηνσPµ,

[Mµν ,Mρσ] = −ηµρMνσ + ηνρMµσ + ηµσMνρ − ηνσMµρ. (11.18)

闵可夫斯基时空的等度规群称作庞加莱群，上式就是庞加莱群的李代数。

将闵可夫斯基时空的例子涉及的一些概念推而广之，就能搞清楚在一

般的时空中，基林向量场的初始数据ξµ(x0)以及Lµν(x0) 是如何联系到时空

的均匀性以及各向同性的。具体来说：

• 我们定义均均均匀匀匀时时时空空空为这样的时空，它具有如下无穷小等度规变换，这
些变换可以将任任任何何何给定点x0变换到其邻域内的任何其它点。从而均

匀时空必然允许如下基林向量场，这些基林向量场可以在任意给定

点x0处取遍所有可能值。这也就是说，对于任何初始值ξµ(x0) = aµ都

必然存在一个与之相应的基林向量场。显然，这样的线性独立基林向

量场有n个，它们就称作n个时空平移基林向量场。

• 我们称一个时空关关关于于于x0点点点是是是各各各向向向同同同性性性的的的，假如它有如下等度规变

换，这些变换保持x0点不动，但却可以将x0点的任何切向量旋转

到x0点的任何其它切向量。因此这样的时空必然具有如下基林向量

场，它们满足ξµ(x0) = 0，但是Lµν(x0) = Dµξν(x0)是任意反对称矩

阵(共有n(n − 1)/2个独立分量)。很显然，这样的线性独立基林向量

场有n(n− 1)/2个，它们就称作n(n− 1)/2个绕x0点的“旋转”基林向

量场。

• 一个既均匀又各向同性的时空就称作一个最最最大大大对对对称称称时时时空空空，很显然，它
也即是具有n+ n(n− 1)/2 = n(n+ 1)/2个线性独立基林向量场的n维

时空。

这些定义有一些重要的推论，比如：(1). 一个关于任意x点均各向同性

的时空必定同时是一个均匀时空。(2). 因此，一个关于每一点均各向同性

的时空必定是一个最大对称时空。

显然，只有推论(1)是需要证明的。证明的关键在于表明，两个分别

绕x点和x + dx点的“旋转”基林向量的差必定是一个平移基林向量。为

此我们取两个分别绕x0点和x0 + dx点的“旋转”基林向量Xµ和Y µ, 因为是
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“旋转”基林向量，所以它们分别满足

Xµ(x0) = 0, Y µ(x0 + dx) = 0. (11.19)

特别是

(DµYν)(x0 + dx) ̸= 0. (11.20)

下面，考虑这两个基林向量的差

Zµ(x) = Xµ(x)− Y µ(x), (11.21)

显然Zµ依然是一个基林向量。

在x0点，我们有

Zµ(x0) = Xµ(x0)− Y µ(x0) = −Y µ(x0 + dx− dx). (11.22)

将Y µ(x)在x0 + dx处展开，即有(注意Y µ(x0 + dx) = 0)

Zµ(x0) = dxν∂νYµ(x0 + dx) = dxνDνYµ(x0 + dx) ̸= 0. (11.23)

并且，由于DDY ∼ Y，即(11.11)式，所以DµZν(x0) = 0, 所以Zµ(x)定义

了x0处的一个平移基林向量。因此推论(1)得证。

最大对称空间与常曲率空间

定定定理理理：n维最大对称空间必然是常曲率空间，也即是说，它的黎曼曲

率张量必然取如下形式

Rρσµν = K(gρµgσν − gρνgσµ), (11.24)

式中K是一个常数

K =
R

n(n− 1)
. (11.25)

换言之，对于任意两个线性独立的切向量v1, v2，最大对称空间的截面曲率

必定为

K(Π) =
Rρσµνv

ρ
1v

σ
2 v

µ
1 v

ν
2

⟨v1, v1⟩⟨v2, v2⟩ − ⟨v1, v2⟩2
= K. (11.26)
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也即是说，最大对称空间的任意截面曲率都必定是同一个常数K, 所以称作

常曲率空间。

证证证明明明：假设ξ是任意一个基林向量场，则根据(11.5)式，我们有LξRρσµν =

0，按照李导数的定义式将式子左边展开，即有

ξλDλRρσµν +RλσµνDρξ
λ +RρλµνDσξ

λ +RρσλνDµξ
λ +RρσµλDνξ

λ = 0.

将指标升降一下，再利用一下黎曼曲率张量的代数性质适当交换一下指标，

并取定任意时空点x0, 这个式子即可以重写成

(DλRρσµν)ξλ(x0) +
(
Rλ

σµνδ
γ
ρ −Rλ

ρµνδ
γ
σ +Rλ

νρσδ
γ
µ −Rλ

µρσδ
γ
ν

)
Dγξλ(x0) = 0.

对于最大对称空间，总有足够多的线性独立基林向量ξ，使得ξλ(x0) =

aλ可以为任意向量，同时使得Dγξλ(x0) = Lγλ(x0) = bγλ为任意反对称矩阵。

从而上面的式子意味着，在最大对称空间中，对于任意aµ和任意反对称矩

阵bγλ，总有

(DλRρσµν)aλ +
(
Rλ

σµνδ
γ
ρ −Rλ

ρµνδ
γ
σ +Rλ

νρσδ
γ
µ −Rλ

µρσδ
γ
ν

)
bγλ = 0.

而这又意味着，式中aλ项前面的系数，以及bγλ项前面的系数在将指标γ, λ反

称化以后，两者都得为零，从而有

DλRρσµν = 0, (11.27)

以及

Rλ
σµνδ

γ
ρ −Rλ

ρµνδ
γ
σ +Rλ

νρσδ
γ
µ −Rλ

µρσδ
γ
ν

=Rγ
σµνδ

λ
ρ −Rγ

ρµνδ
λ
σ +Rγ

νρσδ
λ
µ −Rγ

µρσδ
λ
ν . (11.28)

将(11.28)式的指标γ和ρ进行缩并，即可得

(n− 1)Rλ
σµν = Rνσδ

λ
µ −Rµσδ

λ
ν . (11.29)

重命名一下指标，并将指标适当升降，即可以写成

(n− 1)Rρσµν = gρµRσν − gρνRσµ. (11.30)

但根据黎曼曲率张量的代数性质，这个式子关于指标ρ,σ也必须反对称，从

而有

gρµRσν − gρνRσµ = −(gσµRρν − gσνRρµ). (11.31)
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缩并指标ρ和µ, 即有

nRσν = gσνR. (11.32)

将这个式子代入(11.30)式，即有

Rρσµν =
R

n(n− 1)
(gρµgσν − gρνgσµ). (11.33)

再代入(11.27)式，即有R是一个常常常数数数！从而定理得证。

还可以证明，最最最大大大对对对称称称空空空间间间具具具有有有唯唯唯一一一性性性，即唯一由截面曲率K决定，

具体来说即是：

唯唯唯一一一性性性定定定理理理: 假定给定了两个度规gµν(x)和g′µν(x
′), 它们有相同个数的

正负本征值(比方说两者都为闵可夫斯基号差)且都满足最大对称空间的条

件(11.24), 即

Rρσµν = K(gρµgσν − gρνgσµ) (11.34)

R′
ρσµν = K(g′ρµg

′
σν − g′ρνg

′
σµ). (11.35)

两式中的截面曲率K是相同的。则，gµν(x)和g′µν(x
′)必定微分同胚等价，即

必定存在微分同胚变换x → x′, 使得

g′µν(x
′) = gρσ(x)

∂xρ

∂x′µ
∂xσ

∂x′ν . (11.36)

证证证明明明：证明过程过于技术化，感兴趣的读者可以参见温伯格《引力和

宇宙学》第十三章对称空间第13.2节。

最大对称空间的度规

将最大对称空间满足的条件(11.24)式代入外尔曲率张量的定义

Cρσµν = Rρσµν −
2

n− 2

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(n− 1)(n− 2)
Rgρ[µgν]σ.,

不难得到，最大对称空间的外尔曲率张量必定为零，即

Cρσµν = 0, (11.37)

换言之，最大对称空间必定是共形平坦的，即其度规张量必定可以写成

ds2 = Ω2(x)ηµνdx
µdxν , (11.38)
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式中Ω(x)为一个合适的共形因子，ηµν = diag{−1, 1, ..., 1}为平坦的闵可夫
斯基时空的度规。

为了确定式(11.45)中的共形因子Ω(x)，方法之一是利用如下引理：

关关关于于于外外外尔尔尔变变变换换换的的的引引引理理理：在如下外尔变换之下

g̃µν(x) = Ω2(x)gµν(x), (11.39)

克里斯托夫联络的变换关系为(推导见第九章关于外尔变换的相关讲述)

Γµ
ρσ[g̃] = Γµ

ρσ[g] + γµ
ρσ (11.40)

式中

γµ
ρσ = Ω−1

(
δµσDρΩ + δµρDσΩ− gρσD

µΩ
)

= δµσDρ lnΩ + δµρDσ lnΩ− gρσD
µ lnΩ. (11.41)

可以直接算得，变换以后的黎曼曲率张量为

Rρ
σµν [g̃] = Rρ

σµν [g] +Dµγ
ρ
νσ −Dνγ

ρ
µσ + γρ

µλγ
λ
νσ − γρ

νλγ
λ
µσ. (11.42)

而里奇张量为

Rµν [g̃] =Rµν [g]− (n− 2)(DµDν lnΩ)− gµν(D
ρDρ lnΩ)

+ (n− 2)(Dµ lnΩ)(Dν lnΩ)− (n− 2)gµν(D
ρ lnΩ)(Dρ lnΩ).

进一步，可以得到

R[g̃] =Ω−2
[
R[g]− 2(n− 1)(DµDµ lnΩ)

− (n− 2)(n− 1)(Dµ lnΩ)(Dµ lnΩ)
]
. (11.43)

进而可以证明，外尔曲率张量在外尔变换前后保持不变，即

Cρ
σµν [g̃] = Cρ

σµν [g]. (11.44)

上面所有式子中的协变导数以及指标升降都是用度规g来定义的。以上所有

式子的推导都是直接的，只是推导过程可能有些繁琐，读者如果没有时间

自己验证，把它们记下来备查也就可以了。
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下面将上述引理应用到(11.45)式假设的度规，并且为了接下来的操作，

我们进一步取Ω(x) = 1/ω(x), 即假设最大对称空间的度规为

ds2 = ω−2ηµνdx
µdxν . (11.45)

代入上面的引理，并注意到对于平坦度规ηµν , 相应的联络系数以及曲

率均为零，进而即有(记∂2 = ∂µ∂µ = ηµν∂µ∂ν , 以及(∂ω)2 = ∂µω∂µω =

ηµν∂µω∂νω),

R = (n− 1)
[
2ω∂2ω − n(∂ω)2

]
(11.46)

Rµν = (n− 2)ω−1∂µ∂νω + ηµν
[
ω−1∂2ω − (n− 1)ω−2(∂ω)2

]
. (11.47)

另一方面，将最大对称空间的条件(11.24)进行适当缩并，即有

Rµν = (n− 1)Kgµν = (n− 1)Kω−2ηµν , R = n(n− 1)K. (11.48)

代入上面的(11.46)式和(11.47)式，即有

2ω∂2ω − n(∂ω)2 = nK (11.49)

(n− 2)ω−1∂µ∂νω + ηµν
[
ω−1∂2ω − (n− 1)ω−2(∂ω)2

]
=(n− 1)Kω−2ηµν . (11.50)

将(11.49)式代入(11.50)式，即有

∂µ∂νω =
1

n
ηµν∂

2ω. (11.51)

另外，将(11.49)式整理一下，即有

2

n
ω∂2ω − (∂ω)2 = K. (11.52)

从(11.51)式可以看出，当µ ̸= ν时，∂µ∂νω = 0, 所以ω(x0, ..., xn−1)可以

表示为n个待定一元函数之和，即

ω = f0(x
0) + f1(x

1) + ...+ fn−1(x
n−1). (11.53)

又，在(11.51)式中取µ = ν = α(注意下面对α没有求和)，并代入上式，即

有∂2ω = ηααn∂α∂αfα(x
α), 由于这个式子对任意α = 0, 1, .., n − 1变量均成

立，所以必有∂2ω为常数，不妨记为

∂2ω = na, (11.54)
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式中a为某常数。将这个式子代入(11.51)式，即有

∂µ∂νω = aηµν . (11.55)

积分两次，即得

ω = a
1

2
ηµνx

µxν + bµx
µ + c. (11.56)

式中bµ和c均为积分常数。将(11.56)式代入(11.52)式，即有

K = 2ac− ηµνbµbν . (11.57)

根据上面关于最大对称空间的唯一性定理，只要K相同，无论a, bµ, c取

什么值，所得到的最大对称空间都必定微分同胚等价。为此不妨取bµ =

0, c = 1，则(11.57)式要求K = 2a, 代入(11.56)式，因此最终我们可以将最

大对称空间的ω取作

ω = 1 +
K

4
ηµνx

µxν . (11.58)

从而最大对称空间的度规必定可以取为如下形式

ds2 =
ηµνdx

µdxν

(1 + K
4
ηρσxρxσ)2

. (11.59)

这个度规最早是黎曼在他那篇伟大的演讲《论几何学之基础假设》中给出

的(当然黎曼处理的是欧几里德号差的情形)，只不过黎曼当时没有给出推

导过程。

从最大对称空间的度规表达式(11.59)容易看出，1. 当K = 0时, 对应的

度规即是平坦的闵可夫斯基时空度规。2. 当K > 0时，对应的最大对称时

空就称作de Sitter时空。这时候我们可以记

K =
1

L2
, (11.60)

L称作de Sitter时空半径。这时候度规(11.59)与上一章给出的de Sitter度规

的等价关系我们会在后面的章节中进一步研究。3. 当K < 0时，对应的最

大对称时空称作Anti de Sitter时空，这时候可以记

K = − 1

L2
, (11.61)
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L为Anti de Sitter时空半径。同样，后面的章节会进一步证明这时候度

规(11.59)与上一章给出的Anti de Sitter度规等价。

特别的，对于K = −1/L2，并且假设我们研究的是两维欧几里德号

差的情形(即将度规ηµν替换成δµν)，记相应的坐标为xµ = (x, y), 则这时

候(11.59)式成为

ds2 =
dx2 + dy2

(1− x2+y2

4L2 )2
. (11.62)

这正是第一章中给出来的庞加莱圆盘世界的度规。

最大对称空间与爱因斯坦场方程

最大对称空间可以作为带宇宙学常数的爱因斯坦场方程的真空解。为

了看清楚这一点，我们首先写出带宇宙学常数的真空爱因斯坦场方程

Rµν −
1

2
gµνR + Λgµν = 0. (11.63)

将指标µ, ν进行缩并，即有R = 2n
(n−2)

Λ，代入上式，即有

Rµν =
2

(n− 2)
Λgµν . (11.64)

与最大对称空间的Rµν = (n− 1)Kgµν进行比较，可知，只要取

Λ =
(n− 1)(n− 2)

2
K, (11.65)

则最大对称空间就是相应真空爱因斯坦场方程的解。(11.65)式告诉我们，

当宇宙学常数Λ > 0时，de Sitter时空是真空爱因斯坦场方程的解，而

当Λ < 0时，Anti de Sitter时空是真空爱因斯坦场方程的解。

11.2 对称性与守恒定律

场的守恒量

在广义相对论中，如果有一个守恒流Jµ，它满足如下协变守恒方程

DµJ
µ = 0, (11.66)
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则必定有一个相应的守恒荷。

为了看清楚这一点，我们取时空的一个区域V，如图(11.1)所示，假

设Σ1和Σ2分别为V的过去和未来两个类空边界，B为V的类时边界，从

而V的完整边界∂V可以记为

∂V = Σ1 ∪ Σ2 ∪B. (11.67)

假设Jµ为满足DµJ
µ = 0的守恒流。则根据第四章中讨论的弯曲时空中的

图 11.1: 弯曲时空中的荷守恒。

高斯定理，我们有

0 =

∫
V

dnx
√
|g|DµJ

µ =

∫
∂V

dn−1x
√
|h|nµJ

µ

=

∫
Σ1

dn−1x
√

|h|nµJ
µ +

∫
Σ2

dn−1x
√
|h|nµJ

µ +

∫
B

dn−1x
√

|h|nµJ
µ,

式中h为边界∂V上的诱导度规，nµ为∂V的单位法向量，规定为从V的内部

指向外侧。

现在，假设没有流穿过V的类时边界B, 即在B上有，nµJ
µ = 0, 则上式

的结果可以表达成

0 =

∫
Σ1

dn−1x
√
|h|nµJ

µ +

∫
Σ2

dn−1x
√

|h|nµJ
µ

= −
∫
Σ1

dn−1x
√
|h|nµJ

µ +

∫
Σ2

dn−1x
√

|h|nµJ
µ, (11.68)
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式中第二行我们已经将Σ1的法向反向使得它顺着(而不是逆着)时间方向了，

虽然依然是记作nµ。假设我们记类空超曲面Σ上的荷Q(Σ)为

Q(Σ) =

∫
Σ

dn−1x
√

|h|nµJ
µ, (11.69)

式中Σ的法向量nµ为顺着时间方向。则(11.68)式就可以重新写作

Q(Σ1) = Q(Σ2). (11.70)

特别的，我们可以取Σ为任意时刻t的整个完整的空间截片，假设

在空间无穷远处Jµ → 0，从而使得在无穷远的B处nµJ
µ = 0自动满足，

则(11.70)式就意味着Q(Σ)是一个不依赖于时间的守恒荷！所以，协变守恒

流的存在必然意味着相应守恒荷的存在！

你可能会想，能量动量张量T µν也满足协变守恒方程DµT
µν = 0，所以

类似的也必定会有相应的守恒荷。但事实上，情况并非如此，因为对于两

个或两个以上指标的张量，我们有

DµT
µν = ∂µT

µν + Γµ
µρT

ρν + Γν
µρT

µρ =
1√
|g|

∂µ
(√

|g|T µν
)
+ Γν

µρT
µρ.(11.71)

很显然，相比于单个指标的流Jµ的协变散度，上式最右边多出来了一项。

这多出来的一项就使得无法将协变散度DµT
µν的积分转化为边界上的积分，

也即，不不不再再再有有有相相相应应应的的的高高高斯斯斯定定定理理理了了了！

所以，上面关于守恒荷的推导这时候就不再成立了，因此即使有协变

守恒方程DµT
µν = 0，也并不意味着存在相应的守恒荷！也即是说，对于

类似于T µν这样的高阶张量，协变守恒和实际存在守恒荷是两回事！

基林向量可以帮助我们克服能量动量张量的上述困难。因为假设时空

中存在一个基林向量场ξµ, 则我们就可以利用能量动量张量构造如下单个指

标的流‘

Jν
ξ = −ξµT

µν . (11.72)

不难验证这是一个守恒流，因为

DνJ
ν
ξ = −(Dνξµ)T

µν − ξµDνT
µν , (11.73)

利用能量动量张量的协变守恒，并注意到T µν是一个对称张量，即有

DνJ
ν
ξ = −(Dνξµ)T

µν = −1

2
(Dνξµ +Dµξν)T

µν = 0. (11.74)
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上式的最后我们利用了基林方程。

进而，利用守恒流Jν
ξ，我们就可以构造相应的守恒荷

Qξ(Σ) =

∫
Σ

dn−1x
√
|h|nµJ

µ
ξ . (11.75)

所以，与每一个线性独立的基林向量相对应的，必定有一个守恒荷！特别

的，假设基林向量ξ处处类时，即恒有gµνξ
µξν < 0, 则相应的守恒荷可以等

同为物质场的总能量

E = Qξ(Σ). (11.76)

对于最大对称空间，与它的n个平移基林向量相对应的守恒荷可以等

同为物质场的能量和动量，与n(n− 1)/2个“旋转”基林向量相对应的守恒

荷可以等同为物质场的角动量。

粒子的守恒量

以上考察的是物质场的守恒量，如果与引力场耦合的物质是一个粒子，

而不是场，则对守恒量的考察又会有些不同。

考察一个在引力场中自由运动的粒子，其速度矢量为uµ = dxµ

dτ
, τ为此

粒子的固有时参数或者仿射参数。用坐标无关的数学记号，这个速度矢量

即是

u =
dxµ

dτ
∂µ = ∂τ . (11.77)

自由粒子走的是测地线，所以满足如下测地线方程

Duu
µ = uνDνu

µ = 0. (11.78)

假设时空有基林向量场ξ, 则可以证明如下量必定为守恒量

Q ≡ ξ · u ≡ ⟨ξ, u⟩ = ξµu
µ. (11.79)

证明如下

d

dτ
(ξ · u) = dxν

dτ
Dν(ξ · u) = uνDν(ξ · u)

= uνuµ(Dνξµ) + ξµu
νDνu

µ

=
1

2
uνuµ(Dνξµ +Dµξν) = 0. (11.80)
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式中第二行我们利用了测地线方程，最后一个等于号利用了基林方程。

尤其是，当ξ为类时基林向量场时，相应的守恒量可以等同为单位质量

的粒子在引力场中的守恒能量, 可以记为ϵ

ϵ ≡ −ξ · u. (11.81)

举例来说，对于如下球对称度规

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdϕ2). (11.82)

显然有时间平移不变性，以及沿着ϕ方向的旋转不变性，相应的基林向量

场分别为

ξ = ∂t, kϕ = ∂ϕ. (11.83)

根据上面的结论，必有如下守恒量

ϵ = −ξ · u = −⟨∂t, u⟩ = −ut = −gttu
t = A(r)

dt

dτ
. (11.84)

以及

l = kϕ · u = ⟨∂ϕ, u⟩ = uϕ = gϕϕu
ϕ = r2 sin2 θ

dϕ

dτ
. (11.85)

显然，这两个守恒量正是第八章在研究粒子在球对称时空中运动时所得到

的守恒量。

11.3 共形基林向量场

我们知道，等度规变换是一种微分同胚变换，它要求变换前后的度规

场保持不变，有时候我们会放松这个要求，仅仅要求变换前后的度规场相

差一个外尔尺度因子。具体来说，即考虑微分同胚变换x → x′, 记变换之后

的度规场为g′µν(x), 我们要求

g′µν(x) = Ω2(x)gµν(x). (11.86)

注意，这和直接进行外尔变换有所不同，这里的g′µν(x)是微分同胚变换之

后的度规场，它满足

g′µν(x
′) = gρσ(x)

∂xρ

∂x′µ
∂xσ

∂x′ν . (11.87)
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上面这样的微分同胚变换就称作共形变换(注意和外尔变换区分开来，

虽然文献中也常常称外尔变换为共形变换，这个地方的术语有点混乱)，它

是等度规变换的一个推广，因为根据上面的定义，等度规变换当然可以看

作是一种特殊的共形变换(即Ω(x) = 1的特殊情况)。一个时空流形所有共

形变换的集合就构成了时空的共形变换群，等度规群是共形变换群的一个

子群。

假设一个上面这样的无穷小共形变换由某向量场Xµ生成，即x′µ =

xµ + ϵXµ(x)，则由无穷小微分同胚的定义，有

g′µν(x) = gµν(x)− LϵXgµν = gµν(x)− ϵ
(
DµXν +DνXµ

)
. (11.88)

另一方面，假设将(11.86)式中的共形因子Ω按照无穷小量ϵ展开成(注意对

于ϵ = 0的恒等变换必定有Ω = 1) Ω(x) = 1 + ϵσX(x), 则由(11.86)式，有

g′µν(x) = gµν(x) + 2ϵσX(x)gµν(x). (11.89)

比较这个式子和上面的(11.88)式，即有

DµXν +DνXµ = −2σX(x)gµν(x). (11.90)

或者写成

LXgµν = −2σX(x)gµν(x). (11.91)

这个方程就称作共形基林方程，满足这个方程的向量场Xµ 就称作共共共形形形基基基

林林林向向向量量量场场场。

不难证明，所有的共形基林向量场在向量场的李括号运算下构成了一

个李代数，它也就是时空共形变换群的李代数。为了证明这一点，只需注

意到，若X为共形基林向量场，Y也为共形基林向量场，则必有

L[X,Y ]gµν = LXLY gµν − LYLXgµν = −2(XσY − Y σX)gµν , (11.92)

只需令σ[X,Y ] ≡ XσY − Y σX , 从而[X,Y ]也必定是共形基林向量场。

为了进一步改写共形基林方程，我们将式(11.90) 中的指标µ, ν进行缩

并，即有DµX
µ = −nσX(x)(n为时空的维数), 反代入(11.90)式，即得

DµXν +DνXµ =
2

n
(DρX

ρ)gµν(x). (11.93)
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不难发现，基林方程是共形基林方程在DρX
ρ = 0时的特殊情况，因为对基

林方程的指标进行缩并可知满足基林方程就自动满足DρX
ρ = 0，从而，任

何基林向量场也自动是共形基林向量场。

以平坦的n维闵可夫斯基时空为例子，除了前面讨论过的基林向

量Pµ = ∂µ和Mµν = xµ∂ν − xν∂µ自动也是共形基林向量以外，它还有如

下共形基林向量。

• 首先，由于xµ满足共形基林方程∂µxν + ∂νxµ = 2ηµν , 所以有如下共形

基林向量

D = xµ∂µ. (11.94)

它生成的无穷小微分同胚变换为xµ → xµ + ϵxµ = eϵxµ, 这相当于将坐

标进行放缩，所以D称作伸缩变换(dilatation)的生成元。

• 此外，还有n个共形基林向量C(m) = (2xmxµ − ηmµxρx
ρ)∂µ。这是因为

向量C(m)满足如下共形基林方程

∂µC
(m)
ν + ∂νC

(m)
µ = 4xmηµν . (11.95)

C(m)称作特殊共形变换的生成元，通常记Cµ ≡ C(µ)。

生成元D和Cµ扩大了时空平移和洛伦兹变换的庞加莱代数。在最终的

共形代数中，除了原来的庞加莱代数关系以外，还得包括如下代数关系

[D,Pµ] = −Pµ, [D,Cµ] = Cµ

[Mµν , D] = 0, [Cµ, Cν ] = 0

[Mµν , Cσ] = −ηµσCν + ηνσCµ

[Pµ, Cν ] = 2(ηµνD −Mµν). (11.96)

注意算符D = xµ∂µ是一个数齐次度的算符，Pµ = ∂
∂xµ当然齐次度是−1，因

此就有上面的第一个式子，类似的，Cµ的齐次度是+1，因此有第二个式

子。第三个式子无非是说D本身是一个洛伦兹标量，类似的，第五个式子

说的无非是Cµ为一个洛伦兹矢量(和Pµ一样)。真正需要验证的是第四个式

子和最后一个式子，而这不难通过直接计算来验证。共形李代数在共形量

子场论(简称共形场论)中有关键的重要性。
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共形基林向量场与守恒量

对于讨论共形对称性而言，有一类物质场是特殊的，那就是其作用量

在度规场的外尔变换下保持不变的物质场。这种物质场有一个特殊的性质，

即其能动张量的指标缩并等于零，或者说其能动张量的迹为零，即T µ
µ = 0。

为了看清楚这一点，我们考虑一个尺度因子为Ω(x) = (1 + ϵσ(x))的外尔变

换，因此变换前后度规场的改变量为δgµν = 2ϵσ(x)gµν , 进而变换前后物质

场作用量Sm的改变量为

δSm =
1

2

∫
dnx

√
|g|T µνδgµν =

1

2

∫
dnx

√
|g|T µν2ϵσ(x)gµν

=

∫
dnx

√
|g|T µ

µϵσ(x). (11.97)

如果物质场作用量在任意外尔变换之下都保持不变，即有δSm = 0, 那由上

式即有

T µ
µ = 0. (11.98)

在第十章中，我们看到了这种物质场的一个典型例子，那就是电磁场。

可以证明，如果存在一个满足T µ
µ = 0的守恒能动张量，那么对于每一

个共形基林向量Xµ，都必定存在一个相应的守恒流Jµ
X

Jµ
X ≡ T µνXν . (11.99)

证明如下(利用了DµT
µν = 0)，

DµJ
µ
X = T µνDµXν =

1

2
T µν(DµXν +DνXµ). (11.100)

代入共形基林方程(11.90)，即有

DµJ
µ
X = −σXgµνT

µν = −σXT
µ
µ = 0, (11.101)

最后一个等号利用了T µ
µ = 0的假定。

正如前面讲过的，每一个守恒流都有一个相应的守恒量。因此，如果

物质场满足T µ
µ = 0，那么每一个共形基林向量都有一个相应的守恒量。特

别的，在平坦闵可夫斯基时空中，具有这种性质的物质场就称作共形场。

所以，平坦时空的电磁场是一个共形场。

不仅电磁场有这种特殊性，而且作为光子世界线的光线也有相应的特

殊性。可以证明，这时候对于每一个共形基林向量X, Q = ⟨X, u⟩均沿着光
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线守恒，这里u为光线的切向量，满足测地线方程以及类光条件gµνu
µuν =

0。证明过程完全类似于前面关于粒子守恒量中的相关讨论，只是最后需要

额外用一下类光条件。

11.4 静态时空与引力红移

这一节我们利用基林向量场来刻画稳态时空和静态时空，并重新回顾

静态时空的引力红移公式。

11.4.1 稳态时空与静态时空

定定定义义义：所谓的稳稳稳态态态时时时空空空，即存在类时基林向量场ξ的时空。稍后我们

将解释为什么称这样的时空为稳态时空。

为了接下来的讨论，下面我们引入一个数学概念，叫做向向向量量量场场场的的的积积积分分分

曲曲曲线线线。虽然相关的内容我们其实已经见过多次了，但是我们还一直没有给

出这个数学上的专有名称。我们知道，对于时空中任何向量场V = V µ∂µ,

均可以把它看成是某种时空“流体”的流速场，进而通过积分下面的微分

方程就可以得到相应的时空“流线”

dxµ

dτ
= V µ(x(τ)). (11.102)

这些“流线”就称作向量场V µ的积积积分分分曲曲曲线线线，积分曲线就是那个专门的数学

概念。显然，参数τ就是积分曲线的参数，而积分曲线的切向量就是V，因

为

V = V µ(x(τ))∂µ =
dxµ

dτ
∂µ = ∂τ . (11.103)

假设ξ为稳态时空的类时基林向量场，设ξ积分曲线的参数为t，从而有

ξ = ∂t. (11.104)

又由于ξ类时，所以我们总可以在时空上取到以参数t为x0的局部坐标，在

此局部坐标中ξ所满足的基林方程变成

0 = Lξgµν = ∂tgµν . (11.105)

换言之，对于稳态时空，我们总可以取到如下局部坐标，使得在此局部坐

标中度规场不依赖于坐标的0分量，即gµν不依赖于x0 = t。也即是说，稳态
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时空总可以使得度规场与时间坐标无关，这也就是我们称之为稳态时空的

原因！

根据上面所述，对于稳态时空，我们总可以取局部坐标(t,x) =

(t, x1, x2, x3), 使得度规为(式中i, j = 1, 2, 3)

ds2 = gtt(x)dt
2 + 2gti(x)dtdx

i + gij(x)dx
idxj. (11.106)

注意，上式中的时间空间交叉项gti(x)一般来说不等于零。

如果能够进一步取合适的局部坐标，使得上式中的时间空间交叉项等

于零，即使得

gti(x) = 0. (11.107)

那这样的稳态时空就称作静静静态态态时时时空空空。换言之，静态时空必定可以取合适的

局部坐标以使得度规场为如下形式

ds2 = gtt(x)dt
2 + gij(x)dx

idxj. (11.108)

实际上，这是对类时基林向量场ξ的一个要求，具有上述性质的类时基林向

量场就称作超超超曲曲曲面面面正正正交交交的的的。所谓超曲面正交，即是指必定存在空间超曲面

与这样的类时基林向量场的积分曲线正交，从而使得度规的时间空间交叉

项消失。因此，我们有如下定义：

定定定义义义：所谓的静静静态态态时时时空空空，即存在超曲面正交的类时基林向量场的时

空。

施瓦西时空是不是一个静态时空呢？实际上不是的，的确，它有一个

基林向量场ξ = ∂t, 但这个基林向量场只在黑洞视界之外类时，在视界之内

是类空的。所以整体来看，施瓦西时空并非静态的，但它在视界之外的部

分的确是静态的！

注意，稳态时空和静态时空都是时空本身内禀的性质，和具体的局部

坐标无关。比方说，假设有某两维时空，在某局部坐标中其度规可以表达

成ds2 = −t−4dt2 + dx2, t > 0, 这个度规的gtt分量依赖于时间t，看起来这似

乎不是一个稳态时空，但实际上，只要取坐标变换t′ = t−1, x′ = x, 就能把

度规表达式变换成ds2 = −dt′2 + dx′2, 这当然是一个稳态时空，而且是静态

时空。

11.4.2 静态时空的引力红移

下面我们讨论如何利用类时基林向量场ξ来处理静态时空中的引力红移

效应。
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为此我们首先要讨论一个问题，即时空中一个协变速度为uµ(满足归一

化条件uµuµ = −1) 的观察者测量某个物理量Jµ的结果是什么。

定定定义义义：：： 速度为uµ的观察者O测量物理量Jµ，测到的时间分量为

Ju ≡ −Ju ≡ −Jµu
µ. (11.109)

如果是测量能量密度，那测到的结果即是

T uu ≡ Tuu ≡ Tµνu
µuν . (11.110)

所谓O测到的时间分量，即在O自己的参考系中观测Jµ所得到的时间

分量。很容易看到上面的定义是合理的，因为协变速度uµ的方向当然就

是观察者O自身参考系的时间轴方向，单位向量uµ就是这个时间轴的单位

向量，所以观察到的Jµ的时间分量当然就是Jµ向着观察者时间轴的投影，

即Jµ和单位向量uµ的内积。能量密度的定义与此类似。

下面来讨论静态时空中的引力红移。假设静态时空中有两个静态观

察者O1和O2, 他们的速度分别为uµ
1和uµ

2。假定O1在时空点p1发射一个光子，

并被O2在时空点p2接收到。光子应该沿一条切向量为kµ的类光测地线传播，

由于kµ可以看作是由光子角频率和空间波矢量所构成的协变向量，所以根

据上面的定义，O1和O2测到的光子角频率应该分别为

ω1 = −(kµu
µ
1)p1 , ω2 = −(kµu

µ
2)p2 . (11.111)

静态时空的时间方向当然就是类时基林向量场ξµ的方向，而由于两

个观察者都为静态，所以他们的协变速度应该都只有时间分量非零，从

而uµ
1和uµ

2应该分别与ξµ成比例，再注意到协变速度是归一化的向量，即有

uµ
1 =

ξµ√
−ξρξρ

|p1 , uµ
2 =

ξµ√
−ξρξρ

|p2 . (11.112)

根据作类光测地线运动的光子的能量守恒(因为存在类时基林向量场)，必

有

(ξµk
µ)p1 = (ξµk

µ)p2 . (11.113)

因此我们有

ω1

ω2

=

√
−ξρξρ|p2√
−ξρξρ|p1

. (11.114)
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这就是利用类时基林向量场表达的引力红移公式。

如果取合适的坐标系，进而将静态时空的度规写成ds2 = gtt(x)dt
2 +

gij(x)dx
idxj, 也即是说，类时基林向量场为ξ = ∂t, 从而

−ξρξρ|x = −⟨ξ, ξ⟩|x = −⟨∂t, ∂t⟩|x = −gtt(x). (11.115)

代入上面的红移公式(11.114), 即有

ω1

ω2

=
(gtt(xp1)

gtt(xp2)

)− 1
2 . (11.116)

这正是第三章中导出的引力红移公式。但现在，公式(11.114)的好处是，它

是坐标无关的！而且，很显然，公式(11.114)也可以推广到稳态时空中的稳

态观察者。

11.5 基林视界

第九章引入了基林视界的概念，但是只进行了初步的研究，本节我们

将进行更系统的研究。所谓的基林视界，其定义是，首先它是一个类光超

曲面，其次，其类光法向量(也是一个切向量)刚好是一个基林向量。当一

个超曲面同时满足这两点时，就称之为一个基林视界。

设有一个基林视界N , 设与之相应的基林向量为Kµ。第九章我们证明

了Kµ在N上必定满足如下方程

KµDµK
ν = w(x)Kν . (11.117)

如果我们定义标量函数S(x) = KµKµ, 进而即有DνS = 2KµDνKµ。利用基

林方程DνKµ = −DµKν，即有DνS = −2KµDµKν , 将这个结果限制在超曲

面N上，并代入上面的(11.117)式，即有DνS|N = −2w(x)Kν |N。换言之，
在超曲面N上必有

Kµ = f(x)DµS = f(x)∂µS, (11.118)

式中f(x) = −1/(2w(x))。另外，由于Kµ是N的类光法向量，所以超曲
面N必定满足如下方程

S(x)|N = (KµKµ)|N = 0. (11.119)
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利用(11.118)式，不难验证超曲面N的类光法向量Kµ必定满足所谓

的Frobenius定理，即满足

K[µDνKρ] = 0. (11.120)

式中[µνρ]表示三个指标的全反对称化。验证上式的一个办法是，首先根

据克里斯托夫联络是一个对称联络验证K[µDνKρ] = K[µ∂νKρ], 然后再根

据(11.118)式有K[µ∂νKρ] = 0。

结合基林方程，也可以将上面这个结果写成(不难验证下式中的三个指

标是全反对称的)(
KρDµKν +KµDνKρ −KνDµKρ

)
|N = 0. (11.121)

以DµKν去缩并上式，即得在N上有(利用了基林方程)

KρD
µKνDµKν = −(DµKν)KµDνKρ + (DµKν)KνDµKρ

=− (DµKν)KµDνKρ − (DνKµ)KνDµKρ = −2(DµKν)KµDνKρ,

代入(11.117)式, 即得

KρD
µKνDµKν |N = −2w(x)KνDνKρ|N = −2w2(x)Kρ|N . (11.122)

所以只要Kρ ̸= 0，就有

w2(x) = −1

2
(DµKν)(DµKν)|N . (11.123)

对于基林视界N，由于基林向量场满足方程(11.11), 所以其基林向量

场Kµ满足

DνDρKµ = KσR
σ
νρµ. (11.124)

另外，Kµ既是N的类光法向量，也是它上面的一个切向量，在N上Kµ的

积分曲线就是一些扫出整个N的类光测地线，N由这些类光测地线铺成。
进而我们有如下引理

引引引理理理：：： 沿着N上每一条Kµ的积分曲线，w2(x)都是常数。

证证证明明明：任取N的一个切向量场tµ, 利用(11.123)式和(11.124)式，我们有

tρ∂ρw
2 = tρDρw

2 = −tρ(DµKν)(DρDµKν)|N
= −tρ(DµKν)KσR

σ
ρµν |N

= −(DµKν)RσρµνK
σtρ|N . (11.125)
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沿着Kρ的积分曲线，因此用Kρ代替式中的tρ，即有

Kρ∂ρw
2 = −(DµKν)RσρµνK

σKρ|N = 0. (11.126)

式中利用了Rσρµν关于指标σ, ρ的反对称性。所以，引理得证。

下面我们再引入一个概念，叫分岔基林视界，它是一个基林视界，并

且其上所有类光测地线都是从一个满足Kµ = 0 的分岔球(记为B)发出的。

对于分岔基林视界，我们可以证明如下定理：

定定定理理理：：：如果N是一个分岔基林视界，则w2(x)在整个N上都是常数。
证证证明明明：：：由于w2(x)沿着N的每一条类光测地线都是常数，而所有这些

类光测地线都从分岔球B发出，因此只要证明w2(x)在B上是一个常数，

就必定有w2(x)在整个N上都是常数。另一方面，由于Kσ|B = 0, 因此根

据(11.125)式，沿着B的任意切向量tρ，我们有

tρ∂ρw
2 = −(DµKν)Rσρµνt

ρKσ|B = 0. (11.127)

因此这就证明了w2在B上是一个常数，从而定理得证。

由于上述定理，所以w(x)在整个分岔基林视界N上必定只能和某个常
数κ相差正负号，即有w(x) = ±κ, 代入(11.117)式，即有，在分岔基林视界

上

KµDµK
ν = ±κKν . (11.128)

常数κ就称作表面引力。当然，这个结论我们在第九章中提到过，这里只是

给出了具体的证明。

上述结论的意义在于，由于表面引力决定了霍金温度，所以上述结论

就说明了，在整个分岔基林视界上，霍霍霍金金金温温温度度度是是是一一一个个个常常常数数数！这可以看作是

分岔基林视界的热力学第零定律，它和黑洞热力学第零定律密切相关，因

为很多黑洞(比如克鲁斯卡延拓下的施瓦西黑洞)的事件视界本身是分岔基

林视界的一部分，所以分岔基林视界的热力学第零定律也意味着，在这些

黑洞的事件视界上，霍金温度是一个常数，这也就是黑洞的热力学第零定

律。


