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第十二章 德西特空间与反德西特

空间

陈陈陈童童童

本章将承接前面的章节，系统地介绍一下德西特以及反德西特空间，

包括它们的一些常用坐标，以及它们的彭罗斯图。

12.1 德西特和反德西特空间的定义

欧几里德号差的最大对称空间

n维欧几里德空间Rn是一个曲率为零的最大对称空间。除此之外，n维

欧几里德号差的最大对称空间还有截面曲率为正的n维球面Sn, 以及截面曲

率为负的n维双曲空间Hn。

其中Sn可以嵌入到n + 1维欧几里德空间Rn+1中作为它的一张超曲面。

具体来说，取zA = (z1, z2, ..., zn+1)为Rn+1的笛卡尔坐标，Rn+1上有如下平

坦的黎曼度规

ds2 = (dz1)2 + (dz2)2 + ...+ (dzn+1)2 = δABdz
AdzB. (12.1)

则Sn可以由下面方程定义

Sn : (z1)2 + ...+ (zn+1)2 = L2 ⇔ δABz
AzB = L2. (12.2)
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式中L为Sn的半径。Sn上的黎曼度规可以通过将Rn+1的平坦度规限制在超

曲面Sn上而诱导得出。

为了证明上面定义的Sn的确是一个最大对称空间，我们指出它有如

下(n+ 1)(n+ 1− 1)/2 = n(n+ 1)/2个基林向量场

MAB = zA∂B − zB∂A, (12.3)

式中zA ≡ δABz
B = zA。即Sn有最大可能数目的线性独立基林向量，从而

是最大对称空间。为了验证MAB的确是基林向量场，我们不妨以M12 =

z1∂2 − z2∂1为例，它生成的无穷小微分同胚为

z1 → z′1 = z1 − ϵz2, z2 → z′2 = z2 + ϵz1. (12.4)

不难看出，在此微分同胚下，有

(z′1)2 + (z′2)2 = (z1 − ϵz2)2 + (z2 + ϵz1)2 = (z1)2 + (z2)2. (12.5)

从而Sn的超曲面方程(12.2)在此微分同胚下保持不变，这说明M12是S
n的一

个切向量。类似的，可以验证度规ds2 = δABdz
AdzB在此微分同胚下也保持

不变。从而M12是S
n上的一个基林向量。完全类似的，MAB也是S

n的基林

向量，所以Sn是最大对称空间。实际上，Sn是截面曲率为K = 1/L2的最大

对称空间。

容易算得Sn的基林向量场满足如下李代数

[MAB,MCD] = δADMBC + δBCMAD − δACMBD − δBDMAC . (12.6)

另一方面，很显然n维球面在Rn+1的绕坐标原点的任意旋转之下均保持

不变，而且欧氏度规(12.1)也在这个旋转之下保持不变。通常记这样的旋

转的集合为SO(n + 1), 当然，它就是Sn的等度规群。进而即知，(12.6)就

是SO(n+ 1)的李代数。

为了定义n维双曲空间Hn，我们可以引入n + 1维闵可夫斯基时空R1,n,

其坐标为zA = (z0, z1, ..., zn), 相应的度规张量为

ds2 = −(dz0)2 + (dz1)2 + (dz2)2 + ...+ (dzn)2 = ηABdz
AdzB. (12.7)

式中ηAB = diag{−1, 1, ..., 1}。Hn为R1,n中的双曲面，由下式定义

Hn : −(z0)2 + (z1)2 + ...+ (zn)2 = −L2 ⇔ ηABz
AzB = −L2. (12.8)
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Hn上的黎曼度规可以由(12.7)式的度规限制在超曲面Hn上而诱导得出。值

得注意的是，虽然R1,n是闵可夫斯基号差的，但Hn并不是，Hn的度规其实

是欧几里德号差的，即度规张量的本征值全为正。这是因为，在Hn上可以

利用(12.8) 式消去号差为负的变量z0。

类似于Sn在Rn+1的空间旋转之下保持不变，Hn在闵可夫斯基时空R1,n

的洛伦兹变换下是保持不变的，换言之，R1,n的洛伦兹群也是Hn的等度

规群，通常记作SO(1, n) (是四维闵可夫斯基时空的洛伦兹群SO(1, 3)的推

广)。同样类似于Sn的情况，不难验证，Hn有如下n(n+ 1)/2个线性独立基

林向量场(记zA ≡ ηABz
B)

MAB = zA∂B − zB∂A. (12.9)

它们满足的李代数是

[MAB,MCD] = ηADMBC + ηBCMAD − ηACMBD − ηBDMAC . (12.10)

因此，Hn也为最大对称空间，实际上，Hn的截面曲率为K = −1/L2。

德西特(de Sitter)空间和反德西特(Anti-de Sitter)空间

下面我们可以引入n维德西特空间(dSn)和反德西特空间AdSn了。

dSn其实是S
n的推广，是将Sn某一个分量的号差由正改成负而得来(因

此dSn是闵可夫斯基号差的)。因此，dSn可以嵌入n + 1维闵可夫斯基时

空R1,n中(即把Rn+1某一个分量的号差改成负的)。具体来说，设R1,n的坐标

为zA = (z0, z1, ..., zn), 相应的度规张量为

ds2 = −(dz0)2 + (dz1)2 + (dz2)2 + ...+ (dzn)2 = ηABdz
AdzB. (12.11)

则dSn为R1,n中的“球面”，由下式定义

dSn : −(z0)2 + (z1)2 + ...+ (zn)2 = L2 ⇔ ηABz
AzB = L2. (12.12)

dSn上的度规可以由(12.11)式诱导得出。不难看出，dSn有基林向量场MAB =

zA∂B − zB∂A。dSn的等度规群为SO(1, n)。作为R1,n中的“球面”，dSn的

截面曲率同样为K = 1/L2。

类似的，AdSn其实是H
n的推广，是将Hn的zn分量的号差由正改成负

而得来(因此AdSn是闵可夫斯基号差的)。因此，AdSn可以嵌入n + 1维时
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空R2,n−1中(即把R1,n中zn分量的号差改成负的)。具体来说，设R2,n−1的坐

标为zA = (z0, z1, ..., zn), 相应的度规张量为

ds2 = −(dz0)2 + (dz1)2 + ...+ (dzn−1)2 − (dzn)2 = ηABdz
AdzB. (12.13)

式中ηAB = diag{−1, 1, ..., 1,−1}。则AdSn为R2,n−1中的“双曲面”，由下式

定义

AdSn : −(z0)2 +
n−1∑
i=1

(zi)2 − (zn)2 = −L2 ⇔ ηABz
AzB = −L2. (12.14)

作为R2,n−1中的“双曲面”，AdSn的截面曲率同样为K = −1/L2。

类似的，AdSn上有基林向量场MAB = zA∂B − zB∂A，AdSn的等度规群

为R2,n−1的“洛伦兹群”，记为SO(2, n−1)。值得一提的是，SO(2, n−1)同

样是n−1维闵可夫斯基时空R1,n−2的共形变换群，这其实也是AdSn/CFTn−1

对应成立的一个必要条件。比方说，对于n = 5的AdS5情形，其等度规群

为SO(2, 4)，而SO(2, 4)同样是4维闵可夫斯基时空R1,3的共形变换群，这两

者的等同是AdS5/CFT4对应之所以成立的保证之一。

德西特空间和反德西特空间作为常曲率空间

上一章中，作为一种常曲率空间，我们已经引入过n维德西特空间

和n维反德西特空间了，而且我们还给出了它们的一种度规，也就是黎曼

在其演讲《论几何学之基础假设》中给出的度规。为了看清楚上面对德西

特空间和反德西特空间的定义其实与上一章一致，下面我们根据本章的定

义重新来推导上一章的那个度规。

先看德西特空间。为此，我们需要作一个投影(本质上是球极投影

的一种推广), 即将n + 1维的坐标zA = (z0, z1, ..., zn)投影到n维的xµ =

(x0, x1, ..., xn−1)，这个投影的定义如下

zµ =
1

1 + x2

4L2

xµ, µ = 0, 1, ..., n− 1 (12.15)

以及

zn = L
(1− x2

4L2

1 + x2

4L2

)
(12.16)

这里x2 ≡ ηµνx
µxν , 其中n维的ηµν为ηµν = diag{−1, 1, ..., 1}。
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要看清上面定义的投影的确满足方程(12.12)，只需注意到

ηµνz
µzν =

x2

(1 + x2

4L2 )2
⇒ ηµνz

µzν + (zn)2 = L2. (12.17)

进而，可以根据上面的投影定义直接验证dSn上的度规为

ds2 = ηABdz
AdzB = ηµνdz

µdzν + (dzn)2 =
ηµνdx

µdxν(
1 + x2

4L2

)2 . (12.18)

这正好是上一章给出的度规！这也验证了，德西特时空的截面曲率的确

为K = 1/L2。

反德西特空间是类似的。不过，这时候n+1维坐标zA = (z0, z1, ..., zn)到

n维坐标xµ = (x0, x1, ..., xn−1)的投影应该定义为

zµ =
1

1− x2

4L2

xµ, µ = 0, 1, ..., n− 1 (12.19)

以及

zn = L
(1 + x2

4L2

1− x2

4L2

)
. (12.20)

不难验证，这的确满足方程(12.14)。进而可以算得AdSn上的度规为

ds2 = ηABdz
AdzB = ηµνdz

µdzν − (dzn)2 =
ηµνdx

µdxν(
1− x2

4L2

)2 . (12.21)

这正好是上一章给出的度规！这也验证了，反德西特时空的截面曲率的确

为K = −1/L2。

12.2 德西特空间的一些常用坐标以及彭罗斯图

下面我们介绍dSn的一些常用坐标，并讨论dSn的彭罗斯图。

12.2.1 整体坐标与彭罗斯图

整体坐标

先从dSn的所谓整体坐标入手。为了引入整体坐标，让我们先观察定

义德西特超曲面的方程(12.12), 重写如下

dSn : −(z0)2 + (z1)2 + ...+ (zn)2 = L2. (12.22)
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从这个方程可以看出dSn其实是一个拓扑为R× Sn−1的双曲面，其中R为时
间方向，由坐标z0参数化。给定时间z0, 相应的空间n− 1维球面Sn−1由下式

给出

(z1)2 + ...+ (zn)2 = L2 + (z0)2 =常数 > 0. (12.23)

超曲面方程(12.22)显然可以通过如下参数化方式解出来，即定义

z0 = L sinh τ, za = Lna cosh τ, (12.24)

式中a = 1, 2, ..., n, na是定义n− 1维单位球面的n维单位向量，na满足

δabn
anb = 1, δabn

adnb = 0, δabdn
adnb = dΩ2

n−1, (12.25)

式中dΩ2
n−1表示n− 1维单位球面上的标准度规。进而不难得到，dSn的度规

可以表示为

ds2 =
[
− (dz0)2 +

n∑
a=1

(dza)2
]
|dSn

= L2
[
− dτ 2 + cosh2 τdΩ2

n−1

]
. (12.26)

在上述整体坐标中，明显的对称性是Sn−1的旋转对称性，也即是完整

的等度规群SO(1, n)中的SO(n)子群。

与(12.26)式相应的，欧几里德号差的最大对称空间Sn上的相应度规可

以由(12.26)式通过将时间τ“维克旋转”到虚时间而得到，即

τ ≡ iθ ⇒ −dτ 2 + cosh2 τdΩ2
n−1 → dθ2 + cos2 θdΩ2

n−1 = dΩ2
n. (12.27)

这告诉我们闵氏号差的dSn和欧氏号差的S
n其实只相差一个“维克旋转”。

彭罗斯图和视界

为了讨论dSn的彭罗斯图，我们引入共形时间η，其定义为

dη =
dτ

cosh τ
, (12.28)

不难验证这相当于

cos η =
1

cosh τ
, τ ∈ (−∞,+∞) ⇒ η ∈ (−π

2
,
π

2
). (12.29)
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引入共形时间后，即可将度规(12.26)式重写成

ds2 = L2 cosh2 τ
(
− dτ 2

cosh2 τ
+ dΩ2

n−1

)
=

L2

cos2 η

(
− dη2 + dΩ2

n−1

)
. (12.30)

因此，如果我们取共形因子Ω = 1
L
cos η, 则由(12.30)式可见，dSn外尔

等价于具有如下度规的所谓爱因斯坦静态宇宙(−π
2
, π
2
)× Sn−1

ds̃2 = Ω2ds2 = −dη2 + dΩ2
n−1. (12.31)

由共形紧化的定义，dSn的无穷远对应Ω = 0的地方，也就是对应

η = ±π
2
. (12.32)

通常称η = π
2
为未来无穷，记作I+, i+, 因为在现在的情形中类时未来无穷

和类光未来无穷合并在一起了; 称η = −π
2
为过去无穷，记作I−, i−，因为类

时过去无穷和类光过去无穷合并了。

为了画出dSn的彭罗斯图，通常进一步将空间部分的dΩ
2
n−1写成dΩ

2
n−1 =

dχ2+sin2 χdΩ2
n−2,这里χ ∈ [0, π], χ = 0对应Sn−1的北极，χ = π对应Sn−1的

南极。从而dSn外尔等价于

ds̃2 = −dη2 + dχ2 + sin2 χdΩ2
n−2. (12.33)

因此，我们可以在(η, χ)平面上画出dSn的彭罗斯图，如图(12.1)(图中每一

个点代表一个n− 2维球面)。

注意，彭罗斯图中左侧的直线χ = 0和右侧的直线χ = π并非时空的边

界，而只是空间部分Sn−1的北极和南极。

现在，考虑一个位于北极χ = 0的观察者，这个观察者将有一个事件视

界(event horizon), 它也即是此观察者能够从中接收到信号的时空区域的边

界。同时，北极观察者还有一个粒子视界(particle horizon), 它也即是此观

察者能够通过发射信号影响的区域的边界。如图(12.2)所示。 北极观察者

能够接收信号的区域和能够影响的区域的交集称作北极的因果菱形(causal

diamond), 即图(12.2)中右侧的图的红色部分。

不难看出，北极观察者的事件视界和粒子视界分别是彭罗斯图上的两

条对角线，它们满足方程

χ = ±(η − π

2
). (12.34)
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图 12.1: dSn的彭罗斯图，图中每一个点代表一个n− 2维球面。

图 12.2: 左边的图表示北极观察者能够看到的时空区域，其边界即是这个

观察者的事件视界。中间的图表示北极观察者能够通过发射信号影响的时

空区域，其边界即是这个观察者的粒子视界。右边这幅图的红色部分表示

北极观察者的因果菱形，蓝色部分表示南极观察者的因果菱形。

12.2.2 静态坐标以及其它

在dSn的整体坐标中，度规场显然是依赖于时间τ的，然而，dSn上还

可以引入一组适当的局部坐标(而不是整体坐标)，其中度规场不依赖于时

间，甚至是静态的，这就是所谓的静态坐标。

为了引入静态坐标，我们将(12.22)式重写为

n−1∑
k=1

(zk)2 = (z1)2 + ...+ (zn−1)2 = L2 + (z0)2 − (zn)2. (12.35)
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然后，通过下式定义空间径向坐标r

r2 ≡
n−1∑
k=1

(zk)2 ⇒ (zn)2 − (z0)2 = L2(1− r2

L2
). (12.36)

假如r ≤ L, 则根据上式可以自然地定义

zk = rnk, (k = 1, 2, ..., n− 1)

z0 = L(1− r2

L2
)
1
2 sinh(

t

L
), zn = L(1− r2

L2
)
1
2 cosh(

t

L
), (12.37)

式中nk为n− 1维单位向量，它定义了一个n− 2维单位球面。根据上面的定

义，即可以得到dSn的度规为

ds2 = −(dz0)2 + (dzn)2 +
n−1∑
k=1

(dzk)2

= −(1− r2

L2
)dt2 + (1− r2

L2
)−1dr2 + r2dΩ2

n−2. (12.38)

这就是dSn的静态度规，它也正是第10章中解出来的德西特度规。

显然，r = L是一个德西特视界，同时也是基林向量场ξ = ∂t的基林视

界。根据(12.37)式，也有

ξ = ∂t =
∂zA

∂t
∂A =

1

L

(
zn∂0 + z0∂n

)
=

1

L

(
zn∂0 − z0∂n

)
=

1

L
Mn0. (12.39)

所以，ξ正比于Mn0, 是dSn的基林向量场之一。

为了看清楚静态坐标所覆盖的区域，我们由(12.37)式，有

zn + z0 = L(1− r2

L2
)
1
2 et/L ≥ 0, zn − z0 = L(1− r2

L2
)
1
2 e−t/L ≥ 0. (12.40)

所以静态坐标仅仅覆盖zn ≥ |z0|的四分之一时空。r = L的德西特视界就是

这四分之一时空的边界。

下面考察r → L时，坐标如何趋于德西特视界。为此令r = L(1 −
ϵ2/2)(ϵ为无穷小量)，代入(12.40)式，即有

zn + z0 = ϵet/L, zn − z0 = ϵe−t/L. (12.41)
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当ϵ→ 0时，如果同时令ϵet/L →有限(即同时取t→ ∞)，则显然有ϵe−t/L →
0, 这时的德西特视界为

zn = z0, zn + z0 =有限. (12.42)

反过来，若当ϵ → 0时，同时令ϵe−t/L → 有限(即同时取t → −∞)，则必然

有ϵet/L → 0, 这时的德西特视界为

zn = −z0, zn − z0 =有限. (12.43)

总之，静态坐标的德西特视界必然满足zn = ±z0。
翻译到整体坐标中，根据整体坐标的定义(12.24)，这时候有

z0 = L sinh τ, zn = L cosh τ cosχ, (12.44)

式中χ为n− 1维单位球面上的极角。因此zn = ±z0相当于

cosh τ cosχ =± sinh τ ⇒ cosχ = ± sinh τ

cosh τ
= ± sin η

⇒ χ = ±(η − π

2
). (12.45)

这正好是上一小节中北极的事件视界和粒子视界所满足的方程！所以，北

极的事件视界和粒子视界正好就是静态坐标的德西特视界。

实际上，容易进一步验证，静态坐标中的r = 0就相应于整体坐标中的

北极χ = 0, 进而沿着r = 0的静止世界线有t/L = τ，这也正好就是上一小

节中北极观察者的世界线。综上可知，静态坐标其实仅仅覆盖了北极的因

果菱形！它正好是德西特彭罗斯图的四分之一。

庞加莱坐标

还有一种坐标也很常用，即所谓的庞加莱坐标。为了定义庞加莱坐标，

我们引入空间坐标x = (x1, x2, ..., xn−1), 并定义

zn − z0 = Le−t ≥ 0, zn + z0 = L(et − x2e−t)

zk = Le−txk, (k = 1, 2, ..., n− 1). (12.46)

注意到(zn)2 − (z0)2 = (zn − z0)(zn + z0) = L2 − L2x2e−2t, 由此不难验证上

面的定义满足(12.22)式。进而可以求出相应的dSn度规，为

ds2 = L2(−dt2 + e−2tdx2). (12.47)
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由于有zn − z0 ≥ 0, 所以上面的坐标仅仅覆盖了整个dSn的一半。但

是上面的坐标还不是庞加莱坐标，为了进一步引入庞加莱坐标，我们

将(12.47)重写为

ds2 = L2e−2t(−e2tdt2 + dx2). (12.48)

进而只要定义τ ≡ et ≥ 0，则有

ds2 = L2 1

τ 2
(−dτ 2 + dx2). (12.49)

最终的这个度规就是dSn的庞加莱度规，相应的坐标即是庞加莱坐标。很

显然，在庞加莱坐标中，τ = 0是时空的共形边界，相应于过去无穷I−, i−，

未来无穷所在的那一半区域没有被庞加莱坐标覆盖。

12.3 反德西特空间的一些常用坐标

AdSn空间的坐标可以类似于前面dSn情形处理。为此我们从方程(12.14)

开始，将之重写如下

AdSn : −(z0)2 +
n−1∑
k=1

(zk)2 − (zn)2 = −L2. (12.50)

稍微调整一下，也可以写成

(z0)2 + (zn)2 =
n−1∑
k=1

(zk)2 + L2. (12.51)

不难看出这个空间具有拓扑S1 × Rn−1，因为对于Rn−1上给定zk的点，上

面方程描述了(z0, zn)平面中的一个圆周S1。由于度规在(z0, zn)平面是负定

的，这表明这个S1是闭合类时曲线。具有闭合类时曲线的时空，其因果性

是有问题的。为了避免这个问题，我们可以取上述时空的万有覆盖空间，

也就是将时间圆周S1替换成R,即S1 → R。实际上，我们通常所谓的AdS时
空都是指这个覆盖空间。

整体坐标

为了定义AdSn的整体坐标，我们取(12.51)式的如下解

(z0)2 + (zn)2 = L2 cosh2 ρ,
n−1∑
k=1

(zk)2 = L2 sinh2 ρ. (12.52)
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进一步，可以取如下参数化

z0 = L cosh ρ sin τ, zn = L cosh ρ cos τ, zk = Lnk sinh ρ, (12.53)

式中nk为(n− 1)维单位矢量，它定义了一个n− 2维单位球面。根据上面的

参数化不难得到如下AdSn的度规

ds2 = L2
[
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

n−2

]
. (12.54)

这就是所谓的AdSn的整体坐标，其中ρ的取值范围是[0,+∞), τ的取值范

围本来是[0, 2π], 忽略2π周期等同进而过渡到万有覆盖空间以后就变成

了τ ∈ (−∞,+∞)。

假设定义r ≡ L sinh ρ，并定义t ≡ Lτ，则度规(12.54)就变成了

ds2 = −(1 +
r2

L2
)dt2 + (1 +

r2

L2
)−1dr2 + r2dΩ2

n−2. (12.55)

这正是我们在第十章中得出爱因斯坦场方程的AdS解时解出来的度规，它

是静态dS度规的对应物。

彭罗斯图以及共形边界

我们可以将AdSn的整体度规重写作

ds2 = L2 cosh2 ρ
[
− dτ 2 +

dρ2

cosh2 ρ
+ tanh2 ρdΩ2

n−2

]
. (12.56)

通过下式引入一个新的径向坐标ψ

dψ =
dρ

cosh ρ
. (12.57)

这个方程的解是

cosψ =
1

cosh ρ
. (12.58)

由于ρ ∈ [0,+∞)，所以

cosh ρ ∈ [1,+∞) ⇒ ψ ∈ [0,
π

2
). (12.59)

由

cosh ρ =
1

cosψ
⇒ sinh ρ = tanψ, tanh ρ = sinψ, (12.60)
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从而可以将度规变成

ds2 =
L2

cos2 ψ

[
− dτ 2 + dψ2 + sin2 ψdΩ2

n−2

]
=

L2

cos2 ψ

[
− dτ 2 + dΩ2

n−1

]
. (12.61)

从上面的结果可以看出，AdSn时空外尔等价于

ds̃2 = −dτ 2 + dΩ2
n−1, 0 ≤ ψ <

π

2
. (12.62)

也即是说，AdSn外尔等价于爱因斯坦静态宇宙(它有0 ≤ ψ ≤ π)的一半。给

定时间τ，空间超曲面是一个n−1维的半球，边界在ψ = π
2
处(它显然不在时

空本身的定义域内)，这个空间边界当然是一个n− 2维球面Sn−2。ψ = π
2
也

是共形因子Ω = cosψ/L = 0的地方，因此对应AdSn的共形边界，记作I。
从(12.61)式可以看出，这个共形边界I是类时的，具有度规

ds̃2|ψ=π/2 = −dτ 2 + dΩ2
n−2. (12.63)

所以I的拓扑是

I ≃ R× Sn−2. (12.64)

它可以看作是对n − 1维闵可夫斯基时空R1,n−2的空间部分作了一个共形紧

化

R1,n−2 → R× Sn−2. (12.65)

I其实是未来类光无穷、过去类光无穷、以及类空无穷结合起来的产物。
可以在(τ, ψ)平面上画出AdSn的彭罗斯图，如图(12.3)左图。 图中与竖

直方向成45度角的那些直线代表类光测地线。由于τ无限延伸，而ψ有限，

所以很难在保持光线沿着45度角方向的前提下进一步将整幅彭罗斯图压缩

到一个有限区域内，因为一旦我们将τ压缩到有限了，那就一定会同时把整

个ψ轴压缩成一个点，最后的结果将如图(12.3)右图。我们通常不会这么做，

通常我们就将图(12.3)的左图当作AdSn的彭罗斯图，虽然它的τ方向向两端

无限延伸。注意，图(12.3)中左边ψ = 0的那条直线并不是AdSn的边界，而

只是ψ = 0的径向坐标的坐标原点。

从彭罗斯图中可以清楚地看到，光线可以在有限的坐标时内抵达共形

边界I。这意味着，取AdSn的任意一个空间截片Σ(如图(12.3)所示)，在Σ的
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图 12.3: 反德西特时空的彭罗斯图，图中每一个点代表一个n− 2维球面。

未来一定存在一些点，它的某一些过去指向的因果线(类光测地线)在过去

并不会与Σ相交，而是跑到共形边界I上去了。这意味着，Σ上的初始数据

并不足以决定场位形在这些未来点处的值，换言之，AdSn不是整体双曲时

空！(关于整体双曲的定义，请参见第九章在介绍强宇宙监督猜测时的讲

述。)

为了决定场位形在整个AdS时空的演化，我们不仅需要初始数据，

还需要在I上指定合适的边界条件，比方说让I完美地反射光线等等。
由于需要在共形边界I上给定边界条件，这也就意味着，可以有一些场
本身就生存在I上。特别的，可以在I上定义共形场论。这些事实，结
合AdS5的等度规群(即SO(2, 4)) 与边界四维闵氏时空的共形群相同的事

实，对于AdS/CFT对应的引入起到了重要作用。AdS/CFT对应说的就

是AdS时空的量子引力理论等价于共形边界I上的一个没有引力的共形场
论。

庞加莱坐标

和dS时空一样，AdS时空也有一组庞加莱坐标。为了定义它，我们注

意到下式可以满足定义了AdS时空的(12.50)式

zα = Lrxα, zn − zn−1 = Lr

zn + zn−1 = L(r−1 + rηαβx
αxβ). (12.66)
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式中α, β = 0, 1, ..., n− 2。利用上式，可以将AdS的度规改写成

ds2 = L2
(dr2
r2

+ r2ηαβdx
αdxβ

)
= L2

(
dρ2 + e2ρηαβdx

αdxβ
)

(r = eρ)

= L2 1

z2
(
ηαβdx

αdxβ + dz2
)

(r = z−1). (12.67)

最后一行的度规就是庞加莱度规，相应的坐标就是庞加莱坐标。

z = 0就对应AdS的共形边界，很显然，共形边界具有标准的闵氏度规

ds̃2|z=0 = ηαβdx
αdxβ. (12.68)

这个结果表面看起来与(12.63)式有点出入，因为(12.68)式并不与(12.63)式

微分同胚等价，但是两者共形等价，也就是说，在合适的微分同胚变换

下，两者只相差一个外尔共形因子。实际上，共形紧化手续并不能唯一决

定共形边界上的度规，因为共形紧化时所乘的共形因子Ω并不是唯一的，

这导致共形紧化只能将边界上的度规确定到一个共形等价类，而(12.63)式

与(12.68)式正是属于同一个共形等价类，所以两者并不矛盾。同时，这也

是为什么共形边界上只能定义共形场论的原因，因为只有共形场论才不依

赖于确定的背景度规，而只依赖于背景度规的一个共形等价类。


