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第九章 黑洞基础

陈陈陈童童童

米歇尔和拉普拉斯曾经论证，天体的引力可以大到连光都无法逃逸，

因此这样的天体可能是看不见的。这就是人类最早对黑洞的想象，当

然他们的论证依赖于牛顿力学，尤其是它假设光是一种有质量的粒子，

因此这个论证在细节上当然是不对的。正确的论证需要用到广义相对

论，尤其是从施瓦西解中，我们可以论证当星体的半径小于其施瓦西半

径rg = 2GM时，它就会成为一个黑洞。所以，广义相对论允许黑洞的存

在，然而理论允许并不等于黑洞真的会存在，因为如何论证星体的半径真

的可以小于其施瓦西半径是一个问题，从而论证黑洞真的会存在是一个远

为复杂的问题，对此，我们推迟到后面的章节再进行一些讨论。本节先讨

论施瓦西解如何描述一个被允许存在的黑洞，称作施瓦西黑洞。

关于黑洞，最重要的一件事情也许是存在一个事件视界，本章将以施

瓦西黑洞为例，详细讨论黑洞视界的方方面面。

本章要讨论的第二个问题是一组性质非常好的坐标系，称作克鲁斯

卡坐标。用克鲁斯卡坐标来描述施瓦西解就称作施瓦西解的克鲁斯卡延

拓。除了施瓦西解的延拓之外，我们还会使用统一的办法讨论Reissner-

Nordstrom黑洞(RN黑洞)的克鲁斯卡延拓。

本节要讨论的第三个问题有关于时空的整体结构，尤其是因果结构。

我们将讨论，如何在不破坏因果结构的情况下，像画地图一样，将整个

时空画在一张图上。这样的时空地图即是由彭罗斯和卡特引入的彭罗斯

图。本节将详细讨论平坦的闵可夫斯基时空的彭罗斯图，以及施瓦西黑洞

和RN黑洞的彭罗斯图。
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第九章 黑洞基础 3

9.1 黑洞视界

9.1.1 视界的定义

事件视界

首先写出施瓦西解，

ds2 = −
(
1− rg

r

)
dt2 +

(
1− rg

r

)−1
dr2 + r2dΩ2. (9.1)

用上一章的记号即是A(r) =
(
1− rg

r

)
, B(r) =

(
1 − rg

r

)−1
, 从而AB = 1。显

然，函数A(r)在r = rg处是一个一阶零点，即在rg附近，有

A(r) ∼ (2κ) · (r − rg) + ... (9.2)

显然，在这里κ = 1/(2rg) = 1/(4GM)，注意它和前面章节中出现的符号κ

不是同一个东西。

在上一章中，我们都是假设星体的半径大于甚至远大于其施瓦西半

径rg = 2GM , 然后施瓦西解描述的是星体的外部时空，所以在上一章中，

恒有r > rg。现在，我们假设星体的半径小于rg，甚至极端一点，我们假设

星体是r = 0处的一个质点，然后问，现在施瓦西解描述的时空有何奇异之

处？

最显眼的一个奇异之处，从(9.1)式可以看到：当r > rg时，gtt = −
(
1−

rg
r

)
< 0, 而grr =

(
1 − rg

r

)−1
> 0, 所以，t是时间坐标，而r是空间坐标，这

和我们的预期一致。但是，当r < rg时却有，gtt > 0, 而grr < 0，所以，这

时候实际上r变成了时间坐标，而t变成了空间坐标。即是说，在r = rg处，

时间和径向空间互换了！

值得注意的是，这种时空互换并不意味着观察者在穿过r = rg处的球

面往中心掉落时其时钟会变成米尺而米尺会变成时钟。不会有这种戏剧性

的事件发生，之所以我们有这种错觉，是因为我们选择了施瓦西(t, r)坐标

的原因，这个坐标在r = rg处是奇异的, 因为gtt(rg) = 0, grr(rg) = ∞, 所以

这个坐标可以覆盖r < rg的区域，也可以覆盖r > rg的区域，但却不能同时

覆盖两者，如果你让它同时覆盖这两者，那就会产生上面的错觉。后文我

们将会讨论能够同时覆盖两个区域的时空坐标。

但是，在经典物理中，时间和空间性质有根本性的不同，空间是可以

前进也可以后退的，但是时间却是单向的！这就说明，对于施瓦西解描



第九章 黑洞基础 4

述的时空而言，一旦过了r = rg处的球面，身处r < rg的区域，则由于r方

向变成了时间方向，因此沿着r方向走只可能有两种选择(这两种选择互

为对方的时间反演)：要么r减少的方向为时间前进方向，这时所有粒子

都单向地朝着r减少的方向前进，直至r = 0的时间终点，这就是黑洞，这

时r < rg的区域就叫黑洞区域; 要么r增加的方向为时间前进方向，这时

候r = 0就变成了时间起点，所有粒子都从这里出发单向地朝r = rg的球面

前进，然而穿过这个球面跑到外面的区域，这就是所谓的白洞！当然，白

洞通常被认为不是物理的，因为黑洞可以由恒星发生引力坍缩而形成，但

却并没有形成白洞的物理机制。

为了将施瓦西解和黑洞的定义(光无法逃逸)联系起来，我们考察光在

施瓦西时空中的运动，由上一章的式子(并代入AB = 1)，(dr
dλ

)2
+

1

B

( l2
r2
)
− ϵ2

AB
= 0

⇒
(dr
dλ

)2
+ A(r)

( l2
r2
)
− ϵ2 = 0. (9.3)

在r = rg处，由于有A(rg) = 0，所以显然 dr
dλ
|rg = ±ϵ, 这说明在跟着光子一

起运动的参考系看来，r = rg处并没有什么特殊的地方，因为光子在此处

的径向速度很正常。所以，从跟着光子一起运动的参考系来看，光子(其它

物质粒子也一样)可以正常地穿过r = rg的球面。

下面，我们从空间无穷远处的静止观察者的角度来看r = rg处。

从(9.1)式可以看到，对于无穷远处的静止观察者而言，时间t其实就是

其经历的固有时。结合上一章的式子 dt
dλ

= ϵ
A
和上面的(9.3)式，可以得到(dr

dt

)2
+ A2

[
A

1

r2
l2

ϵ2
− 1

]
= 0.

所以，在r = rg附近，有
(
dr
dt

)2 ∼ A2 ∼ (2κ)2(r − rg)
2。也即是说，在无穷远

处的静止观察者看来，光子在rg附近会运动得越来越慢，甚至在r = rg处，

光速会减小到零，所以，无穷远处的静止观察者无法看到光穿越r = rg这

个球面。不仅无法看到光穿越它，类似的分析同样告诉我们，无穷远处的

静止观察者也无法看到任何物质粒子穿越r = rg这个球面。由于看不到光

穿越r = rg，所以r < rg的区域对于无穷远处的静止观察者而言当然是黑暗

的，光无法从这个区域逃逸到无穷远处去，这就是黑洞！r = rg处的球面

随着时间演化在时空中扫过的柱形世界面就称作黑黑黑洞洞洞事事事件件件视视视界界界！！！它它它就就就是是是无无无

穷穷穷远远远处处处的的的静静静止止止观观观察察察者者者能能能够够够看看看到到到的的的时时时空空空区区区域域域的的的边边边界界界，，，越越越过过过边边边界界界就就就是是是黑黑黑洞洞洞区区区

域域域。。。
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反过来也一样，无穷远处的观察者并不能看到外面的粒子真正掉进黑

洞区域，在无穷远处的观察者看来，当粒子不断接近视界面时，其速度会

越来越缓慢，直至无限趋近于零，因此他并不能看到粒子真正掉进去，只

能看到粒子越来越慢越来越接近r = rg的视界面, 在无穷远处的观察者看

来，粒子需要无穷长的时间才能真正到达视界面。

视界面还有另外一种定义，为了说清楚这种定义(对于施瓦西解)，不

妨考察一簇由方程f(r) = c所描述的超曲面(c为这一簇超曲面的参数)，其

中f(r)是径向坐标的某个函数，比方说如果f(r) = r − rg，那么视界面就对

应c = 0。这样的超曲面簇自然有一个余法向量nµ,

nµ = ∂µf(r). (9.4)

比方说对于f(r) = r − rg，在(t, r, θ, ϕ)的坐标系中

nµ = (0, 1, 0, 0), (9.5)

即是说，它只有径向分量nr = 1，其余分量都是零。这个余法向量在视界

面上是一个类光向量，因为，

gµνnµnν = grr(∂rf(r))
2 =

(
1− rg

r

)
(∂rf(r))

2, (9.6)

这个表达式限制在r = rg的视界面上显然为零，满足(gµνnµnν)|rg = 0。

从上面的计算可以看出，在视界面的外面，即r > rg时，余法向量类

空，即满足gµνnµnν > 0，这表示沿着f(r) = c超曲面的法向是一个空间方

向，沿着这个方向可以前进也可以后退。但是，在视界面以内，即r < rg的

黑洞区域，余法向量类时，即满足gµνnµnν < 0, 这表示这时候f(r) = c超曲

面的法向是一个时间方向，因此有单向性，对于黑洞，只能沿着法向朝r减

小的方向前进。因此，人们也称黑洞区域的f(r) = c超曲面为单单单向向向膜膜膜，而

黑黑黑洞洞洞事事事件件件视视视界界界，，，就就就是是是单单单向向向膜膜膜区区区开开开始始始的的的那那那个个个超超超曲曲曲面面面。

所以，黑洞存在一个事件视界面，它其实有非常特殊的性质。但

是(9.1)式的(t, r, θ, ϕ)坐标系无法仔细地考察这些性质，因为这个坐标系

在r = rg处是奇异的，它的gtt|rg = 0而grr|rg = ∞。这些奇异性导致，比
方说，时空上的余切向量nµ = (0, 1, 0, 0) 在视界面上的对偶向量为零，

即nµ|rg = 0(因为grr|rg = 0)，类似的，切向量ξ = ∂t, 即ξµ = (1, 0, 0, 0)在视

界面上的对偶向量也为零(因为gtt|rg = 0)。一个非零向量的对偶向量却是

零，这当然是病态的，这种病态源自于(t, r)坐标在r = rg处的奇异性。
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后文将会讨论一些在视界面上也定义良好的其它坐标系，比如说后文

将要研究的近视界几何中的(V, U)光锥坐标系，以及后面将要详细讨论的

克鲁斯卡坐标系。

无限红移面

施瓦西黑洞的事件视界还有一层含义，和引力红移有关。为了看清楚

这一层含义，让我们回想一下第三章中对引力红移的讨论。根据第三章中

的相关讨论可以知道，在一个静态时空中，位于xE位置的信号发射者发射

电磁波的频率νE，和位于xR位置的信号接收者接收到的电磁波频率νR之间

满足如下关系

νR
νE

=
(g00(xR)

g00(xE)

)−1/2

.

对于施瓦西时空，即是

νR
νE

=
(1− rg

rR

1− rg
rE

)−1/2

.

特别的，如果信号接收者位于空间无穷远处，则有

νR = νE

√
1− rg

rE
. (9.7)

很显然，无穷远接收者接收到的信号频率νR要比发射频率νE低，在从发射

地传播到接收地的过程中，信号频率向更低频移动了，这就是所谓的引力

红移，因为低频信号就是”更红”的信号。

从(9.7)式容易看出，如果信号发射者越靠近黑洞视界，则对于无穷远

处的接收者而言，它发出的信号就红移得越厉害。换句话说，在无穷远观

察者看来，一件事物越接近视界面，则它的频率就红移得越低，它的时间

过程看起来就越慢，最后，当事物无限接近视界面时，在无穷远观察者看

来，它的频率就无限接近于零了，称之为发生了无限红移，当然，与此同

时，它的时间过程看起来也无限变慢，正由于这样的无限变慢，因此在无

穷远观察者看来，一个粒子要想真正达到视界面，需要无穷长的时间！

无穷远观察者永远也不会看到一个粒子真正掉进黑洞之中！他只会看

到它越来越红越来越慢，越来越接近视界面，因此施瓦西黑洞的事件视界

同时又是所谓的无限红移面。

当然，对于更一般的黑洞，比如后面的章节中要讲述的克尔黑洞，无

限红移面与事件视界就不是完全重合的一回事了。
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9.1.2 近视界几何

为了搞清楚黑洞视界的性质，不妨将注意力集中在r = rg的视界附近，

根据前面的分析，在视界附近A(r) ∼ (2κ)(r − rg), 因此施瓦西解可以近似

为(称作近视界几何)

ds2 ∼ −(2κ)(r − rg)dt
2 + (2κ)−1(r − rg)

−1dr2 + r2gdΩ
2. (9.8)

重新定义径向坐标ρ，使得dρ = (2κ)−1/2(r − rg)
−1/2dr，积分即

ρ = (2κ)−1/22(r − rg)
1/2 ⇔ ρ2 = 4rg(r − rg). (9.9)

黑洞视界r = rg对应于ρ = 0。利用这个新的径向坐标ρ, 就可以将近视界几

何重写成

ds2 ∼ −κ2ρ2dt2 + dρ2 + r2gdΩ
2. (9.10)

不妨忽略角度部分，仅仅考察径向和时间向这个1 + 1维的时空，从而近视

界几何为

ds2 = −κ2ρ2dt2 + dρ2. (9.11)

这样一个1 + 1维时空又称作Rindler时空。所以，施瓦西黑洞的近视界几何

是一个Rindler时空。

为了搞清楚Rindler时空的本质，引入新的坐标V, U ,

V = ρeκt, U = −ρe−κt, (9.12)

不难验证，在(V, U)坐标之下，Rindler时空度规正好是

ds2 = −dV dU. (9.13)

但这正是平坦的1+1维闵可夫斯基时空，为了看清这一点可以令V = T+X,

U = T −X, 从而使得度规变成标准的ds2 = −dT 2 + dX2, 换言之，V, U也

是平坦的1 + 1维闵可夫斯基时空的光锥坐标。由于我们是研究近视界几何

得到上面的式子，所以它清楚地说明了黑洞视界面附近的时空并没有奇异

性，它就是很正常的时空，所有的奇异性都来自于原来的(t, r)坐标。

当然，从(9.12)式可以看出，严格来说，Rindler时空只是闵可夫斯基

时空的四分之一，也就是V > 0, U < 0的那四分之一，如图(9.1)所示(右侧

满足X > |T |的那四分之一)。
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图 9.1: 施瓦西黑洞的近视界几何，红线表示位于黑洞外面(r > rg)一个恒

定r处的一个观察者.

为了看清楚原来位于ρ = 0处的黑洞视界在新的(V, U)坐标下如何描述，

我们根据(9.12)式, 得

V U = −ρ2, U/V = −e−2κt. (9.14)

由V U = −ρ2 可见，ρ = 0 现在对应V = 0 或U = 0 这两个坐标轴，在

图(9.1)中也就是与竖直轴成45度角的那两条斜线，这就是对黑洞视界的新

的描述，注意，现在的(V, U)坐标即使在视界面上也同样定义良好。

当然严格来说，U = 0, V > 0半轴对应的才是黑洞视界，而V = 0, U <

0半轴对应的实际上是我们延拓出来的白洞的视界，后文会进一步进行相关

讨论。

从U/V = −e−2κt可见，t等于常数的曲面现在对应(V, U)坐标系中过

原点的一条斜率为常数的直线。特别的，V = 0对应t = −∞, 而U = 0对

应t = ∞。也就是说，在这种描述下，视界与t = ±∞的超曲面重合，对此
的物理解释是，从无穷远处的静止观察者看来(还记得吗？ t是这种观察者

的固有时)，粒子要花无限长的时间才能到达视界。

将角度部分也包括进来，那么近视界几何即是

ds2 = −dV dU + r2gdΩ
2. (9.15)

假设把这个度规限制在U = 0, V > 0的黑洞视界面这个三维超曲面上，我

们得到的度规即是

ds2|U=0 = r2gdΩ
2 = r2g(dθ

2 + sin2 θdϕ2), (9.16)
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很显然，这是一个退化的度规，它没有dV 2项，也没有dV dθ以及dV dϕ这样

的交叉项。换言之，视界面上的度规是退化的，其号差可以示意性地记

为0 + +, 其中++对应dθ2和dϕ2之前的正定度规，0表示dV相关项的退化。

一个具有0++号差的超曲面就称之为一个类类类光光光超超超曲曲曲面面面，类光主要指沿着这

个超曲面的度规退化方向走ds2 = 0，这当然也就是类光。所以，黑黑黑洞洞洞的的的事事事

件件件视视视界界界是是是一一一个个个类类类光光光超超超曲曲曲面面面！

完全类似的讨论可以知道，白洞视界面也是一个类光超曲面，总之，

V = 0和U = 0的两个超曲面都是类光超曲面。

以U = 0的类光超曲面为例，给定其上一点，其切空间的三个独立切向

量为∂V , ∂θ, ∂ϕ, 根据与坐标无关的数学语言，⟨∂µ, ∂ν⟩ = gµν , 从而不难得出

⟨∂V , ∂V ⟩|U=0 = 0, ⟨∂V , ∂θ⟩ = ⟨∂U , ∂ϕ⟩ = 0. (9.17)

也即是说，切向量∂V是类光向量！并且∂V这个切向量与整个切空间都正

交，所以它其实也是U = 0的类光超曲面的法向量！类似的，∂U是V = 0的

类光超曲面的类光切向量，当然也是其法向量。这正是类光超曲面的特殊

之处，它的类光切向量也正是其法向量。

有一个定理告诉我们，所有的类光超曲面都可以看成是由类光测地线

铺成的，证明可以参见E. Witten 的经典综述文章Light Rays, Singularities,

and All That，附录E。这篇文章有中文译本，叫《光线、奇点，以及其

它》，是由我们一些人翻译的，网上能搜到。从上面对黑洞视界的这个描

述也能清楚地看到，U = 0, V > 0的黑洞视界是由给定θ, ϕ值的类光测地线

生成的，V就是这些类光测地线的仿射参数！V = 0的视界面也有类似结

论。

9.1.3 基林(Killing)视界

从施瓦西解的表达式(9.1)容易看出，这个解的度规表达式在如下t平移

的单参微分同胚变换下保持不变

t → t+ c, (9.18)

其中平移量c为任意常数。注意，广义相对论虽然允许任意的微分同胚变

换，但是，一般来说，度规表达式在微分同胚变换下是要变的。因此，t平

移对于施瓦西解来说是特殊的，它是施瓦西解的一个对称性，而不仅仅是

像其它微分同胚变换一样只是广义相对论理论(也就是场方程)的对称性，

它的对称从方程延伸到了解。
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很明显，t平移可以用如下切向量场ξ生成，

ξ = ∂t. (9.19)

这样的对应于度规对称性的切向量场，就称作基林(Killing)向量场，后面

的章节中会进一步深入讨论基林(Killing)向量场以及它们和时空对称性的

关系。总之，施瓦西解有一个基林向量场ξ = ∂t。

很显然，这个基林向量场满足

⟨ξ, ξ⟩ = ⟨∂t, ∂t⟩ = gtt = −(1− rg
r
). (9.20)

显然，ξ在r > rg处是类时的，特别的，ξ在空间无穷远处是类时的，是

无穷远处的一个类时基林向量场，在无穷远处ξ归一化为⟨ξ, ξ⟩|∞ = −1。

但是，在r < rg处，ξ类空！特别的，在r = rg的视界面上，ξ类光，满

足⟨ξ, ξ⟩|rg = 0。为了考察基林向量ξ在视界面上的行为，下面我们来考察它

在近视界几何光锥坐标(V, U)中的表达式。

假设在近视界几何中考察一个位于给定ρ位置的粒子随时间的演化，不

妨设时间平移了一个c吧，即t → t+ c。则根据(9.12)式，有

V → V eκc, U → Ue−κc. (9.21)

由于V, U也是平坦时空的光锥坐标，所以这个式子的含义其实就是一个洛

伦兹推动(boost), 也即是说，在(V, U)坐标中看来，这个粒子的时间演化其

实是一个洛伦兹推动(boost)。

取c = δt为无穷小时间平移，则从(9.21)式容易看出，

δV = κV δt, δU = −κUδt. (9.22)

从而即可以得到基林向量场ξ在(V, U)坐标中的表达式，为

ξ = ∂t =
∂V

∂t

∂

∂V
+

∂U

∂t

∂

∂U
= κ

(
V

∂

∂V
− U

∂

∂U

)
. (9.23)

用(V, U)坐标的分量形式来表达即是

ξµ = κ
(
V,−U

)
. (9.24)

特别的，对于(V, U)坐标的原点，V = U = 0, 从而ξ = 0, 这样的点称为基基基

林林林分分分岔岔岔点点点(bifurcation point)，当然，如果加上角度部分的坐标，那这样的
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点实际上就是一个两维球面，称作分分分岔岔岔球球球。很显然，这里整个V = 0或U =

0的视界面都是由分岔球上所发出的类光测地线扫出的。

在U = 0的视界面上，基林向量ξµ = κ
(
V, 0

)
，由于近视界度规为−dV dU ,

所以这显然是U = 0视界面的一个类光切向量，同时，因为U = 0的视界

面为类光超曲面，所以这时ξµ也为这个超曲面的类光法向量。类似的，

在V = 0的视界面上(此时ξµ = κ
(
0,−U

)
)，基林向量ξ也是一个类光切向量，

当然也是类光法向量。

如果一个类光超曲面以一个基林向量为类光法向量，则我们就称之为

一个基林视界，所以，施瓦西黑洞的事件视界面同时也是基林视界。

再强调一下，所谓的基基基林林林视视视界界界，其一般定义是，首先它是一个类光超

曲面，其次，其类光法向量(也是一个切向量) 刚好是一个基林向量(不妨一

般性地记为Kµ)，当一个超曲面同时满足这两点时，就称之为一个基林视

界。所以，从定义来看，基林视界和事件视界的定义是相互独立的，两者

并不一定重合。不过，对于施瓦西黑洞而言，其事件视界正好也是其基林

视界！而且相应基林向量为在无穷远处类时的ξ，即K = ξ。

实际上，霍金和卡特曾经证明过一个定理：在在在稳稳稳态态态时时时空空空中中中，，，事事事件件件视视视界界界

就就就是是是类类类时时时基基基林林林视视视界界界。。。 当然，这里的类时指的是这个基林向量场在空间无

穷远处类时！施瓦西时空就是这个定理的一个典型例子。

根据前面提及的E.Witten文章里的定理，作为一个类光超曲面，基林

视界当然也是由类光测地线铺成的，不防记这些类光测地线的切向量场

为lµ，它满足如下测地线方程

lµDµl
ν = 0. (9.25)

lµ当然是一个类光切向量，因此它也是基林视界的法向量场, 因此在基林

视界上，它必定和同样作为法向量场的基林向量场Kµ成比例，即存在函

数χ(x)，使得

Kµ = χ(x)lµ. (9.26)

注意lµ只在基林视界上有定义，从而这个式子也只在基林视界上成立。

从而根据(9.25)式，不难得到，在基林视界上，Kµ满足方程KµDµK
ν =

χ(x)lµDµ(χ(x)l
ν) = χ(x)(lµ∂µχ(x))l

ν = (lµ∂µχ(x))K
ν , 记式中的lµ∂µχ(x) =

w(x)，即有方程

KµDµK
ν = w(x)Kν . (9.27)
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这个方程的本质其实依然是测地线方程，不过测地线的参数不是仿射参数

而已，这个式子当然也只在基林视界上成立。

稍后我们将证明，对于施瓦西黑洞的视界面(以及类似的一类球对称黑

洞)，如果取基林向量K = ξ = ∂t，则必定有w(x) = ±κ, 这里的κ也就是前

面引入的1/(2rg) = 1/(4GM)。换言之，对于施瓦西黑洞的视界面(以及类

似的一类球对称黑洞)，我们有

ξµDµξ
ν = ±κξν . (9.28)

这个结果依赖于ξ的归一化，因为如果将ξ替换成cξ，那上式中的κ就应该

替换成cκ。这里是取ξ = ∂t，因此是将ξ的模长平方在空间无穷远处归一

为负一，即⟨ξ, ξ⟩|∞ = −1。而之所以有正负号的不确定性，是因为如果

将ξ替换成时间反演版的−ξ, 那w(x)就将变成−w(x), 而对于施瓦西黑洞而

言，ξ = ∂t和它的时间反演是地位平等的，都可以作为类时基林向量场。值

得说明的是，通常人们称方程(9.28)中的κ为表面引力，因此本章前面引入

的κ = 1/(2rg)当然就是施瓦西黑洞视界上的表面引力。

下面，我们来证明定义了表面引力的(9.28)式。由于这个式子只定义在

基林视界上，所以要证明它显然只需要考察基林视界附近的情况，从而只

需研究近视界几何就足够了！为此，首先注意到，在(V, U)坐标中，近视

界几何的度规是平凡的−dV dU，从而可知在这个坐标中，联络系数都等于

零，从而在(V, U)坐标中协变导数就等于普通的导数。所以在基林视界附

近我们有

ξµDµξ
ν = ξµ∂µξ

ν

= κ
(
V

∂

∂V
− U

∂

∂U

)
κ
(
V,−U

)
= κ2

(
V, U

)
. (9.29)

所以，在U = 0的基林视界上(此时ξν = κ
(
V, 0

)
), 我们有

ξµDµξ
ν = κ2

(
V, 0

)
= κξν . (9.30)

而在V = 0的基林视界上(此时ξν = κ
(
0,−U

)
), 我们有

ξµDµξ
ν = κ2

(
0, U

)
= −κξν . (9.31)

这就证明了(9.28)式。

不仅如此，在后面的章节中我们还将证明，对于任意时空的任意基林

视界，只要它可以由其分岔球上的类光测地线扫出，则(9.27)式中的w(x)的



第九章 黑洞基础 13

平方(w2)沿着整个基林视界都必定为常数！从而在基林视界上w(x)只能和

一个常数(就记作κ)相差正负号，所以可以一般地记w(x) = ±κ, 进而一般

性地将方程(9.27)重写作

KµDµK
ν = ±κKν . (9.32)

对于类时基林视界，通常还要求Kµ满足归一化条件⟨K,K⟩|∞ = −1。注意，

这个方程和上一段证明的结论的区别在于，这个方程的成立条件要广泛得

多，而上一段只是它在施瓦西视界情形的特例。

9.1.4 表面引力与霍金温度

黑洞视界是一个物质有去无回的单向膜区开始的地方。然而，1974年，

霍金发现，在考虑了量子效应以后，黑洞也能往外辐射，它有一个非零的

温度，这就是霍金温度。

为了推导出霍金温度的表达式，设想在空间无穷远处，将一个量子

场ϕ(x)与黑洞耦合，设想量子场与黑洞达成了热平衡，温度为TBH , 温度的

负一次方记作β = 1/TBH (假设取玻尔兹曼常数kB = 1的单位制)。记量子

场的哈密顿量为H, 则量子场的配分函数为

Z = Tr
(
e−βH

)
. (9.33)

人们可以用路径积分的方法计算这个配分函数，为此，我们需要将时间延

拓为欧氏时间tE

t → −itE, (9.34)

并将这个欧氏时间紧致化为一个周长为~β的圆周，也就是要进行如下的周
期等同

tE ∼ tE + ~β. (9.35)

然后在这个时间紧致化了的欧氏时空中对量子场进行欧氏路径积分，结果

就是上面的配分函数。

很显然，要推导出霍金温度的公式，就是要确定上面周期等同的β具

体为多少？为此，让我们来考察上述欧氏化对近视界几何的影响。

延拓到欧氏时间tE以后，近视界几何的Rindler度规就变成了

ds2 = κ2ρ2dt2E + dρ2. (9.36)
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现在，我们定义变量θE = κtE，并将之理解成一个角度变量，那么上面的

度规就成为

ds2 = ρ2dθ2E + dρ2. (9.37)

很显然，如果θE以2π为周期，那这个度规就是两维欧氏平面的极坐标度规，

特别的，径向坐标ρ = 0的原点没有任何奇异性。而如果θE不以2π为周期，

而是其它的某个周期，那上面这个度规描述的就是一个圆锥面，ρ = 0就是

这个圆锥的顶点，它当然是奇异的，这种奇异性也称作锥形奇异性。但是，

ρ = 0对应的是黑洞视界，它并不是一个时空奇异的地方。因此，为了消除

锥形奇异性，我们只能取θE的周期为2π，也即是

κtE ∼ κtE + 2π ⇔ tE ∼ tE + 2π/κ. (9.38)

所以，tE的紧化周期~β必须为2π/κ, 也即是

β =
2π

~κ
⇔ TBH =

~κ
2π

. (9.39)

如果恢复玻尔兹曼常数，即是

TBH =
κ

2π

~
kB

. (9.40)

以上就是著名的霍金温度，它由表面引力决定，表达式中~的存在意味
着，这个温度完全是一个量子效应，在经典物理的层次上，一个黑洞是没

有什么温度概念的。另外，值得说明的是，霍金温度之下施瓦西黑洞与量

子场的热平衡其实是不稳定的，因为施瓦西黑洞会吸收物质，从而使得质

量增加(即能量增加)，但是温度却降低(注意κ ∝ 1/M), 进而使得能量会进

一步向施瓦西黑洞传输，也就是说，施瓦西黑洞具有负比热。

9.2 克鲁斯卡延拓

9.2.1 克鲁斯卡延拓的一般原理

假设我们考察如下球对称时空

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (9.41)
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如果用之前的记号即是考察A(r) = f(r), B(r) = 1/f(r)的球对称时空，施

瓦西时空是其特例。按照前面的分析，黑洞视界必定对应函数f(r)的零

点(如果f(r)没有零点，那相应的时空就不存在黑洞)。假设f(r)在r = rh处

有一个零点，即在rh附近，有

f(r) ∼ (2κ)(r − rh) + ... (9.42)

式中2κ为泰勒展开的系数。很显然，在这个零点位置，(t, r)坐标是奇异的，

因此它不能同时覆盖r < rh的区域和r > rh的区域。下面我们来寻找能够同

时覆盖这两个区域的一组坐标系。

为此，我们将(9.41)式的度规改写成如下形式

ds2 = −f(r)
(
dt+

dr

f(r)

)(
dt− dr

f(r)

)
+ r2dΩ2. (9.43)

定义新的径向坐标r∗，使得dr∗ =
dr
f(r)
，也即

r∗ =

∫
dr

f(r)
, (9.44)

显然，函数f(r)的零点就对应这个积分表达式的极点。下面，定义新的坐

标v, u

v = t+ r∗, u = t− r∗, (9.45)

从而可以将度规(9.43)重写成

ds2 = −f(r)dvdu+ r2dΩ2. (9.46)

很明显，v, u为两个类光坐标。值得注意的是，(v, u)坐标在f(r)的零点r =

rh处依然是奇异的，因为(v, u)坐标下的度规(9.46)在这个零点处是病态

的(有gvu(rh) = 0)。

当然, (9.45)式也可以重写成

v + u = 2t, v − u = 2r∗. (9.47)

先将注意力集中在v − u = 2r∗上，它也即是

v − u = 2

∫
dr

f(r)
. (9.48)
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现在考察这个积分表达式的极点(也就是f(r)的零点)所控制的一个邻域，

并在这个邻域上将极点的积分分离出来，即写成

v − u =

∫ [ 1

κ(r − rh)
+ g(r)

]
dr

=
1

κ
ln |r − rh

rh
|+G(r), (9.49)

式中g(r)表示分离出极点以后的一个不含极点的被积项, G(r)是它的积分，

当然由于被积函数没有极点，所以G(r)一定是一个在这个邻域上光滑的函

数。由(9.49)式，即有

eκ(v−u) = |
(r − rh

rh

)
|eκG(r). (9.50)

下面来改进我们的类光坐标，将之变成类似于近视界几何中的那种光

锥坐标(V, U)，使之在r = rh处不再奇异。首先，根据上面的(9.50)式，我

们有，当r < rh时(黑洞或者白洞区域)

eκ(v−u) = −
(r − rh

rh

)
eκG(r). (9.51)

对于黑洞区域，由于粒子总是朝着视界里面一去不复返的(即走向未来)，

所以它应该处于这种(V, U)坐标的未来部分，反之白洞区域则应该处于过

去部分，比方说，黑洞区域和白洞区域可以分别处于光锥坐标(V, U)的第

一象限和第三象限，即上部(未来)和下部(过去)。为此我们可以进行如下操

作：我们可以在r < rh的邻域上定义新的坐标V, U如下

V = ±eκv, U = ±e−κu, (9.52)

从而使得(利用了v + u = 2t)

V U = −
(r − rh

rh

)
eκG(r), U/V = e−κ(v+u) = e−2κt. (9.53)

很显然，(9.52)式定义的两种可能性的确分别覆盖了(V, U)坐标系的一、三

象限。

同样根据上面的(9.50)式，我们有，当r > rh时(外部区域)

eκ(v−u) =
(r − rh

rh

)
eκG(r). (9.54)
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当然，这个黑洞和白洞外部的区域只可能占据剩下来的二、四象限了(也即

左右两侧)。为此我们需要进行如下操作：我们可以在r > rh的邻域上定义

新的坐标V, U如下

V = ±eκv, U = ∓e−κu, (9.55)

以使得

V U = −
(r − rh

rh

)
eκG(r), U/V = −e−κ(v+u) = −e−2κt. (9.56)

很显然，(9.55)式定义的两种可能性的确分别覆盖了(V, U)坐标系的二、四

象限。

从(9.53)式和(9.56)式可以看到，r = rh的视界面正好对应V = 0或U =

0的两个坐标轴，并且它正好分别和t = ±∞的超曲面重合，总之，这些都
非常类似于前面在研究近视界几何时所得到的结论。

不难验证，无论r > rh还是r < rh，均有

dV dU = −κ2V Udvdu = κ2
(r − rh

rh

)
eκG(r)dvdu. (9.57)

从而能够将时空度规(9.46)重写为

ds2 = − rh
κ2

f(r)

r − rh
e−κG(r)dV dU + r2dΩ2. (9.58)

式中的变量r应该理解为通过反解V U = −
(
r−rh
rh

)
eκG(r) 式所得到的关于变

量V U的表达式。很明显，在这个式子中，f(r)的零点被分母上的r − rh消

去了，从而度规在r = rh处不再病态，因此(V, U)坐标系在r = rh处不奇

异。

总之，(9.52)式和(9.55)式给出V, U的四种可能定义，它们分别覆盖(V, U)

坐标系的四个象限，但是在每一个象限里面，与V, U对应的v, u的取值范围

都是(−∞,+∞), 所以用v, u坐标来看的话，每一个象限都是一个完整的时

空，四片完整的时空拼合在一起就构成整个大的由(V, U)坐标描述的时空。

而从(v, u)所描写的一个象限延拓到完整的(V, U)所描写的四个象限的过程，

就叫做克克克鲁鲁鲁斯斯斯卡卡卡延延延拓拓拓，(V, U)坐标有时也称作克克克鲁鲁鲁斯斯斯卡卡卡坐坐坐标标标，如图(9.2)所

示。 值得强调的是，克鲁斯卡坐标在r = rh的视界面上是定义良好的，没

有奇异性。

举例来说，比如对于V = +eκv, U = −e−κu所描述的第四象限(即右

侧的四分之一)，它对应的当然是r > rh的黑洞外部时空，V = 0或U = 0的
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图 9.2: 施瓦西黑洞的克鲁斯卡延拓。图中U, V轴对应r = rh的黑洞视界，

红线是r = 0处的时空奇性，绿线表示r为常数的超曲面，而蓝线表示t为常

数的超曲面。

事件视界将它和黑洞以及白洞内部分隔开来，当然，严格来说U = 0, V >

0半轴对应的才是黑洞视界，因为它处于(V, U)坐标系的未来部分，是所谓

的未来事件视界。而V = 0, U < 0半轴对应的视界是白洞视界，因为它处

于(V, U)坐标系的过去部分，是过去事件视界。

根据上面这个分析，我们就容易知道，黑洞视界所分隔的一、四象限

中，第四象限对应黑洞外部，第一象限所描述的则是黑洞内部(即上部的四

分之一)。类似的，白洞视界所分隔的三、四象限中，第四象限是白洞外

部，而第三象限是白洞内部(即底部的四分之一)。所以，正如我们所期望

的，在(V, U)坐标中，处于未来的第一象限描述的是黑洞内部，而处于过去

的第三象限描述的则是白洞内部，而第四象限和第二象限所描述的则是黑

洞和白洞的共同外部区域。至于第二象限和第四象限这两个外部区域之间

是什么关系，我们稍后再作分析。

上述时空延拓过程的奇妙之处在于，你可以从爱因斯坦方程在某个时

空区域的一个解开始，通过变换坐标进行延拓，得到一个更大的时空区域

上的解。注意，对于新坐标所描述的更大时空区域，你无需再次求解爱因

斯坦场方程，因为延拓来的度规一定会满足它。之所以有这么一个奇妙的

性质，其原因在于两个因素的共同作用：首要的因素是，爱因斯坦场方程

是广义协变的，其成立不受坐标变换的影响。其次，场方程解出来的度规

的各分量均是实解析函数，这意味着，在一个开集上的度规足以决定整个
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更大的时空区域的度规。

基林视界

(9.41)式描写的球对称时空显然有一个基林向量场ξ,

ξ = ∂t. (9.59)

很容易计算出这个基林向量场的模长平方，为

⟨ξ, ξ⟩ = gtt = −f(r). (9.60)

一般来说，r → ∞时f(r) → 1，所以ξ在空间无穷远处是类时的。假

设f(r)仅在r = rh处有唯一一个零点，由于经过零点f(r)要变号，所以

很显然，r > rh时均有f(r) > 0，因此这时ξ均类时。而r < rh时有f(r) < 0，

所以这时ξ类空。当然，在r = rh的视界面上ξ类光。从而视界面同时也是

基林视界。

不妨将注意力限制于(V, U)坐标的右侧四分之一(第四象限)。设想在基

林向量ξ的作用之下，t坐标平移一个无穷小量δt，则根据(9.45)式，有

δv = δu = δt. (9.61)

进而根据V = +eκv, U = −e−κu，有

δV = κV δv = κV δt, δU = −κUδu = −κUδt. (9.62)

从而即可以得到基林向量场ξ在克鲁斯卡坐标中的表达式，为

ξ = ∂t = κ
(
V

∂

∂V
− U

∂

∂U

)
. (9.63)

不难验证，其它象限求出来的最终表达式是一样的。这个结论在形式上完

全和近视界几何所得出来的一样。特别的，V = U = 0是一个分岔球。

9.2.2 施瓦西黑洞的克鲁斯卡延拓

奇点

对于施瓦西解，f(r) = (1 − rg
r
)，所以度规在r = 0处也是奇异的。前

面提到过，对于施瓦西黑洞而言，r = 0对应的是时间的一个终点，注
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意，不是空间的终点，因为在r < rg区域，时间和径向空间互换了。因

为r = 0是时间终止的地方，所以此处的奇异性和视界面处的度规奇异性

有根本性的不同，具体来说，视界面的度规奇异性是坐标奇异性，换一

个坐标这种奇异性就可能被消除，比方说在克鲁斯卡坐标中视界所对应

的U = 0或V = 0就没有什么奇异性。但是，r = 0处的奇异性是真正的施瓦

西时空的奇异性，称作时时时空空空奇奇奇性性性。

这种时空奇性反映为无穷大的时空曲率，换言之，反映为黎曼曲率张

量在r = 0处的发散。计算表明，对于施瓦西解，有

RρσµνRρσµν =
12r2g
r6

, (9.64)

所以在r = 0处黎曼曲率张量的确是发散的，这种发散不依赖于坐标系的选

择！这个计算同时也表明，在r = rg的视界面处，时空曲率其实是正常的，

并没有发散。所以黑洞视界并没有任何时空奇性，它的特殊之处不在于奇

异性，而在于，从时空整体的因果结构来说黑洞视界比较特殊。

施瓦西解的克鲁斯卡延拓

下面来考察具体的施瓦西时空的克鲁斯卡延拓。对于施瓦西解而

言f(r) = (1− rg
r
), 所以

2
1

f(r)
=

2r

r − rg
=

2rg
r − rg

+ 2. (9.65)

与(9.49)式比较，即知rh = rg，κ = 1/(2rg), g(r) = 2, 从而

G(r) = 2r. (9.66)

由此当然就可以定义克鲁斯卡坐标，根据(9.58)式，在这个坐标中施瓦西时

空的度规就成为

ds2 = − rg
κ2

1

r
e−2κrdV dU + r2dΩ2. (9.67)

另外，根据(9.53)式，

V U = −
(r − rg

rg

)
e2κr. (9.68)

特别的，对应时时时空空空奇奇奇性性性的r = 0现在成为

r = 0 ⇔ V U = 1. (9.69)
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它对应(V, U)坐标系中位于一、三象限内的一条双曲线，其中在第三象

限(也即白洞区域)内的部分描述的是时间的一个起始之处，而位于第一象

限(也即黑洞区域)内的部分描述的是时间的一个终止之处。所以，在克鲁

斯卡坐标系中，V U = 1描述的是时空在一、三象限内的边边边界界界，边界之外时

空是不存在的！显然，施瓦西解的时空奇性是类类类空空空的。整个施瓦西黑洞的

克鲁斯卡延拓如图(9.3)所示。 注意，由于我们没有画出角度部分的坐标，

图 9.3: 施瓦西黑洞的克鲁斯卡延拓。图中V = T + R, U = T − R, 请注

意V − U坐标系的象限划分和T −R坐标系的象限划分的不同。

所以其实这个图中的每一个点都代表一个两维球面，面积为4πr2。

可以看到，在克鲁斯卡图的上部，任何一个类时或者类光的曲线(切线

与竖直轴的夹角小于等于45度)只要过了视界面那条直线就休息逃离上部四

分之一的区域，只能撞到r = 0的时空奇性上，所以上部四分之一的区域就

是黑洞区域。

而在下部四分之一区域，注意到时间的单向性，可以看到任何一个类

时或者类光曲线都会穿过视界逃离这个区域，这个区域和黑洞区域相对，

就叫做白洞区域。

克鲁斯卡图可以直观地显示一些很微妙的事情，比如如图(9.4)所示的，

某A掉进黑洞，某B在视界外面固定r距离处观察这一过程。B当然是通过

接收A发出的光信号而观察他的，这些光信号就是图中所示的与V轴平行

的那些线段，它们均与竖直轴成45度夹角。如图所示，A在PA点发出的信

号将在PB点到达B，这个时候的时间t是t = 1, 接着，A在QA点发出的信号

将在QB点到达B，这个时候的时间t是t = 100, 而A在RA点发出的信号将

在RB点到达B，这个时候的时间t是t > 1000, 很显然，随着A越来越靠近视
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界面，t将趋于∞, 即B永远也不能看到A真正掉进黑洞，只能看到他不断接

近视界面。但是，在A本身看来，他掉进黑洞的事件当然发生了，而且发

生在A的有限固有时之内。

图 9.4: 某A掉进黑洞，某B在视界外固定r处观察他。

有一个问题是，克鲁斯卡延拓以后的施瓦西时空还能被进一步延拓

吗？回答是，不能够了，克鲁斯卡延拓就是施瓦西时空的最最最大大大延延延拓拓拓。

这里有一个简单的方法来判断一个时空是否能被进一步延拓：那就是

观察时空中的测地线，看它们在哪里终止。假如你能跟着一条测地线跑到

其固有时参数或者仿射参数的无穷值处，那这时候你也就跑到时空的无穷

远处去了。假如相反，测地线在一个固有时参数(或者仿射参数)的有限值

处终止了，不能进一步继续延伸了，那这时候就一定有如下事情之一发生：

要么这条测地线遇到了时空奇性，要么它遇到了坐标奇性。假设只是遇到

了坐标奇性，那换一个更好的坐标系，测地线就还能继续延伸，这时候我

们就说时空能被这个更好的坐标系延拓。而假如测地线遇到的是时空奇性，

那我们就做不了什么了，它就真的无法进一步延伸了。所所所谓谓谓的的的最最最大大大延延延拓拓拓，

指的是，任何在固有时参数(或者仿射参数)的有限值处终止的测地线所遇

到的都是时空奇性的那种延拓。

不难检验，施瓦西解的克鲁斯卡延拓的确是最大延拓！

爱因斯坦-罗森桥

前面提到过，在克鲁斯卡延拓中，黑洞和白洞外面的区域一共有两片，

分别对应(V, U)坐标系的第二象限和第四象限(即左侧的四分之一和右侧的

四分之一)。这两个区域都在空间无穷远处渐近平坦，但是这两个渐近平坦
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的区域通过黑洞和白洞连接起来了。从图(9.3)中可以清楚的看到，第四象

限(右侧)的观察者其实无法向第二象限(左侧)的观察者发射信号，因为任何

这样的信号都会掉进黑洞，并不可避免地终止在时空奇性上。然而，我们

不禁想知道，连接这两个区域的空间几何到底是怎么样的呢？

为此，我们不妨考察克鲁斯卡时空在t = 0时的纯空间部分，很显然，

这就是一条穿过原点的水平轴, 它在右侧四分之一的部分和在左侧四分之

一的部分均对应黑洞的外部，空间度规均为

ds2 =
(
1− rg

r

)−1
dr2 + r2dΩ2, (9.70)

并且r > rg，这两个区域通过U = V = 0的原点连接起来，但是U = V =

0的原点其实代表一个半径r = rg的两维球面。所以完整的t = 0空间几何其

实是两片渐近平坦的空间在r = rg的两维球面处粘合在一起，如图(9.5)所

示。 图中上面和下面的两片分别代表克鲁斯卡图中左右两侧的两个渐近平

图 9.5: 爱因斯坦-罗森桥，图中我们已经取θ = π/2，因此两维球面变成一

个圆周，而dΩ2 = dϕ2。

坦区。连接两片渐近平坦时空的粘合区(也就是图中的“喉咙”部分)就称

作爱因斯坦-罗森桥，它就是所谓的时空虫洞的一种。

我们可以通过在近视界几何的探讨中引入的坐标ρ2 = 4rg(r − rg) 来更

清楚地考察爱因斯坦-罗森桥。不过具体的处理有所不同，为了避免混淆，

这里我们将把ρ记为z。下面我们取θ = π/2，从而dΩ2 = dϕ2, 而空间变成两

维的，由极坐标(r, ϕ)表示。当这样处理以后，(9.70)式描写的空间几何(现

在是两维)，就可以看作平坦的三维空间(取柱坐标(r, ϕ, z))中的由下式描述
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的三维超曲面

z2 = 4rg(r − rg). (9.71)

我们很容易验证度规的确是对的，为此首先注意到平坦三维空间的

度规为dr2 + r2dΩ2 + dz2, 其次，注意到zdz = 2rgdr, 从而dr2 + dz2 =(
1 +

4r2g
z2

)
dr2 =

(
1 − rg

r

)−1
dr2, 所以这张三维超曲面上的诱导度规的确

是(9.70)式。

下面只需在三维平坦空间中示意性地画出(9.71)式所描写的这张二维

超曲面，显然，结果就是图(9.5)。

进一步，在克鲁斯卡坐标中，如果定义V = T + R, U = T − R (从

而V U = T 2 − R2), 然后取一些固定时间T的空间切片来考察(如图(9.6))，

就可以看到虫洞的打开和关闭过程(如图9.7)。 在图(9.6)中，我们取定

图 9.6: 取定A,B,C,D,E五个空间切片。

图 9.7: 与A,B,C,D,E五个空间切片相对应的虫洞打开和关闭过程示意图。

了A,B,C,D,E五个固定时间T的空间切片，与之相应的，在图(9.7)中，我们
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示意性地画出了随着时间演化，虫洞在黑洞视界后面打开最后又关闭的示

意图。T = −1时虫洞开始打开，T = 1时虫洞关闭。

ER=EPR?

首先解释一下黑体字的小标题：ER代表的就是Einstein-Rosen bridge，

即刚刚讲述的爱因斯坦-罗森桥，也即时空虫洞。而EPR代表的是Einstein-

Podolosky-Rosen paradox, 即EPR佯谬也就是通常所谓的量子纠缠。所以，

这个标题的字面含义就是，时空虫洞等价于量子纠缠。

为了进一步理解这个小标题，下面我们作一点解释说明。

前面提到过，在施瓦西解的克鲁斯卡延拓中，位于左侧四分之一区域

的观察者并不能发送信号给位于右侧四分之一区域的观察者。但是，这两

个观察者的确有一种方式通信，那就是两者都跳进黑洞里，然后在各自终

结于时空奇性之前在黑洞视界后面相互通信，甚至在黑洞里彼此遇到。

但是，以上这一段话真有物理含义吗？毕竟，我们知道位于克鲁斯卡

图底部四分之一的白洞其实很可能只有数学含义，因为并没有什么物理过

程可以产生白洞。同样的，假设右侧四分之一的那一片宇宙是物理的话，

那克鲁斯卡图左侧四分之一的那一片宇宙也可能只有数学含义，它可能完

全源于我们的数学延拓，而不描写任何真正的物理现实。如果真是这样的

话，那上一段话当然就没什么真正的物理含义。

然而，的确有一种可能的物理方式实现在黑洞视界后面相互通信。

为了说明这一点，我们不妨设想克鲁斯卡图的左右两侧描写的不是两

片相互独立的宇宙，而是近似描写同一个宇宙的两个相距遥远的区域。从

而，克鲁斯卡图里的黑洞就可以近似成为分别位于这两个相距遥远区域的

两个黑洞，它们在视界后面通过爱因斯坦-罗森桥相互连接。近似来说，爱

因斯坦场方程当然允许这样的双黑洞解存在，因为近似描写它们的克鲁斯

卡延拓的确是爱因斯坦场方程的解。

现在，位于这两个相距遥远区域的观察者就只要跳进各自区域的黑洞

就能实现视界后面的通信了！因为他们的黑洞在视界后面有爱因斯坦-罗森

桥相连接。

什么情况下两个相距遥远的黑洞可以通过爱因斯坦-罗森桥相连接呢？

近些年来对量子引力的研究暗示了一个答案，那就是，如果这两个黑洞之

间有很强的量子纠缠，那么它们的视界后面就可能存在爱因斯坦-罗森桥，

这就是小标题所谓的ER=EPR.
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ER=EPR在多大程度上成立是远未清楚的一个问题。但如果它能推向

极端，那也许意味着任何量子纠缠之间都有时空虫洞相连接，只不过通常

这种虫洞是微观上的微型虫洞。当然，这种推论很可能已经走得太远了。

9.2.3 Reissner-Nordstrom黑洞的克鲁斯卡延拓

除了施瓦西黑洞以外，类似的处理也可以应用于Reissner-Nordstrom黑

洞(RN黑洞), 也就是所谓的带电的球对称黑洞。它的度规也有如下形式

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (9.72)

式中f(r)为

f(r) = 1− 2GM

r
+

e2

r2
, (9.73)

其中M为黑洞的质量，e2由黑洞所携带的电荷和磁荷决定，并且这里我们

假定e2不太大。这是引力场与电磁场耦合系统的一个解，不过具体的求解

过程我们推迟到后面的章节中来处理，本章我们只是简单地给出这个解。

很显然(9.73)式给出的函数f(r)有两个零点，分别记为r+, r−(设r+ >

r−), 它们由下式给出

r± = GM ±
√
(GM)2 − e2. (9.74)

进而可以将函数f(r)重写成

f(r) =
1

r2
(r − r+)(r − r−). (9.75)

很显然，RN解也有一个基林向量场ξ = ∂t，并且r = r±的超曲面均为它的

基林视界，因为⟨ξ, ξ⟩|r± = 0！同样容易看清的是，r− < r < r+的区域发生

了时空互换，从而使得这个区域为单向膜区，r = r+为单向膜区开始的地

方，称作外视界，它也就是RN黑洞的未来事件视界，而r = r−为单向膜区

结束的地方，称作内视界，它其实是RN解的柯西视界。关于柯西视界的定

义，我们稍后会有一个简单的讨论，更详细的讨论请参阅E. Witten 的综

述文章Light Rays, Singularities, and All That，中文译本叫《光线、奇点，

以及其它》。
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根据上面的讨论，容易得到

2
1

f(r)
=

2r2

(r − r+)(r − r−)

=
2r2+

(r+ − r−)(r − r+)
+

2r2−
(r− − r+)(r − r−) + 2

=
1

κ+(r − r+)
+

1

κ−(r − r−)
+ 2, (9.76)

式中κ±分别为内外视界上的表面引力，由下式给出

κ± =
r± − r∓
2r2±

. (9.77)

由于现在有两个极点(而不是一个)，所以与(9.49)式比较，在每个极点控制

的邻域内都有一个g(r)函数和相应的G(r)函数，不妨分别记作g±(r)和G±(r)。

而且，在每个极点所控制的邻域内我们都要引入一组(V, U)光锥坐标，不

妨记作(V±, U±)。

为了给出V±, U±的具体定义，我们将上一段的讨论与(9.49)式比较，即

可知，在rh = r+的邻域内(从而r > r−)，g+(r) =
1

κ−(r−r−)
+ 2, 积分得出

G+(r) =
1

κ−
ln
(r − r−

r−

)
+ 2r. (9.78)

相应的，有

eκ+(v−u) = |
(r − r+

r+

)
|eκ+G+(r). (9.79)

类似的，在rh = r−的邻域内(从而r < r+), 有g−(r) =
1

κ+(r−r+)
+ 2，积分得

出

G−(r) =
1

κ+

ln |
(r − r+

r+

)
|+ 2r =

1

κ+

ln
(r+ − r

r+

)
+ 2r. (9.80)

从而有

eκ−(v−u) = |
(r − r−

r−

)
|eκ−G−(r). (9.81)

注意，这两个邻域有一个交叠区，即r− < r < r+的单向膜区。

对于rh = r+的邻域，接下来的一切讨论都和(9.2.1)小节中给出的一样。

比如我们可以定义V+, U+以使得

U+V+ = −
(r − r+

r+

)
eκ+G+(r). (9.82)
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与(9.79)比较可知，(V+, U+)可以分成四片，对于r− < r < r+，取

V+ = ±eκ+v, U+ = ±e−κ+u, (9.83)

它覆盖(V+, U+)坐标系的一、三象限(即上部和下部)。而对于r > r+, 则取

V+ = ±eκ+v, U+ = ∓e−κ+u, (9.84)

它覆盖(V+, U+)坐标系的二、四象限(即左侧和右侧)。

但是，对于rh = r−的邻域，接下来的讨论会和(9.2.1)小节在细节上有

点出入。这是因为上一段已经把r− < r < r+的交叠区定义在(V+, U+)坐标

系的一、三象限了，而(V−, U−)坐标当然是要和(V+, U+)坐标拼接成一个整

体的，为了能拼接起来，则r− < r < r+的交叠区在(V−, U−)坐标系中也必

须定义在一、三象限。所以，当r− < r < r+时，我们需要定义

V− = ±eκ−v, U− = ±e−κ−u. (9.85)

进而当然，0 < r < r−的区域就只能在(V−, U−)坐标系的二、四象限。所

以，当0 < r < r−时，需要定义

V− = ±eκ−v, U− = ∓e−κ−u. (9.86)

与(9.81)式比较，即有

U−V− =
(r − r−

r−

)
eκ−G−(r), (9.87)

注意，前面没有负号！

代入κ+/κ− = −r2−/r
2
+, κ−/κ+ = −r2+/r

2
−，以及G±(r)的表达式，即可

以将(9.82)式和(9.87)式重新表达成

U+V+ = −
(r − r+

r+

)( r−
r − r−

)r2−/r2+e2κ+r

U−V− =
(r − r−

r−

)( r+
r+ − r

)r2+/r2−e2κ−r.

从这两个式子不难看出，在单向膜区的边界，当r → r−时，U+V+ → ∞,所

以r = r−在(V+, U+)坐标系一、三象限的无穷远处。类似的，当r → r+时，

U−V− → ∞，所以r = r+也在(V−, U−)坐标系一、三象限的无穷远处。
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另外，从上一段的第二个式子，我们还能得到，r = 0处的时空奇性满

足

r = 0 ⇔ U−V− = −1, (9.88)

当然，这是位于(V−, U−)坐标系二、四象限(即左右两侧)的一条双曲线。这

说明，与施瓦西黑洞不同，RN黑洞的时空奇性是类时的。

图 9.8: RN黑洞的两种克鲁斯卡坐标卡。

RN解的两种(V, U)坐标称作两种坐标卡，(V+, U+)坐标卡如图(9.8)左

图，其中位于底部的第三象限是白洞区，而位于上部的第一象限是黑洞区。

而(V−, U−)坐标卡如图(9.8)右图，其中位于底部第三象限的是黑洞区，而

位于上部第一象限的是白洞区。注意，(V−, U−)坐标卡的二、四象限(即左

右两侧)是有限的，时空奇性的U−V− = −1是其边界，所以和(V+, U+)坐标

卡不同，(V−, U−)坐标卡的二、四象限不是两个渐近平坦的时空区域。

但是，由于单向膜区是交叠区，同时被两个坐标卡所覆盖，所以这两

个坐标卡其实是要拼接起来的，比方说，像图(9.8)所暗示的那样，将右边

的(V−, U−)坐标卡拼接在左边(V+, U+)坐标卡的下方。但是，(V−, U−)坐标

卡同样可以拼接在(V+, U+)坐标卡的上方。这导致一个结果，即我们可以

交错地拼接两种坐标卡，进而将时空无穷地延拓下去。这是RN解与施瓦西

解的又一个不同，即它的克鲁斯卡延拓可以无穷无尽地永远进行下去。

9.2.4 Eddington-Finkelstein坐标

实际上，如果仅仅是想消除视界面位置的坐标奇异性，那除了克鲁斯

卡坐标以外，还有一种更简单的坐标也能做到这一点，那就是爱丁顿-芬
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克斯坦(Eddington-Finkelstein)坐标。下面以施瓦西时空为例来讲述这种坐

标。

在通常的坐标系中，施瓦西黑洞的时空度规为

ds2 = −
(
1− rg

r

)
dt2 +

(
1− rg

r

)−1
dr2 + r2dΩ2.

即f(r) =
(
1− rg

r

)
, 从而

r∗ =

∫
dr

f(r)
= r + rg ln |

(r − rg
rg

)
|. (9.89)

这个坐标有时候也称作乌龟坐标。正如我们已经知道的，有了r∗以后，进

而就能定义类光坐标u = t− r∗, v = t+ r∗，但是正如前面提过的(v, u)坐标

在视界面处依然是奇异的。

爱丁顿-芬克斯坦的想法是，不同时引入u, v, 而只引入一半，即只引

入v或者只引入u, 只引入v就称作内行爱丁顿-芬克斯坦坐标，只引入u就称

作外行爱丁顿-芬克斯坦坐标。

以内行爱丁顿芬克斯坦坐标为例，它即是将原来的(t, r)坐标变换

成(v, r)坐标，这时候

dt = dv − dr∗ = dv −
(
1− rg

r

)−1
dr, (9.90)

消去施瓦西度规中的dt2项，即可以得到内行爱丁顿-芬克斯坦坐标下的度

规，为

ds2 = −
(
1− rg

r

)
dv2 + 2dvdr + r2dΩ2. (9.91)

特别的，在r = rg的视界面上，这个度规变成

ds2|rg = 2dvdr + r2dΩ2, (9.92)

这是一个定义良好的度规，没有任何病态，只是相当于在视界面上(v, r)变

成了类光坐标。所以，内行爱丁顿-芬克斯坦坐标在r = rg处没有奇异性！

所以，(v, r)坐标的好处是，r可以从视界外一直延拓到视界内，直到

最终碰到r = 0处的时空奇性。很显然，原来的基林向量场ξ = ∂t在(v, r)坐

标中就变成了

ξ = ∂v. (9.93)
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不妨来分析一下(v, r)坐标中的径向类光测地线，根据(9.91)，这时候

有

ds2 = −
(
1− rg

r

)
dv2 + 2dvdr = 0. (9.94)

这个方程的一个解是

v = constant, (9.95)

这描述的是内行类光测地线。另一个解由下式描写

dv

dr
= 2

(
1− rg

r

)−1
dr, (9.96)

积分即得

v = 2r + 2rg ln |
(r − rg

rg

)
|+ constant. (9.97)

这描述的是外行类光测地线，注意，由于绝对值的符号问题，它要分成视

界外和视界内两部分来讨论。

那么在r = rg的视界面上，径向外行类光测地线是什么呢？很显然，

由(9.92)式，这时候径向类光测地线方程变成了

ds2|rg = 2dvdr = 0, (9.98)

因此r = rg本身变成了径向外行类光测地线！这与前面所说的，视界面是

一个类光超曲面是吻合的。

我们可以用芬克斯坦图来画出这些径向类光测地线。所谓芬克斯坦图

就是以(t∗, r)为坐标的图(9.9)，其中纵坐标

t∗ = v − r. (9.99)

在芬克斯坦图中，内行类光测地线由t∗ + r = v = constant描述，因此和竖

直轴成45度夹角,在图(9.9)中以红线表示。在图中，外行类光测地线以蓝线

表示。很显然，外行类光测地线的行为在视界内外有很大不同。在视界外，

外行测地线的确是向外行走的。

然而，在视界之内，光锥强烈地向着r = 0的奇点方向倾斜了，这导致

视界内的外行类光测地线实际上根本不向外行走，而是同样朝向r = 0的奇
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图 9.9: 内行坐标的芬克斯坦图。红线是内行类光测地线，蓝线是外行类光

测地线。由于光锥的倾斜，在视界之内，外行测地线实际上并不指向外。

点方向，并在有限时间t∗之内撞上奇点。分界线就是r = rg的这条外行类光

测地线，它完全沿着视界面，在芬克斯坦图中是竖直蓝线。

图(9.9)中内行类光测地线和外行类光测地线夹角处的小圆锥就是未来

光锥，任何有质量粒子的世界线都只能从光锥之内穿过。现在，我们立即

就能理解黑洞为什么叫黑洞了：因为从图(9.9)中很清楚地能看到，你只要

进入黑洞，就再也出不来了。因为视界之内的未来光锥都是向着奇点倾斜

的，你被俘获了！不过，从图(9.9)中也可以看出，在掉进黑洞的人本身看

来，视界面并没有什么特殊的地方，这个人在穿过视界时不会感觉到任何

异常，只是它向外发送的信号再也到不了无穷远处的观察者了。

当然，也可以引入外行爱丁顿-芬克斯坦坐标，即(u, r)坐标，这个坐标

系中的度规是

ds2 = −
(
1− rg

r

)
du2 − 2dudr + r2dΩ2. (9.100)

除了u, v这两个记号的差别之外，更要注意的是，这个度规和前面内行坐标

下度规的区别，即现在的−2dudr项前面有个负号，而内行坐标下的相应项

是2dvdr, 没有负号。

外行坐标的芬克斯坦图如图(9.10)所示。很显然，这描写的是一个白

洞，而不是黑洞，因为粒子只能从视界内出来，而不可能从视界外跑进视

界之内。
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图 9.10: 外行坐标的芬克斯坦图。红线是内行类光测地线，蓝线是外行类

光测地线。由于光锥向外倾斜，在视界之内，内行测地线实际上并不指向

内。

为什么原来的施瓦西坐标(t, r)既可以描述黑洞也可以描述白洞，而

爱丁顿-芬克斯坦坐标的(v, r)坐标就只能描写黑洞，(u, r)坐标就只能描写

白洞呢？原因在于，原来的施瓦西坐标(t, r)是时间反演对称的，即其度规

在t → −t的变换之下是不变的，因此它描述白洞和黑洞都同样成立。而根

据v, u的定义可知，在t → −t的时间反演之下，将有v → −u以及u → −v。

很容易验证，(v, r)坐标在时间反演之下，其度规并不保持不变，实际上度

规(9.91)在时间反演之下就变成了度规(9.100)，所以爱丁顿-芬克尔斯坦坐

标破坏了时间反演对称性，因此只能分别描述黑洞和白洞，并且黑洞的时

间反演就是白洞。

9.3 彭罗斯图

如何在保持一个时空因果结构的前提下将整个时空的“地图”画在一

个有限的纸张区域上呢？显然，为此就要将时空的无穷远变成有限，结果

表明在闵可夫斯基号差的流形上，无穷远比人们想象的要更为有趣一些。

这是因为，人们可以沿着空间方向走向无穷，也可以沿着类时方向走向无

穷，甚至还可以沿着类光方向走向无穷，而这三种无穷每一种都有不同的

结构。如何直观地用“地图”显示这些无穷的结构呢？这就是本节要讨论
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的内容。

9.3.1 外尔变换

变无穷为有限的一个基本方法是通过所谓的外尔变换，其定义是：给

定一个时空M和一个度规场gµν(x), 我们可以构建一个新的度规场g̃µν(x)如

下

g̃µν(x) = Ω2(x)gµν(x), (9.101)

式中Ω(x)是一个非零的光滑函数。上述变换就叫做时空度规的外尔变换，

在广义相对论的文献中有时也称之为共形变换，它和共形场论中的共形变

换有密切联系但并不完全是一回事。

很明显，外尔变换相当于把时空距离在每一个局部上都做了一个伸缩，

Ω(x)就是伸缩因子。不过，这种局部伸缩是保角的，具体来说即是，如果

有两个切向量场Xµ和Y µ, 记⟨X, Y ⟩g = gµνX
µY ν , 记⟨X,Y ⟩g̃ = g̃µνX

µY ν , 则

⟨X,Y ⟩g̃√
⟨X,X⟩g̃⟨Y, Y ⟩g̃

=
⟨X,Y ⟩g√

⟨X,X⟩g⟨Y, Y ⟩g
, (9.102)

这很容易直接验证。当然，这个结果默认了切向量场Xµ和Y µ均不类光。对

于类光向量场Zµ, 我们有

⟨Z,Z⟩g = 0 ⇔ ⟨Z,Z⟩g̃ = 0. (9.103)

即是说，类光向量在外尔变换以后的度规下依然类光。类似的，一个类时

向量在变换以后的度规下依然类时，而类空向量在变换以后的度规下也依

然类空。所以，外尔变换保持时空的局部光锥结构。换言之，外尔变换保

持时空的因果结构。

变无穷为有限的关键技巧就在于通过合适的伸缩因子Ω(x) 将无穷收缩

到有限。为了将无穷收缩到有限，伸缩因子Ω(x, t)必须满足如下条件

Ω(x, t) → 0, 当|x| → ∞ 和(或)|t| → ∞. (9.104)

因此，“无穷”可以等同于这样的时空点x = (x, t), 它使得Ω(x, t) = 0。这

些“无穷”点并不存在于原来的时空之中，但是可以额外添加到时空图上，

作为时空的边界(这些边界本身不是时空的一部分)，这样的操作称之为时

空的共形紧化。
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外尔变换和测地线

不仅如此，还可以证明，一条类光测地线在外尔变换后的新度规下依

然是一条类光测地线。(由于外尔变换改变了时空距离，所以一条类时测地

线在变换之后不一定依然是类时测地线，当然，由于外尔变换保持时空的

因果结构，类时曲线在变换之后将依然是类时曲线。)

为了证明上述结论，我们先来计算一下克里斯托夫联络在外尔变换之

下的变换关系，

Γµ
ρσ[g̃] =

1

2
g̃µν(∂ρg̃νσ + ∂σg̃νρ − ∂ν g̃ρσ)

=
1

2
Ω−2gµν

(
∂ρ(Ω

2gνσ) + ∂σ(Ω
2gνρ)− ∂ν(Ω

2gρσ)
)

= Γµ
ρσ[g] + Ω−1

(
δµσDρΩ + δµρDσΩ− gρσD

µΩ
)

(9.105)

式中，在最后一行因为Ω是一个标量函数，所以我们可以将普通导数替换

成协变导数。

现在，考察一条原度规之下的类光测地线，它满足如下两个方程

d2xµ

dλ2
+ Γµ

ρσ[g]
dxρ

dλ

dxσ

dλ
= 0,

gρσ
dxρ

dλ

dxσ

dλ
= 0. (9.106)

利用第一个方程，我们有，在外尔变换之后的度规下

d2xµ

dλ2
+ Γµ

ρσ[g̃]
dxρ

dλ

dxσ

dλ
= Ω−1

(
δµσDρΩ + δµρDσΩ− gρσD

µΩ
)dxρ

dλ

dxσ

dλ
(9.107)

但是，对于类光测地线，由于gρσ
dxρ

dλ
dxσ

dλ
= 0, 所以上式等号右边的最后一项

自动为零。进而可以将上式重写成

d2xµ

dλ2
+ Γµ

ρσ[g̃]
dxρ

dλ

dxσ

dλ
= 2

dxµ

dλ

1

Ω

dΩ

dλ
. (9.108)

但最后的这个方程其实同样是测地线方程，只不过参数λ不再是仿射参数，

可以通过选择一个合适的参数变换λ(λ̃)来抵消掉最后这个方程右边的项，

从而得到一个以合适的λ̃为仿射参数的标准的测地线方程。

因此，外尔变换的确将一条类光测地线变成一条类光测地线！
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外尔曲率张量

外尔变换会改变黎曼曲率张量和里奇曲率张量，但是可以证明(计算比

较繁琐，这里从略)，可以组合出一个在外尔变换之下保持不变的曲率张

量，称作外尔曲率张量，记作Cρσµν , 其定义为

Cρσµν = Rρσµν −
2

D − 2

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(D − 1)(D − 2)
Rgρ[µgν]σ.

式中D表示时空的维数。由定义，外尔曲率张量其实就是从黎曼曲率张量

中去除所有可能的非零收缩，所以，外尔曲率张量所有可能的收缩都为零！

另外，外尔曲率张量有和黎曼曲率张量同样的指标对称性！所谓的外尔曲

率张量在外尔变换下保持不变，指的是

Cρ
σµν [g̃] = Cρ

σµν [g]. (9.109)

如果一个时空的外尔曲率张量等于零，则我们就称之为共形平坦的。

9.3.2 闵可夫斯基时空的彭罗斯图

下面来考察3 + 1维闵可夫斯基时空的共形紧化，并讲述其彭罗斯图。

闵可夫斯基时空的度规是

ds2 = −dt2 + dr2 + r2dΩ2. (9.110)

下面引入类光坐标u, v

u = t− r, v = t+ r. (9.111)

当然由于r ≥ 0, 所以还要满足

v ≥ u. (9.112)

进而将时空度规写成

ds2 = −dudv +
(u− v)2

4
dΩ2. (9.113)

下面来了关键的一步。注意到以上类光坐标的取值范围都是(−∞,+∞)，

所以我们可以利用tan函数，将坐标的取值范围变成有限，具体来说即是引

入新的类光坐标Ũ , Ṽ

u = tan(Ũ), v = tan(Ṽ ) (9.114)
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显然Ũ , Ṽ ∈ (−π
2
, π
2
), 并且满足

Ṽ ≥ Ũ . (9.115)

在这个新的坐标中，度规为

ds2 =
1

(2 cos Ũ cos Ṽ )2

[
− 4dŨdṼ + sin2(Ũ − Ṽ )dΩ2

]
. (9.116)

注意，当我们趋于闵可夫斯基时空的边界时，即Ũ , Ṽ → ±π
2
时，这个度规

是发散的，反映了时空距离在“无穷”处是发散的。

为了进行共形紧化，我们选择伸缩因子为

Ω(x) = 2 cos Ũ cos Ṽ , (9.117)

则可以得到外尔变换以后新的度规

ds̃2 = Ω2(x)ds2 = −4dŨdṼ + sin2(Ũ − Ṽ )dΩ2. (9.118)

这个新的度规和原来的度规有相同的因果结构，但是现在，一切时空距离

都是有限的。

彭罗斯图就是这个外尔变换之后新的时空的“地图”(它和原来的时空

有相同的因果结构)，图中我们只标示Ũ , Ṽ坐标，不标示角度部分坐标，因

此彭罗斯图中的每一个点都代表一个半径为sin(Ũ − Ṽ )的两维球面。

为了画出彭罗斯图，我们取竖直方向为时间方向，水平方向为空

间方向，当然，光线都是沿着与竖直方向成45度夹角的方向行进。这

意味着Ũ , Ṽ的光锥坐标轴都是与竖直方向成45度夹角的。如果定义Ṽ =

T + R,Ũ = T − R, T是竖直轴, R是水平轴，则Ṽ ≥ Ũ意味着整个彭罗斯图

只可能占据右右右侧侧侧R ≥ 0的那半边。

如图(9.11)所示，现在我们将Ω(x) = 0的共形边界画到彭罗斯图上，也

就是将闵可夫斯基时空的“无穷”在彭罗斯图上画出来。闵可夫斯基时空

有几种不同的无穷：

首先，类类类空空空无无无穷穷穷，，，通通通常常常记记记作作作i0。它即是取t有限，取r → ∞。很显然，
这相当于u, v坐标的u → −∞, v → ∞, 换成Ũ , Ṽ坐标即是

Ũ = −π

2
, Ṽ =

π

2
, (9.119)

显然，这在彭罗斯图上是水平轴上的一个点。
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图 9.11: 闵可夫斯基时空的彭罗斯图。

其次，过过过去去去类类类时时时无无无穷穷穷i−, 以以以及及及未未未来来来类类类时时时无无无穷穷穷i+。它们即是取r有限，

取t → ±∞。用u, v坐标即是u → ±∞, v → ±∞。换成Ũ , Ṽ坐标即是

Ũ = ±π

2
, Ṽ = ±π

2
, (9.120)

显然，这在彭罗斯图上是竖直轴上方的一个点(i+)和下方的一个点(i−)。

第三，过过过去去去类类类光光光无无无穷穷穷，，，记记记作作作I−。它即是取t → −∞, r → ∞,并让t+r有

限。在u, v坐标中即是，v有限，u → −∞。换成Ũ , Ṽ坐标即是

Ũ = −π

2
, |Ṽ | ̸= π

2
. (9.121)

这是彭罗斯图下方的一条斜边。

第四，未未未来来来类类类光光光无无无穷穷穷，，，记记记作作作I+。它即是取t → ∞, r → ∞, 并让t− r有

限。在u, v坐标中即是，u有限，v → ∞。换成Ũ , Ṽ坐标即是

|Ũ | ̸= π

2
, Ṽ =

π

2
. (9.122)

这是彭罗斯图上方的一条斜边。

在彭罗斯图中，所有的类时测地线，如果一直向两端延伸下去，都会

起于i−, 终止于i+。所有的类光测地线，如果一直延伸下去，都会起于I−,

终止于I+。注意彭罗斯图左边那条竖直的直线，它并不是时空的边界，而

仅仅是r = 0的坐标原点，为了说明这一点，我们在图(9.11)中用红线画出
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了一条类光测地线，它开始于I−, 然后到达r = 0的竖直线，之后继续前进，

返回r > 0处，最终到达I+。

彭罗斯图是将四维时空用一张两维图来表示，因此会忽略两个维度，

人们通常让这未标示的两个维度为球坐标的角度部分，从而使得彭罗斯图

上的每一个点代表一个两维球面。这意味着彭罗斯图通常是用来处理球对

称时空，或者说有SO(3)对称性的时空。这是一些最简单的时空，通常也

是最重要的。

正如我们已经看到的，闵可夫斯基时空有两个位于未来类时无穷和

过去类时无穷的边界点，尤其是同时还有两个类光边界。在量子场论中，

这导致人们自然地问如下关于零质量粒子场(比如引力场)的散射问题：即

在I−上给定渐近态，让它演化，然后在I+上读出最终的渐近态。这类问题

密切地牵涉到散射S矩阵的定义。

以上论点也可以推广到渐近平坦时空，所谓渐近平坦是指在类空和

类光方向分别渐近趋于i0和I±的时空。i0是一个点因此无法利用，然而由

于渐近平坦时空有类光边界I±，所以同样能考察零质量粒子场(比如引力

场)的散射问题，同样能定义散射S矩阵。尤其是考虑到渐近平坦时空的量

子引力，这时候微分同胚不变性将使得理论不存在局域的可观测量，任何

可观测量都要用两个渐近边界I±上的渐近态来定义，这就使得渐近平坦时

空量子引力的可观测量必定为散射S矩阵。

但是正如后面的章节中会讨论的，如果宇宙学常数为负，那时空将

不是渐近平坦的而是渐近AdS(Anti de-Sitter)的，这种时空在类时的方向

上没有共形边界，而在类光和类空方向上的边界结合在一起了，从而有

唯一一个共形的渐近边界I(与i0是一个点不同，也与I±分成两片不同)。

I本身是类时的(它的法向量类空)，这时候人们就可以在这个渐近边界I上
定义共形场论，这个共形场论的关联函数(而不是散射S矩阵)才是原来渐

近AdS时空的可观测量，这也就是所谓的AdS/CFT对应，CFT就是共形场

论(conformal field theory)。

但是如果宇宙学常数为正，那时空将渐近dS(de-Sitter), 这种时空在类

空的方向上没有渐近边界，而类光和类时方向上的边界结合在一起了，在

这种情况下，这些共形边界本身是类空的(法向量类时)，与AdS/CFT不同，

这时候如何定义原来渐近dS时空的可观测量是一件尚没有研究清楚的问

题，甚至还能不能定义可观测量都不太清楚。

关于AdS时空和dS时空，以及关于它们的彭罗斯图，我们将在后面的

章节中再具体讨论。
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9.3.3 施瓦西时空的彭罗斯图

克鲁斯卡时空的彭罗斯图

正如前文解释的，最好的展示一个时空因果结构的方式就是画出其彭

罗斯图。下面我们来讨论施瓦西时空的彭罗斯图。当然，施瓦西时空的完

整结构要用克鲁斯卡延拓来展示，所以我们将要讨论的其实是克鲁斯卡延

拓以后的施瓦西时空的彭罗斯图。

首先，我们回忆一下克鲁斯卡坐标V, U，它们的取值范围都是(−∞,+∞)。

和前面讨论闵可夫斯基时空时所做的一样，我们可以利用tan函数来将坐标

的无穷转换成有限，具体来说即是引入新的坐标,

U = tan Ũ , V = tan Ṽ . (9.123)

当然Ũ , Ṽ ∈ (−π
2
, π
2
)，注意现在并并并没没没有有有Ṽ ≥ Ũ的限制，所以最终的彭罗斯图

将同时占据左右两侧，左右对称，而不是只有右侧的部分！有了这个坐标

以后，进而就能将克鲁斯卡度规(9.67)重写成

ds2 =
1

(cos Ũ cos Ṽ )2

[
− rg

κ2

1

r
e−2κrdṼ dŨ + r2(cos Ũ cos Ṽ )2dΩ2

]
. (9.124)

图 9.12: 施瓦西时空的彭罗斯图。上部代表黑洞区域，下部代表白洞区域，

上下部两条水平的波浪线代表时空奇性。右侧是黑洞外部的一个渐近平

坦区域，左侧是另一个渐近平坦区域。和克鲁斯卡图中一样，过原点的两

条45度斜线代表视界。

取共形因子Ω(x) = cos Ũ cos Ṽ，进而就能将上述度规外尔变换成如下

形式

ds̃2 = Ω2(x)ds2 = − rg
κ2

1

r
e−2κrdṼ dŨ + r2(cos Ũ cos Ṽ )2dΩ2. (9.125)
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完全类似于闵可夫斯基时空情形，我们也可以讨论这个时空在无穷远处满

足Ω(x) = 0的共形边界。但是，除了共形边界以外，克鲁斯卡时空还有两

个边界，那就是满足UV = 1的时空齐性，很显然

UV = 1 ⇔ tan Ũ tan Ṽ = 1 ⇔ Ũ + Ṽ = ±π

2
. (9.126)

这在以Ũ , Ṽ为坐标的彭罗斯图上是上部和下部的两条水平线，通常画成波

浪线以代表时空奇性。整个彭罗斯图如图(9.12)所示。

彭罗斯图(9.12)有两个渐近平坦区域，因此它有类光边界I±和类光边

界I ′±。从彭罗斯图中，我们可以给出黑洞的更好定义，所以黑洞区域，就

是指无法发送信息到未来类光无穷I+和I ′+的区域，也就是彭罗斯图的上

部。黑洞区域的边界就称作未来事件视界，记为H+。

类似的，可以定义白洞区域为无法接收到来自过去类光无穷I−和I ′−的

信息的区域，也就是彭罗斯图的下部。白洞区域的边界就是过去事件视界，

记作H−。

重要的是，为了定义黑洞，我们需要知道整个时空的因果结构，尤其

是需要利用到未来类光无穷。并没有直接利用时空在某给定时刻的空间截

片Σ来定义黑洞区域的方式，至少任何这样的定义都不是一个良定义。这

件事意味着，其实一个观察者无从真正地知道它是否在黑洞区域内，除非

他知道时空的整个未来演化。

黑洞的形成：弱宇宙监督

卡鲁斯卡延拓以后的施瓦西解包含一些非物理的东西，比如白洞区域

就是非物理的，真实的施瓦西时空不是先有一个白洞区域，然后接着一个

黑洞区域。真实的黑洞通常是由非常大质量的恒星发生引力坍缩所形成的。

所以真实黑洞的因果结构并不由彭罗斯图(9.12)所刻画。

为了得到一个真实黑洞的彭罗斯图，原则上就必须得研究恒星的引力

坍缩，这当然比求解施瓦西解要复杂一些，所以我们放到后面的章节中再

进行。实际上，为了推导出真实黑洞的彭罗斯图，我们可以考虑如下一个

假想的引力坍缩过程：我们假想一个均匀填充满光子的薄层球壳，球壳里

面是真空，假设所有的光子都正在以光速朝着r = 0的球心飞行，因此这个

球壳正在以光速向内坍缩！很显然，在所有的光子都汇聚到r = 0点时(甚

至在此之前)，由于光子能量密度的高度集中，时空会形成一个黑洞。所以

这就是一个物质发生引力坍缩进而形成黑洞的假想例子。
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但这个假想例子很容易精确描述，首先，根据伯克霍夫定理的推论，

虽然球壳本身在以光速运动，但球壳里面所包围的空腔一定保持为平坦的

真空，所以空腔里面的时空由图(9.13)中最左边那幅平坦时空彭罗斯图的阴

影部分描写(请读者想想为什么空腔里面对应阴影部分？ )。其次，根据伯

克霍夫定理，球壳外面的时空必定由施瓦西解所描述，所以球壳外部的时

空必定由图(9.13)中间那幅施瓦西时空彭罗斯图的阴影部分描写。最后，将

这两个阴影部分分别裁剪下来，并在以光速运动的球壳位置拼接起来，就

得到了最终的彭罗斯图，也就是图(9.13)中最右边那幅图。

图 9.13: 裁剪并拼接两个彭罗斯图的阴影部分，以得到真实黑洞的彭罗斯

图。

所以，球对称引力坍缩形成的黑洞必定具有图(9.13)中最右边那幅彭

罗斯图，图中与竖直方向成45度角的那条斜线段同样代表黑洞视界。但是

现在这个视界是从左边的r = 0处开始的，所以视界面积并不是恒定不变

的4πr2g , 而是从零开始逐渐增加到这个稳定值。

当然，以上是一个假想的例子，对于真实的球对称引力坍缩，坍缩星

体的表面必定走的是类时世界线，所以真实的球对称引力坍缩的彭罗斯图

大体如图(9.14)所示。 注意，从这个彭罗斯图可以看到，真实的黑洞并没

有一个白洞区域。

从真实黑洞的彭罗斯图中可以看到，黑洞有一个重要的性质，即它的

时空奇性必定被一个未来事件视界所包围。这意味着，黑洞的时空奇性对

无穷远处的观察者完全不能产生影响。如果一个时空奇性不被未来事件视

界包围，从而能够对无穷远处的观察者产生影响，比如克鲁斯卡时空中白

洞里面的时空奇性，那这种时空奇性就称作裸奇性。

爱因斯坦场方程允许存在裸奇性的解，比如克鲁斯卡时空中的白

洞，再比如宇宙大爆炸开始时的时空奇性。其实，如果施瓦西解中的质
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图 9.14: 球对称引力坍缩的彭罗斯图。

量M < 0，那就会有裸奇性。这时候，施瓦西度规可以写成

ds2 = −
(
1 +

2G|M |
r

)
dt2 +

(
1 +

2G|M |
r

)−1
dr2 + r2dΩ2. (9.127)

很明显这时候根本不存在视界！但是，r = 0处的时空奇性依然存在。可以

按照讨论闵可夫斯基时空类似的方式讨论这个时空的彭罗斯图，即先引入

类光坐标v, u, 再引入Ṽ , Ũ，最终得到的彭罗斯图如图(9.15)所示。 很显然，

图 9.15: M < 0的施瓦西解的彭罗斯图。

r = 0处的时空奇性(图中的波浪线)并没有被一个未来事件视界包围，从而

在I+上可以看到这个奇性，所以称之为裸奇性。

但M < 0显然是非物理的！实际上，人们常常相信广义相对论中的裸
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奇性都是非物理的(宇宙大爆炸开始时的时空奇性是一个例外)。实际上，

有一个所谓的弱宇宙监督猜测，说的就是这件事情：

弱弱弱宇宇宇宙宙宙监监监督督督猜猜猜测测测：假设物质满足所谓的主能量条件，并假定度规场和

物质场都具有一般性的、光滑的初始条件，那么渐近平坦时空中将不会演

化形成裸奇性。

这里所谓的主能量条件是对物质场能量动量张量的一个物理限制，要

求物质场能动张量满足某种正定性，具体内容我们也许会在后面的章节中

介绍。而所谓的初始条件，就是定义在时空的一个空间截片Σ上的初始数

据，利用场方程我们可以让这些初始数据向着未来不断演化。

假如弱宇宙监督是正确的，那如图(9.16)所示的那种引力坍缩就是不可

能的！ 实际上，这幅图本身也有误导人的地方，因为一旦裸奇性形成，你

图 9.16: 自动形成裸奇性的引力坍缩。

就不知道从奇性中将冒出什么东西，因此这个时候实际上不可能决定场位

形在图中虚线所示的光锥内部的演化。这意味着，我们的动力学演化过程

必须终止于虚线位置，不能再进一步朝着未来演化了。

弱宇宙监督猜测还没有得到证明，而只有一些数值模拟的支持。并且

弱宇宙监督意味着我们没有机会直接观测到时空奇性处发生了什么，因为

它们都被未来事件视界包围起来了。而时空奇性的地方正是我们预期量子

引力会起重要作用的地方，因此弱宇宙监督也意味着我们很可能失去了一

个直接观测量子引力效应的机会。

宇宙大爆炸开始时的时空奇性的确是裸奇性，但是由于它处于时间的

开端处，而不是在时空动力学演化的未来自动形成的，所以它并不破坏弱

宇宙监督猜测。很可能，我们最终对量子引力的证据要从对宇宙开端的观

测中去寻找。
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9.3.4 RN解的彭罗斯图

对于带电的RN解，我们有两种克鲁斯卡坐标卡(V+, U+)和(V−, U−)，

应此可以分别引入(Ṽ+, Ũ+)和(Ṽ−, Ũ−)

V± = tan Ṽ±, U± = tan Ũ±. (9.128)

(Ṽ+, Ũ+)坐标卡的彭罗斯图如图(9.17)左图，(Ṽ−, Ũ−)坐标卡如右图。图中

字母W用于标示白洞区域，字母B用于标示黑洞区域。注意，图中的时空

奇性是类时的。 将这两种坐标卡的彭罗斯图沿着重叠区(也就是单向膜

图 9.17: RN解两种坐标卡的彭罗斯图。

区)交替地拼接起来，就得到RN解完整的彭罗斯图，如图(9.18)所示。

RN解的彭罗斯图揭示了内视界r = r−的含义。为此，考虑定义在空间

截片Σ上的初始数据，如图(9.19)所示。Σ称作一个柯西面。然后，我们利

用场方程将柯西面上的初始数据朝前演化。

然而，一旦我们遇到图中的类时时空奇性，这种演化就不再可能了，

因为还需要额外知道场在时空奇性处的信息。因此，从图(9.19)中容易看

到，Σ上的初始数据不能演化到超出内视界r = r−之外，进而r = r−处的类

光超曲面就称作柯西视界。柯西视界之外的时空不能由柯西面上的初始数

据完全决定。

柯西视界通常被认为是不稳定的。为了理解这一点，让我们考察两个

观察者A和B, 如图(9.19)所示，观察者A一直待在黑洞外面，并以恒定的频

率向黑洞里面发射信号，观察者B掉进了黑洞里面，在那里他接收A发出的

信号。但是，正如图中所示，当B靠近柯西视界时，信号将变得越来越密

集。也即是说，信号在柯西视界处无限蓝移了。这意味着，黑洞外面渐近

区域的一个小扰动就会在柯西视界上造成一个发散的扰动，从而外面的任

何一个小微扰都会使得柯西视界变得不稳定。
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图 9.18: RN解的彭罗斯图。

柯西视界的这种不稳定，意味着上面RN解彭罗斯图的很多部分，包括

类时的时空奇性，都是非物理的！一种可能性是，扰动会使得r = r−处的

柯西视界变成时空奇性。实际上，柯西视界的不稳定性正是如下强宇宙监

督猜测所预言的：

强强强宇宇宇宙宙宙监监监督督督猜猜猜测测测：对于满足适当能量条件的物质，一般性的初始条件

将不会导致出现柯西视界，与之相关的，类时的时空奇性也不会形成。也

就是说，整个时空都可以由柯西面上的初始数据演化决定！这样的时空也

称作整体双曲时空。所以强宇宙监督猜测相当于说，物理的时空都是整体

双曲的。

注意，强宇宙监督猜测既不弱于但也不强于弱宇宙监督猜测(不要被名
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图 9.19: 初始数据定义在空间截片Σ上，但是这些数据不能演化超过r =

r−位置的柯西视界(图中用红线标示)。当然完整的RN解即有未来柯西视界

也有过去柯西视界。

字误导)，两个猜测虽然相关，但逻辑上是相互独立的。
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