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第十章 带电黑洞与极端黑洞等等

陈陈陈童童童

10.1 RN带电黑洞

10.1.1 Einstein-Maxwell方程

本章主要是处理上一章遗留的一些问题。尤其是，我们要具体解出带

电的球对称引力场解，也就是RN解。为此需要将电磁场耦合到引力场上，

也就是研究弯曲时空中的电磁场方程。首先，由于克里斯托夫联络是一个

对称联络，因此不难验证弯曲时空中的电磁场张量Fµν可以写成

Fµν = DµAν −DνAµ = ∂µAν − ∂νAµ. (10.1)

由最右边的表达形式不难验证如下恒等式

∂ρFµν + ∂µFνρ + ∂νFρµ = 0. (10.2)

在弯曲时空中，这个式子表面看似不协变，其实可以利用克里斯托夫联络

是对称联络的性质改写成如下明显协变的形式

DρFµν +DµFνρ +DνFρµ = 0. (10.3)

但后文我们用得更多的是前面那个看似不协变的表达。
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第十章 带电黑洞与极端黑洞等等 3

进一步，弯曲时空中的电磁场作用量Sem可以写成

Sem = −1

4

∫
d4x

√
|g|FµνF

µν . (10.4)

根据最小作用量原理对Aµ进行变分，即可以得到弯曲时空中的电磁场方程

DµF
µν = 0. (10.5)

注意，和(10.2)式不同，这个方程必须用协变导数。

注意到DµF
µν = ∂µF

µν + Γµ
µρF

ρν + Γν
µρF

µρ，由于Γν
µρ关于µ, ρ对称，

而F µρ关于µ, ρ反对称，所以等号右边最后一项自动为零。再根据第四章

中得出的结果Γµ
µν = 1√

|g|
∂ν
√
|g|, 进而不难有DµF

µν = ∂µF
µν + Γµ

µρF
ρν =

1√
|g|
∂µ
(√

|g|F µν
)
。从而弯曲时空中的电磁场方程可以写作

∂µ
(√

|g|F µν
)
= 0. (10.6)

方程(10.2)和方程(10.6)就是弯曲时空中的Maxwell方程。

为了代爱因斯坦场方程，我们需要求出弯曲时空中的电磁场能量动

量张量。首先回忆起物质场能动量张量的定义δSem = 1
2

∫
d4x

√
|g|T µνδgµν。

为了将电磁场作用量对度规变分，我们利用δ(FµνF
µν) = δ(gµρgνσFµνFρσ) =

(δgµρ)FµνF
ν

ρ + (δgνσ)FµνF
µ
σ, 再利用δgµν = −gµρgνσδgρσ, 不难进一步得

到δ(FµνF
µν) = −2δgµνF

µ
ρF

νρ(注意电磁场张量F两指标的反对称性)。进而

不难算出Sem对度规场gµν的变分，从而得到

T µν = F µ
ρF

νρ − 1

4
gµνFρσF

ρσ. (10.7)

这和第二章中给出的平坦时空中的结果吻合。

第八章已经看到，爱因斯坦场方程可以写成

Rµν = 8πG(Tµν −
1

2
gµνT ). (10.8)

注意到，对于电磁场能动张量，根据(10.7)式，有

T = gµνT
µν = 0. (10.9)

从而电磁场与引力场耦合的爱因斯坦场方程可以写作

Rµν = 8πGTµν . (10.10)
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10.1.2 RN解

RN解即是前面所述的爱因斯坦-麦克斯韦方程的球对称解。从第八章

的讨论可以知道，球对称时空的度规必定可以写成如下形式

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2. (10.11)

容易算得
√

|g| =
√
ABr2 sin θ。

球对称性意味着电磁场张量的独立非零分量只可能为Ftr和Fθϕ。由0 =

∂θFtr+∂tFrθ+∂rFθt = ∂θFtr,即知Ftr独立于θ，同理它也独立于ϕ。即Ftr仅仅

只能是t, r的函数。类似的，取t, θ, ϕ三个指标，用恒等式(10.2)，即知Fθϕ独

立于时间t，同理它也独立于r。所以Fθϕ只能是θ, ϕ的函数。

进而F tr = gttgrrFtr = −Ftr/(AB)。进而由场方程∂t(
√

|g|F tr) = 0得

∂t
( r2√

AB
Ftr

)
= 0, (10.12)

再由场方程∂r(
√
|g|F tr) = 0又可得

∂r
( r2√

AB
Ftr

)
= 0. (10.13)

由这两个结果即有

Ftr =
Qe

4πr2

√
AB, (10.14)

式中Qe为一个常数。

类似的，F θϕ = gθθgϕϕFθϕ = Fθϕ/(r
4 sin2 θ)。进而由场方程∂θ(

√
|g|F θϕ) =

0得

∂θ
( Fθϕ

r2 sin θ

)
= 0, (10.15)

又由场方程∂ϕ(
√

|g|F θϕ) = 0得

∂ϕ
( Fθϕ

r2 sin θ

)
= 0. (10.16)

由这两个结果即有

Fθϕ =
Qm

4π
sin θ, (10.17)
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式中Qm为一个常数。

到此为止，电磁场的场方程就已经解完了，下面就要进一步求解

爱因斯坦场方程。为此需要具体算出电磁场的能量动量张量。由Ttt =

grrFtrFtr−1
4
gtt

(
2FtrFtrg

ttgrr+2FθϕFθϕg
θθgϕϕ

)
,并代入上面的(10.14)式和(10.17)式，

可得

Ttt =
1

2

[
(
Qe

4π
)2 + (

Qm

4π
)2
]A
r4
. (10.18)

同理可以算得

Trr = −1

2

[
(
Qe

4π
)2 + (

Qm

4π
)2
]B
r4

Tθθ =
1

2

[
(
Qe

4π
)2 + (

Qm

4π
)2
] 1
r2

Tϕϕ = sin2 θTθθ. (10.19)

能动量张量的非对角分量都等于零，尤其是Ttr = 0。另外，由Ttt和Trr的表

达式容易看出

Ttt/A+ Trr/B = 0. (10.20)

第八章已经计算了度规(10.11)对应的里奇张量，结果如下

Rtt =
A′′

2B
+

A′

rB
− A′

4B

(A′

A
+

B′

B

)
− B̈

2B
+

Ḃ

4B

(Ȧ
A

+
Ḃ

B

)
Rrr = −A′′

2A
+

B′

rB
+

A′

4A

(A′

A
+

B′

B

)
+

B̈

2A
− Ḃ

4A

(Ȧ
A

+
Ḃ

B

)
Rθθ = 1−

( r
B

)′ − r

2B

(A′

A
+

B′

B

)
Rϕϕ = sin2 θRθθ. (10.21)

以及

Rtr = Rrt =
Ḃ

rB
. (10.22)

里奇张量的其它分量都是零。另外，由(10.21)式容易得到

Rtt/A+Rrr/B =
1

rB

(A′

A
+

B′

B

)
. (10.23)
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下面的推导完全类似于第八章。首先，由Ttr = 0可得Rtr = 0, 进而根

据(10.22)式知函数B独立于时间t, 即

Ḃ = 0. (10.24)

其次，由场方程Rµν = 8πGTµν易有Rtt/A+Rrr/B = (8πG)(Ttt/A+ Trr/B),

进而由(10.20)式和(10.23)式，可得(A′

A
+

B′

B

)
=

(
ln(AB)

)′
= 0. (10.25)

所以AB = f(t), f(t)为t的某函数，即

A(t, r) =
1

B(r)
f(t), (10.26)

所以球对称度规为

ds2 = − 1

B(r)
f(t)dt2 +B(r)dr2 + r2dΩ2. (10.27)

重新定义时间，使得
√

f(t)dt → dt, 进而吸收掉f(t)，从而可知，即使考虑

到与电磁场的耦合，球对称时空也有某种推广的伯克霍夫定理，即它的度

规必定为

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2. (10.28)

注意式中函数A,B均只依赖于r，不依赖于时间t，而且满足

AB = 1. (10.29)

考虑到上述结果，再根据场方程Rθθ = (8πG)Tθθ，即可得到

Rθθ = 1−
( r
B

)′
= (8πG)

1

2

[
(
Qe

4π
)2 + (

Qm

4π
)2
] 1
r2
. (10.30)

定义

e2 =
G

4π
(Q2

e +Q2
m). (10.31)

进而可将上面方程重写成

1−
( r
B

)′
=

e2

r2
. (10.32)
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积分即得B(r) = 1/(1 + c
r
+ e2

r2
)，进而A(r) = 1 + c

r
+ e2

r2
。与牛顿近似比较，

可知常数c = −2GM。所以，最终的解为

A(r) = 1/B(r) = 1− 2GM

r
+

e2

r2
. (10.33)

正是上一章给出的RN解。而电磁场张量的(10.14)式和(10.17)式就成为

Ftr =
Qe

4πr2
, Fθϕ =

Qm

4π
sin θ. (10.34)

这描述的是一个静止的带电荷Qe和磁荷Qm的粒子。

以上推导过程说明了，Einstein-Maxwell方程的球对称解是唯一的，

必定为RN解，这就是Einstein-Maxwell方程的伯伯伯克克克霍霍霍夫夫夫定定定理理理。但这里其

实有一点小小的漏洞，因为有一个例外，即除了RN解之外，Einstein-

Maxwell方程还允许一个球对称解，即具有几何AdS2 × S2并带适当电通量

的解。不过，正如后文我们将要看到的，这个解可以作为RN解的某种极限

而出现。至于以上推导的小漏洞到底出在哪里，后文我们讲到这个解的时

候就可以看到了。

10.2 极端黑洞

超极端黑洞

正如我们已经知道的，RN解有内外两个视界r±

r± = GM ±
√
(GM)2 − e2, (10.35)

它们对应于函数f(r) = A(r) = 1 − 2GM
r

+ e2

r2
的两个零点。但要让这两个零

点存在，显然要求|e| < GM , 这也就是我们上一章具体分析的情况。

而如果|e| > GM，那函数f(r)将不存在零点，相应的RN解也就不存在

视界。但是，r = 0处的时空奇性依然存在，那这就变成一个裸奇性，正如

上一章所说，这是非物理的。这种非物理的RN解有时候也称作超极端黑

洞。

不妨设一个超极端黑洞仅仅带电荷，即Qm = 0, 那这时候超极端的条

件|e| > GM相当于要求Q2
e/(4π) > GM2。但这意味着库伦排斥力超过了万

有引力，因此这种黑洞很可能无法通过恒星的引力坍缩等物理机制形成。

所以，我们通常认为这种超极端黑洞是不存在的。
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极端黑洞

所谓的极端黑洞，就是满足如下条件的RN黑洞

|e| = GM. (10.36)

很显然，这时候内外视界合并了，r+ = r− = GM，所以极端黑洞并没有一

个单向膜区。相应RN度规变成

ds2 = −
(
1− GM

r

)2
dt2 +

(
1− GM

r

)−2
dr2 + r2dΩ2. (10.37)

由于r+ = r−, 所以极端黑洞的κ± = 0, 即它的表面引力为零。进而根

据霍金温度公式知，极端黑洞的温度为零，所以极端黑洞并不会霍金辐射。

这一点和前面关于超极端黑洞不存在的论证是一致的，否则如果极端黑洞

辐射的话，由于它会同等地辐射正反粒子，所以其电荷会保持不变，但是

因为辐射，其质量却会减少，那它就会成为一个超极端黑洞，而超极端黑

洞我们相信是不存在的。

实际上，在超引力理论中，人们的确可以证明|e| ≤ GM，这通常被称

作Bogomolnyi能限，Bogomolnyi能限饱和的黑洞就是极端黑洞，它通常受

一定的超对称性保护，从而不会霍金辐射。

回到极端黑洞。在克鲁斯卡延拓中，现在r = GM变成了一个双极

点(double pole), 而不是单极点。但是稍微小心点的话，克鲁斯卡延拓还是

可以类似地进行，这时候对于r > GM和0 < r < GM两个区域需要定义两

种不同的坐标卡，最后要交错地将两种坐标卡在r = GM处拼接起来。彭

罗斯图也可以类似地讨论，最后得到的彭罗斯图如图(10.1)所示。

相比于正常的RN黑洞，极端黑洞有一些不同的性质。比方说，考察视

界外r = ρ处的某点到视界r = r+的固有空间距离。对于正常的RN黑洞，有

s =

∫ ρ

r+

√
grrdr =

∫ ρ

r+

dr√
(1− r+/r)(1− r−/r)

< ∞. (10.38)

这是一个有限的距离。但是，对于极端黑洞

s =

∫ ρ

GM

dr

1−GM/r
= ∞. (10.39)

所以，视界外的点到极端黑洞视界的固有距离是无穷大。然而，类时或者

类光测地线却可以在有限固有时或有限仿射参数值之内到达这个视界。
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图 10.1: 极端黑洞的彭罗斯图。

下面我们来考察极端黑洞的近视界几何，我们将会发现结果和正

常RN黑洞近视界的Rindler几何有很大不同。为了进行这种考察，我们记

R = GM, (10.40)

并设

r = R + η, (10.41)

式中η ≪ R为近视界的小量。将这些假设代入极端黑洞的度规(10.37), 即可

以得到

ds2 = − η2

R2
dt2 +R2dη

2

η2
+R2dΩ2. (10.42)

式中前两项是两维反德西特(Anti-de Sitter, AdS)时空Poincare patch的度

规，最后一项描写一个固定半径R的两维球面。这样的几何就记作AdS2 ×
S2。在这里，我们发现了AdS时空作为极端黑洞的近视界几何而出现了，

实际上，马达西那(Juan Maldacena)就是通过考察弦论中一些极端黑膜的

近视界极限发现AdS/CFT对应的。

以上近视界几何本身也就是Einstein-Maxwell方程伯克霍夫定理的那个

例外解，很清楚，之所以这个解没有包含在原来对RN解的推导过程之中，
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是因为其两维球面部分和其余的时空坐标完全分离了，这一点与前面的球

对称时空度规假设有根本性不同。而且，这个解当然不是渐近平坦的。

上述近视界几何的度规(10.42)可以写成另一种常见形式，为此引入新

的坐标z,

z = R2/η. (10.43)

则可以将(10.42)式改写成

ds2 = R2
(−dt2 + dz2

z2

)
+R2dΩ2. (10.44)

这相当于将AdS2表示成了(t, z)平面的上半平面(取t轴为水平轴)，很明显，

z = 0(也就是t轴)是AdS2空间的共形边界，显然这个边界是类时的。

多黑洞解

下面考虑仅仅带电荷的极端黑洞，即假设磁荷Qm = 0, 不妨将电荷简

记为Q。从而电磁张量仅有Ftr =
Q

4πr2
, 即电磁势

At =
Q

4πr
. (10.45)

这样的极端黑洞满足条件Q2/(4π) = GM2。假设我们考虑两个这样的极端

黑洞，电荷分别为Q1 > 0, Q2 > 0, 质量分别为M1,M2, 那极端条件将意味

着

Q1Q2/(4π) = GM1M2. (10.46)

这就意味着两个黑洞之间的库伦排斥力刚好与万有引力相平衡。因此，我

们容易想到，也许多个这样的极端黑洞放在一起，最后的解也是稳定的。

但是，多个极端黑洞的解当然不会有球对称性，为了证明这样的解存

在我们需要重新求解爱因斯坦-麦克斯韦方程。下面我们给出求解方法。

首先，我们要改写一下单个极端黑洞的解(10.37), 我们将注意力集中

在视界之外的几何，为此定义新的径向坐标ρ

ρ = r −GM. (10.47)

进而就能将极端RN解(10.37)重写成

ds2 = −H(ρ)−2dt2 +H(ρ)2(dρ2 + ρ2dΩ2) 其中 H(ρ) = 1 +
GM

ρ
.(10.48)
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另外，电磁势现在显然可以写成(注意到极端条件Q = M
√
4πG)

At =
1√
4πG

(
1−H(ρ)−1

)
. (10.49)

假如将三维空间坐标记作x，则不难看出ρ = |x|, 而dρ2 + ρ2dΩ2 = (dx)2。

受上一段的启发，我们假设多黑洞解具有如下形式，

ds2 = −H(x)−2dt2 +H(x)2(dx)2. (10.50)

以及电磁势

At =
1√
4πG

(
1−H(x)−1

)
. (10.51)

式中H(x)是某个待定的函数。将这个假设代入爱因斯坦-麦克斯韦方程(主

要是里奇张量的计算比较冗长一些，但也不难)，即可以发现，非常凑巧，

麦克斯韦方程和爱因斯坦场方程均简化为如下方程

∇2H(x) = 0. (10.52)

式中∇2为三维空间的拉普拉斯算符。如果我们要求|x| → ∞时At → 0, 那

么这个方程的一般解可以写成

H(x) = 1 +
N∑
a=1

GMa

|x− xa|
, (10.53)

式中xa为一组任意给定的常矢量。

所以我们最终找到了爱因斯坦-麦克斯韦方程的一组解，它描述N个满

足极端条件Qa = Ma

√
4πG的极端黑洞，它们分别位于任意的空间位置xa。

这些极端黑洞并不相对运动，因为它们之间的库伦排斥力和万有引力刚好

平衡了。

10.3 带宇宙学常数的黑洞

完全类似于前面求解RN黑洞的过程，我们也可以求解带宇宙学常数的

球对称解。依然假定物质场是电磁场，整个系统还是爱因斯坦-麦克斯韦系

统，不过现在假定宇宙学常数Λ非零。



第十章 带电黑洞与极端黑洞等等 12

现在的爱因斯坦场方程为Rµν − 1
2
gµνR + Λgµν = 8πGTµν , 将指标µ, ν进

行缩并，并利用T = 0, 即有R = 4Λ，进而即可将爱因斯坦场方程重写成

Rµν = Λgµν + 8πGTµν . (10.54)

受RN解求解过程的启发，现在直接假设球对称时空为

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2. (10.55)

所以现在可以直接跳到求解过程的最后一步，即求解Rθθ = Λgθθ + 8πGTθθ。

根据(10.21)式，现在

Rθθ = 1−
(
rf

)′
. (10.56)

而根据(10.19)式

Tθθ =
1

2

[
(
Qe

4π
)2 + (

Qm

4π
)2
] 1
r2
. (10.57)

所以我们要求解的方程变成

1− (rf)′ = Λr2 +
e2

r2
, (10.58)

积分并利用牛顿近似，即得

f(r) = 1− 2GM

r
+

e2

r2
− 1

3
Λr2. (10.59)

这就是带宇宙学常数的RN解。

假设e = 0, 则f(r) = 1− 2GM
r

− 1
3
Λr2, 这当然就是带宇宙学常数的施瓦

西解。记

L2 =
3

|Λ|
. (10.60)

L大体可以理解为整个时空的半径。则当宇宙学常数Λ > 0时，解为

ds2 = −
(
1− 2GM

r
− r2

L2

)
dt2 +

(
1− 2GM

r
− r2

L2

)−1
dr2 + r2dΩ2. (10.61)

这就是所谓的德西特时空中的施瓦西黑洞。很显然，度规各分量中宇

宙学常数的那一项(即r2/L2项)在r ≪ L的小尺度上是可以忽略的，但是
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在r ∼ L的宇宙学尺度上，这一项将起主导作用，并使得时空不再渐近平

坦。特别的，当r ≫ 2GM时，这个时空的度规渐近于

ds2 = −
(
1− r2

L2

)
dt2 +

(
1− r2

L2

)−1
dr2 + r2dΩ2. (10.62)

这就是德西特时空。所以宇宙学常数大于零时，解渐近于德西特时空，而

不是渐近平坦。另外，根据以上求解过程也容易知道，德西特时空本身当

然也是宇宙学常数大于零时真空爱因斯坦场方程的解。

德西特时空本身在r = L处有一个事件视界，在这个视界附近f(r) ∼
2
L
(L− r), 与(2κ)(L− r)比较可知德西特视界的表面引力κ为

κ =
1

L
, (10.63)

利用霍金温度公式，可知德西特时空的温度为

TdS =
1

2πL

~
kB

. (10.64)

依然假设e = 0。而当宇宙学常数Λ < 0时, 球对称解为

ds2 = −
(
1− 2GM

r
+

r2

L2

)
dt2 +

(
1− 2GM

r
+

r2

L2

)−1
dr2 + r2dΩ2. (10.65)

这就是所谓的反德西特时空中的施瓦西黑洞。特别的，当r ≫ 2GM时，这

个时空的度规渐近于

ds2 = −
(
1 +

r2

L2

)
dt2 +

(
1 +

r2

L2

)−1
dr2 + r2dΩ2. (10.66)

这就是反德西特时空。所以宇宙学常数小于零时，解渐近于反德西特时空。

反德西特时空本身也是爱因斯坦场方程在宇宙学常数小于零时的真空解。

显然，如果不考虑黑洞，反德西特时空本身并没有视界。

实际上，德西特时空和反德西特时空的对称性比球对称性还要大，它

们是所谓的最大对称空间，关于这一点，我们会在后面的章节中进一步研

究，在那里，我们还将讨论这两个时空的一些常用坐标，以及它们的彭罗

斯图。


