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摘要

本文将介绍广义相对论的因果性质，内容包括雷乔杜里方程、彭罗斯与霍金的奇性定理、黑洞

面积定理、拓扑监督和高-沃尔德定理. 相关资料取材于 2018 年高等研究院暑期项目“理论物理展
望”的讲座和 2020 年新西兰尼尔森数学研究院暑期学校的讲座.
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1 引言

围绕经典广义相对论的整体性质可以提这样几个问题:

1. 在什么条件下可以预测黑洞的形成?

2. 为什么经典黑洞的视界面积只能增加?

3. 为什么从经典上说不可能穿越时空中的“虫洞”?

这些都属于洛伦兹号差的黎曼几何问题. 它们涉及到所谓的时空因果结构：从一给定的起点出发，
沿着一条处处含于局部光锥内的世界线，我们能够到达何处？

日常生活为欧氏号差的黎曼几何提供了直觉. 从良好近似的意义上，可以认为我们生活在三维的
欧氏空间中，并且对二维曲面是相当熟悉的. 尽管欧氏几何有许多重要的、但只体现在高维情况的性
质，二维曲面依然是一个挺不错的例子.

但相比之下，日常生活没能在洛伦兹几何上给我们提供捷径. 洛伦兹号差的根本差异在于因果律
的限制：信号不能在光锥之外传播. 不过在人类的尺度上，光速非常之大，因此日常生活中相对论因
果律的限制并不明显.

在引力的背景下讨论这些限制是很有趣的. 黑洞——任何信号都无法从该时空区域逃到外界去
——提供了一幅戏剧般的景象，而足以体现相对论因果律的限制在广义相对论中所发挥的作用.
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众所周知，经典广义相对论的场方程是很复杂的非线性方程，从中提炼直觉是很困难的. 但事实
上，通过很简单地讨论因果律、正能量和爱因斯坦方程等之间有趣的联系，我们就有可能获得对宇宙

学、引力坍缩和时空奇点的许多定性的理解.

本文将减少形式上的负担，以尽可能轻松地介绍这一主题. 代价是删减某些数学并省略某些重要
细节和进一步的结果，不过这些东西可以在更完整的资料中找到. 首先是一批先驱所做的经典讨论，
包括彭罗斯 [1] 和霍金 [2]. 其次，本文中省略的细节和进一步的结果可在沃尔德的经典教材 [3] 中找
到，尤其是第 8、9 和 12 章. 另外，一些有用的课堂讲义是 [4–6]. 关于洛伦兹几何的详细数学参考
是 [7].

对希望熟悉这些问题的读者，可以提供一些好消息：的确有很多有趣的结果，不过起主要作用的

关键思想仅需追溯至 20 世纪 60 年代. 因此，读者可以在相对较短的时间内掌握这大量的知识.

文章的架构如下. 第 2 节和第 3 节介绍了因果律的一些基础知识. 在第 4 节中，我们探索了类时
测地线的性质，并走向可以说是最容易解释的一个奇性定理，即霍金对大爆炸 [8] 的论述. 在第 5 节
中，我们分析了类光测地线这个些许微妙的问题，并给出了最初表述的但也最重要的现代奇性定理，

即关于引力坍缩的彭罗斯定理 [9]. 第 6 节描述了黑洞的一些基本性质，一旦熟悉了彭罗斯证明中的思
想，就可以理解这些性质了. 其中本文的一个亮点便是霍金面积定理 [10]. 第 7 节专门讨论了一些额
外话题，特别是拓扑监督 [11,12]、高-沃尔德定理 [13] 以及它们对平均类光能量条件 (ANEC) 假设而
不是经典类光能量条件情况的扩展. 最后，在第 8 节中，我们以更严谨的方式重新审视了类光测地线，
对第 5 节中的一些要点进行了更充分的讲解，并补充了一些进一步的结果.

本文大部分内容只假定读者具备广义相对论的基础知识. 不过在某些地方，熟悉一下标准时空的
彭罗斯图是很有益的. 最重要的例子——因为其启发了彭罗斯的工作——便是史瓦西解. 初次阅读时，
可以忽略其他例子的配图 (反德西特时空、德西特时空和 Reissner-Nordström 解)，于是整篇文章仍旧
是容易理解的. 有关反德西特和德西特例子的许多背景在附录 A 和 B 中有解释.
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图 1: 对于两个时空点 q, p, 其中 p 是 q 的未来，因果菱形 Dp
q 由所有既处于 q 的因果未来，又处于 p

的因果过去的点组成. 如图所示，有时考虑从因果菱形中挖去一个时空点 r 是很有趣的.

2 因果线

为了理解时空的因果结构1, 我们必须先介绍因果线这个概念. 我们通常用参数描述路径 xµ(s), 其
中 xµ 为时空中的局部坐标，s 为参数. (我们要求切向量 dxµ/ds 对所有 s 都是非零的. 如果两条路径
仅在重参数化 s → s̃(s) 上不同，也认为它们是等价的.) 若曲线 xµ(s) 的切向量 dxµ/ds 处处类时或类
光，就称它是一条因果线.

我们常常会问这样的问题：为到达某个既定的目的地，“最优因果线是什么?”例如，最接近逃离
黑洞或穿越虫洞的路径是什么？这类问题的答案通常涉及到具有特殊性质的测地线，所以测地线将扮

演至关重要的角色.

我们首先简单地考虑闵可夫斯基空间中从点 q 到其因果未来里的点 p (q 的未来光锥内或上的点)
的因果线，这样的路径将位于时空的一个子集内，我们称之为“因果菱形” Dp

q (图 1 ). 它是 q 因果

未来2与 p 因果过去的交集.

第一个要点是，从 q 到 p 的因果线空间在恰当意义上是紧致的. 这里因果性对此是必要的. 若没
1 在本文中，一个“时空”M 是一个 D 维连通流形，其上有光滑洛伦兹度规. 我们假设 M 是时间定向的，这意味着

M 中的每一点，都存在一个偏好性的指定，以表示“未来”或“过去”的类时方向. 我们允许 D 是任意的——而不局限
于 D = 4 ——而这不是在故弄玄虚. 考虑推广到任意 D 是很有趣的，因为任何对 D 的显著依赖，都可能至少从宏观上阐
明为何我们生活在 D = 4 中. 此外，对任意 D 的推广在当代量子引力的研究中也很重要.

2一个重要的细节——在此处和后文中会看到——是我们认为 q 本身处于它自己的因果未来 (或过去) 中. 因此，q(或 p)
就在 Dp

q 之中. 与此相关的是，在因果线的定义中，我们允许只包含一个点的平凡路径的情况. 这样做的目的是为了简化
各种关于闭性或紧致性的论述.
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有它，即使把曲线序列局限于一个紧致的时空区域 (如 Dp
q) 内，它也可能会愈发剧烈地波动起来，从

而不存在收敛子列. 例如，在带有度规 ds2 = −dt2 + dx2 的 2 维闵可夫斯基空间 M 中 (这里有时会把
有序对 (t, x) 写作 x)，有这样一个从 q = (0, 0) 到 p = (1, 0) 的非因果线序列3:

x = sin(πnt), 0 ≤ t ≤ 1. (2.1)

虽然其限制在 M 的一个紧致部分，但当 n → ∞ 时这些路径的波动会愈发疯狂. 我们无法挑取出收敛
子列，于是从 q 到 p 的所有曲线所构成的空间在任何恰当意义上都不是紧致的.

因果性改变了这种局面，因为它给出了 |dx/dt| ≤ 1 的限制. 要理解为什么这会导致紧致性，为了
方便，可先倒转度规中 dt2 的符号 (在我们选定的坐标系内)，并定义欧氏度规

ds2E = dt2 + dx2. (2.2)

从 q = (0, 0) 到 p = (1, 0) 的欧氏距离为 1，而经过两点的任意因果线的欧氏长度不超过
√
2. (读者应

该可以举出一个例子使其达到最大欧氏长度.)

一旦欧氏长度存在上界，我们就有了紧致性. 用弧长比上欧氏长度 λ作为 s去参数化一条 λ ≤
√
2

的因果线，这样 s 的取值就是从 0 到 1. 假设给定一个因果线序列 xn(s), n = 1, 2, 3, · · ·，由于这些曲
线每一条都从 q 开始，到 p 结束，且欧氏长度 ≤

√
2，所以在闵氏空间中，存在一个紧致子集 D 包含

所有这些路径.

读者可能熟悉如何论证曲线序列 xn(s) 的收敛子列的存在性. 首先考虑 s = 1/2 处会发生什么.
由于 xn(1/2) 包含在紧致区域 D 中，对于每个 n，都有一个路径 xn(s) 的子列使得 xn(1/2) 收敛到 D

中的某一点. 进一步挑出子列使得 xn(1/4) 和 xn(3/4) 收敛. 继续这样下去，最终可挑出原序列的子
列，使得对任意分母为 2 之幂的有理数 s，xn(s) 都收敛. 长度有界确保了不可能出现剧烈波动，所以
实际上对于该子列来说，xn(s) 对所有 s 都是收敛的. 因此从 q 到 p 的任意因果线序列都有一个收敛

子列，这样，因果线所构成的空间就是紧致的.4

3要将这些路径参数化，只需写出 t(s) = s, x(s) = sin(πns).
4在这一脚注和下一脚注中，会带读者感受一下本文通篇省略的一种数学细节. 使得因果线空间紧致的拓扑是使得如下

论述成立的拓扑：序列 xn(s) 收敛于 x(s)，若其对每个 s 都收敛. 此外，为了准确地陈述本文的论证，我们必须知道，这
样的光滑曲线所对应的逐点极限不一定是光滑的. 这其实是连续因果线的定义，即一个光滑因果线序列的逐点极限. (非光
滑连续因果线的一个简单例子是分段光滑的因果线.) 这样，关于紧致的论证就得严格重述，即表明连续因果线序列具有收
敛于连续因果线的子列. 总体来说，如果 γ1, γ2, · · · 是这样的连续因果线序列，那么设所挑选出的子列 γi 收敛到一条曲线
γ，我们就必须证明 γ 是一条连续曲线. 每一条连续因果线 γj 都是一个光滑因果线序列 γj,1, γj,2, · · · 的逐点极限. 由于已
抽取可能的收敛子列，我们可设 γj 和 γj′ 在 j, j′ 充分大时彼此邻近 (即当 j, j′ ≥ n 时两元素的欧氏距离在 1/n 之内). 那
么类似地，设当 k ≥ j 时 γj,k 接近于 γj (比如欧氏距离在 1/j 之内)，于是对角序列 {γj,j} 正是一个收敛于 γ 的光滑因
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图 2: 该图旨在说明这样一件事: 光滑类时曲线 γ 可以由一列因果线 γn 逼近，这些曲线在 γ 附近以类
光或几乎类光的方向剧烈波动，以致于虽然 γn 收敛于 γ，但 γn 的固有时不收敛于 γ 的固有时. 相反，
γn 的固有时可以非常小，甚至为零.

对于带有度规 ds2 = −dt2 + dx⃗2 的 D维闵可夫斯基空间，在无需做任何实质改变的情况下，论证
可以继续下去. 因此，如果 p 是 q 的因果未来，那么从 q 到 p 的因果线空间是紧致的.

这里有一个很重要的结果. 一段因果线所经历的固有时定义为

τ =

∫ 1

0

ds

√(
dt
ds

)2

−
(

dx⃗
ds

)2

. (2.3)

假设 p 在 q 的因果未来中——因此存在从 q 到 p 的因果线——从 q 到 p 的因果线空间的紧致性保证

了一定存在这样一条使 τ 最大的路径. 更准确地说，在从 q 到 p 的所有因果线中，τ 一定存在一个上

界，因为一个当 n → ∞时其固有时 τn 发散的因果线序列 xn(s)不可能有收敛子列.如果 τ0 是从 q 到

p 的任意因果线固有时的上确界，那么使得当 n → ∞ 时固有时 τn 有 τn → τ0 的路径序列 xn(s) 有一

个收敛子列，而这个子列极限正是一条固有时为 τ0 的因果线5.

使固有时最大——或只是极大——的因果线是测地线. 所以如果 p 是 q 的未来，则必存在一条从

q 到 p 的具有最大固有时的测地线，而在闵氏空间这个特例中，我们可以更简便地证明这一点. 从 q

到 p 有一条唯一的测地线，即一条直线，它使固有时最大. (闵可夫斯基空间中的类时测地线使其端点

果线序列，所以 γ 是一条连续因果线.
5实际上，在脚注 4 定义的拓扑中，固有时并不是路径空间上的连续函数. 这是因为因果线序列 γn 可能逐点收敛于因

果线 γ，但在类光 (或几乎类光的) 方向上做小幅度但十分剧烈的波动，参见图 2 . 准确的表述是，如果一个序列 γn 收敛
于 γ，则 γ 的固有时大于等于 γn 固有时的极限 (或者考虑到极限可能不存在，应是其上极限). 也就是说，在趋于极限的
过程中，固有时可以向上突跃，但不能向下突跃. 专业地讲，这就是说固有时是因果线空间上的上半连续函数. 向上跳不会
破坏文本的论证 (尽管向下跳会破坏)，因为根据 τ0 的定义，xn(s) 的子列极限的固有时不可能大于 τ0. 可以修改收敛的
定义，使固有时成为因果线空间上的连续函数，但这并不方便，因为这样紧致性就没了.
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间的固有时最大，这一事实有时被称为双生子佯谬. 双胞胎其一沿着非测地线路径从 q 到 p 运动，即

在途中某处做了变速运动，再次相遇时比从 q 到 p 轨迹是测地线的另一人要年轻. 在合适的洛伦兹参
考系中，路径为测地线的双胞胎可以是静止的，但对于轨迹有加速度的另一双胞胎则找不到这样的参

考系.)

对于闵可夫斯基空间，为了确立从 q 到 p 的因果线空间的紧致性，我们唯一所需的事实是，由这

些路径可以触及的所有点组成的因果菱形 Dp
q 是紧致的. 如果 q 和 p 是任意洛伦兹时空中的点，我们

可以定义一个更广义的因果菱形 Dp
q，它由所有既处于 q 的因果未来，又处于 p 的因果过去的点组成.

只要 Dp
q 紧致，和前文相同的推理将表明，从 q 到 p 的因果线空间也是紧致的，因此存在一条从 q 到

p 的测地线使固有时最大.

在任意时空 M 中，点 q 的一个小邻域 U 总是可以良好地近似为闵氏空间中一个类似的小开集.
一个精确的表述 (在此处及每当我们想要比较某个时空点的小邻域与闵氏空间中的小开集时)是，q 包
含在凸法邻域 U 中，其中任意两点间存在唯一的测地线6. 粗略地说，这种邻域的因果律就和闵氏空
间中对应邻域的类似. 我们将这样的邻域称为局部闵氏邻域.

如果 p 是 q 附近的未来，我们可能就有希望说 Dp
q 是紧致的，就像闵氏空间中的因果菱形一样.

如果 M 满足一个在物理上合理的因果条件，那这句话其实就是对的. 出于以下原因我们需要所谓的
因果条件. 为了比较 Dp

q 与闵氏空间中的因果菱形，我们想说明，如果 p 足够接近 q，那么 Dp
q 含于 q

的局域闵氏邻域中. 这在具有闭合因果线的时空中是不成立的 (如果 γ0 是一个从 q 到自身的闭合因果

线，那么从 q 到 p 的因果线可以先绕着 γ0 走一圈，再接着走任何从 q 到 p 的因果路径；这样的路径

将不会含于 q 的局部闵氏邻域，因为这样的邻域中不存在闭合因果线). 我们需要的条件比没有闭合因
果线要强一些，称为“强因果”(详见 3.5 节). 在强因果时空中，如果 p 足够接近 q，则从 q 到 p 的

因果线确实含于 q 的局部闵氏邻域. 于是 Dp
q 就紧致了，和在闵氏空间中一样. 本文总默认强因果.

随着 p 进一步向未来移动，Dp
q 的紧致性就有可能失效. 我们举两个例子. 第一个例子很简单，但

些许刻意. 第二个例子则或许更自然些.

第一个例子，从闵可夫斯基空间 M 出发，在 M 中挖去 Dp
q 内部一点 r，得到一个新的时空 M ′

(图 1 ). M ′ 是流形，带有光滑洛伦兹度规，因此我们可以把它看作一个独立的经典时空. 但在 M ′ 中，

因果菱形 Dp
q 不是紧致的，因为缺了点 r. 因此，M ′ 上从 q 到 p 的因果线空间并不紧致. 一个在 M 中

的极限经过 r 的 M ′ 中的因果线序列，在 M ′ 的路径中就没了极限. 如果在 M 中，r 恰好在从 q 到 p

的测地线上，那么在 M ′ 中就没了从 q 到 p 的测地线. 当然，这个例子里如果 p 位于 r 的过去，Dp
q 还

是紧致的.
6关于这个概念的更多细节，请参见 [2]，特别是第 103 页；或 [3]，第 191 页.
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我们能使这个例子不那么刻意. 可以考虑这样一个事实，即因果线空间在时空度规的外尔变换下
是不变的，或者说，在度规乘以一个正函数 eϕ（ϕ 是时空上的任意实函数）的情况下是不变的. 原因
是两个度规 ds2 和 eϕds2 有相同的局部光锥，因此有相同的因果线空间. 记住这一点后，就用一个外
尔变换的度规 eϕ(−dt2 + dx⃗2) 去替换原来的闵氏度规 −dt2 + dx⃗2. 所选的函数 ϕ 如果在 r 处发散，产

生一个奇点，就为我们从时空中略去该点提供了理由. 这就给出了一个相对自然的例子，在这个时空
中，因果菱形不是紧致的.

第二个例子7，考虑反德西特 (AdS) 时空，它是具有负宇宙学常数的最大对称时空. 为了简单起
见，我们考虑 2 维反德西特 (AdS2) 时空. 如附录 A 中详细解释的，这个时空的度规是

ds2 = R2

sin2 σ

(
−dt2 + dσ2

)
, −∞ < t < ∞, 0 < σ < π. (2.4)

因果结构不受因子 R2/ sin2 σ 影响，因为其不影响曲线类型的定义. 所以从因果角度来说，我们可以
丢掉这个因子而只考虑带有度规 ds2 = −dt2 + dσ2 的闵氏空间里的带状区域 0 < σ < π. 图 3 的彭罗
斯图描绘了这个区域. 其中，因果线切向量处处与垂直方向的夹角不大于 π/4. 类光测地线是夹角恰为
π/4 的直线. 图中画了其中一些线条.

彭罗斯图的边界 σ = 0, π 不是 AdS2 时空的一部分. 比如 t = 常数的类空超曲面的边界可以是无

限远的. 尽管如此，一条类光或渐近类光的因果线可以在有限 t 处达到 σ = 0 或 π. 因此，通过加入
σ = 0, π 处的边界点去部分地紧致化 AdS空间是很有益的.这些点构成所谓 AdS2 的共形边界.但重要
的是，共形边界实际上并不是 AdS2 时空的一部分. 不能包含边界点的原因是 (考虑因子 1/ sin2 σ 后)
度规会沿共形边界发散.

与在任意时空中 (满足合理的因果条件) 一样，若 q 是 AdS 时空中的一个点, 而 p′ 位于其附近的

未来, 那么 Dp′
q 是紧致的. 但是在 AdS 时空中, 如果 p′ 位于距离 q 足够远的未来，以至于 q 和 p′ 间

的因果线可以在从 q 一直延伸至 p′ 的途中到达共形边界，那么 Dp′
q 就不是紧致的. 在这种情况下, 共

形边界点实际上并不是 AdS 时空的一部分, 就意味着 Dp′
q 并不紧致.“省略”共形边界点的作用类似

于前面例子中挖去点 r.

在实际中, 如果图中的四边形 qsq′r 包含点 p′，那么从 q 到 p′ 的因果线不会在途中触及共形边界,
从而 Dp′

q 就是紧致的. 不过若 p′ 仍是 q 的未来, 但不在这个四边形里, 那么从 q 到 p′ 的因果线可以在

途中到达共形边界，于是 Dp′
q 不再紧致. 具体而言, 如果 AdS 空间中，从 q 出发的一个因果线序列在

通往 p′ 途中愈发接近共形边界，那它就没有收敛子列.
7这个例子在初读时可以忽略. 理解它所需的背景知识在附录 A 中做了深入解释.
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图 3: AdS2 时空的彭罗斯图. 这里讨论的是带有度规 ds2 = −dt2 + dσ2 的闵氏时空中带状区域 0 <
σ < π 的因果结构. 因果线与垂直方向的夹角不大于 π/4. 从 q 开始的因果线可以走到图的右边缘，在
非常接近边界的地方逗留一会儿，然后继续前进到 p. 这种因果线可以有任意大的固有时. 相比之下，
如果将 p替换为四边形 qsq′r 内的点 p′，那么从 q 到 p′ 的因果线就不能到达边界，且有一个可能的最
大固有时. 图中的曲线都是经过点 q 的类时测地线；四边形 qsq′r 内的每一个点 p′ 都在这样的测地线
上 (对于这样的 p′，这反映了 Dp′

q 的紧致性). 这些类时测地线都汇聚在点 q′ 上，如图所示. 它们往 q′

的未来或 q 的过去的延长线也同样画出. 从 q 到 p 没有测地线. 从 q 到 w 有类时测地线，但它不使固
有时最大. 其中一些细节在 4.2 节中会很重要.(对比 [1] 的图 7.)
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当 Dp′
q 不紧致时，可能不存在从 q 到 p′ 的固有时最大的因果线. 一个例子是图中标记为 p 的点,

它是 q 的未来, 但不包含在四边形中. 从 q 到 p 的因果线固有时没有上界. 考虑这样的因果线，它从 q

出发后, 先非常接近于图的右边缘部分, 在那里逗留一会儿, 然后继续抵达 p, 这样便有任意大的固有
时. 这个结论体现了 AdS2 度规 (2.4) 中 1/ sin2 σ 因子的影响. 由于从 q 到 p 的因果线可以在任意小

sinσ 的区域中逗留 t 的一个正区间, 所以它的固有时没有上界.

事实上，不存在从 q 到 p 的测地线. 从 q 出发的所有走向未来的类时测地线实际上都会汇聚到 q

未来中的一个焦点 q′ 处，这件事的重要性将在第 4 节里显现. 如图所示，经过 q′ 后，这些测地线在

图中继续“上行”，从未抵达过 p. 而自 q 出发的类光或类空测地线终止于 p 过去中的共形边界上.

出于这些例子, 我们希望找到一种有用的判据来确保广义因果菱形 Dp
q 的紧致性. 幸运的是，确实

有这样一种判据.

3 整体双曲时空

3.1 定义

在传统物理学的要义里，我们可以想象在一张初值超曲面8S 上指定初始数据，然后就可以定义

运动方程，去决定超曲面 S 的未来 (过去) 所发生的物理.

为了在广义相对论里实现这个想法，我们要求超曲面 S 是类空超曲面9. 称 S 是类空的意味着 S

上相邻点是类空相间的，更严格地说，完整时空流形 M 的洛伦兹号差度规在 S 上诱导出一个欧几里

得号差的度规. 一个典型例子是在有着度规 ds2 = −dt2 + dx⃗2 的闵可夫斯基时空里 t = 0 的超曲面.
在超曲面 t = 0 上的诱导度规就是欧几里得度规 dx⃗2.

我们实际上需要进一步的条件，也就是说 S 应该是非时序的. 一般来说，如果在时空 M 的子集

S 上不存在连接不同点 q, p ∈ S 的类时路径，那么这个子集 S 就称为非时序的. 如果存在这样一条路
径，那么在点 q 处的数据将影响到点 p 处所发生的物理，忽略这一点而想要在 S 上指定“初始条件”

就不合适了.
8根据定义, 一张超曲面是余维数为 1 的子流形.
9更一般地说，我们可以在一张有某些类光部分的超曲面上定义初始数据，只要超曲面是非时序的 (见下文). 我们只考

虑类空超曲面这一更直观的情况.
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Sε

图 4: 一张闭的但不是非时序的超曲面 Sε.

为了看到一张类空超曲面不必是非时序的，考虑一个有着平坦度规

ds2 = −dt2 + dϕ2, (3.1)

的 2 维圆柱时空，其中 t 是实变量，ϕ 是角变量 ϕ ∼= ϕ+ 2π. 超曲面 Sε 定义为对于非零的 ε，无限多

次环绕圆柱时空 (参看图 4) 的
t = εϕ, (3.2)

如果是 ε小的，那么 Sε 是类空的但不是非时序的；例如在 Sε 里的点 (t, ϕ) = (0, 0)和 (t, ϕ) = (2πε, 0)

能被一条显然的类时测地线连接起来. 因此一张类空超曲面不必是非时序的：在类空超曲面 S 里，足

够邻近的点不被相邻的类时路径连接，同时在一张非时序超曲面上，同样的结论在没有点和路径应该

充分临近这一条件下，也是成立的 (而反过来，因为一张非时序超曲面可能有类光区域，所以可能不
是类空的).

如果一个非时序集 S 也是一张类空超曲面，非时序的结论可以变得更强. 非时序的定义是在说，
连接不同点 p, p′ ∈ S 的类时路径 γ ⊂ M 是不存在的，但如果 S 在 M 里余 1 维，那么从 p 到 p′ 其

实连因果路径都不存在. 换句话说，即使允许路径是类光的而不仅是类时的，上述的 γ 也还是不存在.
为了看到这一点，让我们考虑点 p ∈ S 所能移动的、但仍保持在 S 里的那些方向作为“空间”方向.
对于一张类空超曲面 S，在点 p 处的某些局域洛伦兹参考系中，这些方向在每一点 p ∈ S 都构成了一

组完备的空间方向. 如果 p, p′ ∈ S 被 (全部或者部分的) 类光因果路径 γ 连接，那么在沿 S 的合适方

向移动 p 或 p′ 后，γ 能变形为一条类时路径, 参看图 5.
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图 5: 如果 S 是一张类空超曲面，γ 是一条连接点 p, p′ ∈ S 的类光曲线，那么通过将 p′ 沿 S “向着”γ 移动,
我们会得到一个点 p′′ ∈ S，这个点使得存在一条从 p 到 p′′ 的严格类时曲线 γ̃ . 这是用图 4 所画出的超曲面 Sε

来解释的.

这里重要的是余维数为 1. 否则需要的移动有可能无法实现.

为了使广义相对论中初值超曲面的定义更为完备，我们需要不可延因果线的概念. 如果一条因果
线能延拓至更远，那么就称这条因果线是可延的，否则它就是不可延的. 例如，在闵可夫斯基时空里，
如果把类时测地线 (t(s), x⃗(s)) = (s, 0) 的 s 看作一个实变量，那么这条类时测地线就是不可延的. 但
是如果我们任意地限制 s 到实线的子集上，例如 0 < s < 1，我们就得到了一条可延因果线. 如果我们
从时空 M 移除点 r 来得到一个如图 1 所示的新时空 M ′，那么 M 中的一条经过 r 的不可延因果线

在时空 M ′ 里就分裂为两条因果线，一条处于 r 的未来，一条处于 r 的过去 (如图 6). 它们每一条都
是不可延的. 类时路径 γ 不可延的一个充分不必要条件是，沿 γ 所经过的固有时在过去和未来都是发

散的.

设 γ 是一条因果线 xµ(s). 通过选择合适的参数 s，我们总是可以假设 s的范围是包括或不包括端

点的单位区间. 例如，假设 s 的范围是一个闭区间 [0, 1] 或一个半开区间 (0, 1]. 然后我们将 p = xµ(1)

定义为 γ 的未来端点10. 这样的 γ 总是可以延拓到超出 p 的未来；可以用与 γ 相邻的任意从 p 出发

去向未来的因果路径来做延拓. 即使 γ 最初定义在没有未来端点的开区间 (0, 1) 或半开区间 [0, 1) 上，

如果极限 p = lims→1 x
µ(s) 存在，我们可以将 p 添加到 γ 上作为未来端点, 然后像前面一样延伸 γ 超

过 p. 因此，如果 γ 对于未来是不可延的，这意味着 γ 没有未来端点，并且也不可能添加一个. (不严

10 我们在这个熟悉的区间端点意义上使用“端点”这个术语，但我们应该警告读者，在数学向的相对论里同样的术语有
着一些不同且更严谨的意义. 可以参看 [3] 的第 193 页.
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图 6: a) 在时空 M 里的因果线 γ 能无限延拓到过去和未来. b) 从时空 M 移除点 r 来得到一个新的时空 M ′.
γ 就会分裂成两条因果线 γ1 和 γ2. 其中 γ1 是未来不可延的，γ2 是过去不可延的.

谨地说，这可能意味着例如 γ 已经无限延拓到未来，或者至少延拓到时空的无穷处，或者 γ 在奇点处

终止.) 类似地，如果 γ 是过去不可延的，这意味着 γ 没有过去端点，并且也不可能添加一个.

终于，我们可以在广义相对论中定义初值超曲面 (更严谨地说是柯西超曲面) 的合适概念了. M

中的柯西超曲面或初值超曲面是一张非时序的类空超曲面 S，并且如果 p 是 M 中的点而不是 S 中的

点，那么每条经过 p 的不可延的因果路径 γ 一定会与 S 相交. 一个带有柯西超曲面 S 的时空 M 被

称为整体双曲的.

这个定义需要一些解释. 直观的思想是，在 p 观察到的任何信号都可以被认为是沿着某条因果路

径到达 p 的. 因此如果 p 处于 S 的因果未来，并且经过 p 的每一条充分延拓的去向过去的因果路径

都会和 S 相交，那么在 p 上所观测到的物理就可以由 S 上所带有的信息，以及合适的动力学方程来

预测. 如果有一条去向过去的经过 p 的因果路径 γ，在与 S 相交之前就不可延，那么知道 S 上所带

有的信息就不足以预测 p 的物理；还需要一个沿着 γ 的初始条件. (显然，如果 p 处于 S 的过去，那

么在将“过去”与“未来”以及“初始条件”与“末态条件”交换之后，类似的结论仍然有效.) 因此，
整体双曲时空符合传统的从过去预测未来的思想.

例如在闵可夫斯基时空里超曲面 t = 0 是一张初值超曲面，因此闵可夫斯基时空是整体双曲的.
另一方面，从一个整体双曲时空中移除一个点 r 后给出的时空就不再是整体双曲的了. 参看图 7. 当
特定黑洞时空 (比如 Reissner-Nordström 解或者克尔解) 被延拓超过它们的视界时，就会出现非整体
双曲的更复杂的时空例子 (参看第 3.4 小节的图 13).

根据这样的超曲面定义，一条不可延的因果路径 γ ⊂ M 总是与一张初值超曲面 S 相交，而实际

上，它总应精确地在一点上与 S 相交. 如果 γ 与 S 在 p 和 p′ 两点相交，那么就会存在连接 p 和 p′ 的
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图 7: S 是时空里的一张超曲面，而这个时空不是整体双曲时空，因为处于 S 未来里的点 r 已经从时
空里移除了. S 上的初始数据不足以预测处于 r 未来的 p 处所观测到的物理. 要做出这样的预测，我
们需要知道一些关于可能从 r 发出的信号的信息. 严格地说，对于这个时空，S 并不是柯西超曲面,因
为从 p 开始存在一条如图所示的类时曲线，在和 S 相交之前就是过去不可延的. 相反, 它在移除点的
地方“卡住”了.

因果路径 γ，这与 S 的非时序性质相矛盾. 柯西超曲面 S 总是将 M 分为“未来”和“过去”，原因如

下. 假设点 p ∈ M 不包含在 S 中，设 γ 为经过 p 的任意不可延因果路径. 正如我们刚才看到的，这
样的路径将在唯一的点 q 处与 S 相交. 因此我们的意思是，如果 p 处于 q 沿 γ 的未来 (或过去)，那
么 p 就处于 S 的未来 (或过去). (作为练习，读者可以考察这个定义是否自洽: 如果 γ, γ′ 是经过 p 的

因果线，在点 q, q′ 处与 S 相交，那么当且仅当 q 处于 p 沿 γ 的过去时, q′ 处于 p 沿 γ′ 的过去.)

在广义相对论中，“只有整体双曲时空重要”这件事并不十分明显. 也许物理学最终会超越基于初
始条件预测的思想，但这肯定会涉及更多额外的考虑. 整体双曲时空的研究一定是很有动机的.

3.2 整体双曲时空的一些性质

接下来讨论的有用事实将有助于我们理解整体双曲时空.

整体双曲时空 M 不存在闭合因果线. 如果存在一条闭合因果线 γ ⊂ M，那么在参数形式的 γ 中，

曲线被表示为 xµ(s)，我们会有例如 xµ(s+1) = xµ(s). 我们可以把 s 看作一个周期变量 s+1 ∼= s，但

是对于目前的论证，我们最好把 s 看作一个实变量，在这种情况下 xµ(s) 是一条不可延因果线，它无

限次地重复相同的时空轨迹. 这条曲线必须与柯西超曲面相交，而且相交的次数无穷多. 但是，存在
与 S 相交不止一次的因果线会与 S 的非时序性相矛盾.

实际上，如果 M 是带有柯西超曲面 S 的整体双曲时空，那么任何其它柯西超曲面 S ′ ⊂ M 在拓

扑上等价于 S. 直观的想法是，通过在“时间”中向前和向后流动，我们可以从 S 到达 S ′. 当然，为了
让这个想法在广义相对论中有意义，我们必须对时间的含义做出一个明确的选择. 设 ds2 = gµνdxµdxν

是 M 的洛伦兹号差度规. 取一个任意的欧几里得号差度规 ds2E = hµνdxµdxν . 在任何点 p ∈ M 处都
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可以选择坐标使得 hµν = δµν . 然后对局域坐标系做正交旋转变换，我们可以进一步在点 p 处对角化

gµν，将它取为 diag(λ1, · · · , λD) 的形式. 由于 gµν 有着洛伦兹号差，所以其中一个本征值恰好是负的.
相应的本征矢 V µ 是一个类时矢量. 我们可以把这个本征矢在差一个符号的情况下归一化为11

hµνV
µV ν = 1, (3.3)

同时由于 M 被假设为是时间可定向的，我们可以要求它在洛伦兹号差度规 g 中是指向未来的，以固

定归一化的符号.

固定了 M 上的类时矢量场 V µ 之后，我们现在通过在 V µ 方向上流动来构造 M 上的类时曲线.
为此，我们研究常微分方程

dxµ

ds = V µ(x(s))� (3.4)

的解，如果我们取 s 的范围尽可能大，那么方程的解会是不可延因果线.12 这些曲线称为矢量场的积

分曲线. 每一点 p ∈ M 都在一条唯一的13这样的曲线上，也就是在 s = 0 处从 p 出发的曲线. 由于积
分曲线是不可延因果线，因此每条这样的曲线 γ 在一个唯一点处与 S 相交. 如果经过 p ∈ M 的积分

曲线在 q 处和 S 相交，那么我们可以用 t(p) = s(p)− s(q) 来定义 p 处的“时间”. 以这种方式定义的
函数在 p ∈ S 处为零，并沿着积分曲线向未来增大.

归一化条件 (3.3) 意味着参数 t 只衡量了欧几里得号差度规 h 下的弧长. h 总是可以选择为使沿

M 中不可延曲线弧长发散的那种度规，这大致可以用一个在无穷远处发散的因子做外尔重标度来实

现 [16]. (有关这个结论的细节，可以参看附录 C.) 完成这一步之后，t 在每条积分曲线上就能取整个

范围 −∞ < t < ∞ 了.

现在取另一张柯西超曲面 S ′ ⊂ M . 每一点 p ∈ S ′ 都在一条唯一的积分曲线上，这条曲线与 S 在

一个唯一的点上相交. 我们用 φ(p) = q 定义一个映射 φ : S ′ → S. 于是 φ 把 S ′ 满射到 S 上，因为反

过来看，对任意 q ∈ S，经过 q 的积分曲线都与 S ′ 存在某个交点 p，这使得 φ(p) = q. 所以 φ 是 S ′

和 S 之间的 1-1 光滑映射，表明它们在拓扑上是等价的，正如前面所声称的那样.

如果 S ′ 是非时序的，但不是柯西的，我们仍然可以利用 φ(p) = q 将 S ′ 映射到 S. 这个映射是
嵌入的，但不一定是同构的 (因为 φ(S ′) 可能不是 S 的全部). 所以我们发现任何非时序集 S ′ ⊂ M 在

11除非另有说明，否则这里和后文都将重复指标理解为对指标求和.
12如果可以将过去端点或未来端点 p 添加到这样的曲线 γ 上，那么方程的解 (3.4) 可以继续至少在 s 的短范围内延伸超
过点 p (这在 p 的局部闵氏邻域中是显然的)，这使得 γ 不是通过在 s 的最大可能范围内解方程来定义的. 如果不可能添加
过去端点或未来端点，那么 γ 就是不可延的.

13如果两个参数化的因果路径 xµ(s) 仅仅因为参数的选择而不同，那么我们认为它们是等价的. 在当前的语境下，这意
味着方程 (3.4) 的两个只相差参数 s 的可加移动的解，对应于相同的积分曲线.
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timeS ′

S

图 8: 如果 S ⊂ M 是初值超曲面，那么每个非时序集 S′ ⊂ M 在拓扑上等价于 S 的子集. 利用在时间方向上
从 S′ 到 S 的“流动”，我们能粗略地找到这种等价关系. 本图表示一种典型的不可能情况，在这种情况下，S
不是紧致的，而 S′ 是紧致的非时序超曲面. 从 S′ 到 S 的“流”将 S′ 中的多个点映射到 S 中的同一点.

拓扑上等价于 S 的一部分. 这一点的一个特例在证明彭罗斯的黑洞奇性定理中很重要 (第 5.6 节). 如
果 S 不紧致 (但是连通)，那么非时序的余维数为 1 的子流形 S ′ ⊂ M 就不紧致 (如图 8). 因为紧致
(D − 1) 维流形 S ′ 不能作为非紧致 (但连通) 的 (D − 1) 维流形 S 的一部分去嵌入.

我们现在还可以从拓扑上推导出 M = S × R. 具体来说，我们可以通过 t(p) 和 φ(p) 连续参数化

p ∈ M . 由于 φ(p) 是 S 中的任意点，而 t(p) 是任意实数 (假设如上所述选择了完备的度规 h )，这表
明 M = S × R.

一张柯西超曲面 S ⊂ M 总是 M 的闭子空间. 因为 S × {0} (对任意点 0 ∈ R) 在 S × R 里是闭
的，而 M = S ×R, 由此能立即得到这个结论. 对于更直接的证明，先假设 p ∈ M 在 S 的闭包上，但

不在 S 中 (如图 9). 取 γ 是经过 p 的任意不可延类时路径. 因为 S 是柯西的，在其它点 p′ 处 γ 和 S

相交. 但是，由于 p 处于 S 的闭包中，因此可以仅在 p 附近稍微修改 γ，来得到从 S 到其自身的类

时路径，这证明 S 不是非时序的.

虽然我们定义的函数 t(p) 沿着积分曲线向未来增大，但它不一定沿着任意的因果线向未来增大.
出于某些目的，我们希望一个被称为时间函数的函数拥有这个性质. 在 [15] 里给出了一个简单的构造.

3.3 对紧致性的探讨

整体双曲时空有这样一条性质，即在端点处带有合适条件的因果路径所构成的空间是紧致的.14

例如，对于一张初值超曲面 S 和处于 S 过去的点 q，取 CS
q 是从 q 到 S 的因果路径空间. 正如我们考

14这实际上是整体双曲时空的原始定义 [17]. 用不可延因果线来定义整体双曲时空是之后才提出的 [15].
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γ

p p′
S

图 9: 本图旨在解释正文中如何证明柯西超曲面 S ⊂ M 总在 M 中是闭的.

虑一个因果路径序列 γn ∈ CS
q 时可以看到的那样，这样的路径空间是紧致的.

如果点 s 处于 q 附近的未来里，那么因果菱形 Ds
q 看起来就像在闵氏时空里的、q 处于过去顶点

的因果菱形，而且还是紧致的.15 如果我们限制路径 γn 到因果菱形里面，我们能做和在闵可夫斯基时

空里一样的论证，证明 γn 的一个子列 γn,[1] (当我们限制子列在因果菱形里) 收敛于从 q 到因果菱形

一个未来边界上的点 q′ 的某条因果路径 γ[1]，如图 10 所示. 这些并没有要求有整体双曲性的假设. 现
在我们从点 q′ 出发，以相同的方式延伸，证明 γn,[1] 的一个子列 γn,[2] 在一个更大的区域内收敛到一

条延伸过点 q′ 的因果线 γ[2]. 我们以这个方式继续下去，最终能得到原始序列的一个子列，其收敛于
从 q 到 S 的因果线 γ. 对这个论证的更多细节，可以参看附录 D.

在上述论证中，整体双曲的作用是确保我们从不会“中断”. 没有整体双曲性，在反复应用上述过
程后, 我们会中断于原始序列的一个子列, 这一子列有一条虽然没有与 S 相交的但还是不能再延拓的

极限路径 γ∗. 为了给出一个这实际上是怎么发生的例子，假设原始序列 γn 收敛于一条因果线 γ∗ ∈ CS
q，

取 p为一个不在任何 γn 而在 γ∗ 上的点. 然后在从时空 M 移除点 p得到的时空 M ′ 里，序列 γn ∈ CS
q

没有收敛于从 q 到 S 的任何因果路径的子列.

从 q 到 S 的因果线空间的紧致性特别意味着，能被这样的曲线到达的点集 DS
q 也是紧致的. 显

然，如果 p1, p2, · · · 是 DS
q 里一个没有收敛子列的点序列，以及 γ1, γ2, · · · ∈ CS

q 是一个从 q 到 S 的有

着 pi ∈ γi 的因果线序列，那么曲线序列 γ1, γ2, · · · 没有收敛子列. 相反，如果我们知道 DS
q 是紧致的，

利用与第 2 节里对于闵可夫斯基时空里的曲线基本上相同的论证，就可以看到 CS
q 的紧致性. 取一个

在 DS
q 上的辅助欧几里得号差度规. 给定一个序列 γ1, γ2, · · · ∈ DS

q，其中 γi 由 s 参数化，参数 s 是欧

几里得弧长的倍数，做归一化使得范围是区间 [0, 1]，其中 s = 0 对应于 q 处的初始端点，s = 1 对应

15就像在第 2 节里解释的那样，这个结论要求强因果条件. 现在我们认为这是物理上有着良好动机的尝试性假设，但在
附录 D 里，我们证明整体因果时空是强因果时空. 对于强因果的更多讨论，可以参看第 3.5 小节.
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图 10: 本图解释了证明 CS
q 是紧致的论证. 在图的底部是一个小的因果菱形 Ds

q，它可以用闵可夫斯基时空中的
因果菱形来近似.

于 S 中的最终端点. 所有的 γi 已经在 s = 0 处重合. 使用 DS
q 的紧致性，我们可以提取收敛于 s = 1

的 γi 的子列，进一步可以提取收敛于 s = 1/2 的子列，最终，如第 2 节所做的那样，收敛子列对应
的 s 构成一个稠密集. 因为 γi 是因果线，所以不可能有剧烈的起伏. 从而对于 s 的所有值，这个子列

都会收敛.

如果 q 处于 S 的未来，我们将 Cq
S 记为从 S 到 q 的因果路径空间，将 Dq

S 记为这样一条路径可

以到达的点空间. 上述论证有一个明显的镜像版本：能证明 Cq
S 和 Dq

S 是紧致的.

现在取 p 和 q 作为 M 中的点, p 处于 q 的未来. 取 Cp
q 是从 q 到 p 的因果线空间, Dp

q 是这样一

γ

q

λ

p

S

图 11: 假设 p 处于超曲面 S 的过去, 而 q 处于 p 的过去. 从 q 到 p 的因果路径 γ 和从 p 到 S 的因果路径 λ 可
以连接或“复合”成从 q 到 S 的因果路径 γ ∗ λ .
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条曲线可以到达的点空间 (因此 Dp
q 是 p 的因果过去与 q 的因果未来的交集). 我们想要证明 Dp

q 和 Cp
q

是紧致的. 假设比如 q 和 p 都处于 S 的过去. 设 λ 是某条从 p 到 S 的固定因果路径. 如果 γ 是从 q

到 p 的任何因果路径, 那么我们将 γ ∗ λ 定义为两个路径的“复合”(如图 11). 然后 γ → γ ∗ λ 给出在
CS
q 中 Cp

q 的嵌入. 给定在 Cp
q 里的一个序列 γ1, γ2, · · · , CS

q 的紧致性意味着序列 γ1 ∗ λ, γ2 ∗ λ, · · · 有一
个收敛的子列, 这决定了原序列 γ1, γ2, · · · 的收敛子列. 所以 Cp

q 是紧致的. 与我们讨论 CS
q 时一样, 这

也意味着 Dp
q 的紧致性.

显然, 如果 q 和 p 都处于 S 的未来, 那么这个推理中没有什么重要的改变. 如果 q 处于 S 的过去

而 p 处于向 S 的未来呢? 继续下去的一种方法是观察到从 q 到 p 的因果路径 γ 可以看作是从 q 到 S

的因果路径 µ 和从 S 到 p 的因果路径 λ 的复合 µ ∗ λ. 所以序列 γn ∈ Cp
q 可以看作是序列 µn ∗ λn, 其

中 µn ∈ CS
q , λn ∈ Cp

S. CS
q 和 Cp

S 的紧致性意味着在限制到一个合适的子列之后, 我们可以假设 µn 和 λn

收敛. 这给出了原始 γn 的收敛子列, 意味着 Cp
q 的紧致性. 因此 Dp

q 也是紧致的.

因果路径空间的紧致性意味着就像在闵可夫斯基时空中一样，整体双曲时空 M 中存在一条从 q

到任意处于 q 未来的点 p 的，所经过的固有时取最大值的因果路径. 当然, 这条路径会是一条测地线.
假设一条非处处类光的因果路径可以从 q 出发到达 p, 那么这条测地线会是类时的. (如果从 q 到 p 的

每条因果路径都是类光的, 那么每条这样的路径实际上都是类光测地线. 这个重要的情况将在第 5 节
中进行分析.)

类似地, 如果 S 是一张柯西超曲面, 而 q 是一个不在 S 上的点, 那么存在从 q 到 S 的所经过固有

时取最大值的因果路径. 这样的路径会是一条类时测地线 γ , 它满足我们将在第 4.2 小节中讨论的一
些进一步的条件.

3.4 柯西视界

在时空 M 中, 我们有时会遇到一张是非时序的但不为初值超曲面的类空超曲面 S, 因为 M 中存

在永远不会与 S 相交的不可延因果路径. 例如可以参看图 12.

尽管如此, 如果 p 只是处于 q ∈ S 附近的未来, 那么“经过 p 的任何不可延因果路径都将和 S 相

交”这一结论始终是正确的. 之所以正确是因为 q 的一个非常小的邻域可以用闵可夫斯基时空中的一

个小的开集来近似, 而 S 可以用类空超平面 t = 0 来近似. 这个结论在这个典例下是正确的, 因此在一
般情况下也是正确的.

这个结论启发了以下定义. S 的依赖域 DS 由所有具备“经过 p ∈ M 的每条不可延因果线和 S
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图 12: 设 S 是闵可夫斯基时空中的过去双曲面 t2 = x⃗2 + R2, t < 0. 它是类空的和非时序的, 但它不是柯西超
曲面, 因为如本图所示, 一条无限延拓到过去和未来的因果线 γ 可能永远不会与 S 相交. S 的依赖域是原点 (标
记为 r 的点) 过去光锥的内部. 柯西视界 HS 是原点的过去光锥.

相交”这一性质的点 p 组成. DS 是 M 中可以利用对 S 初始条件的了解来预测其中物理的最大区域.

DS 可以看作一个时空本身. (这里唯一重要的一点是 DS 在 M 中是开的, 因此它是一个流形.) 因
此 DS 是整体双曲的, 以 S 作为初值曲面. 从 DS 的定义方式可以清楚地看出这一点; 我们抛弃了 M

里任何位于一条不与 S 相交的不可延因果线上的点. 因此, 整体双曲时空的所有结论都适用于 DS.

特别是, S 将 DS 分为“未来”和“过去”, 这些“未来”和“过去”被称为 S 的未来依赖域和过

去依赖域, 记为 D+
S 和 D−

S .

DS (或者是 D+
S , 或者是 D−

S ) 闭包的边界称为柯西视界 HS (或者是未来柯西视界 H+
S , 或者是过

去柯西视界 H−
S ). 对于另一个有着柯西视界但情况更为复杂的时空例子, 可以参看图 13. (这个例子

的细节在本文的其余部分并不重要, 在第 5.5 小节中有一个更简单的彭罗斯图, 在那里我们将对这种
图的含意作一个非常简短的解释. 为了领会图 13 的这个更复杂的例子, 我们需要熟悉广义相对论里的
Reissner-Nordström 解析延拓解, 这个解在例如 [3] 或者 [18] 里描述了.)

3.5 因果条件

广义相对论中最显然的因果条件是不存在闭合因果线: 不存在从点 q 出发到达点自身的闭合因果

线.
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图 13: (a) 这是 Reissner-Nordström 时空最大解析延拓的彭罗斯图. 它描述了一个携带电荷与/或磁荷的黑洞.
完整时空 M̂ 不是整体双曲的, 但是单独考虑每个“菱形”的话, 这些区域就是整体双曲的. 例如, 在中间画出的
菱形表示有着柯西超曲面 S 的整体双曲时空 M . 标记为 (用粗黑线画出的) H+

S 和 H−
S 的类光超曲面是 S 的

未来和过去柯西视界; 时空可以延伸到 H+
S 的未来或 H−

S 的过去, 但这种延伸就不会由 S 的初始数据唯一决定
了. 这里画出的是真正解析的唯一延伸; 在 H±

S 之外, 这个黑洞解有着类时奇点 (用弯扭的垂直线表示), 并在过
去和未来无限次重复, 变成有着多个整体双曲的“菱形”的彭罗斯图. (b) 我们仔细看看一个因果菱形 M . 它包
含两个渐近平坦的区域, 标记为 I 和 II, 这两个区域由一个“虫洞”连接 (参看第 7.1 小节), 并被标记为 H± 的
未来和过去视界分开. 在区域 I 或 II 的观者看来, H+ 未来的部分是一个黑洞区域. 这个区域在未来柯西视界前
的部分是由小的阴影菱形表示的. H− 的过去是一个白洞区域, 它在整体双曲时空中的部分由小的没有阴影的菱
形表示. (这种结构的大部分也存在于史瓦西时空的简单例子中, 就像第 7.1 小节的图 42 画出的那样.) 特别是,
柯西视界 (同样用粗黑线画出) 分别处于 H+ 的未来和 H− 的过去. (a) 中为了避免混乱省略了这个结构.
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不过实际上要得到一个行为良好的理论, 我们需要一个稍强的因果条件. 我们在本文中一般使用
的因果条件是整体双曲条件. 这是广泛使用的最强的因果条件. 我们已经看到它意味着不存在闭合因
果线.

一个比较弱的但仍强于不存在闭合因果线的条件是“强因果条件”. 如果每一点 q ∈ M 都有一个

任意小的邻域 V , 点 p, p′ ∈ V 之间的任意因果线都完全包含在这个邻域 V 中, 我们就称这个时空 M

是强因果的. (任意小意味着如果 U 是任何一个包含 q 的开集, 那么 q 被包含在具有上述性质的较小

开集 V ⊂ U 中.) 当 p = p′ = q 时不存在闭合因果线可以被看作是这种情况的特例, 因为如果从一个
点 q 到它自己的每一条闭合因果线都包含在一个 q 周围任意小的开集中, 那么这意味着从 q 到它自己

没有非平凡的因果线. 强因果条件大概是说不存在任意接近闭合的因果线.

举一个没有闭合类时线但不是强因果的时空的例子, 考虑带度规张量

ds2 = −dvdu+ v2du2, (3.5)

的 2 维时空 M , 其中 v 是实值的, 但 u 是一个角变量 u ∼= u + 2π. 一个简短的计算能证明在 M 中唯

一闭合的因果线是曲线 v = 0. 假设我们在这条曲线上移除一个点 p, 得到一个新的时空 M ′. 那么强因
果条件在任何 v = 0 的点 q ∈ M ′ 处被破坏. 从 q 到 q 本身没有闭合因果线 (因为 p 被移除了), 但是
从 q 出发存在任意接近于 q 的因果线; 这些曲线在非常小的 v 下仍然处处存在. 我们有理由认为这种
行为是非物理的.

我们已经在第 2 节中遇到了一个强因果条件的典型应用: 它确保一个 p 处于 q 附近未来所给出的

因果菱形 Dp
q 是紧致的. 为了更详细地证明这个结论是对的, 设 U 为 q 的局部闵氏邻域. 如果强因果

条件在 q 处成立, 那么 q 被包含在一个开邻域 V ⊂ U 中, 其中两点之间的任何因果线都完全包含在这
个开邻域 V 中. 因此, 如果 p ∈ V , 因果菱形 Dp

q 就包含在 V 中, 因此也包含在 U 中. 因为 U 是局部

闵氏邻域, 所以 Dp
q 是紧致的. 另一个典型的应用将在第 5.1 节讨论.

闵可夫斯基时空是强因果的, 因为如果 U 是闵可夫斯基时空中任意一点 q 的邻域, 那么 q 被包含

在某因果邻域 Ds
r 中 ( r 处于 q 的过去, s 处于向 q 的未来), 而它又包含在 U 中. 此外, 在闵可夫斯基

时空中, Ds
r 里两点之间的任何因果线都完全包含在 Ds

r 中. 因此, 我们可以将 Ds
r 的内部看作在强因果

条件定义中的开集 V ⊂ U .

更一般地说, 整体双曲时空是强因果的. 证明推迟到附录 D. 在阅读本文时, 我们可以假设时空是
整体双曲的, 并且是强因果的. 初次阅读时, 理解第一个假设意味着第二个假设并不重要. 我们并不总
是直接表述强因果条件的假设, 因为它确实来自整体双曲条件.
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事实证明, 存在比强因果条件还要强一些的因果条件, 称为“稳定因果条件”. 关于它的定义, 以
及整体双曲时空是稳定因果的证明, 可以参看 [3] 的第 198 页.

3.6 最大延拓

为了避免刻意的例子, 我们通常会对一个整体双曲时空再加上一个更严格的条件.

为了解释我们希望避免怎样刻意的例子, 取 M 是闵可夫斯基时空, 并且设 M ′ 为 M 的子集, 这个
子集由“时间”坐标 t 上的条件 −1 < t < 1 定义 (在某洛伦兹参考系中). 那么 M ′ 是一个有着柯西超

曲面 t = 0 的整体双曲时空. 在 M ′ 中的类时路径将在有限的固有时后终止, 但这仅仅缘于我们所截断
时空的方式.

在讨论有着柯西超曲面 S 的整体双曲时空 M 时, 为了避免这种刻意的例子, 我们通常要求, 在根
据 S 上的数据可以预测 M 中物理的条件下, M 是最大的. 换句话说, 在时空是有着柯西超曲面 S 的

整体双曲时空的条件下, 我们要求 M 是最大的16.

可能发生的情况是, M 可以进一步延拓到更大的时空 M̂ , 但是这个更大的时空不是整体双曲的.
如果是这样的话, 那么在 M̂ 中存在一个柯西视界, 并且 M 是 S 在 M̂ 中的依赖域.

一个著名的例子是描述了一个球对称带电黑洞的 Reissner-Nordström 解的最大延拓. 设 M̂ 是这

个最大延拓时空；彭罗斯图如图 13 所示. 类空超曲面 S 是在包括了黑洞外部区域 (实际上是两个渐
近平坦时空中的每一个) 以及黑洞内部一部分的时空 M ⊂ M̂ 中的一张柯西超曲面. 黑洞视界之后是
过去柯西视界和未来柯西视界, 因此对于所有的 M̂ 来说, S 不是柯西超曲面.

4 测地线和焦点

从这里开始, 我们将讨论广义相对论里关于奇性最容易解释的非平凡结果. 这意味着我们不会按
照历史顺序讨论. 最容易解释的结果是在没有暴胀下的传统宇宙学中, 霍金的大爆炸奇性定理 [8]. 它
很容易解释, 因为它只涉及类时的测地线, 而所有其他的主题或多或少都涉及类光测地线这种有些微
妙的情况.

16肖凯-布吕阿和杰勒西的一个定理 [14] 指出, 给定柯西超曲面 S 上的初始数据, 满足爱因斯坦方程的最大延拓时空 M
在差一个微分同胚的情况下是始终存在并唯一的.
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图 14: (a) 2 维球面中两点 p 和 q 之间的测地线, 如果是在绕球面不到一半距离的情况下, 那么两点之间的长度
是取最小值的. (b) 任何通过北极点 N 的测地线在绕过球面一半后到达南极点 S; 点 S 被称为这些测地线的焦
点. 如本图画出的那样, 从 N 到 S 的测地线是常数经线. 当继续延伸超过半个球面后, 这些测地线不再是长度
最小的了.

q
′

q p

图 15: 如果测地线段 qq′ 可以变形 —— 至少在一阶近似下 —— 到附近连接相同两点的测地线上, 那么 q′ 就
被称为自 q 出发的测地线的焦点.

4.1 黎曼情况

我们将从通常的黎曼几何开始, 在这里我们有更多的直觉17, 随后我们再来看洛伦兹号差的情况.
这里的问题是: 在黎曼几何中, 测地线是两点之间距离最短的曲线吗? 对于足够短的测地线, 答案总是
“是的”, 但一般来说, 如果沿测地线走得太远, 那么测地线就不再是长度最小的了. 一个有启发性的熟
悉例子是有着球面度规的 2 维球面. 两点 q 和 p 之间的测地线绕球面不到一半的距离是这两点之间唯

一的最短路径 (如图 14 (a)). 但是任何离开 q 并且绕球面半圈以上的测地线都不再是长度取最小值的

了. 对于 q 是北极点 N 时, 所发生的情况如图 14 (b) 所示. 自 N 点出发的测地线最初是分开的, 但是
在绕过球面的一半以后,它们在南极重新汇聚. 收敛点称为焦点或共轭点. 如果一条测地线继续延伸到
一个焦点外, 也就是说已经走了一半以上的球面, 不再是长度取最小值的了. 通过“绕球面滑动”, 我
们可以用一条较短的测地线来代替它, 这条短测地线在相同的两个点之间沿着相反的方向绕着球面上
相同的大圆周运动.

这种现象不依赖于球面的任何细节. 考虑自黎曼流形 M 上某 q 点出发的测地线. 设 qp 是这样一

条测地线, 并假设 (如图 15) 测地线的 qq′ 部分可以轻微地变形到附近的另一条测地线, 这条测地线也

17关于这个材料的更多细节, 例如可以参看 [19] 的第 4 章.
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图 16: 这是在图 15 中引入的移动后路径 qq′p 的新图. 在这里, 我们强调这条路径是由两个测地线段 qq′ 和 q′p
组成的, 它们在一个“拐角”处相交. q′ 的包含附近点 r 和 s 的小邻域可以用平坦欧几里得空间的一部分来近
似. 欧几里得空间的三角不等式表明 qq′p 的 rq′s 部分可以用一条直线 rs 来代替, 如虚线所示. 因此, 对 qq′p
“磨圆拐角”减少了曲线的长度.

连接两点 q 和 q′. 由于测地线是长度函数的驻定点, 所以这条移动后的测地线自动与第一条测地线具
有相同的长度. 接着移动后的路径 qq′p 有一个“拐角”, 磨圆拐角可以减少路径的长度. 所以最初的
测地线 qp 不是长度取最小值的.

磨圆拐角能减少长度实际上就是如图 16 所解释的欧几里得空间的三角不等式. 具体来说, 点 q′

的一个小邻域可以用一个在欧几里得空间里相应的邻域来近似, 而在欧几里得空间中, 三角不等式告
诉我们, 磨圆拐角可以减少长度. 定量地说, 如果移动后的路径 qq′p 在点 q 处以一个小角度 α“弯曲”

, 那么磨圆此处的拐角可以将长度减少 α2 的数量级. 我们可以利用一个小平面几何的事实: 拐角附近
的几何可以嵌入到欧几里得空间中, 来验证这一点. 由于 α 与原测地线 qp 中的 qq′ 部分被移动的长度

成正比, 这意味着磨圆拐角减少了二阶的移动长度.

所有的测地线从 q 聚焦到 q′ (就像球面的情况一样) 在这里并不重要. 为了确保测地线 qq′p 不是

长度取最小值的, 只要存在某个可以移动 qq′ 部分 (而不改变其端点) 的方向就足够了. 我们甚至不需
要知道测地线段 qq′ 可以被精确地移动成测地线. 我们只需要知道, 它可以移动, 同时仍然可以在一阶
近似下满足测地线方程. 这样可以保证在二阶近似下移动不会改变长度函数. 不过在 qq′p 中磨圆拐角

确实在二阶近似下减少了长度, 所以如果在二阶近似下移动没有使得长度增加, 那么移动 qq′ 部分并磨

圆拐角将会减少长度.

我们将更详细地解释这一关键之处. 测地线是一条两端点之间的长度取极值的曲线, 因此测地线
段 qq′ 到附近从 q 到 q′ 的路径的任何移动, 在一阶近似下都不会改变线段的长度. 在一阶近似下满足
测地线方程的移动将使长度在二阶近似下保持不变.18 但是正如我们已经注意到的, 磨圆拐角使得长

18为了熟悉这个结论, 可以设 f(y) 是实变量 y 的一个光滑函数, 并假设在 y = y0 处满足方程 df/dy = 0. 我们用
y = y0 + δy 在 y = y0 附近展开函数. 由于 f ′(y0) = 0, 展开的一般形式是 f(y) = f(y0) +

1
2δy

2f ′′(y0) +O(δy3). 但假设方
程 f ′(y) = 0 在 δy 的线性阶近似下仍然成立. 由于 f ′(y) = δyf ′′(y0) +O(δy2), 这个结论等价于 f ′′(y0) = 0, 因此它意味
着 f(y) 直到 δy3 阶近似下都是和 δy 无关的. 在我们的讨论中, y 相当于在给定点 q 和 q′ 之间的路径 x(s), 而 f 相当于
这些路径空间上的长度函数 L. 测地线方程 δL/δx(s) = 0 是 f ′(y) = 0 的类比. 测地线的一阶变分 δx(s) 保持测地线方程
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图 17: 本图说明了测地线 γ 是从点 q 到子流形 W 的最短路径的必要 (但不充分) 条件. (a) γ 必须在相交的点
p 处与 W 正交, 如果不正交, 可以通过如本图所示那样移动 p 来减小其长度, 进而得到正交测地线 γ′. (b) 沿 γ
必须不存在任何焦点. 如果 γ 的部分线段 pq′ 至少在一阶近似下可以移动到也是正交于 W 的从 W 到 q′ 的另
一条测地线, 那么点 q′ ∈ γ 称为焦点. 对于在欧几里得空间里正交到一个凸体的“外行”测地线这是不可能的,
但它可以在一个更一般的情况下发生, 如本图所示.

度在二阶近似下减小. 所以如果一个移动在一阶下满足测地线方程, 那么做一个小移动, 并磨圆拐角,
就会使得长度减小. 在洛伦兹号差情况下所有的这些都将有类时测地线的类比.

总而言之, 如果测地线段 qq′ 可以至少在一阶近似下移动到附近从 q 到 q′ 的测地线, 我们称这个
点 q′ 为焦点 (或共轭点). 由 q 出发的测地线, 一旦延伸超过它的第一个焦点, 它的长度就不再是取最
小值的了. 然而, 没有焦点只是测地线长度取最小值的一个必要条件, 而不是一个充分条件. 例如, 在
一个有着平坦度规的环面上, 无论测地线被延伸多远, 它们都没有焦点. 另一方面, 环面上的任意两点
可以由无穷多条不同的 (同伦不等价的) 测地线连接. 大多数测地线都不是长度取最小值的.

通常, 我们感兴趣的不是从一个点 q 到一个点 p, 而是从 q 到某个给定的集合 W 的长度取最小值

的路径. (这将是我们证明霍金奇性定理的情况.) 简单情况下 W 是一个没有边界的子流形. 从 q 到 W

的距离取极值的路径现在是与 W 正交的测地线. 这里的正交性条件在初等几何中很常见. 如果 γ 是

一条从 q 到 p ∈ W 的测地线, 但是 γ 与 W 在 p 处不是正交的, 那么可以通过稍微移动端点 p 来减少

γ 的长度 (如图 17 (a)).

假设 γ 在点 p 处是与 W 正交的, 如果 q 足够接近 W , 那么它将是长度取最小值的 (而不仅仅是
取极值). 然而, 再一次, 如果 q 离 W 足够远, 它可能会有一个焦点, 在这种情况下, 测地线将不再是长
度取最小值的. 然而, 现在对焦点的恰当定义略有不同 (如图 17 (b)). 从 q 到 W 的测地线 γ 在某点

δL/δx(s) = 0 是 δy 的一阶近似下变分 y = y0 + δy 满足方程 f ′(y) = 0 的类比. 因此, 这种变分使 L 在 δx(s) 的二阶近似
下是不变的. (类光情况下) 测地线的一阶变分在第 8 节中详细讨论.
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图 18: 本图是图 15 的洛伦兹号差情况的类比. (这里和图 19 里的时间一样都是垂直流动的.) 如果一条类时测
地线包含一个焦点 q′, 那么自点 q 出发的这条测地线沿自身路径所经过的固有时不会取最大值. 因为在这种情
况下, 移动给定测地线的 qq′ 部分, 并磨圆由此产生的拐角, 将增加所经过的固有时.

p ∈ W 处与 W 正交, 如果这条测地线的 q′p 部分可以移动——至少在一阶近似下——到附近也连接

q′ 到 W 并与 W 正交的测地线, 那么这测地线 γ 就有一个焦点 q′. 在这种情况下, 就像以前一样, 通过
替换 γ 的 q′W 部分, 然后磨圆“拐角”, 我们就可以找到从 q 到 W 的更短路径.

4.2 洛伦兹号差的类比

现在我们来看看洛伦兹号差的情况. 对于类空测地线,我们前面所讨论的还没有很好的类比. 洛伦
兹号差时空中的类空测地线绝不是长度函数取最小值或最大值情况, 因为空间方向的振荡往往会增加
长度, 而时间方向的振荡往往会减少长度. 类空相间的两点可以被任意短或任意长的类空路径分开.

然而, 我们前面所讨论的对于类时测地线确实有一个好类比. 这里我们应该讨论的是一条测地线
所经过的固有时 (而不是长度), 以及会减少固有时的空间振荡. 因此, 任何类时测地线 γ 的一条充分

短的线段会使测地线所经过的固有时取最大值.19 但是如果我们延伸一条类时测地线超过焦点, 那么
它的固有时就不再是取最大值的了.

焦点的恰当定义和前面一样. 考虑一条去向未来的类时测地线, 它从时空中的 q 点出发 (如图 18).

19在任意时空里, 这至少是局域上正确的, 意味着对于如果 p 处于 q 附近的未来, 和 q, p ∈ γ, 那么 γ 比任何的从 q 到 p
的邻近因果路径有更大的固有时. 如果 M 是强因果的, 那么这个局域结论就足够了, 因为在足够近的相邻点间的因果线没
有更大的固有时.
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图 19: 以强调 qq′ 和 q′p 是类时测地线的方式重画了图 18 里移动后的路径 qq′p. 包含有 r 和 s 的 q′ 的小邻域
可以用闵可夫斯基时空的一部分来近似. 狭义相对论的“双生子佯谬”表明沿 qq′p 的 rq′s 部分所经过的固有时
小于沿如图虚线画出的测地线 rs 经过的固有时. (换句话说, 在世界线 rq′s 上做了旅行的双生兄弟中的一个在
返回时比在世界线 rs 上待在家里的双生兄弟中的另一个要年轻.) 因此, 可以通过磨圆拐角, 用 rs 代替 rq′s 来
增加 qq′p 的固有时.

如果测地线的 qq′ 部分可以稍微移动到另一条连接 q 到 q′ 的类时测地线, 那么我们就称这样的测地线
有一个在 q′ 处的焦点. 这个移动在 q′ 处给出一个拐角, 磨圆拐角将增加固有时. 磨圆拐角会增加固有
时实际上就是狭义相对论的“双生子佯谬”(如图 19), 同样地, 欧几里得号差里类似的结论实际上就是
欧几里得几何的三角不等式 (如图 16).

和欧几里得号差情况一样,由于相同的原因,为了确保原始测地线 qp使固有时取最大值, qp的 qq′

部分能被精确移动为从 q 到 q′ 的测地线不是重要的. 如果能在一阶近似下移动, 那么它就足够了.

初始点和最终点之间的固有时不取最大值的类时测地线有两个例子. 第一个例子来自地球围绕太
阳的运动. 沿这些轨道往复运动的测地线没有使固有时取最大值. 我们可以使固有时比绕太阳往复运
动的更长: 先发射一艘几乎有着太阳系逃逸速度的宇宙飞船, 它的轨道经过很长一段时间的调整, 再使
飞船落回地球, 在此期间地球沿轨道往复运动了很多次. 飞船之所以所经过的固有时要比地球大, 是因
为它受引力红移和洛伦兹时间膨胀的影响较小.

第二个例子来自反德西特时空.20 在这里, 我们可以参考第 2 节的图 3. 一些从 q 出发去向未来的

类时测地线在焦点 q′ 处相遇. 当延伸超过点 q′ 时, 这些测地线不能使固有时取最大值. 例如, 那幅图
中画出的类时测地线 qw 固有时不是最大的. 事实上, 从 q 到 w 的因果路径的固有时没有上界, 因为

20这个例子在初读时可以略去; 或者可以参看附录 A 了解背景.
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图 20: 本图是图 17 的洛伦兹号差类比, 画出了从一点 q 到一张类空超曲面 S 的类时测地线 γ 所经过的固有时
取最大值的必要条件. (a) γ 必须在它们相交的点 p 处与 S 正交, 如果不正交, 可以通过将 p 沿着 S 的适当方
向移动到 p′ 来增加固有时, 如本图所示的那样. (b) 并且 γ 必须不包含焦点 q′. 这里如果 γ 的 q′p 段可以被移
动 (至少在一阶近似下) 到附近的也与 S 正交的类时测地线 q′p′, 那么 q′ 是一个焦点. 在这种情况下, 磨圆复合
路径 qq′p′ 的拐角可以得到一条从 q 到 S 的类时路径, 它的固有时大于 qp 的固有时. 因此, 在图中如果 q′p′ 是
在 p′ 处与 S 正交的测地线, 那么 q′ 是测地线 qp 上的焦点.

从 q 去向 w 的运动至非常接近那幅图边缘的类时路径, 可以在边缘区域逗留一段时间, 然后继续延伸
至 w, 这会使所经过的固有时任意大.

对于从 q 到 p 的类时测地线 ℓ, 没有焦点只是使固有时取最大值的必要条件, 而不是充分条件. 焦
点的存在意味着 ℓ 可以稍微变形成一个具有更长的所经过固有时的类时路径. 但是, 即使这不可能做
到, 也可能存在另一条从 q 到 p 的, 虽然不是 ℓ 微小变形但有着更大固有时的类时路径. 除了我们已
经给出的例子之外, 这一点也可以用圆柱时空的方程 (3.1) 来说明. 这个时空是平坦的, 其中的类时测
地线无论延伸多远都没有焦点. 如果 p 处于 q 足够远的未来, 那么从 q 到 p 之间有多条类时测地线,
它们在从 q 到 p 的路径中绕圆柱体绕行的次数不同. 这些类时测地线经过不同的固有时值, 因此大多
数测地线即使没有焦点也不能使得固有时取最大值.

我们还可以考虑一条从一个点 q 到处于它未来的一个类空子流形 S 的因果路径 γ . 为了使所经
过的固有时取最大值, γ 必须满足与我们在欧几里得情况里所发现的类似条件 (如图 20). 首先, γ 必须
是从 q 到 S 的类时测地线. 其次, 在 γ 与 S 相交的点 p 处, γ 必须与 S 正交. 然后, 在 γ 上必须没有

焦点 q′. 如果 γ 的 q′p 部分可以很小地移动到附近的、也连接 q′ 和 S 且与 S 正交的类时测地线上, 那
么 q′ 是焦点.
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4.3 雷乔杜里方程

为了证明奇性定理, 我们需要一个好的方法来预测类时测地线上焦点的出现. 雷乔杜里方程提供
了这样一种方法. (事实上, 这里有关的是雷乔杜里最初的类时方程 [20], 而不是更微妙的被萨克斯描
述的类光版本 [21], 我们将在适当的时候讨论它. ) 雷乔杜里方程表明, 因为粗糙地说引力倾向于聚焦
相邻的测地线, 焦点很容易被找到.

在 D = d + 1 维里, 我们考虑带有初值超曲面 S 的时空 M , 这张初值超曲面有着局域坐标
x⃗ = (x1, · · · , xd) 的. 通过观察正交于 S 的类时测地线, 我们可以在 S 的邻域构造一个坐标系. 如果一
个点 p处于一条在 x⃗处与 S 正交的, 且从 S 到 p (沿测地线测量)的固有时是 t的类时测地线上, 以及
如果 p 处于 S 的未来, 那么我们用坐标 t, x⃗ 来标记 p, 或者如果处于 S 的过去, 那么我们用坐标 −t, x⃗

来标记 p.

在这个坐标系下 M 的线元是

ds2 = −dt2 + gij(t, x⃗)dxidxj. (4.1)

我们可以验证这一点. 首先, 因为 t 被定义为沿任何有着坐标 xi 的路径所测量的固有时, 所以在这个
坐标系下 gtt = −1. 然后测地线方程能被写为

0 =
D2xµ

Dτ 2
=

d2xµ

dτ 2 + Γµ
αβ

dxα

dτ
dxβ

dτ . (4.2)

在我们的坐标系里, 这个方程被假设有一个解是 t = τ , 以及 xi 等于任意常数. 为此, 我们需要对所有
的 µ 都有 Γµ

tt = 0. 由此可知 ∂tgti = 0. 但是 gti 在 t = 0 时为零 (因为坐标系是使用在 t = 0 处与 S 正

交的测地线构造的), 所以对于所有的 t, 有 gti = 0.

因此只需取使得度规张量满足 gtt = −1, gti = 0 的坐标, 即可得到使用正交测地线构造的坐标系.
正交测地线的几何语言的优势在于, 它将帮助我们理解坐标系是如何失效的. 我们得出的结论将明显
与出于方便选择的 S 的局域坐标系无关.

即使 M 仍然是非奇异的, 如果起源于 S 上不同点的正交测地线在同一点 p ∈ M 处相交, 我们的
坐标系也会失效. 因为在这种情况下, 我们不知道将什么样的 x⃗ 值赋给点 p. 一个相关的结论是, 坐标
系在焦点处失效了. 因为如果来自邻近起点的正交测地线收敛于 p (如图 21), 那么正交测地线的起点
将不是 p 附近一个好坐标系的一部分.

31



S

p

图 21: 如果自一张类空超曲面出发的正交测地线聚焦到处于 S 未来的点 p 处, 那么基于正交测地线的坐标系
将在 p 处失效.

由于 gij(t, x⃗) 衡量邻近正交测地线之间的距离, 所以焦点的一个充分条件是

det gij(t, x⃗) = 0. (4.3)

这个条件实际上是充分且必要的. 但这个条件并不是马上就能看出的, 因为如果 gij(t, x⃗) 的一个本征

值趋于 0, 而另一个本征值趋于 ∞, 那么当焦点出现时, det gij(t, x⃗) 可以保持不变. 然而, 只要 M 保

持光滑, 在 M 中于 q ∈ S 处与 S 正交的测地线经过固有时 t 后达到的点是 t 和 q 的光滑函数. 因此
gij(t, x⃗) 的矩阵元和本征值除了在 M 的奇点外不会发散, 因此 (当 M 是光滑的) 当且仅当 gij(t, x⃗) 的

一个本征值为零时 gij(t, x⃗) 的行列式为零.

雷乔杜里方程为预测在已知时间内 det gij 将趋于 0这一现象提供了一个有用的判据. 不过一般来
说, 这只能代表坐标系的失效, 而不是真正的引力奇点, 但是我们会看到雷乔杜里方程提供的判据是预
测时空奇点的一个有用的出发点.

雷乔杜里方程就是爱因斯坦方程在正交测地线坐标系下的表达

Rtt = 8πG

(
Ttt −

1

D − 2
gttT

α
α

)
. (4.4)

度规 (4.1) 中的直接计算表明

Rtt = −∂tΓ
i
ti − Γi

tjΓ
j
ti = −1

2
∂t(g

ik∂tgik)−
1

4

(
gik∂tgkj

) (
gjm∂tgmi

)
= −1

2
∂tTr g−1ġ − 1

4
Tr(g−1ġ)2, (4.5)

其中符号上面的点表示求 t 的导数.
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定义衡量一小束测地线所占体积的量

V =
√

det g (4.6)

是方便的. 下述量

θ =
V̇

V
=

1

2
Tr g−1ġ (4.7)

被称为膨胀.

定义 g−1ġ 的无迹部分（“剪切”）也是方便的，即

σi
j =

1

2

(
gikġkj −

1

d
δijTr g−1ġ

)
, (4.8)

其中因子 1/2 是为方便而选取的. 所以会有

Rtt = −∂t

(
V̇

V

)
− 1

d

(
V̇

V

)2

− Trσ2 = −θ̇ − θ2

d
− Trσ2. (4.9)

如果我们定义

T̂µν = Tµν −
1

D − 2
gµνT

α
α , (4.10)

那么爱因斯坦-雷乔杜里方程 Rtt = 8πGT̂tt 变为

∂t

(
V̇

V

)
+

1

d

(
V̇

V

)2

= −Trσ2 − 8πGT̂tt. (4.11)

强能量条件是说, 在每一点和每个局域洛伦兹参考系里都有

T̂tt ≥ 0. (4.12)

普通辐射和物质通常的状态方程可以满足这一条件. 负宇宙学常数也满足这个条件. 不满足强能量条
件的代表性例子是正宇宙学常数.21 如果我们假设强能量条件成立, 那么爱因斯坦-雷乔杜里方程右边

21更一般地说, 在一个有着基本的标量场 ϕ 和势能函数 U(ϕ) 的理论中 —— 例如粒子物理的标准模型, 除非 U(ϕ) 是负
定的, 否则就违反了强能量条件 (即使我们假设宇宙学常数消失了, 在标准模型中强能量条件也不被满足).
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的所有项都是负的, 所以我们得到了一个不等式

∂t

(
V̇

V

)
+

1

d

(
V̇

V

)2

≤ 0. (4.13)

等价地有

∂t

(
1

θ

)
= ∂t

(
1

V̇ /V

)
≥ 1

d
. (4.14)

现在我们可以得到焦点出现的一个有用的条件. 让我们回到我们的初值超曲面 S, 并假设在这张
超曲面的某些点处有 θ < 0, 比如说会有 θ = −w, 其中 w > 0. 所以 1/θ 的初值是 −1/w, 而 ∂t(1/θ) 的

下界意味着 1/θ ⩾ −1/w + t/d, 或者是

V̇

V
≤ −

(
1

w
− t

d

)−1

. (4.15)

因为 V̇ /V = d logV /dt, 我们能对它积分来得到

logV (t)− logV (0) ≤ d
(
log(1/w − t/d)− log(1/w)

)
, (4.16)

这表明 logV (t) → −∞, 因此在不超过 t = d/w 的时间后 V (t) → 0.

V (t) 趋于零意味着出现了一个焦点, 或者可能是一个引力奇点. 因此 (假设强能量条件成立) 对于
一条 t = 0 时在有着 θ = −w < 0 的点处离开 S 的测地线, 经过一段固有时 t ≤ d/w 后, 将到达一个
焦点, 或者一个可能的奇点.

在许多情况下, 雷乔杜里方程预测的 V 为零仅仅代表一个焦点, 也就是某个坐标系的失效, 而不
是一个引力奇点. 下面的例子可能有助于理解这一点. 对于 M , 如果我们取闵可夫斯基时空, 那么它当
然没有奇点. 对于初值超曲面 S ⊂ M , 首先考虑平坦超曲面 t = 0. 在这张超曲面上 θ 恒为零, 而正交
测地线只是常 x⃗ 线; 它们并不在焦点处相交. 现在将 S 稍微扰动到 t = εf(x⃗) 上, 其中 f(x⃗) 是某个函

数且 ε是小的实数. 读者应该能够看到, 在这种情况下超曲面上的 θ 不恒为零, 正如雷乔杜里方程所预
测的那样, 正交测地线将到达焦点. 一般来说, 这些焦点出现在 S 的过去或未来, 这取决于 S 在给定区

域中“弯曲”的方式. 显然, 这些焦点与引力奇点无关.

因此, 预测一个引力奇点需要一个更精确的论证, 其中的一些需要超出了雷乔杜里方程.
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4.4 霍金的大爆炸奇性定理

在证明奇性定理时, 霍金假设的宇宙是整体双曲的, 带有柯西超曲面 S. 他还假设了强能量条件成
立, 实际上是假设能动张量是由普通物质和辐射构成的. (因为正宇宙学常数不满足强能量条件, 所以
能给出一种避免霍金结论的方法的暴胀宇宙, 这种宇宙在未来仍然是可能存在的.) 如果宇宙是完全均
匀且各向同性的, 那么它是由弗里德曼-勒梅特-罗伯逊-沃尔克 (简称 FLRW) 解描述的, 并且宇宙能在
过去的一个可计算的时间处从大爆炸中出现.

不过, 更现实的假设是宇宙不是完全均匀的, 而是宇宙的局域哈勃参数处处为正. 这样的宇宙是从
大爆炸中产生的吗? 我们可以想象, 随着爱因斯坦方程在时间上回溯, 不均匀性变得更加严重, FLRW
解就不是一个很好的近似了, 宇宙的部分或大部分 (甚至可能是全部) 并非真正来自初值奇点.

然而, 霍金证明了假设强能量条件成立和假设宇宙是整体双曲的 (当然还假设了经典的爱因斯坦
方程) 的情况下, 上述讨论并不成立. 更确切地说, 他证明了如果局域哈勃参数在初值超曲面 S 上有一

个正的最小值 hmin, 那么在时空中沿任何因果路径不存在处于 S 过去的、固有时超过 1/hmin 的点.

在这里, 我们应该准确地解释一下局域哈勃参数的意思. 对于一个均匀各向同性膨胀，比如我们
熟悉的 FLRW 宇宙模型

ds2 = −dt2 + a2(t)dx⃗2, (4.17)

这里为了简单起见, 忽略了空间截面的曲率, 通常定义哈勃参数为 h = ȧ/a. 我们能将这个线元 (4.17)
看作方程 (4.1) 的一个特例, 从这个角度出发, 得到 h = V̇ /dV (因为 V =

√
det g 等于均匀各向同性情

况下的 ad). 我们一般就用这个定义, 因此假设哈勃参数的坐标系是在方程 (4.1) 下的坐标系, 以及假
设时间是对未来测量的, 会有 V̇ /V ≥ dhmin. 但是我们也将测量去向过去的时间, 因此与前面相反我们
将假设写成

V̇

V
≤ −dhmin. (4.18)

霍金的证明由比较两个命题组成. (1) 由于宇宙是整体双曲的, 如第 3.3 小节所述, 每一点 p 都通

过一条固有时取最大值的因果路径连接到 S. 我们从图 20 的讨论中知道, 这样的路径是一条没有焦点
的与 S 正交的类时测地线. (2) 但是超曲面 S 上 V̇ /V 的初值是处处 ⩽ −dhmin 的假设意味着任何与

S 正交的去向过去的类时测地线最多在固有时 1/hmin 内就会出现一个焦点.

结合这两个命题我们发现在时空中没有任何一个处于 S 过去的、沿任何因果路径的固有时会超

过 1/hmin 的点. 因此 (根据霍金的假设) 局域哈勃参数的最小值给出了在过去宇宙中任何东西可能存
在的时间的上限. 这就是霍金关于大爆炸的定理.
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霍金定理的一个替代表述是, 不存在从 S 延续到过去的固有时超过 1/hmin 的类时测地线. 否则,
就会存在处于 S 的过去的点 p ∈ γ 沿 γ 测量的固有时会大于 1/hmin, 这与刚刚所证明的相矛盾.

在欧几里得号差下, 如果任意测地线可以朝两个方向上延伸任意大的距离, 那么黎曼流形就是测
地完备的. 在洛伦兹号差下, 对于类时测地线, 类空测地线或类光测地线都独立拥有完备性的概念, 即
任何类时、类空或类光测地线都可以朝两个方向上延伸, 分别达到固有时、距离或仿射参数的任意大
值. 霍金奇性定理表明, 满足一些特定假设的大爆炸时空在一个非常强的意义上是测地不完备的: 没有
从 S 延伸到过去的固有时超过一个上界的类时测地线. (我们将在第 5.6 节讨论的彭罗斯定理中给出
类光测地线测地不完备的一个更弱命题: 在一些特定条件下, 不是所有的类光测地线都可以无限延伸.)

尽管霍金奇性定理一般被认为是关于大爆炸奇点的一个结论, 但这个定理的表述或证明并不直接
涉及到奇点. 事实上, 直到今天, 我们对涉及奇点的爱因斯坦方程意味着什么也只有有限的理解. 回到
彭罗斯 [9], 在经典的奇性定理中, 我们只研究时空的光滑部分, 或者换句话说, “时空”被定义为有着
洛伦兹号差的光滑度规的流形 (这是我们在第 2 节的脚注 1 中就开始的定义), 那么“奇性定理”实际
上是关于时空测地不完备性的结论. 在霍金奇性定理的情况下, 我们可能会推测, 去向过去的从 S 开

始的类时测地线不能无限延伸的原因是它们终止于奇点, 就像在简单的 FLRW 模型中一样, 但这超出
了所证明的范畴. 后文讨论彭罗斯定理时, 我们将更详细地探讨这一点.

5 类光测地线和彭罗斯定理

5.1 迅捷性

希望我们在第 4节中对类时测地线的研究足够有趣，以致于读者渴望对类光测地线进行类似的研
究. 在本节中，我们将解释类光测地线的特性，这些特性是彭罗斯定理和理解黑洞等应用所必需的. 一
些重要的点在本节中仅作非正式解释，之后在第 8 节中会重新进行更精确的讨论. 一些陈述的逆将在
附录 F 中解释.

除非另有规定，否则将假设因果路径，特别是类光测地线是未来走向的. 当然，类似的陈述也适
用于过去走向的因果路径，只要将未来和过去的角色相互交换即可.

任何类光测地线的固有时流逝总是零. 然而，有一个很好的概念，它的性质类似于类时路径的“最
大固有时流逝”. 这概念即是，如果从 q 到 p 没有因果路径更早到达，我们就说从 q 到 p 的因果路径

是“迅捷的”. 准确地说，如果没有从 q 到 p 附近的点 r 的因果路径 ℓ′，其中 r 恰恰处于 p 的过去，
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图 22: 在图中，时间是沿着垂直方向运行的，因此 r 是 p 的过去. 如果不存在从 q 点到 r 这样处于 p 过去的
点的任何因果路径 γ′，则从 q 到 p 的因果路径 γ 就是“迅捷的”.

则从 q 到 p 的路径 ℓ 是迅捷的（图 22）．

从 q 到 p 的迅捷因果路径仅存在于刚刚能够通过因果路径从 q 到达 p 时. 为形式化表述它，我
们将 q 的因果未来写成 J+(q)，它由所有从 q 出发并走向未来的因果路径所能到达的点组成，∂J+(q)

是其边界. 如果 p 可以通过迅捷因果路径 ℓ 从 q 到达，那么 p ∈ J+(q)（因为 ℓ 是因果的），并且实际

上 p ∈ ∂J+(q)（因为略微处于 p 过去的点都不在 J+(q) 中）．因此，几乎根据定义，仅当 p ∈ ∂J+(q)

时从 q 到 p 的迅捷因果路径才能存在.

例如，如果 q 是闵可夫斯基时空中的一个点，那么 J+(q) 由未来光锥内或未来光锥上的点组成

(图 23)；∂J+(q) 由未来光锥本身组成. 每一点 p ∈ ∂J+(q) 都通过一根类光测地线连接到 q，并且这根

类光测地线是一条迅捷因果路径.

在遵循适当因果条件的时空中，类光测地线的足够短的一段作为其端点之间的路径总是迅捷的，

就像在闵可夫斯基时空中一样. 但正如读者可以验证的那样，这句话确实需要一个因果条件，因为它
在具有闭合类时线的时空中是不对的.在本节的最后，我们将证明强因果条件就足够了.而如果持续走
足够远，那类光测地线就可能会因为引力透镜效应而变得不迅捷. 例如，当我们看到同一次超新星爆
发的多个像，这些像不在同一时间到达，显然，不是最先到达的像并不迅捷.

类光测地线的迅捷部分总是一个初始段，因为如果类光测地线一直持续到它变为不迅捷，那再延

续它也不会使得它再次迅捷. 要看到这一点，假设一条从 q 到 p 的未来走向类光测地线 γ 在未来持续

向前，直到它到达点某个点 r. 假设 γ 作为从 q 到 p 的路径不迅捷，这意味着从 q 有一条因果线 γ′ 到

达刚好在 p 过去的一个点 p′（图 24(a)）．然后，我们可以保持始终接近 γ 并在其附近的过去，如此向
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图 23: 如果 q 是闵可夫斯基时空中的一个点，那么 q 的因果未来 J+(q) 由 q 未来光锥中或未来光锥上的所有
点组成. 其边界 ∂J+(q) 由未来光锥上的点组成. 我们认为 q 本身包含在 J+(q) 和 ∂J+(q) 中.

未来延续 γ′，我们就得到了一条从 q 到 r′ 点的因果线，该 r′ 点刚好是 r 的过去，这就表明 γ 作为从

q 到 r 的路径是不迅捷的（图 24(b)）．请注意，单根测地线（例如 γ）的非常小的邻域在良好近似上

总可以嵌入到闵可夫斯基空时空中，因此人们可以将 p 和 r 之间区域中的 γ 和 γ′ 间的关系想象为闵

可夫斯基时空中的类光直线与在其附近过去的因果路径（可能接近于一根平行类光线）之间的关系.

迅捷因果路径具有非常特殊的性质，最终使它们成为固有时最大化类时路径的良好类比. 一条从
q 到 r 的因果路径 ℓ，如果其切向量在某处类时（而不是类光），那它就不可能迅捷. 因为通过稍稍修
改 ℓ 以使其处处类光，我们总可以找到一条从 q 发出的因果路径，该路径略处于 ℓ 的过去. 实际上，
要想迅捷，ℓ 必须是一根类光测地线，因为如果它在任何地方“弯曲”，人们就可以通过拉直弯曲（在

一个可以用闵可夫斯基时空来近似的小区域中）来走捷径，并再次将 ℓ 替换为从 q 发出并略处于其过

去的因果路径. 在闵可夫斯基时空中，这些陈述相当于断言，要尽快到达某个地方，人们应该以光速
直线行进. 这些陈述之所以在一般情况下也正确，是因为任何时空中一个足够小的部分总可以用闵可
夫斯基时空来近似.如果 ℓ在点 p ∈ ℓ处未能成为类光测地线，那么，在 p的一个局部闵氏邻域中，就

可以用一条因果路径 ℓ′ 替换 ℓ，使几乎直到 p 为止 ℓ′ 都与 ℓ 一致，而此后就略微处于 ℓ 的过去. 然后，
无论 ℓ 对 p 的未来做了什么，人们都可以用类似的方式延续 ℓ′，并保持让它始终略微处于 ℓ 的过去.
p 以外区域中 ℓ′ 和 ℓ 之间的关系类似于图 24(b) 中 γ′ 和 γ 之间的关系.

在本节即将结束之际，我们表明，在强因果时空 M 中，每条类光测地线都有一个迅捷的初始段.
假设 γ 是一根源于点 q 的未来走向类光测地线. 如果 q 沿着 γ 的未来上存在一点 p，它具有如下属

性，即 γ 是从 q 到 p 的唯一因果路径，则 γ 的 qp 段是迅捷的. 相反的情况——即 γ 上任意接近 q 的

点都可以通过 γ 以外的因果路径从 q 到达——在强因果时空中是不可能的. 要看清这一点，请注意 q
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图 24: (a) 类光测地线 γ 不是从 q 到 p 的迅捷路径，因为 γ′ 是从 q 到达略微处于 p 点过去的 p′ 点的因果路
径. (b) 当延续到稍后的点 r 时，γ 作为从 q 到 r 的路径也是不迅捷的，因为 γ′ 同样可以从 p′ 延续到一个刚
好处于 r 过去的点 r′.

有一个局部闵氏邻域 U，它可以很好地用闵可夫斯基时空中的一个因果菱形的内部来近似. 这意味着
任何类光测地线 qp ⊂ U 在 U 内的所有路径之中都是迅捷的，并且事实上它是 U 内从 q 到 p 的唯一

因果路径. 到这还不需要强因果性. 而如果 M 是强因果的，那么 q 就有一个可能更小的邻域 V ⊂ U，

其性质是 M 的任何连接 V 中两点的因果路径都完全包含在 V 内. 综合这些陈述，我们可以看到，如
果 p ∈ V，那从 q 到 p 的任何类光测地线段将完全包含在 V ⊂ U 中，因此是迅捷的. 因此，如果 ℓ 是

从 q 发出的任何未来走向类光测地线，则其位于 V 中的初始段是迅捷的.

类时测地线也有如下类似的问题. 如果 γ 是一根类时测地线，那么 γ 的一个小初始段是否最大化

了其端点之间的固有时呢？我们让读者来验证这一说法在具有闭合类时线的时空中是错误的，而在强

因果时空中是正确的.

5.2 迅捷性和焦点

为变得迅捷，从 q 到 p 的类光测地线 ℓ 必须不包含焦点.22 这里，如果测地线 ℓ = qp 的 qq′ 段可

以被移位到一条邻近的从 q 到 q′ 的类光测地线（至少在一阶近似上，如稍后所述），则 q′ 是一个焦点

（图 25）．如果是这样，那么通过稍微移位 ℓ 的 qq′ 段，就可以得到一条从 q 到 p 的不是类光测地线

的因果路径，因为它在 q′ 处有一个“拐角”. 由于不是一根类光测地线，这条因果路径就不是迅捷的，
并且正如我们在 5.1 节中所学到的，它可以稍加修改，进而得到一条从 q 发出的到达 p 点的稍稍过去

的因果路径. 在图 26 中，我们放大了移位路径 qq′p 中的拐角 q′，并具体描述了上述修改. 图 26 的细
节与有关欧几里得号差中的测地线的类似图 16略有不同，也与洛伦兹号差中的类时测地线的图 19略

22有关基于公式而非图片的对以下内容的详细说明，参见第 8 节.
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图 25: 图示的是一根类光测地线段 qp. 如果 qp 的 qq′ 段可以移位成一条邻近的从 q 到 q′ 的类光测地线（至少
在一阶近似上可以），则 q′ 点被称为源自 q 的类光测地线的一个焦点. 如果原来的测地线 qp 包含这样的焦点，
则它不迅捷.

有不同；人们必须以一种不仅只在拐角附近而且要延续到未来的方式修改形变路径 qq′p. 这是由于类
光测地线并不最小化或最大化长度或固有时之类的积分；而迅捷性是一个更为全局性的概念，根据定

义它取决于信号何时到达.

正如在对类时或欧几里得号差测地线的类似讨论中一样，这里没有必要将类光测地线段 qq′ 精确

地移位到连接相同两点的邻近类光测地线. 只要 qq′ 段可以用在一阶近似上满足类光测地线条件的方

式移位，就足够了. 在第 8 节中可以找到对这一点的详细解释. 粗略的想法是，通过改变拐角附近和
拐角之外的行为，进而使移位路径 qq′p更迅捷的程度相对于移动来说是二阶改变量，而如果移位在一

阶近似上满足测地线方程，那么它不精确地满足该方程的事实在二阶近似中是没有影响的.

我们可以通过将之前 4.1 节中欧几里得号差情形的一个例子推广到洛伦兹号差，进而说明类光测
地线的焦点及其所带来的后果. 假设 M = R× S2 上有如下通常的线元

ds2 = −dt2 +R2dΩ2, (5.1)

其中 R 被时间 t 参数化, 而 R2dΩ2 是一个半径 R 的球面的线元. 这个时空中的类光测地线正是 S2 上

的黎曼测地线, 只是将其弧长参数化为 t. 如第 4.1 节所述，在欧几里得情形下，S2 上的测地线在绕球

面运行到一半时到达一个焦点；一旦继续超过该点，它就不再是长度最小化曲线了，因为沿相反方向

绕球面的那根测地线会更短. 同样，R × S2 上的类光测地线在绕球面运行到一半时也到达一个焦点；

当继续超过该点时，它就不再迅捷了，因为人们可以通过沿相反方向绕球面的运动而更快地到达同一

目的地.
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图 26: 这里，rq′s 是图 25 中移位路径 qq′p 的拐角 q′ 的邻域. 这张图类似于描述类时测地线类似情形的图 19，
但在现在这种类光情形下，我们只显示了拐角位置的一个局部闵氏邻域. 因此，我们将 rq′ 和 q′s 看作是闵可夫
斯基时空中的两条非共线类光测地线（在图中用与垂直线成 π/4 角的直线表示；事实上，通过洛伦兹变换，闵
可夫斯基时空中的两条非共线的类光测地线总可以变成“背靠背”排布，如图所示）．通过将类光测地线段 q′s
替换为类光测地线线段 q′′s′（虚线）（它与 q′s 平行，但位于 q′s 的过去），人们可以用更迅捷的因果路径 rq′′s′

替换 rq′s. 然后，无论路径 q′s 在延续到未来时做了什么，人们都可以像这样将 q′′s′ 延续到未来，即保持它与
q′s 平行并恰好处于其过去，如图 24(b) 所示. 这么做的结果就是用一条更迅捷的因果路径替换了原来的移位路
径 qq′p.

我们在第 4.2 节中对类时测地线的一个评论在这里有一个类比. 如果一条从 q 到 p 的类光测地线

ℓ 要迅捷，线段 qp 中没有焦点是必要条件，但不是充分条件. 焦点的存在意味着 ℓ 可以稍微形变到邻

近的一条因果路径，这条因果路径是从 q 到稍稍处于 p 的过去的点 p′. 但即使没有焦点，也可能存在
从 q 到 p′ 的某条因果路径 γ，虽然它不是 ℓ 的轻微形变.

如果存在这样的 γ——这意味着 ℓ 不是迅捷的——那么 ℓ 就不是非时序的. 为此，假设存在从 q

到 p′ 的因果路径 γ，并假设 λ 是从 p′ 到 p 的类时路径. 那么 γ ∗ λ 就是从 q 到 p 的因果路径，它不

处处类光. 因此这条路径就可以形变为从 q 到 p 的严格的类时路径，这表明 ℓ 不是非时序的. 反过来，
如果 ℓ 不是非时序的，则它就不是迅捷的. 具体来说，如果 ℓ 不是非时序的，则根据定义，这意味着

测地线 ℓ = qp 中的两点 r, r′ 之间存在一条类时路径 γ（图 27）．将 ℓ 的 rr′ 段替换为 γ，我们就得到

了一条从 q 到 p 的因果路径，该路径不是类光测地线. 像通常一样，这条路径可以形变为从 q 到点 p′

的因果路径，其中 p′ 处于 p 附近的过去，这表明 ℓ 不是迅捷的. 总而言之，从 q 到 p 的类光测地线 ℓ

是迅捷的，当且仅当它是非时序的.

到目前为止，我们已经讨论了两点之间的迅捷因果路径.更一般地，如果 W 是时空中的任何一个

集合，如果一条从 W 到 p 的未来走向的因果路径尽可能快地到达（意味着没有因果路径从 W 到达

p 的过去），我们就说它是迅捷的. 与前面一样，为了迅捷，一条从 W 到 p 的因果路径 ℓ 必须是一根
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图 27: 这里 ℓ 是 q 和 p 两点之间的类光测地线. ℓ 不是非时序的，因为它的 rr′ 段可以由这两点之间的类时路
径 γ 代替. 因此，ℓ 的 rr′ 段可以替换为一条从 r 发出严格到达 r′ 的过去的因果路径，并且可以在保持一直处
于 ℓ 的过去的前提下延续到未来. 因此，当超越 r′ 点时，ℓ 就不是迅捷的. 为便于以后参考，类似的，如果 γ 被
假定为从 r 到 r′ 的类光测地线（而非类时路径），并且与 ℓ 的 rr′ 段不同，则 ℓ 在严格大于 rr′ 的任何区间上
也都不是迅捷的.
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图 28: (a) ℓ 是一条从类空子流形 W 到某点 p ∈ M 的类光测地线. 要使 ℓ 迅捷，它必须在离开 W 的点 q 处
与 W 正交. 否则，通过将 q 稍微“朝着”p 移动，人们就可以将 ℓ 替换为另一条到 p 的因果线，该曲线获得
“领先”并到达 p 的过去.（这张图可以理解为描绘了时间 t = 0 时闵可夫斯基四维时空的一个切片. W 是嵌入
在 t = 0 的两维球面，类光测地线 ℓ 已投影到 t = 0 切片. 请注意，如果 ℓ 在四维上与 W 正交，则其在三维上
的投影也与 W 正交，如图所示.）(b) 即使正交于 W，但如果 ℓ 的一段 qq′ 可以移动到邻近的类光测地线，并
在另一个点 r 与 W 正交，则 ℓ 也不是迅捷的. 因为该移动给出了一条新的从 W 到 p 的因果路径，该路径不是
类光测地线，因此可以修改为一条更迅捷的因果路径. 在这种情况下，我们说点 q′ 是来自 W 的正交类光测地
线的一个焦点. 如果 W 是一个支撑在 t = 0 的圆球，并且测地线 ℓ 是“外行的”，则在闵可夫斯基时空中就不
会出现这种情况，但对于更一般的 W，如图所示，或者对于嵌入在更一般时空中的圆球，或对于来自闵可夫斯
基时空中圆球的“内行”测地线，就可以出现这种情况.
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非时序类光测地线. 如果 W 是时空的一个类空子流形，则除此之外 ℓ 还必须在它与 W 相遇的点 q 处

与 W 正交，如图 28(a) 所示. 否则，通过稍微改变 ℓ 的初始点，就可以得到一条新的从 W 到 p 的因

果路径，该路径并非处处类光，因此可以形变为稍早到达的路径.

类空子流形 W 和与其相交的类光曲线之间的正交性只有在 W 具有至少 2 的实余维数时才是可
能的.这是关于洛伦兹号差几何的一个基础但根本的事实.例如，在具有线元 ds2 = −dt2+

∑D−1
i=1 (dxi)2

的闵可夫斯基时空中，通过原点的余维数为 1 类空超曲面可以在某些洛伦兹参考系中通过方程 t = 0

局部地刻画. 该超曲面与类时向量 (1, 0, 0, · · · , 0) 正交，但不与任何类光向量正交. 因为这个问题实际
上只涉及线性代数，所以这个例子是完全有代表性的. 相比之下，考虑由 t = x1 = 0 定义的余维数为

2 类空超曲面 W . 它与类光向量 u± = (1,±1, 0, · · · , 0) 都正交，这里 ± 可以任意选择一个符号. 这两
个向量都是未来指向的. 因此，在 W 具有余维数 2 的重要情形中，W 中的每个点都有两个不同的未

来指向的正交类光方向. 对于更高余维数的情形，与类光向量正交的条件将变得限制性更少.

与往常一样，迅捷性还有一个进一步的条件，即涉及焦点. 如果 ℓ 是从 W 到 p 的正交类光测地

线，则为了迅捷，ℓ 必须没有焦点，这里，如果 ℓ 的连接 W 和 q′ 的那段可以稍微移位到邻近的类光

测地线上，并且这条类光测地线也将 W 连接到 q′ 并与 W 正交，则 q′ 就是一个焦点（图 28(b)）．推
理与前面的例子类似；在进行一个这样的移位后，就有一个拐角，然后再修改拐角附近和之外的路径

（正如图 26 所示），人们就可以得到一条从 W 发出并严格到达 p 的过去的因果路径.

现在假设余维数为 2 闭合类空子流形 W 是余维数为 1 类空子流形 Z 的边界.（例如，W 可能是

一个球面，以 |x⃗| = R，t = 0 的通常方式嵌入闵可夫斯基时空，而 Z 可以是相应的闭球体 |x⃗| ≤ R，

t = 0）．什么是从 Z 到 p /∈ Z 的迅捷因果路径呢？它必须是从 Z 到 p 的类光测地线；如果它在 Z

内部的点离开 Z，而它必须与 Z 正交，但类光测地线和余维数为 1 类空流形之间正交是不可能的. 因
此，从 Z 到 p 的迅捷因果路径必须从边界点（即 W 中的一个点）离开 Z. 它必须与 W 正交，才能

作为从 W 发出的迅捷路径，更不用说考虑从 Z 发出. 即使一条因果路径作为从 W 发出的路径是迅

捷的，作为从 Z 发出的路径它也不一定迅捷，但可能迅捷. 对于 Z 是闵可夫斯基时空中的一个闭球

体的情形，读者可能想知道通过迅捷因果路径可以从 Z 到达闵可夫斯基时空中的哪些点，以及这些

路径是什么. 还有，来自 W 的所有迅捷因果路径作为来自 Z 的路径是否都迅捷？

一般来说，对于任何集合 W，我们将 W 的因果未来写成 J+(W )——即可以通过因果路径从 W

到达的点的集合. 对于 J+(W ) 中的某个点 p ∈ J+(W )，如果 p 的某个小邻域也在 J+(W ) 中，则 p 在

J+(W ) 的内部，否则我们说它在 J+(W ) 的边界 ∂J+(W ) 上. 如果 p ∈ J+(W )，而且稍稍处于 p 过去

的点 r 也在 J+(W ) 中，则 p 就位于 J+(W ) 的内部. 另一方面，如果 p 在 J+(W ) 中，但稍稍处于 p

过去的点都不在 J+(W ) 中，那么 p 就没有位于 J+(W ) 中的邻域，因此取而代之的是 p ∈ ∂J+(W ).
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举例来说，假如 W 是闵可夫斯基时空中的某点 q，读者应该能够理解以上陈述的含义.

一个重要的细节是，如第 2 节的脚注 2 所示，我们认为 W 本身在 J+(W ) 中；换句话说，我们

允许未来走向的因果线只由一个点组成的情形. 这样做的目的是确保在整体双曲时空 M 中，对于紧

致的 W，J+(W ) 和 ∂J+(W ) 都是 M 中的闭集. 这将使彭罗斯定理的讨论更简单.

为了证明如果 W 是紧致的并且 M 是整体双曲的，那么 J+(W ) 是 M 中的闭集，我们将证明

如果某个序列 p1, p2, · · · ∈ J+(W ) 在 M 中收敛到点 p，那么实际上 p ∈ J+(W ). 事实上，这些点
pi ∈ J+(W ) 可以通过未来走向的因果线 γi（图 29）从 W 到达. 而由于整体双曲时空中因果线空间
的紧致性，γi 具有一个收敛的子列，它将收敛于一条从 W 到 p 的未来走向的因果线 γ a，这表明

p ∈ J+(W ) 中.（如果我们不认为 W 是在 J+(W ) 中，那么就可能有 pi 严格位于 W 的因果未来中，

但是 p ∈ W，这将使得上述论证失效.）为了证明 ∂J+(W ) 也是闭集，我们将证明如果 pi 实际上是在

∂J+(W ) 中，那么 p 也必须是在 ∂J+(W ) 中，而不是在 J+(W ) 的内部. 事实上，如果 p 在 J+(W ) 的

内部，那么 p 的某个邻域也在内部，所以如果序列 p1, p2, · · · 收敛到 p，那么对应足够大 i 的 pi 就在

J+(W ) 的内部，这与它们在 ∂J+(W ) 中的假设矛盾.

如果 p ∈ ∂J+(W )，则可以通过一条未来走向的因果线 γ 从 W 到达 p（根据 J+(W )的定义），更

具体地说，任何这样的 γ 都是迅捷的，因此是没有焦点的类光测地线. 事实上，如果 γ 不迅捷，那么

就有一条因果线 γ′ 从 W 到达位于 p 点过去的点 p′，在这种情况下，p 就位于 J+(W ) 的内部，而不

是边界.

类似的论证表明，∂J+(W ) 总是非时序的. 因为如果 p ∈ ∂J+(W )，并且 γ 是从 p 到 p′ 的未来走

向类时路径，那么 p 的未来中包含 p′ 的某个邻域（图 30）；因此，p′ 位于 J+(W ) 的内部，而不是其

边界. 作为一个例子，闵可夫斯基时空中某点 q 的未来光锥是非时序的.

5.3 对未来边界的探讨

任何紧集 W ⊂ M 的未来边界有一个额外的性质，这对理解黑洞很重要：∂J+(W ) 总是 M 的一

个余维数为 1 子流形，尽管通常不光滑；此外，如果 M 是整体双曲的，则 ∂J+(W ) 在 M 中是闭的

（如我们从 5.2节所知），因此它实际上是 M 的闭子流形. 再次考虑 q 是闵可夫斯基时空中的一个点的

例子（图 23）．∂J+(q) 是未来光锥，包括锥的顶点. 它是闵可夫斯基时空中的一个闭子流形，但（由
于 q 处的锥形奇点）它并不是光滑地嵌入到闵可夫斯基时空中. 这例子是典型的情况.

a[译注：依赖于 W 的紧致性，否则 γ 的出发点可能不属于 W , 从而使论证失效.]
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γ2 γ

J+(W )

p

γ1

p1 p2

图 29: 如果 p ∈ ∂J+(W )，则在 J+(W ) 的内部有一系列点 p1, p2, · · ·，这些点收敛到 p. 每个 pi 都可以通过因
果路径 γi 从 W 到达. 在整体双曲时空中，γi 的子列将收敛到从 W 到 p 的因果路径 γ，γ 将自动是迅捷的，因
为如果从 W 到 p 的过去有一条因果路径，这将意味着 p 位于 J+(W ) 的内部，而不是其边界.

W

J+(W ) γ

p

p′

图 30: 这张图的目的是表明，对于时空的任何子集 W，∂J+(W ) 总是非时序的. 因为对于 p, p′ ∈ ∂J+(W )，如
果有一条从 p 到 p′ 的未来走向类时路径 γ，那么就可以通过一条类时路径从 p（从而从 W）到达 p′ 的某个邻
域. 因此，p′ 位于 J+(W ) 的内部，而不是其边界. 因此，在图中，曲线 γ 不可能在任何地方都是类时的. 这个
推理的一个扩展表明，如果 γ 是从 p 到 p′ 的因果线，则它必须是完全包含在 ∂J+(W ) 中的类光测地线.
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x⃗ = c⃗

p
J+(W )

图 31: 这里我们展示了点 p ∈ ∂J+(W ) 的一个小邻域，目的是证明在 p 点附近 ∂J+(W ) 是一个流形. 阴影区
域表示 J+(W ). 在足够小的 p 邻域中，我们选取时间坐标 t 和空间坐标 x⃗，使得 p 位于 t = x⃗ = 0. 对于常数 c⃗，
现在考虑由 x⃗ = c⃗ 定义的类时路径 γc⃗. 如文中所述，对于足够小的 c⃗，γc⃗ 与 ∂J+(W ) 相交于唯一点. 因此，我们
可以通过坐标 c⃗ 对 p 附近的 ∂J+(W ) 进行参数化，表明 ∂J+(W ) 在 p 附近是一个流形. 对于每一 p ∈ ∂J+(W )
都是如此，所以 ∂J+(W ) 是一个流形.

要显示一般情况下 ∂J+(W ) 是流形，可以选择任意点 p ∈ ∂J+(W ). 我们想证明 ∂J+(W ) 在 p 附

近是一个流形.我们在 p附近选取一个小球，其中 M 可以用闵可夫斯基时空来近似，并选取以 p为原

点的坐标 t, x⃗（图 31）．考虑空间坐标为固定值 x⃗ = c⃗ 并由 t 参数化的类时路径 γc⃗. 由于 p ∈ ∂J+(W )，

位于 p 过去的点不在 J+(W ) 中，而位于 p 未来的点都在 J+(W ) 中. 对于足够小的 c⃗，如果 t0 足够

负，则点 t = t0, x⃗ = c⃗ 位于 p 的过去，因此不在 J+(W ) 中，而如果 t0 足够正，则这个点就位于 p 的

未来，因此就在 J+(W ) 中. 因此，当 t 从负值变为正值时，存在第一个值 t = t0(c⃗)，此时点 (t, c⃗) 刚

刚位于 J+(W ) 中，该点就处于 ∂J+(W ) 上. 如果 t > t0(c⃗)，则点 (t, c⃗) 位于 J+(W ) 的内部. 因此，在
p 附近，∂J+(W ) 由点 (t0(c⃗), c⃗) 组成. 因此，在 p 附近 ∂J+(W ) 可以通过 c⃗ 参数化，特别的，它是 M

中的一个余维数为 1 的流形.

返回 W 由单个点 q 组成的示例是一个很好的练习（这时候 ∂J+(W ) 是 q 的未来光锥），可以验

证，即使我们选择 p = q ∈ ∂J+(W )，刚才给出的推理也是有效的. 再举一个例子，假设 W 是一个圆

周或一个两维球面，并且以通常的方式嵌入到闵可夫斯基四维时空中. 请描述 ∂J+(W )，并表明它是

一个流形，尽管并不是光滑地嵌入时空中. 请问 ∂J+(W ) 的拓扑是什么？然后，请用椭圆或椭球面代

替圆周或球面回答同样的问题. 您应该发现在每一种情形中 ∂J+(W ) 在拓扑上都与初值曲面 t = 0 等

价，这里 t 是时间. 特别是，∂J+(W ) 从不紧致. 事实上，根据图 8 所示的一般论点，闵可夫斯基时空
中没有紧致的非时序超曲面.

46



W

Y

图 32: 如果 W 是时空中一个余维数为 2 的类空子流形，则有两簇未来走向的类光测地线从 W 发出. 在图中，
其中的“外行”簇扫过一个类光超曲面 Y .

5.4 类光雷乔杜里方程

正如第 4 节所述，为了取得进展，我们需要一种合理的方法来预测类光测地线何时将产生焦点.
这是由类光雷乔杜里方程提供的（萨克斯 [21] 首次描述了雷乔杜里原始方程的类光类比）．

设 W 是时空 M 的余维数为 2 类空子流形. 例如，如果 M 是闵可夫斯基时空，则 W 可能是一

个球面，以标准方式嵌入具有线元 ds2 = −dt2 + dx⃗2 的闵可夫斯基时空中，作为其子流形 x⃗2 = R2、

t = 0.

从 W 发出的是两个与 W 正交的未来走向类光测地线簇（图 32）．在适当的条件下（例如，如果
W 是闵可夫斯基时空中的球面），人们可以自然地将这些簇称为“外行的”和“内行的”. 接下来，我
们只关注这两个簇中的一个，为了方便起见，我们将其称为外行簇.

来自 W 的外行正交类光测地线扫出一个余维数为 1 子流形 Y ⊂ M . 更准确地说，在 W 附近 Y

是一个流形. 而当我们将正交类光测地线延伸得足够远，使得它们彼此相交或形成焦点时，Y 就可能

无法再是流形. 这实际上就是我们感兴趣的现象.

可以在 Y 上选择一组相当自然的坐标. 首先，我们在 W 上选取任意一组局部坐标 xA，A =

1� · · · �D − 2. 在第 4.3 节中有点类似的情况下，我们选择了沿类时测地线测量的固有时作为一个附加
坐标. 对于类光测地线，没有固有时的概念. 但类光测地线的仿射参数可以部分代替固有时.
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图 33: 余维数为 2 的类空子流形 W 总是可以局部嵌入到类空超曲面 S 中. 此外，在 W 附近，S 可以被一簇
余维数为 2 子流形 Wε, ε ∈ R 扫出，并使得 W0 就是原来的 W .

对于由仿射参数 λ 参数化的测地线，测地线方程如下

0 =
D2xµ

Dλ2
=

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ
dxβ

dλ . (5.2)

测地线方程的这个仿射参数版本在如下仿射变换下是不变的

λ → aλ+ b, a, b ∈ R, (5.3)

两个可以通过这样一个变换联系起来的解被认为是等价的.

在构成 Y 的每一根类光测地线 ℓ 上，我们选取一个仿射坐标 u，该坐标向未来的方向增加，并在

点 ℓ ∩W 处取零. 在可以将其乘以一个正常数的意义上，这唯一地确定了 u.

当然，如果我们让 xA 变化，这个相乘的“常数”可以是 xA 的函数. 因此，对每条 ℓ，我们在 Y

上得到了一个光滑函数 u（确保以一种随 xA 光滑变化的方式归一化 u），该函数被唯一确定到只剩可

以乘以一个 xA 的正函数（即一个 W 上的正函数）的可能性. 对这种可能性，我们可以做出任意的具
体选择. 此外，我们可以将 xA 从 W 上的函数扩展到 Y 上的函数，方法是声明它们在每条 ℓ 上是常

数. 因此现在，我们在 D − 1-流形 Y 上就有了一个完整的局部坐标系统 xA 和 u. 要想完善它，使之
成为 M 上或至少 Y 的邻域上的坐标系统，我们还需要一个函数 v，并且当然我们需要将 xA 和 u 扩

展到 Y 之外.

这样做的一种方法（图 33）是首先将W 嵌入到一个类空超曲面 S 中，该超曲面至少可以在W 附

近局部地定义（我们只对 W 附近发生的情况感兴趣）．然后我们用一簇余维数为 2 子流形 Wε，ε ∈ R
局部地构建 S，其中 W0 就是原来的 W . 为此，我们只需在 S 上选择一个函数 v，沿着 W 该函数取

零，但它具有一个处处非零的法向导数，进而我们通过条件 v = ε 定义 Wε. 我们以一种任意的方式将
xA 扩展为 S 上的函数. 然后我们考虑由 Wε 发出的外行正交类光测地线，就像我们对原来的 W 所做

的那样.让 ε变化，由于我们现在允许这些测地线源自 S 中的任何起点，因此它们一起扫过了整个 M
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（或者更确切地说是扫过了 Y 在 M 中的邻域）．我们通过仿射参数 u 对这些测地线进行参数化，将之

在 Wε 上归一化为零，就像我们在 ε = 0 时所做的那样. 如前所述，在确定到可以乘以一个 S 上的函

数的意义上，u 是定义良好的，对这个相乘函数我们可以做出一个具体的选择. 接下来，我们将 v 和

xA 扩展为整个 M 上的函数（或者更准确地说，是 M 在 Y 附近的部分上的函数），方法是声明它们

沿着外行的类光测地线为常数. 最后，u, v, 和 xA 就提供了 M 中 Y 的邻域的坐标.

在这个坐标系中，guu 恒等于 0，因为我们已经如此安排，使得由 u 参数化的曲线（具有常数 v

和 xA）为类光的. 此外，我们还确保了测地线方程被 u 等于仿射参数 λ 以及 v 和 xA 为常数所满足.
这需要满足条件 Γα

uu = 0（对于所有 α）．假设 guu = 0，这意味着对所有 β 有 ∂uguβ = 0. 由于前述的
坐标构造是使用与每个 Wε 正交的类光测地线进行的，因此 guA 在 u = 0 时为零，因此对任何 u 恒

有 guA = 0. 至于 guv，我们了解到它不依赖于 u. 而由于 guu = guA = 0，guv 必须处处为非零（否则

det g = 0）．所以我们可以取 guv = −2eq（负号是一个约定，可以通过改变 v 的符号来反转）．因此，

线元的一般形式为

ds2 = −2eqdv du+ gABdxAdxB + 2cAdvdxA + gvvdv2, (5.4)

其中，gAB 和 cA 一般地依赖于所有坐标 u, v, xC，但 q 仅依赖于 xC 和 v. a

通过查看 Y 上的度规，可以立即得出一个结论. 设 v = 0，我们可以看到，这是退化度规

gAB(x
C , u)dxAdxB，没有 dxAdu 或 du2 项. 因此，超曲面 Y 的号差为 + + · · · + 0，其中一个为

0，其余为 +. 这样的 Y 称为一个类光超曲面. 以上，我们已经了解到，由自余维数为 2 类空流形 W

发出的正交类光测地线所扫出的超曲面是一个类光超曲面.（该陈述也有一个逆，在附录 E 中对此进
行了解释.）

类光雷乔杜里方程本质就是由 v = 0 定义的超曲面 Y 上的爱因斯坦方程 Ruu = 8πGTuu. 在计算
Ruu 之前，我们可以注意到，通过给 u 加上一个在 v = 0 时为零的函数，从而在不影响 Y 上的度量

的情况下，我们可以根据需要调整 gvv. 特别是，我们可以将线元设成如下形式23

ds2 = −2eqdv du+ gAB(dxA + cAdv)(dxB + cBdv), (5.5)

通常具有与前面不同的函数 q 和 cA；不过，q 在 v = 0 时仍然不依赖于 u. （关于一条更优雅的导出

a[译注：由 guu = guA = 0, gvu ̸= 0, 这样就有 gvv = 0, 因为 gvvgvu = gvαgαu = δvu = 0.]
23一旦线元在模去 vn 阶项的意义上处于这种形式，则通过把 u 偏移 vn+1fn(u, x

A)（对于某函数 fn），我们就可以使线
元在模去 vn+1 阶项的意义上处于这种形式. 我们从 n = 0 开始该迭代过程.
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这种度量形式的路线，请参见 [22].）在这个坐标系中，有 a

guu = gvv = gvA = 0 = guu = guA = Γα
uu. (5.6)

与 4.3 部分中 Rtt 计算类似的直接计算给出了 Ruu 的类似结果. 丢弃因 (5.6) 而为零的项，我们
有 b

Ruu = −∂uΓ
A
uA − ΓA

uBΓ
B
uA = −1

2
∂u
(
gAB∂ugAB

)
− 1

4

(
gAC∂ugBC

) (
gBD∂ugDA

)
. (5.7)

这里 gAB 是出现在 (5.5) 式中的 W 的度量（u 依赖），而 gAB 是其逆. 这个公式与 (4.5) 式完全平行.
唯一的区别是超曲面 S 的 (D − 1) × (D − 1) 度量已被余维数为 2 子流形 W 的 (D − 2) × (D − 2) 度

量代替. 因此，随后的讨论可以与类时情形紧密平行地进行.

我们将一小束正交类光测地线的横截面积定义为

A =
√

det gAB. (5.8)

与类时情形一样，我们将寻找 A → 0 的点. A → 0 的解释与类时情形下 V → 0 的解释非常相似.
A → 0 可以表示一个时空奇点，或者简单地表示一个焦点，W 中的一些正交类光测地线在该点处收

敛. 24

a[译注：用如下办法可以得到这些结果. 在余切空间上引入如下基矢：

eu = du, ev = dv, eA = dxA + cAdv.

其在切空间上的对偶基矢为
eu = ∂u, ev = ∂v − cA∂A, eA = ∂A.

容易验证有 eA(ev) = 0，进而有 eα(eβ) = δαβ . 很显然，度规张量可以在余切空间写作

−eq(eu ⊗ ev + ev ⊗ eu) + gABeA ⊗ eB .

因此，度规张量的逆就可以在切空间中写成如下形式：

− e−q(eu ⊗ ev + ev ⊗ eu) + gABeA ⊗ eB
=− e−q[∂u ⊗ (∂v − cA∂A) + (∂v − cA∂A)⊗ ∂u] + gAB∂A ⊗ ∂B .

从这个结果即能读出 guu = gvv = gvA = 0, 但 guA ̸= 0.]
b[译注：请注意有 Γv

uα = 0.]
24出于与类时情形相同的原因，条件 det gAB = 0 对于焦点是必要的，也是充分的.事实上，只要 M 是光滑的，那么 M
中的由一条自 q ∈ W 发出并传播到其仿射参数值为 u 处的正交类光测地线所到达的点是 q 和 u 的光滑函数. 因此，只要
M 是光滑的，gAB 就保持为规则函数. 因此，当且仅当 gAB 有本征值为零（对应于焦点）时，det gAB 才取零.
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类光膨胀的定义如下 25

θ =
Ȧ

A
=

1

2
Tr g−1ġ. (5.9)

式中的圆点现在表示相对于 u 的导数. 我们还定义了剪切，即 g−1ġ 的无迹部分：

σA
B =

1

2

(
gAC ġCB − 1

D − 2
δABTr g−1ġ

)
. (5.10)

所以

Ruu = −θ̇ − θ2

D − 2
− Trσ2. (5.11)

因此，爱因斯坦-雷乔杜里方程 Ruu = 8πGTuu 写作

θ̇ +
θ2

D − 2
= −Trσ2 − 8πGTuu. (5.12)

所谓类光能量条件是这样一个陈述：在每个时空点上，对于任何类光向量 vµ，能动张量满足

vµvνTµν ≥ 0. (5.13)

所有合理的经典物质都满足这个条件. 26 它被所有通常的相对论经典场所满足，并且不受宇宙学常数

的影响. 因此，类光能量条件是讨论广义相对论经典性质的坚实基础. 这与强能量条件形成对比，强能
量条件用于推导霍金关于大爆炸的定理，但它在经典场论中并不普遍成立. 在本文的其余部分中，我
们通常都假设类光能量条件，除了在第 7.2 节中，那里我们讨论了一个具有一些相同结果的较弱条件.

类光能量条件确保 Tuu 是非负的，因此方程 (5.12) 的右侧是非正的. 考虑到这一点，我们可以像
在类时情形中所做的那样进行推理，并预测焦点将在距离 W 一个有限仿射距离内出现.

的确, 类似于方程 (4.14), 方程 (5.12) 意味着

∂u
1

θ
≥ 1

D − 2
. (5.14)

25我们使用相同的符号 θ 来表示 (D − 2) 维的类光测地线束或 (D − 1) 维类时测地线束的膨胀，希望不会引起混淆. 通
常情况下，上下文会清楚地说明其含义.

26对于一个包含有一个基本标量场 ϕ 的理论，这里有一个微妙之处. 即，在这种理论中，度规张量 g 的定义通常不是唯
一的，因为它可以通过外尔变换 g → ef(ϕ)g 来重新定义，其中 f 为任意函数. 然后，在这种理论中有一个独特的“爱因斯
坦框架”，其中里奇标量 R 以系数 1/16πG 出现在作用量中，从而独立于 ϕ. 文中的陈述在爱因斯坦框架下是成立的. 但
它可能不适用于更一般的框架.
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现在假设在 W 上的某点 θ < 0, 不妨设该点 θ = −w. 则有 1/θ ≥ −1/w + u/(D − 2) 或者说

Ȧ

A
≤ −

(
1

w
− u

D − 2

)−1

. (5.15)

将此公式对 Ȧ/A 进行积分，如等式 (4.16) 那样，我们将看到，在某个不大于 u = (D − 2)/w 的仿射

参数值处将有 A → 0.

就像在类时情形中那样，当 A → 0时（甚至更早），它可能是一个时空奇点，但通常情况下，A → 0

仅代表一个使得计算中假定的坐标系失效的焦点. 预测奇点的存在需要超出雷乔杜里方程之外的额外
输入.

5.5 陷俘面

时空的余维数为 2 类空子流形 W 有两簇未来走向的正交类光测地线，因此可以定义两个不同的

类光膨胀. 它们中的每一个都由我们刚刚描述的类光雷乔杜里方程控制.

例如，如果 W 是一个以标准方式嵌入闵可夫斯基时空的球面，那么其一个正交类光测地线簇显

然是“外行的”，而另一簇就是“内行的”. 外行的那簇具有正的类光膨胀，而内行的则具有负的类光
膨胀.

彭罗斯将“陷俘面”定义为一个余维数为 2 类空子流形 W，它的每一个正交未来走向类光测地

线簇的膨胀都是负的. 如此定义的一个动机性例子是球对称黑洞视界后面的两维球面. 这样的球对称
黑洞可以方便地用一张二维图来表示，称为彭罗斯图，其中只显示了径向和时间方向（图 34）．在图
中，内行和外行的径向类光测地线由与垂直方向成 ±π/4 角的直线表示. 图中的每个点表示一个具有
球面度量的两维球面（或在 D 维中的一个 D − 2-球面）．球的半径是彭罗斯图上的函数 r；在四维中，

由给定点表示的两维球的面积为 4πr2. 刻画了一个史瓦西黑洞的性质是，在黑洞的视界之后，沿着每
条未来指向的因果线 r 都递减. 现在，在黑洞视界后面的图中选择一个点 p，并以 W 表示相应的两维

球面. 源自 W 的未来走向正交测地线正是指向未来的外行或内行径向测地线，因此它们在图中由从

与垂直方向成 ±π/4 度角方向离开 p 的未来走向射线表示，如图所示. 特别的，这些射线代表的是未
来指向的因果路径，因此 r 沿着它们每一条都会减少. 所以，W 的两个类光膨胀都是负数，从而 W

是一个陷俘面.

作为练习，读者可以尝试想象一个以如下方式嵌入闵可夫斯基时空的球面，即使其每个类光膨胀

在一个区域中为负，而在另一个区域为正. 找到这样的例子并不困难. 但在闵可夫斯基时空中没有陷
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图 34: 这是描述球对称坍缩成一个黑洞的彭罗斯图. 灰色阴影区域表示正在坍缩形成一个黑洞的物质和辐射；
外部未着色区域表示史瓦西解的一部分. （关于最大延拓史瓦西解的彭罗斯图，请参见第 7.1 节中的图 42.）图
中的一个点表示一个两维球面（或在 D 维中，一个 (D− 2) 维球面），其半径 r 是图中两个坐标的函数. 在黑洞
视界之后，沿着每一条未来走向因果线 r 都递减. 例如，标记为 p 的点位于视界后面并且表示一个面积为 4πr2

（或其 D − 2 维类似物）的球面 W . 从 p 开始的未来走向正交类光测地线在图中表示为内行和外行类光测地线
（从 p 发出并与垂直方向成 π/4 角度的射线）．这些测地线都是视界后面的未来走向因果线，因此沿着它们每一
条 r 都会减少，因此 W 的面积也会减少. 所以，W 是一个陷俘面. 图中标记为 i0 和 i+ 的点分别表示外部观
察者的空间无穷远和未来无穷远.
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俘面：即没有办法嵌入一个球面，并使其两个类光膨胀中的每一个都处处为负. 这个结论实际上是彭
罗斯定理的一个推论，接下来我们将讨论这个定理.

5.6 彭罗斯定理

彭罗斯定理 [9] 是第一个现代的奇性定理，尽管在这里的讲述中，我们并没有遵循历史顺序.

彭罗斯的目标是证明奇点的形成是引力坍缩的普遍现象. 如果假设球对称，那人们就可以对于坍
塌的恒星很明确地求解爱因斯坦方程，并表明奇点的形成是不可避免的. 但是，如果时空几何不是完
全球对称的，会发生什么？下落的物质是否仍会坍缩成一个奇点，或是它们会相互“错过”，并也许会

在一场爆炸中重新出现？彭罗斯想要一个不依赖于精确球对称性的关于奇性形成的稳健判据. 这个目
标就是他引入陷俘面这个概念的动机.

与后来得出的其它结果一样（参见第 4.4 节末尾的讨论），彭罗斯的“奇性定理”是在不直接研
究奇点的情况下证明的. 它其实是一个关于时空完备性的声明. 彭罗斯证明了满足某些条件的时空 M

是类光测地不完备的，这意味着 M 中至少有一根类光测地线在未来不能延续到其仿射参数的任意大

值.

彭罗斯定理涉及具有非紧柯西超曲面 S 的整体双曲时空 M . 例如，在任何于空间无穷远处渐近
于闵可夫斯基时空的时空中，柯西超曲面（如果存在）都不是紧致的. 因此，彭罗斯定理适用于任何
渐近平坦且整体双曲的时空. 在彭罗斯定理的陈述和证明中，没有必要假设 M 在 3.6 节的意义上是
最大延拓的，但最有趣的情形是 M 是最大延拓的.

除了经典的爱因斯坦方程，彭罗斯定理的最终输入是类光能量条件. 彭罗斯定理指出，假设整体
双曲，柯西超曲面非紧，也假设类光能量条件和经典爱因斯坦方程，则包含一个紧致的陷俘面的时空

M 是类光测地不完备的.

时空中包含一个紧致陷俘面 W 的条件对于时空几何的小扰动是稳定的，因为如果 W 的类光膨

胀为负，则它们在足够小的扰动下将保持为负. 因此，彭罗斯定理适用于任何与史瓦西时空充分接近
的时空，也就是说，适用于在空间无限远处渐近闵可夫斯基时空的时空中，充分接近球对称坍缩成黑

洞的情形 a.

彭罗斯定理通常被称为“奇性定理”，这么称有一个预设，即一般来说，一条类光测地线不能延

a[译注：也即允许对球对称性的充分小但却任意的扰动.]
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续的原因与史瓦西时空的情况相同：即它终止在奇点上了. 然而，这超出了定理实际证明的范围，下
面的练习表明，在这类问题上，谨慎些是需要的.

彭罗斯定理的证明如下. 设 W 为 M 中的紧致陷俘面. 合适选取与 W 正交的未来走向类光测地

线的仿射参数. 像通常那样，将这些仿射参数归一化为在 W 上取零值是很自然的. 但是对于任何给定
的 q ∈ W 点，仍然可以自由地将相应仿射参数（对于来自 q 的内行或外行类光测地线）乘以一个常

数，并没有自然的方法来选定一个归一化. 但是对于下面的内容，使用任何随 q 光滑变化的归一化就

足够了.

紧致曲面 W 的类光膨胀 Ȧ/A 由于处处为负数，从而有界

Ȧ

A
< −w

其中 w > 0 为某个常数. 然后，彭罗斯证明，准确地说，至少一条与 W 正交的未来走向类光测地线

不能延续到其仿射参数的值大于 (D − 2)/w.

假设相反，每条与W 正交的未来走向类光测地线 ℓ都可以延续到其仿射参数的值大于 (D−2)/w.
那这意味着，根据雷乔杜里方程，每一条这样的 ℓ 都可以延续到其第一个焦点之外.

假设 ℓ 在点 q ∈ W 离开 W，并继续超过其第一个焦点 p. 设 ℓqp 为 ℓ 的将 q 连接到 p 的那段，则

它是紧致的. 我们有 ℓ ∩ ∂J+(W ) ⊂ ℓqp，因为 ℓ 在延续到超过 p 时就不迅捷了. 此外，ℓ ∩ ∂J+(W ) 在

ℓ 中是闭集，因为 ∂J+(W ) 是 M 中的闭集. 所以 ℓ ∩ ∂J+(W ) 是 ℓqp 的闭子集. 紧空间的闭子集是紧
的，因此 ℓ ∩ ∂J+(W ) 是紧的. 27

每一个 p ∈ ∂J+(W ) 的点都通过这些未来走向的正交类光测地线之一连接到 W . 因此，p 由一个

三元组确定28，这个三元组包括选择一个点 q ∈ W（ℓ 源自于此）、选择 ℓ 在 q 点是“内行的”还是

“外行的”，以及选择一个沿着 ℓ 测量的仿射参数. 此外，从我们刚刚看到的内容来看，每个 ℓ 上的仿

射参数可以被限制到一个紧致区间. 由于 W 本身是紧致的，并且沿着每个 ℓ 测量的仿射参数也在一

个紧致的区间内变化，因此这意味着 ∂J+(W ) 是紧致的.

27如果 ℓ在到达焦点之前就不能继续，例如，因为它终止于一个奇点或离开了整体双曲时空，那么，ℓ的闭子集 ℓ∩∂J+(W )
就可能满足 ℓ ∩ ∂J+(W ) = ℓ，从而 ℓ ∩ ∂J+(W ) 就能够不紧致. 彭罗斯的证明表明，如果 W 是一个陷俘面，则对于某
些 ℓ 就会出现这种情况. （ℓ 的迅捷性可能会在 ℓ 未到达焦点的情形下就已经失效，但是这另一种在附录 F 中描述的失
效模式不会为 ℓ 的迅捷部分成为非紧致提供新方式.）如果 ℓ 可以延续到超过其第一个焦点，那么我们可以更具体地描述
ℓ ∩ ∂J+(W )，尽管在彭罗斯定理的证明中不需要这些细节. 但这时候，ℓ ∩ ∂J+(W ) 要么是空的（这只有在 W 不是非时
序的情况下才有可能），要么只由点 q ∈ ℓ 组成（这只有在存在一条从另一个点 q′ ∈ W 到 q 的因果路径时才有可能，但
任何这样的路径都是类光测地线），要么就由 ℓ 的非平凡初始段组成. 读者可能希望尝试证明这些说法的合理性.

28这样的三元组确定 p，但不止一个三元组可能导致相同的 p.
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但是正如前面在 5.2 和 5.3 节中所解释的，∂J+(W ) 是 M 的非时序余维数为 1 子流形. 而正如我
们在 3.2 节中所了解的，在具有非紧柯西超曲面 S 的整体双曲时空 M 中，不存在余维数为 1 的紧致
非时序子流形. 综上所述就能得出，我们的假设是错误的，从而至少一条与 W 正交的未来走向类光

测地线 ℓ 不能在 M 内延续到 W 的超出仿射距离 (D − 2)/w 的未来. 这就完成了彭罗斯定理的证明.

以下是一些练习，旨在帮助人们理解彭罗斯定理中的一些细节. （其中德西特时空度量的两种形
式是在附录 B 中描述的.）

(1) D 维德西特时空可以用如下线元描述

ds2 = −dt2 +R2 cosh2(t/R)dΩ2 (5.16)

其中 dΩ2 是 D − 1 维球面的线元. 请说服自己，这是一个具有紧致初值曲面 S 的整体双曲时空（由

于 S 是紧的，所以彭罗斯定理不适用）．还请说服自己，德西特时空是测地完备的，即所有测地线都

可以在两个方向上延续到无限仿射参数值. 请找到一个紧致的陷俘面 W . 你能描述 W 因果未来的边

界吗？你将发现 ∂J+(W ) 在拓扑上等价于初值曲面，正如上面的论证所暗示的那样.

(2) 考虑下面的线元，它只描述了德西特时空的一部分：

ds̃2 = −dt2 +R2 exp(−2t/R)dx⃗2, x⃗ ∈ RD−1. (5.17)

（该线元的时间反演版本提供了一个加速膨胀宇宙的模型. 式 (5.17) 中的 t 坐标不是简单地等同于式

(5.16) 中的同名坐标. 请参见附录 B，以了解这种形式线元的推导以及关于它仅描述了德西特时空的
一部分的解释.）请证明该线元描述了一个具有非紧初值曲面 t = 0 的整体双曲时空. 因此，这时候彭
罗斯定理适用. 请找到一个紧致的陷俘面 W . 你看到奇点了吗？彭罗斯定理对于这个时空意味着什么？
陷俘面 W 的未来边界是什么？作为提示，请注意这个时空中的类光测地线. 你将发现，每条类光测
地线都在（例如）t = 0 处与初值曲面相交，正如整体双曲性所蕴含的那样. 但是，在两个方向上都可
以延伸到无限仿射参数值的意义上，这些类光测地线是完备的吗？

为了更好地理解这些示例，让 M̂ 表示由 (5.16) 式描写的德西特时空，并设 M 为 (5.17) 式描写
的时空. 那么 M 可以嵌入到 M̂ 中. M 和 M̂ 都是整体双曲的，但是当嵌入到 M̂ 中时，M 的柯西超

曲面 S 就不再是 M̂ 的柯西超曲面. M 的柯西超曲面 S 是平面 RD−1，而 M̂ 的柯西超曲面 Ŝ 是球面

SD−1，拓扑上它可以通过在平面上加一个无穷远点获得. 当 M 嵌入 M̂ 时，M̂ 的不在 M 中的部分处

于柯西视界之外. 图 35 是一张澄清这些陈述的彭罗斯图. M̂ 中的类光测地线可以延续到其仿射参数

值为无穷大处，但它们可以在其仿射参数的有限值处退出 M . 陷俘面 W 可以由主对角线下方的任何

56



S

Ŝ
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图 35: 这个正方形是德西特时空 M̂ 的彭罗斯图. I+ 和 I− 分别代表 M̂ 的未来和过去无限远，它们不属于 M̂
的一部分. 图中的阴影三角形是 M̂ 的收缩部分 M（M 实际上是 I+ 中一点的因果过去）．M̂ 是整体双曲的，
具有紧致柯西超曲面 Ŝ，而 M 则是具有非紧柯西超曲面 S 的整体双曲时空（要想紧致化 S，我们必须在 S 中
包含图的左下角，但这一点位于 I− 中，不属于 M 或 M̂ 的一部分）．M 中包含有紧致的陷俘面，由图中底部
附近的点表示. 特别的，图中标记为 q 的点表示一个陷俘面 W . 因此，M 满足彭罗斯定理的所有条件. 但是彭
罗斯定理所蕴含的不完备性仅仅意味着一些与 W 正交的类光测地线——例如标记为 γ 的那条测地线——在其
仿射参数的有限值处退出了 M . 因此，M 是类光测地不完备的，其完备化就是 M̂ .
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点表示. 例如，我们可以在图的右下角附近的类光测地线 γ 上选取一个点 q 表示陷俘面. 应用于此示
例，彭罗斯定理描述的现象是，当将一些与 W 正交的类光测地线视为 M̂ 中的测地线时，它们会在其

仿射参数的有限值处离开 M，并进入 M̂ 中柯西视界之外的部分. 图中的 γ 就具有这种行为.

上面第二个例子说明了为什么一些细心的作者将彭罗斯定理称为不完备定理而不是奇性定理. 根
据彭罗斯定理，测地线不能延续到其仿射参数的任意值，它们可能会终止于奇点，就像史瓦西黑洞的

情形那样. 但该定理也允许这些测地线简单地离开讨论中的整体双曲时空 M，而不到达任何奇点的可

能性，就如我们的第二个例子那样. 这种现象也是可预测性的一种失效，即，无法根据 M 的柯西超

曲面 S 上的初始数据来预测这些测地线离开 M 后会发生什么.

6 黑洞

正如我们从第 5.6 节的那些例子中了解到的那样，彭罗斯定理实际上对黑洞内部区域的描述是非
常有限的. 然而，令人惊讶的是，这个定理所基于的思想很自然地导致了对黑洞重要性质的理解. 29

更准确地说，这些想法再加上一个额外假设导致了这样的理解.

6.1 宇宙监督

如果不知道或不假设比坍缩成黑洞更“糟糕”的事情不会发生，那就不可能得到一个好的黑洞理

论.

粗略地说，“更糟糕的事情”可能是彭罗斯所谓的“裸奇点”的形成 [23–25]. “裸奇点”是不被视
界所包围的奇点，外部观察者可以看到它.

裸奇点的形成可能会终结经典广义相对论的预言能力，因为经典理论无法唯一地决定裸奇点会产

生什么. 作为一个极端的例子，裸奇点的形成可能会终结时空本身（这一可能性是精细化彭罗斯猜想
的动机之一 [26]）．例如，可以想象引力坍缩产生了一个以光速膨胀到无限远的外行冲击波奇性. 如果
奇性严重到使得经典爱因斯坦方程失效，那经典时空就不能仅根据爱因斯坦经典理论所提供的信息延

续到冲击波的未来，那么人们就可以描述这种现象说时空已经终结了，或者至少只根据经典理论描述

时空的能力已经终结了.
29 [3] 这本书的第 12 章对于理解本节的背景以及超出本文范围的关于黑洞的进一步性质特别有用. 在本文中，我们只考
虑与因果性直接相关的问题.
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既然这例子看起来很流于幻想，也许值得一提的是，在卡鲁扎-克莱因理论中，尽管没有奇性，但
实际上也可能发生一些类似的事情. 考虑一个 D 维时空，它在空间无穷远处渐近于 MD−1 × S1 （其

中 MD−1 是维度为 D − 1 的闵可夫斯基时空，S1 是一个圆周）．与圆周的渐近半径相比，距离较长时

这样的时空相当于是 (D − 1) 维的. 经典方程允许这样的初始条件，其中，从 (D − 1) 维的角度来看，

在具有零能量甚至负能量的空间中存在“洞”[27]. （从 D 维的角度来看，空间中没有洞. 时空在拓扑
上与 MD−1 ×S1 不同，但在接近空间无限处看起来像是 MD−1 ×S1.）这个洞以光速膨胀到无限远. 没
有任何事物处于这场灾难的未来；时空结束了. 因此，在这种情况下，就不可能像我们在分析黑洞时
将做的那样，根据一个保持安全距离的观察者在遥远将来所看到的情况来进行论证.

彭罗斯 [23–25]提出了“宇宙监督”假设，该假设（以它最简单的形式，如后来人们详细描述的 [26]，
称为“弱”宇宙监督30 ）说，在一个于空间无限远处渐近闵可夫斯基时空的整体双曲时空中，不会发

生上述灾难：即，在引力坍缩中，或更一般地说，在渐近闵可夫斯基时空的任何局域过程中，远距离

和远未来的时空区域将继续存在，就像在闵可夫斯基时空中一样. 此外，外部观察者所看到的演化应
该是可以根据经典爱因斯坦方程预测的. 任何奇点都隐藏在视界之中，不会影响外部的演化.

如果这是真的，这会是一个非常了不起和真正令人惊讶的事实，同时也可能有点令人失望. 这确
实令人惊讶，因为经典的爱因斯坦方程并没有明显的可能保证宇宙监督成立的稳定性质. 同时这也可
能令人失望，因为如果宇宙监督是真的，我们就失去了获得关于一个猜想中的更好理论的观测证据的

机会. 毕竟，如果宇宙监督是错误的，并且经典爱因斯坦方程以一种对遥远的观察者可见的方式失效，
那我们原则上就可能有希望观察到这种失效出现时会发生什么. 31

多年来，宇宙监督成立的证据似乎微乎其微，至少对本文作者来说是如此. 到目前为止，宇宙监
督成立的合理证据，至少在 D = 4 的情况下，来自于对黑洞碰撞的模拟 [30] 并没有产生裸奇点的事
实.32 如果黑洞碰撞产生的是裸奇点，而不是更大的黑洞，33那么最近 LIGO/VIRGO 对碰撞黑洞的观
测，就可能会给我们提供有关经典广义相对论失效时会发生什么的信息，而不只是对经典广义相对论

进行的一个特别有趣的测试.

宇宙监督是否成立——以及如何准确地表述它，因为有许多重要的微妙之处34——被广泛认为是

30“强”宇宙监督说，在任意时空中（不一定渐近于闵可夫斯基时空），没有观察者可以看到一个裸奇点. 这里并没有一
般性声称有能力将时空延续到未来. 就我们这里的目的而言，“弱”宇宙监督才是一个相关的陈述. 这个术语虽然标准，但
有潜在的误导性，因为“弱”宇宙监督并不是“强”宇宙监督的特例.

31由于注意到曾经似乎有一个宇宙大爆炸，而这有点类似于裸奇点，从而裸奇点可能是物理学中不可避免的一部分，因
此在 [24] 的结论中，彭罗斯表达了对宇宙监督假设的一些矛盾心理.

32对于 D > 4，似乎格雷戈里-拉弗拉姆不稳定性有可能违反宇宙监督的通常陈述 [29]. 但是，请参见下面的脚注 34.
33关于这个问题，彭罗斯在 [1] 中写道，“例如，我们可以设想两个类似的黑洞螺旋形地相互缠绕. 除了一厢情愿，我们
还有什么理由相信一个更大的黑洞会形成，而不是产生一个裸奇点呢？我觉得理由很少，这真是一个完全开放的问题.”

34例如，在存在某些有限类型的奇性的情况下，由爱因斯坦方程控制的因果传播可能继续有意义. 其中，以光速向外传
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关于经典广义相对论的突出的悬而未决的问题. 出于我们的目的，我们将假设某种版本的宇宙监督成
立，因此从空间无限远处并在遥远未来的观察者的角度来研究引力坍缩是有意义的.

6.2 黑洞区域

如果假设宇宙监督，人们即可以就整体双曲和渐近平坦时空 M 提出一个很好的黑洞理论.

首先，M 中的黑洞区域是外部观察者看不到的区域 B.更准确地说，让 I 表示一个类时观察者的
世界线，他位于很远的距离上并或多或少地保持静止，即他在渐近平坦的区域中观察发生的一切. 我
们将该观察者的因果过去表示为 J−(I)，即观测者可以接收到它发出的信号的点集. J−(I) 始终是开
集，因为如果从 q ∈ M 点开始的因果路径 γ 在点 p ∈ I 到达远处的观察者，那么从充分接近 q 的任

何点 q′ 开始，也会有一条因果路径 γ′ 在接近 p 的 p′ 点到达 I. 为此人们只需将 γ′ 定义为紧跟着 γ，

无论 γ 到了哪里 (有点像图 24(b) 中标记在 γ 之后的 γ′，尽管在当前上下文中，γ′ 不需要处于 γ 的

过去). 直观地说，在某个时刻 t 可以看到点 q 的观察者可以在一个接近 t 的时刻看到任何足够接近 q

的点.

所谓的黑洞区域 B 即是 J−(I) 在 M 中的补集:

B = M\J−(I). (6.1)

既然 J−(I) 是开集，那么 B 就是闭集.

黑洞视界H 被定义为 B 的边界：

H = ∂B. (6.2)

(像往常一样，B 的一个点如果在 B 中有一个邻域，则它位于 B 内部，否则就位于 B 边界.)

通过表明黑洞区域的存在是引力坍缩的一般性质，我们可以首先证明这些定义是合理的. 即我们
将证明任何紧致的陷俘面 W 都在黑洞区域 B 中. 换句话说，我们将证明来自紧致陷俘面的信号无法
到达外部观察者.

如果来自紧致陷俘面 W 的因果信号能够到达远处观察者的世界线 I，那就会有接收到信号的第
一个点 p ∈ I. 从 W 到 p 的因果路径将是迅捷的，因此它将是一条未来走向的类光测地线 ℓ，ℓ 从 W

播的弱类光奇性是一个候选. 在 D = 4 以上的维数，更具体的候选者可能是由格雷戈里-拉弗拉姆不稳定性引起的奇性. 因
此，在宇宙监督的陈述中，人们可能会允许某些类型的奇点的形成，这些奇点是外部观察者可以看到的.
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图 36: 如果具有世界线 I 的观察者能够接收到来自时空中一个紧致集合 W 的信号，那么这样的最早的可能信
号即是通过一条迅捷类光测地线 γ 到达的，该测地线将 W 连接到点 p ∈ I. 但是如果 W 是一个陷俘区域，并
且 I 足够远，那这是不可能的.

? ? ?

W

r

I

图 37: 可以接收到集合 W 因果未来中的点 r 的信号的观察者也可以接收到 W 的信号. 因此，如果 W 包含在
黑洞区域中，而 r 在其因果未来中，则将 r 与无限远处观察者的世界线 I 连接起来的标记为 ? ? ? 的曲线一定
不是未来走向因果线；从而 r 必定包含在黑洞区域中.

到 p 且与 W 正交，并且没有焦点（图 36）．而由于 W 是一个紧致的陷俘面，因此在 ℓ 上有一个焦

点，它位于距离 W 的一个已知的有限仿射距离之内. 但外部观察者的世界线 I 可以距离任意远，并
且 ℓ 在到达 I 前都不能有焦点. 这是一个矛盾，因此从 W 到 I 不可能有因果信号.

因此，假设宇宙监督，黑洞就在任何包含陷俘面的渐近平坦时空中形成. 也因此，黑洞在任何足
够接近显式史瓦西解（或任何显式黑洞解，如旋转黑洞的克尔解）的时空中形成. 如果没有宇宙监督，
那这个结论就不适用，因为讨论中假定的世界线 I 可能不存在.

一个明显的事实是，如果一个集合 W 包含在黑洞区域 B 中，那么它的未来 J+(W ) 也在 B 内.
因为如果 r 处在 W 的未来，并且远处的观察者可以看到 r 处的事件，那么该观察者就也可以接收到

W 的信号 (图 37).
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图 38: (a) 在一个包含多个黑洞的时空中，给定的柯西超曲面 S 上的黑洞区域可能有几个连通分支 Zi. (b) 一
种不可能的情况，其中一个黑洞分裂成两个，或者更准确地说，在这种情况下，柯西超曲面 S 上的黑洞区域的
一个分支 Z 演化为未来的柯西超曲面 S′ 上的两个不相连通的分支 Z1 和 Z2. 正文中解释了为什么这不能发生.

假设一个陷俘面 W 是余维数为 1 类空子流形 Z 的边界（在某个柯西超曲面上，Z 可能是 W 的

“内部”）．如第 5.2 节所述，从 Z 到 I 的迅捷因果路径实际上是从 W 到 I 的正交类光测地线. 但我
们已经知道不存在这样的测地线. 所以 Z 位于黑洞区域内.

时空中可能有几个黑洞，因此在给定的柯西超曲面 S 上，黑洞区域可能有几个不相连通的分支

（参见图 38(a)）．黑洞可以合并，但黑洞不能分裂，这意味着如果 Z 是给定柯西超曲面 S 上黑洞区

域的一个连通分支，则 Z 的未来将与 S 未来的任何柯西超曲面 S ′ 相交于一个连通集. 为了证明这一
点，假设黑洞区域与 S ′ 相交于不相连通的分支 Z ′

i, i = 1, · · · , r（图 38(b)）．首先考虑一条从 Z 开始

的未来走向因果测地线. 任何这样的因果测地线（就像任何来自 Z 的因果路径）都始终保持在黑洞区

域中，因此它与 S ′ 相交于 Z ′
i 之一. 但是，从 Z 开始的未来走向因果测地线的集合是连通的，它不能

连续地划分为两个或多个不相交的子集 (这些子集将在黑洞区域的不同分支中与 S ′ 相交). 因此，来
自 Z 的所有因果测地线都在黑洞区域的同一分支 Z ′

i 中到达 S ′. 现在考虑从 Z 开始的任何未来走向

因果路径. 如果存在一条从 Z 到黑洞区域的给定分支 Z ′
i 的因果路径 γ，那么通过最大化该路径所经

过的固有时，我们就会得到一条从 Z 到 Z ′
i 的因果测地线（类光或类时）．所以事实上，S ′ 上恰好只

有黑洞区域的唯一一个分支 Z ′
i 处在 Z 的未来.

6.3 视界及其母线

现在我们要讨论“视界母线”. 设 q 为黑洞视界上的一点，设 I 为在无穷远处或多或少静止的观
察者的类时世界线. 我们记得视界 H 是黑洞区域 B 的边界. q ∈ H 的一个点是位于 B 之外的点列

q1, q2, q3, · · · 的极限. 每个 qi 都通过一条未来走向的迅捷类光测地线 ℓi 连接到世界线 I. 由于 qi → q，
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图 39: 在这张彭罗斯图中，黑洞区域是阴影部分，q是其边界中的一个点. 所以 q是黑洞区域外的点列 q1, q2, · · ·
的极限. 由于在黑洞区域之外，所以 q1, q2, · · · 可以通过未来走向的因果线连接到遥远处观察者的世界线 I.（未
绘制 I 右侧的时空部分.）因此，从 q1, q2, · · · 到 I 存在迅捷的类光测地线 ℓ1, ℓ2, · · · . 在整体双曲时空中，ℓi 收
敛到通过 q 点的类光测地线 ℓ. 因为 q 包含在黑洞区域中，所以 ℓ 不会到达外部观察者的世界线 I. 相反，随着
i 的增加，测地线 ℓi 会越来越晚地到达 I，远处观察者可以看到点 qi 的固有时随着 i → ∞ 而发散. 在这张图的
上角，ℓ 和 I 似乎在这里相遇，实际上这是在未来无穷远处，而这不是时空中的一个点.

所以 ℓi 从 q 点开始逼近一条未来走向的类光测地线 ℓ. 但既然 q ∈ H ⊂ B，因此 ℓ 并不将 q 连接到 I
中的一个点. 相反，发生的情况是，随着 qi → q，ℓi 到达 I 的点沿着 I 趋于 ∞（图 39）．因此极限测
地线 ℓ 根本没有达到 I.

ℓ 处处都保持在视界上. 因为首先，人们可以看到，ℓ 永远不会超出 B，因为一般来说，从 q ∈
H = ∂B 开始的因果线永远不会超出 B. 另一方面，ℓ 不可能位于 B 的内部，因为它是从 qi 开始的迅

捷类光测地线的极限，而这些测地线严格地在 B 之外. 所以 ℓ 处处都在 H = ∂B 中. ℓ 就称为视界母

线.

事实上，我们可以更精确. 只要 i 足够大，则处于 ℓ 过去的任何点 r（意味着从 r 开始的某条未

来走向的类时曲线到达 ℓ 上的某个点）也处在 ℓi 过去，因为 ℓ 是 ℓi 的极限. 由于 ℓi 会与 I 相交，因
此必有一条从 r 开始的因果路径（事实上是严格的类时路径）可以与 I 相交. 因此，处于 ℓ 过去的任

何点 r 都在黑洞区域 B 之外.

ℓ 是迅捷的类光测地线，特别是，无论我们在未来将其延续多久，它都没有焦点. 事实上，如果
ℓ 不再迅捷，则存在从 q 到某点 r 的因果路径，r 严格处于某点 q′ ∈ ℓ 的过去. 正如我们刚刚讨论的，
这样的 r 在黑洞区域之外，从 q 到 r 的因果路径的存在将表明 q 也在黑洞区域之外.

现在选择一个包含 q 的初值超曲面 S，并定义 W = S ∩H. ℓ 必须正交35于 W，因为从任何子流

35我们这里假设 W 至少在其一般点是可微的.
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形（到任何目的地）的迅捷因果路径总是与该子流形正交的. 通过 W 的所有视界母线一起扫出一个

三维流形 H ′. 根据我们所看到的，H ′ 必然包含在 H 中，而且在 W 附近，两者是相同的（假设 W

是可微的）．但如果我们延续到未来，则 H ′ 可能不会与 H 重合，因为例如，可能会有新的黑洞形成，

因此视界（甚至其包含 W 的连通分支）可能不会被来自 W 中的视界母线完全扫过.

由于它局部地被正交类光测地线所扫过，所以 H 必须是一个类光超曲面，即一个具有号差 + +

· · · + 0 的退化度量的超曲面. 根据第 5.4 节中解释的一般原因，这个结论必然是正确的，因为任何由
与余维数为 2 流形 (如 W ) 正交的类光测地线所扫出的超曲面都是类光超曲面. 但在目前的情况下，
我们可以更加直接地证明这一点. 首先，ℓ 在 q 处的切向量 v 与其自身正交（因为 ℓ 类光），并且也与

W 的切空间正交（因为 ℓ 正交于 W），因此 v 与 H 的整个切空间正交，表明 H 在 q 处的度量退化.
而这里 q 可以是 H 上的任何点，因此 H 的度量在任何地方都是退化的.

最后一个我们将要讨论的关于经典黑洞视界的结果可能是最重要的：霍金面积不减定理. 它说黑
洞视界的面积只能增加，因为在初值超曲面 S ′（即 S 的未来）上测得的面积等于或大于在 S 上测得

的面积. 该定理分别适用于黑洞区域的每个分支，而如果两个或多个黑洞合并，则定理说合并产生的
黑洞的视界面积至少等于原来的黑洞视界面积之和.

显然，只需证明视界母线的类光膨胀 θ = Ȧ/A 处处都非负就足够了. 沿着每条视界母线都如此，
就意味着视界面积处处不减. （为了完全确定视界面积的增长，我们还必须考虑到新的视界母线可能
会在 S 的未来中出现，例如因为新黑洞的形成. 但这只能进一步增加视界面积.）

如果我们知道视界母线是完备的，也就是说它们可以延续到其仿射参数的任意正值，那我们可以

如下那样证明 θ 的非负性. 根据雷乔杜里方程，如果其中一条视界母线 ℓ 的 θ 为负值，则沿着 ℓ 在其

仿射参数的某个有限值处将有一个焦点. 但前面我们已经证明了，视界母线上没有焦点.

我们可能会将视界母线是完备的（这大致是说视界是非奇异的）这一说法视为宇宙监督假设（这

大致是说视界之外的区域是非奇异的）的轻微延伸. 然而，可以在不假设这一点的情况下证明面积不
减定理. 假设在 W = H ∩ S 的某个部分中，有 θ < 0. 然后，我们定义一个新的曲面 W ′，方法是在

θ < 0 的区域中稍微向外推 W，而在 θ ≥ 0 处则保持 W 不变. θ 随着 W 在 M 中的移动而连续变化，

因此如果我们不推得太远，W ′ 在 B 之外的部分就依然有 θ < 0（图 40）．由于它不完全包含在 B 中，

所以 W ′ 可以通过因果路径连接到无限远处观察者的世界线 I，我们可以选择该路径为一条迅捷类光
测地线 ℓ. ℓ 必须将 I 连接到 W ′ 中位于 B 之外的一个点，但我们已经如此选择了 W ′，以使得在这

样的点上 θ < 0. 因此，ℓ 必然在离 W ′ 的有限仿射距离内有一个焦点. 这与 I 可以任意远的事实相矛
盾. 所以事实上，W 没有 θ < 0 的地方.
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W

W ′

图 40: W 是某个柯西超曲面 S 上黑洞区域（阴影部分）的一个分支的边界. 这样的 W 是时空的一个余维数
为 2 类空子流形. 如果有一部分 W 上的视界母线的类光膨胀 θ 为负，那么通过在该部分中（同时保持在 S 中）
把 W 稍微向外推，我们就得到一个新的子流形 W ′，它仍然是类空的，余维数为 2，且部分位于黑洞区域之外，
而且我们的外推足够微弱，以使得 W ′ 中位于黑洞区域以外的部分仍然具有 θ < 0. 在图中，W 和 W ′ 之间的
区域没有阴影，因为它不是黑洞区域的一部分.

关于黑洞，当然还有很多要说的，但现在，我们将让读者在其它地方继续这个旅程. 最后，我们
仅仅对黑洞视界的时间反演进行一个评论. 黑洞的视界是未来视界，即，无限远处的观察者可以向未
来视界后面的区域发送信号，但无法接收到该区域发出的信号. 时间反演这些说法，人们就会得到过
去视界的概念，即，无限远处的观察者可以接收到过去视界后面发出的信号，但不能向该区域发送信

号. 在渐近平坦的时空中，过去视界后面的区域称为白洞. 彭罗斯定理的时间反演版本说，一个白洞
区域包含一个过去奇点，或者至少是过去类光测地完备性的失效. 广义相对论的理想解既有黑洞也有
白洞（史瓦西解是一个例子，参见 7.1 节中的图 42）．在现实世界中，黑洞是由引力坍缩形成的，但
没有产生白洞的等效机制. 并且宇宙监督表明，从良好的初始数据不可能演化形成白洞.

宇宙学中也有视界，但这个概念强烈依赖于观察者. 观察者可以看到的区域的边界称为该观察者
的未来视界，而观察者可以影响的区域边界称为观察者的过去视界. 在宇宙学中，过去视界和未来视
界都是自然的.例如，图 35中阴影区域的对角线边界是任何其类时世界线在图的右上角结束的观察者
的未来视界，也是任何其类时世界线在图的左下角开始的观察者的过去视界. 阴影区域是前一个观察
者可以看到的区域，也是后一个观察者无法影响的区域.

7 额外专题

现在我们转而讨论一些额外专题, 包括拓扑监督、平均类光能量条件以及高-沃尔德定理.
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图 41: 虫洞的两种类型: (a) 两个不同时空间的连接; (b) 同一时空中遥远区域间的捷径. 图中描绘的是两种情
况下的柯西超曲面.(比较 [18] 的第 837 页.)

7.1 拓扑监督

一个所谓的“虫洞”36, 可以是两个不同的渐近平直时空在几何上的联系 (图 41(a)), 也可以是连
接同一渐近平直时空两遥远区域的捷径 (图 41(b)). 这两种情形是密切相关的. 第二类虫洞的存在意
味着时空并不是单连通的; 通过取其覆叠, 我们可以把它转换为第一种情形.

就拓扑而言, 一个整体双曲时空 M 就是 M = S × R, 其中 S 是一个初值超曲面, 而 R 为时间参
数. 因此, M 中存在虫洞就直接意味着 S 存在虫洞.

史瓦西解的解析延拓为拓扑监督提供了一个具有启发性的例子 (图 42). 这是一个整体双曲时空,
其“两端”渐近平直, 在图中分别以 I 和 II 加以标注. 其初值曲面 S 实际上与图 41(a) 所描绘的十分
相似. S 的左端和右端分别处于渐近平直区域 I 和 II, 而内侧的部分则穿过虫洞. 但是, 就如我们在彭
罗斯图中看到的那样, 来自一个渐近平直区域的因果信号无法通过虫洞到达另一个区域. 如果一个人
从左侧进入虫洞, 想要穿过它来到右侧, 那么最终他只会到达黑洞的奇点.

拓扑监督 [11] 断言, 对于满足类光能量条件 (以及经典的爱因斯坦方程) 的时空而言, 情况都是如
此: 时空中或许存在虫洞, 但是观察者无法探查它, 也就是说, 因果信号不可能穿过虫洞到达另一边.
为证明这一点, 只需要考虑如图 41(a)所示的连接两不同的渐近平直时空的虫洞. 图 41(b)中的情形则
可以在不破坏经典的类光能量条件的情况下通过取覆叠归约为此.

假设 M1 和 M2 是时空渐近平直的“两端”. 如果一个因果信号能够穿过虫洞从 M1 到达 M2, 那么
这个信号可以从 M1 中久远过去的遥远的一点处发出, 经过虫洞, 在 M2 中传播, 最终到达另一个遥远
的观测者处. 我们以如下的方式来利用这一观察.

36类似的讨论也适用于渐进反德西特时空 [12].
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图 42: 这是史瓦西黑洞最大解析延拓的彭罗斯图. 它包含两个渐近平直区域，此处用 I 和 II 标记. 两区域的间
隔类空, 之间不可能有因果联系. 这一时空是整体双曲的, S 为初值曲面, 它连接了两个渐近平直区域, 拓扑上来
说是一个类似于图 13(a) 的“虫洞”. H+ 标记了留在区域 I 或 II 无穷远处的观察者的未来视界; H+ 的未来是
黑洞区域 (以阴影表示). 在外部观测者看来, 还存在过去视界 H−; H− 的过去是白洞区域 (未加以阴影). 图中
还展示了一条径向类光测地线 γ, 它起源于左侧渐近平直区域的过去类光无穷远上的点 q, 在“虫洞”区域穿过
S, 但不会“穿过虫洞”进入右侧的渐近平直区域, 而是进入黑洞区域, 并在未来奇点处终结.

M1 的线元在无穷远处趋近于闵可夫斯基线元

ds2 = −dt2 + dr2 + r2dΩ2, (7.1)

其中 dΩ2 是 (D− 2)-球面的线元. 令 W 为一个嵌入在 M1 中的球面, 它可由 r = r0, t = −r0 + k 给定,
其中 k 是一个常数, 而 r0 则被取得充分大. 于是, W 被嵌入在 M1 中距离虫洞很远的地方, 处在久远
的过去, 且其“超前时”t + r = k 保持固定. 这样取的目的是保证一个从 W 处发出的信号到达虫洞

所需的时间在最低阶上是一个与 r0 无关的常数. 通过变化 k 的取值, 我们可以改变信号到达虫洞的时
间. 我们将会看到, 不论我们如何选取 k, 从 W 发出的信号都无法通过虫洞.

在 M2 中, 我们令 I 为一个距离虫洞很远的近似静止的观测者的世界线. 37

如果一个信号可以从 M1 穿过虫洞到达 M2, 那么这个信号可以是从 W 上发出的 (为此或许可以
令 k 充分负), 随后进入到 M1 的内侧, 穿过虫洞, 最终来到 M2 并被沿着 I 移动的观测者探测到. 如
果这样一条由 W 发出到达 I 的因果路径存在, 那么也存在一条这样的迅捷因果路径, 它以最快的方
式抵达 I. 这条迅捷因果路径会是一条指向未来的类光测地线 ℓ, 它与 W 正交且不存在焦点.

37我们可以引入彭罗斯的“共形类光无穷远”, 并令 W 为 M1 的过去类光无穷远上的 2-球面, 而 I 则可用 M1 未来类
光无穷远上的类光世界线代替. 这为使得下面的论证更为严格提供了一个简单的框架. 但是, 我们并不会进行如此细致的
讨论.
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考虑到 W 的定义方式, 指向未来且与 W 正交的类光测地线或者“外向”传播, 或者“内向”传
播. 外向传播的类光测地线只是简单地向外传播到 r = ∞ 的渐近平直区域. 有可能穿过虫洞的, 只能
是那些内向传播的类光测地线. 但是, 对于内向传播的类光测地线, 其类光膨胀的初始值 θ = Ȧ/A 是

负的. 假定类光能量条件成立, 雷乔杜里方程要求这些内向传播的类光测地线在有限的仿射参数内到
达焦点. 由于 ℓ 可以在 M2 中取得任意远, 因此所有这些内向的类光测地线都会在抵达 ℓ 前到达焦点.
这意味着从 W 到 I 的迅捷的因果路径不存在, 因此, 任何从 W 到 I 的因果路径根本就不存在.

7.2 平均类光能量条件

在我们关于拓扑监督的讨论中, 我们假定了类光能量条件成立. 这是一个关于能动张量逐点性质
的条件, 曾在 5.4 节中有过探讨. 类光能量条件能够被合理的经典物质所满足, 但在量子场论中对量子
能动张量的期待值则不然. 这就导致了一个问题: 拓扑监督是否在量子理论下的宇宙中成立?

结果是, 拓扑监督在一个更弱的被称为“平均类光能量条件”(ANEC) 的假设下成立. 38 对于一

完备的类光测地线 ℓ, 其仿射参数 U 在两端趋向于无穷, 平均类光能量条件断言∫
ℓ

dU TUU ≥ 0. (7.2)

其中

TUU =
dxα

dU
dxβ

dU Tαβ. (7.3)

而在同样的记号下, 类光能量条件为
TUU ≥ 0. (7.4)

很明显, 平均类光能量条件更弱.

在随后的应用场景中, 我们可以将平均类光能量条件看作是一个对经典时空的能动张量的要求:
一类特定的积分是非负的. 然而, 平均类光能量条件在多数情况下被看作是一条对一般背景时空当中
的量子场论的要求. 此时, 平均类光能量条件意味着算符

∫
ℓ
dUTUU 是非负的, 也就是说它对任何量子

态 Ψ 的期待值都是非负的. 在这种理解下, 平均类光能量条件一般来说并不成立, 即使类光测地线 ℓ

是完备的 (这意味着它的仿射参数在两端都趋于无穷). 一个简单的反例是方程 (3.1) 给出的圆柱形时
空, 早先我们曾利用这一时空来说明类光测地线未必是时序的. 为得到一个平均类光能量条件的反例,
考虑一种柱形时空内共形不变的量子场论. 这一时空中共形量子场论的基态具有负的卡西米尔能量.

38 [33] 介绍了诸如 ANEC 这样的积分条件在证明广义相对论的一些结论中的使用.
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此外, 由于平移不变性, 此基态的能量密度在该时空中是一常数. 因此, 在本例当中, 平均类光能量条
件中的积分元是负定的 (对于任何类光测地线 ℓ), 故而条件不被满足.

人们相信, 平均类光能量条件在两个附加条件下是可能成立的: 问题涉及的类光测地线非时序, 且
时空自洽, 这大略是说场源由能动张量期待值给定的爱因斯坦方程成立 [34–36]. 这在目前还没有被证
明. 一个比较基础的结果是, 平均类光能量条件对闵可夫斯基时空中的测地线成立 [37, 38]. 对于更一
般的时空, 目前也存在一些不完全的结论 [39].

对我们的目的而言, 平均类光能量条件的有趣之处, 在于它对一些经典的能量条件的应用场景来
说已经是足够的. 在 8.2 节, 我们将证明, 如果 ℓ 是一条仿射参数在两端都趋于无穷的类光测地线, 且
平均能量条件对 ℓ 成为严格不等式, ∫

ℓ

dU TUU > 0, (7.5)

那么 ℓ 上的一段在向两端延伸到一定程度后将不再是迅捷的. 在 7.1 节对拓扑监督的证明中, 关键在
于考虑一条假想的迅捷类光测地线 ℓ, 它连接了渐近平直区域 M1 中足够远的球面 W 和渐近平直区域

M2 中足够远的类时线 I. 这样的 ℓ 可以在两个渐近平直区域中被无限延伸到过去和未来, 且通过把
W 和 I 在它们各自的无穷远方向移动, 其连接 W 和 I 的部分可以向两端任意延伸. 所以, 如果平均
类光能量条件中的不等式严格成立, 那么这样的 ℓ 不可能存在, 而拓扑监督因此在此时空中成立.

那么, 当平均类光能量条件对 ℓ 恰好是饱和的, 也就是说
∫
ℓ
dUTUU = 0, 情况又会如何呢? 对此我

们可以做如下论证. 如果时空 M 中两渐近平直的区域之间存在因果联系, 从而违反了拓扑监督, 那么
在对 M 施加一个足够小的扰动后, 两区域间的因果联系仍然存在, 拓扑监督也依旧被违反. 假若平均
类光能量条件在一完备的类光测地线 ℓ ⊂ M 上是饱和的, 那么在对 M 加以恰当微扰之后, 例如在 ℓ

一端附近添加一些具有正能量的非相对论性物质, 我们就得到了时空 M ′, 其中平均类光能量条件的不
等号严格成立. 这样, M ′ 遵循拓扑监督, M 因而亦然.

7.3 高-沃尔德定理

对于下一个话题, 读者需要对 AdS/CFT 对偶有基本的了解, 也就是渐近反德西特时空中的量子
引力与其共形边界上的共形场论 (CFT) 之间的对应 (概述参见 [44]).

令 M 为一个渐近 AdS 时空, 也就是说, 它在类空无穷远处趋近于 AdS 空间. 通过在类空无穷远
处添加一些点, 我们可以在局域上将 M 共形紧致化. 无穷远处的点构成了一个具有洛伦兹号差的流形
N ,它比 M 低一维. AdS/CFT对偶告诉我们, M 上的引力理论等价于 N 上的某个共形场论. 图 43(a)
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图 43: (a)根据 AdS/CFT对偶,反德西特时空M 中的量子引力理论等价于低一维的M 的共形边界 N 上的普
通的量子场论. (b) 在边界的理论里, 如果 N 中一条指向未来的因果曲线可以从 q 延伸到 p, 那么发生在 q ∈ N
的事件就可以影响 p ∈ N 的事件. 但是, 假如可以从内部走捷径, 也就是说在 M 内部, 一条从 q 出发指向未来
的因果曲线可以延伸到严格处于 p 过去的一点 r ∈ N , 那么因果性就会被破坏. 在图中, 曲线 qp 是一条边界上
的因果曲线, 而 qr 则是假想中一条位于内部的违反因果性的捷径. 高-沃尔德定理指出, 这种因果性破坏并不会
发生.

是对这一情况的图示.

高-沃尔德定理 [13] 指出, 如果类光能量条件成立, 或者假定更一般的平均类光能量条件成立, 那
么 AdS/CFT 对偶与因果性相容. 这种说法的含义如下. 在边界的共形场论中, 当且仅当边界 N 上存

在一条由 q 到 p 的指向未来的因果路径时, 事件 q 可以对事件 p 施加影响. 然而, 在内部的引力理论
下, 当一条连接两事件且指向未来的因果路径存在于 M 的内部时, q 才可以对事件 p 产生影响. 而如
果我们可以“从内部走捷径”, 也就是说, 如果一条从 q 出发经过 M 的因果路径可以到达边界上的因

果路径无法到达的点, 我们就说 AdS/CFT 对偶破坏了因果性. 进一步来说, 如果 q 可以通过一条边界

上的迅捷因果路径到达 p, 且内部中存在一条由 q 出发到达严格处于 p 过去的事件 p′ 的因果路径, 那
么 AdS/CFT 对偶就违背了因果性 (图 43(b)).

在真空 AdS时空中, 每条类光测地线都是迅捷的, 由 q 出发的内部类光测地线恰好可以到达 p, 但
不能到达更早的事件. 换言之, 因果性条件在真空 AdS 时空中恰好被满足.

那么, 如果我们通过添加物质或微扰引力场的方式扰动真空 AdS 时空, 情况又会如何? 高-沃尔德
定理指出, 在类光能量条件成立的情况下, 或在更一般地假定平均类光能量条件的情况下, 内部中决不
会出现破坏因果性的捷径.
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如果破坏因果性的捷径存在, 那么其中必然有一条是迅捷的; 也就是说, 对于经过 p 的某条类时世

界线 I, 它尽可能快地来到了严格处于 p 过去的 p′ ∈ I. 这条迅捷的捷径是一条没有焦点的类光测地
线 ℓ.

为证明这种情况不可能发生, 我们需要明白, 渐近 AdS 时空中类光测地线的仿射参数会在其共形
边界处发散, 即使从边界上量度的时间并不发散. 在恰当的坐标系选取下, 渐近 AdS 时空的线元在共
形边界附近为

ds2 = R2

z2
(
−dt2 + dz2 + dx⃗2

)
, (7.6)

其中 R 为曲率半径 (见附录 A). z > 0 的部分对应时空的内部, 而共形边界位于 z = 0 的地方. 一条典
型的类光测地线为

z = −t, x⃗ = 0, t ≤ 0, (7.7)

很明显, 它在有限的 t 内到达 z = 0 的边界, 也就是 t = 0 处. 然而, 当 t → 0− 时这条测地线的仿射参

数发散. 为证明这件事, 注意到方程 D2xµ/Dλ2 = 0 对本情形中带有仿射参数 λ 的测地线给出

d
dλ

(
1

z2
dt
dλ

)
= 0, (7.8)

因而
1

z2
dt
dλ = w, (7.9)

其中 w 为常数. 这一常数非零, 因为 t 在测地线 (7.7) 上并不是常数. 取 z = −t, 我们有 dt/t2 = w dλ,
所以在相差一个积分常数的范围内, λ = −1/wt. 因此 λ 在 t → 0− 时发散.

现在我们转向我们假想中违反因果性的迅捷测地线 ℓ, 它是一条由 q 出发经过内部到达严格位于

p 过去的 p′ 的捷径. 如果平均类光能量条件的不等号在 ℓ 上严格成立∫
ℓ

dU TUU > 0, (7.10)

那么, 由于 ℓ 的仿射参数在两端点处发散, 第 8 节的分析将会证明, ℓ 不可能是迅捷的, 因此这条假想
的违反因果性的捷径 ℓ 不可能存在.

正如在拓扑监督中讨论的那样, 我们可以以如下方式处理类光能量条件饱和的情形,∫
ℓ

dU TUU = 0. (7.11)
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我们通过添加无限少量的物质对时空加以微扰, 或是稍微改变一下量子态, 使得平均类光能量条件成
为严格不等式. 在某个恰当的微扰下, ℓ 在到达共形边界时将与 p′ 十分靠近且仍严格处于 p 的过去.
这样我们就遇到了与之前一样的矛盾.

当然, 作为以上的一个特例, 我们也可以用经典的类光能量条件 TUU ≥ 0 推导高-沃尔德定理, 而
不是使用平均类光能量条件.

8 迅捷性再认识

8.1 概述

在第 4 和第 5 章中, 我们考察了从一特定点 q 或从一恰当给定的子流形 W 发出的测地线 ℓ, 研究
了 ℓ 向未来延伸时的表现. 其中, 重要的想法之一, 是当 ℓ 延伸过一个焦点以后, 将不再使固有时最大
化 (类时情形下) 或具有迅捷性 (类光情形下). 本章的目的, 是对类光情形下的这些说法给出更严格的
证明,39 阐释 7.2 节中给出的一个关于平均类光能量条件的结论, 并探讨完备的非时序类光测地线.

我们将在 8.2 和 8.3 节考察从一点 q 出发的因果路径. 在 8.4 节, 我们以类似的方式处理由余维数
为 2 的类空子流形 W 发出的因果路径. 在 8.5 节, 从一个“薛定谔方程”(本质上是测地偏离方程) 出
发, 我们重新推导第 5 章的主要工具——雷乔杜里方程, 以此让一切连贯起来; 这一方程将是我们当前
分析的主要工具. 最后, 在 8.6 节, 我们讨论完备的非时序类光测地线.

8.2 因果变形与迅捷性的必要条件

令 ℓ 为一类光测地线. 我们其实已经在 5.1 节的图 27 中描述了使 ℓ 上的一段 qp 迅捷的一个必要

条件: 如果 qp 上存在这样的片段 rr′, 它可以至少在一阶上被变形为一条邻近的由 r 到 r′ 的类光测地

线 γ (此时我们说 r 和 r′ 在 ℓ 上互为共轭点), 那么 qp 将不会是迅捷的. 因为这样一来, 通过将 ℓ 上的

片段 rr′ 替换为 γ, 我们得到一条从 q 到 p 的因果路径. 它不是类光测地线, 所以它通常能够被改造为
一条到达 p 过去的因果路径. 只要 q = r 和 p = r′ 不同时成立, 这一论证依然有效.

在本节中, 我们将以更精确的方式支持这一论证, 并且会推出一些进一步的性质. 为方便起见, 我
们可以利用这样一个事实: 在类光测地线 ℓ 上, 我们总可以选取坐标 U, V,XA, A = 1, · · · ,D − 2, 使得

39我们可以以一种类似 (且更简单) 的方式研究类时测地线，但我们将讨论的想法对于类光测地线的情形有更多的价值.
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ℓ 上 V = XA = 0 且度规与闵可夫斯基度规在 V 与 XA 的二阶内相同:

ds2 = −2dUdV +
D−2∑
A=1

(dXA)2 +O(V 2, V XA, XAXB). (8.1)

这样的坐标叫做费米正则坐标. 这种坐标能够存在的原因如下: 在黎曼几何中, 一给定点处的度规张
量及其一阶导数并不蕴含不变的信息; 所有的不变局域信息都包含在取决于度规二阶导数的黎曼曲率
张量及其取决于度规更高阶导数的协变导数当中. 类似地, 在一条给定的测地线 ℓ 上, 除 ℓ 是类时、类

空还是类光外, 度规张量和它的一阶导数也不含任何不变的信息. 因此, 度规在 ℓ 上可以被写为标准形

式, 至多相差二阶. 对类空和类时测地线, 这样做的方法在 [42] 中有所描述, 并在 [43] 中被推广到类光
测地线. 在费米正则坐标下, 测地线方程 D2Xµ/Dλ2 = 0 对 V = XA = 0, U = λ 成立. 换句话说, 我们
可以直接取 λ = U 作为 V = XA = 0 处的测地线 ℓ 的仿射参数.

鉴于费米正则坐标下度规的一阶导数在 ℓ 上为零, ℓ 上的黎曼曲率张量可以借助度规的二阶导数
表示为相对简单的形式. 其中我们所需要的一个特例, 是在 ℓ 上

RAUBU = −1

2

∂2gUU

∂XA∂XB
. (8.2)

为验证此式, 注意到 ℓ 上度规的一阶导数为零, 且有 ∂U∂AgBU = ∂2
UgAB = 0 (因为在 ℓ 上对任意 U 成

立 ∂AgBU = ∂UgAB = 0).

我们希望找到一个有用的条件, 它能保证 ℓ 不是一条从 λ = λ0 的点 q 到 λ = λ1 的点 p (对于某
些 λ0 和 λ1 的选择) 的迅捷路径. 为此, 我们考虑 ℓ 的某些变形, 这些变形仍是 q 点出发的因果路径,
但却未必满足测地线方程. (在 8.3 节我们会看到, 某种意义下最理想的变形的确满足测地线方程.) 使
得一曲线为因果曲线的条件是

−gµν
dXµ

dλ
dXν

dλ ≥ 0 (8.3)

对任意 λ 成立. 在对 ℓ 的变形中, 改变关系 λ = U 没有意义, 因为这样的变化仅仅相当于重新选择 ℓ

的参数. 但是, 我们的确想要改变 V = XA = 0.

比较自然的想法,或许是相对于一个微小的参量 ε做展开 V = εv(λ)+O(ε2), XA = εxA(λ)+O(ε2),
其中的 ε 我们可以假定是正的. 然而如果我们这样进行下去, 那么在 ε 的一阶上, 因果条件 (8.3) 会只
取决于 v 且仅给出

dv
dλ ≥ 0, (8.4)

所以 V 是 λ 的递增函数. 但此时, 只要 dv/dλ > 0, 变形后的曲线 ℓ′ 在从 ℓ 上的 λ = λ0 处出发后将马
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上进入到 ℓ 的未来. 而在 ε 的一阶上, 最迅捷的变形满足 dv/dλ = 0 , 再加上初始条件 v (λ0) = 0, 就
意味着 v(λ) 恒等于 0.

如果我们令 V = ε2v(λ) + O(ε3), XA = εxA(λ) + O(ε2), 从而使对 XA 的扰动是一阶的, 而 V 的

扰动是二阶的, 那么我们能得到一个更有趣的对 ℓ 迅捷性的测试. 此时, 因果性条件 (8.3) 直到 ε2 阶都

是平凡的, 且在这一阶上给出

2
dv
dλ −

D−2∑
A=1

(
dxA

dλ

)2

+
D−2∑

A,B=1

xAxBRAUBU ≥ 0. (8.5)

(在把因果条件展开到二阶时, 必须求 gUU 的二阶导数; 利用方程 (8.2) 来计算它, 就得到了方程 (8.5)
中的曲率项. 含有 gUU 一阶导数的各项并没有贡献, 因为在费米正则坐标下它们在 ℓ 上为零.) 举个例
子, 考虑扰动后的曲线 ℓ′, 其 xA 在按 λ0 ≤ λ ≤ λ1 定义的区间 I 外为零. 此外, 假设 v (λ0) = 0, 从而
使 ℓ′ 与 ℓ 在 λ = λ0 处相交. 那么, 对 (8.5) 式积分, 我们就得到

v(λ1) ≥
1

2
J(xA), (8.6)

其中

J(xA) =

∫
I

dλ
(D−2∑

A=1

(
dxA

dλ

)2

−
D−2∑

A,B=1

xAxBRAUBU

)
. (8.7)

现在, 为了得到使 ℓ 并非迅捷的一个有用的判据, 令 p 为 ℓ 上满足 U = λ1, V = XA = 0 的点. 假
设 xA (λ1) = 0 且 v (λ1) < 0, 那么在 λ = λ1 处, ℓ′ 到达坐标为 U = λ1, XA = 0, V = −ε2 |v (λ1)| < 0

的点 p′. p′ 点位于 p 的过去光锥上. 如果这样一条从 q 到 p′ 的因果路径 ℓ′ 存在, 那么对于略小于 λ1

的 λ, ℓ′ 位于 p 过去光锥的内部. 因此, 此时 ℓ 并不是由 q 到 p 的迅捷路径.

简言之, 如果 ℓ 可以被变形为与 ℓ 在 λ = λ0 处重合 (从而在该处有 xA = 0) 且在 λ = λ1

处满足 xA = 0, v < 0 的因果曲线 ℓ′, 那么 ℓ 不是迅捷的. 或者说, 如果我们可以在其两端都有
xA = 0, 且 v (λ0) = 0, v (λ1) < 0, 那么 ℓ 一定不是迅捷的. 由于与因果性导致的 v (λ1) 的下界是

v (λ1) − v (λ0) ≥ J
(
xA
)
/2, 我们可以令这种情况发生, 当且仅当可以找到一个在区间两端点处为零的

函数 xA 使得泛函 J
(
xA
)
取负值.

换句话说, 为使 ℓ 在给定区间 I 上是迅捷的, 用所有在区间 I 两端点处为零的函数计算出的泛函

J
(
xA
)
的值必须是非负的. 在非相对论性量子力学中, 我们可能已经比较熟悉使得类似于 J

(
xA
)
这样
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的泛函非负的一类条件. 把 xA 想作表示一个量子态 Ψ 的列矢量的分量. 定义“哈密顿量”为

H = −δAB
d2

dλ2
+ PAB, (8.8)

它带有值为矩阵的势能

PAB = −RAUBU . (8.9)

于是

J(xA) = ⟨Ψ|H|Ψ⟩, (8.10)

而令 J
(
xA
)
非负的条件就是要求算符 H 作用于在区间 I 端点处为零的波函数时非负. 我们将把要求

xA 在区间两端点处为零的条件称为狄利克雷边界条件.

在足够小的区间上, 由于正的“动能”−δAB
d2

dλ2 掩盖了“势能”PAB, 所以此时 H 的基态能量在

狄利克雷边界条件下一定是正的. 又因为一个区间上的基态可以被用做更大区间上的变分试探波函数,
所以区间 [λ0, λ1] 上的基态能量会随着区间扩大而单调递减. 因此, 当且仅当基态能量在一个足够大的
区间上取负值时, 某个区间上才会存在零模. 如同我们将在 8.3 节讨论的那样, 零模对应于遵循测地线
方程的变形. 对此的证明将会更精确地展示出第 5 章所呈现的焦点和迅捷性之间的关系.

现在让我们集中讨论 ℓ 是完备类光测地线的情形, 其仿射参数在两端无界. 此时, 基态能量在一个
向两侧延伸到充分大的区间上取负值当且仅当它在全实轴上取负值. 而要证明全实轴的基态能量是负
值, 比较自然的方法是找到一个试探波函数 xA(λ), 其 H 的期待值是负的. 假定存在常数 cA 使得对于

xA = cA, 势能在全 ℓ 上的积分是负的:

0 >

∫
ℓ

dλ cAPABc
B = −

∫
ℓ

dλ cAcBRAUBU . (8.11)

如果我们直接把 cA 用作全实轴上的变分波函数, 那么动能项消失且方程 8.11 表明势能为负值. 这意
味着基态能量在全实轴上是负的, 从而在一个足够大的区间上也是.

我们需要多加小心, 因为常数 cA 不是平方可积的, 因此不能用作变分波函数. 然而, 我们可以通
过使用变分波函数 xA(λ) = cA exp (−αλ2) 来避免这种情况, 其中正数 α 足够小. 动能在 α → 0 时趋

于零 (以 α1/2 的方式), 而势能在 α → 0 时的极限就是 40 原本的积分 −
∫
ℓ
dλcAcBRAUBU . 因此, 如果

不等式 (8.11) 对某个常值 cA 成立, 那么基态能量在足够大的区间上就是负的.

40我们假定 RAUBU 在 U → ±∞ 时以足够快的方式趋于零, 以使得积分收敛, 论证成立. 更严谨的分析参见 [40, 41].
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那么我们如何找到恰当的 cA 呢? 如果将不等式 (8.11) 对所有可能的 cA 做平均, 我们就得到

0 > −
∫
ℓ

dURUU , (8.12)

其中由于 λ = U , 我们将积分变量写作 U . 如果这一条件被满足, 那么 (8.11) 一定也对某个 cA 成立,
从而使基态能量在充分大的区间上是负值.

但是, 因为爱因斯坦方程 RUU = 8πGTUU , 方程 (8.12) 等价于∫
ℓ

dU TUU > 0, (8.13)

也就是不等式严格成立时的平均类光能量条件, 或 ANEC. 因此, 如果 ANEC 的不等号在 ℓ 上严格成

立, 那么基态能量在充分大的区间上是负的, 从而 ℓ 并非非时序.

8.3 基于测地偏离的解释

在 8.2 节, 我们找到了使 ℓ 迅捷的一个必要条件: 算符 H 不能在 ℓ 所包含的任何区间 I 上存在

零模. 另一方面, 在 8.1 节, 我们给出了迅捷性的一个必要条件, 即 ℓ 的片段 I 不能在一阶上被变形为

一条邻近的具有相同端点的类光测地线. 这两者之间的关系, 就是 ℓ 的类光测地线变形对应于 H 的零

模. 为说明这件事, 我们给出描述测地线线性扰动的方程; 这常常被称为测地偏离方程, 它的解则被叫
做雅可比场. 我们将会看到, 对给定区间上的类光测地线的扰动, 若在扰动的一阶上满足测地线方程,
那么它们自然对应于 H 的零模.

如果

0 =
D2Xµ

Dλ2
=

d2Xµ

dλ2
+ Γµ

αβ

dXα

dλ
dXβ

dλ (8.14)

且

0 = gµν
dXµ

dλ
dXν

dλ . (8.15)

那么曲线 Xµ(λ) 是一具有仿射参数 λ 的类光测地线 (我们暂时写出这些方程的一般情形, 而不局限于
费米正则坐标.) 我们借由 Xµ

ε (λ) = Xµ(λ) + εxµ(λ) +O(ε2) 来描述对类光测地线的扰动, 其中 ε 是一

小量. 为使扰动在 ε 的一阶范围内描述一条类光测地线, 它应满足线性化方程

0 =
D2xµ

Dλ2
+Rµ

ναβ
dXν

dλ
dXβ

dλ xα (8.16)
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以及

0 = gµν
Dxµ

Dλ

dXν

dλ . (8.17)

这些方程总存在反映以 λ → aλ + b 来重定义原测地线仿射参数的可能性的平凡解, 其中 a, b 为常数.
具体而言, 这些解的形式为

xµ = α
dXµ

dλ + βλ
dXµ

dλ , α, β ∈ R. (8.18)

这样的解仅仅描述了原测地线的重参数化, 而不是对它的扰动. 我们当然只对描述扰动的非平凡解感
兴趣.

为得到对片段 I 的类光测地扰动, 我们想要找到线性化方程 (8.16), (8.17) 在该片段上的解, 且解
要在该片段两端为零. 如果片段的端点分别位于 λ = λ0 和 λ = λ1, 那么我们希望在区间 [λ0, λ1] 上求

解带有边界条件

xµ(λ0) = xµ(λ1) = 0. (8.19)

的线性化方程. 平凡解 (8.18) 不满足边界条件 (8.19), 因此这一边界条件暗含着对导致平凡解的重参
数化不变性的固定. 具体而言, 通过规定扰动后两端点处仿射参数值不变, 重参数化不变性被固定下
来.

由方程 (8.17) 和 (8.14), 我们立刻推断出

0 =
d

dλ

(
gµνx

µdXν

dλ

)
. (8.20)

所以 gµνx
µ dXν

dλ 在 ℓ 上守恒. 这一守恒量必定为零, 因为边界条件 (8.19) 指出它在两端为零. 因此, 我
们只对线性化方程满足

0 = gµνx
µdXν

dλ . (8.21)

的解感兴趣.

现在让我们把情况限制在费米正则坐标 U , V , XA 下, ℓ 为一般的测地线 U = λ, V = XA = 0. 我
们对其施加扰动 U = λ+ εu(λ), V = εv(λ), XA = εxA(λ), 且只考虑到 ε 的一阶. (不像 8.2 节, 我们不
能令 u = 0. 原因是现在我们要令扰动满足仿射参数 λ 下的测地线方程, 而在 8.2 节中并没有这样的要
求.) 条件 (8.21)只告诉我们 v = 0. 此外, 在费米正则坐标下, 由于 v = xA = 0 处 ΓA

µν = 0, 方程 (8.16)
退化为

d2xA

dλ2
+RA

UBUx
B = 0 (8.22)
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和
d2u

dλ2
+RU

UBUx
B = 0. (8.23)

方程 (8.22) 就是熟悉的方程 HΨ = 0, 其中哈密顿量 H 与 8.2 节中的相同. 另一方面, 不论 xA 如何,
方程 (8.23) 总存在满足边界条件 u (λ0) = u (λ1) = 0 的唯一解. 为找到这个解, 可以任取方程 (8.23)
的一个解, 然后加上齐次方程 d2u/dλ2 = 0 的平凡解 (8.18) 的线性组合, 以满足边界条件.

因此, 片段 I 上的线性化类光测地变形与该片段上 H 的零模之间存在一一对应. 基于线性化类光
测地变形的迅捷性判据因而等价于基于 H 能谱的判据.

因为线性方程 (8.22) 的解也被称为雅可比场, 片段 I 上的一个解也就是一个在区间两端点处为零

的雅可比场.

8.4 正交类光测地线

目前为止, 我们已经在本章中考虑了单独的类光测地线 ℓ. 然而, 在第 5 章和后续应用中, 考虑一
簇正交于余维数为 2 的类空曲面 W 的类光测地线也很重要. 这里我们将调整目前的讨论以适用于这
种情形.

不失一般性, 我们可以在以 ℓ 为中心的费米正则坐标下展开讨论, 并令 ℓ 与 W 在 U = 0 处相交,
且 W 在 ℓ 附近被定义为 U = V = 0, 相差正则坐标 XA 的二次项. 因此

V = f(XA), U = h(XA), (8.24)

其中 f
(
XA
)
= f2

(
XA
)
+O (X3), h

(
XA
)
= h2

(
XA
)
+O (X3), 而函数 f2

(
XA
)
和 h2

(
XA
)
是齐次的

二次型. 其实, 我们会发现 h2 并不起什么作用, 只有 f2 是关键的.

对于某个 λ1 > 0, 我们令 p 为点 V = XA = 0, U = λ1. 下面我们考虑限制在区间 I = [0, λ1] 上且

由 W 到 p 的因果路径 ℓ. 我们想要知道这条路径是否是迅捷的. 为得到一个迅捷性的必要条件, 我们
考虑由 ℓ 到从 W 发出的因果路径 ℓ′ 的微小变形.

我们做与此前一样的展开, 在相差更高阶的范围内, 定义 ℓ′ 为 U(λ) = λ, V (λ) = ε2v(λ), XA(λ) =

εxA(λ). 我们定义
λ0 = ε2h2(x

A). (8.25)
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并要求

v(λ0) = f2(x
A(λ0)). (8.26)

我们认为 ℓ′ 是定义在区间 [λ0, λ1] 上的. 设定这些条件的目的是确保 ℓ′ 在区间的端点 λ = λ0 处从 W

发出. (因为我们只保留到 ε2 阶, 所以我们可以使用 f2 和 h2 而不是 f 和 h.) 我们并不对 xA(λ0) 施

加任何限制, 因为我们想要令 ℓ′ 能够从与 ℓ 不同的点处从 W 上发出. 假若 ℓ′ 可能成为一条因果路径,
且有 xA (λ1) = 0 和 v (λ1) < 0, 那么, ℓ′ 的端点 λ = λ1 就是由 U = λ1, V = −ε2 |v (λ1)|, XA = 0 给出

的点 p′. 这一点位于点 p 的过去光锥上. 如同 8.2 节中的那样, 一条从 W 发出到达这一过去光锥上一

点的因果曲线 ℓ′ 的存在性表明 ℓ 并不是从 W 到 p 的迅捷因果路径.

虽然我们不会把 ℓ′ 限制为与 W 正交, 但正交性的条件仍很有用. 与 W 相切的向量场必须满足条

件 (8.24), 因此它的形式为

∂

∂XA
+

∂f(XA)

∂XA

∂

∂V
+

∂h(XA)

∂XA

∂

∂U
=

∂

∂XA
+ ε

∂f2(x
A)

∂xA

∂

∂V
+ ε

∂h2(x
A)

∂xA

∂

∂U
+O(ε2). (8.27)

而 ℓ′ 在 λ = λ0 处的切向量为
∂

∂U
+ ε2

dv(λ)
dλ

∂

∂V
+ ε

dxA

dλ
∂

∂XA
. (8.28)

在 ε 阶上, 正交性的条件是 (
dxA

dλ − ∂f2(x
A)

∂xA

)∣∣∣∣
λ=λ0

= 0. (8.29)

8.2 节中的许多推导并没有发生变化. 具体而言, 因果性条件如同先前一样为

2
dv
dλ −

D−2∑
A=1

(
dxA

dλ

)2

+
D−2∑

A,B=1

xAxBRAUBU ≥ 0. (8.30)

令 v (λ0) = f2 并积分, 我们得到
v(λ1) ≥

1

2
J̃(xA), (8.31)

其中

J̃(xA) = 2f2(x
A(λ0)) +

∫ λ1

λ0

dλ
(D−2∑

A=1

(
dxA

dλ

)2

−
D−2∑

A,B=1

xAxBRAUBU

)
. (8.32)

如同以往, 如果有可能令 J̃
(
xA
)
< 0 且 xA (λ1) = 0, 那么 ℓ 不是 W 到 p 的迅捷因果路径. 判断

J̃
(
xA
)
能否取负值的方法与先前一样. 关键之一是, 如果 xA 被看作某个“量子态”Ψ 的分量, 那么与
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之前一样 (在恰当的边界条件下, 这一点我们随后说明)

J̃(xA) = ⟨Ψ|H|Ψ⟩, (8.33)

其中 H 是“哈密顿量”

H = −δAB
d2

dλ2
+ PAB, PAB = −RAUBU . (8.34)

在其推导过程中, 唯一比较新颖的, 是我们必须要小心处理 λ = λ0 处的边界项. 在方程 (8.32) 中明确
出现了一个边界项 f2

(
xA (λ0)

)
; 此外, 当进行分部积分以将 J̃

(
xA
)
与 H 的期待值联系起来时, 我们又

会得到一个多余的边界项. 在我们先前的讨论中, xA 在 λ = λ1 一端仍然满足狄利克雷边界条件, 但我
们并不想在另一端施加同样的约束. 为令方程 (8.33) 成立, 我们需要在 λ = λ0 处对 xA 增加边界条件,
使得边界项能够消失掉. 我们所需要的条件是(

2f2(x
A)−

∑
A

xAdxA

dλ

)∣∣∣∣∣
λ=λ0

= 0. (8.35)

由于 f2
(
xA
)
关于 xA 是齐次的二次型, 这一条件可以从 (8.29) 中得出. 换句话说, 我们可以令边界条

件为 ℓ′ 与 W 在点 λ = λ0 处正交. 我们可以将 λ = λ0 处的边界条件想作是一个诺伊曼边界条件, 而
在 λ = λ1 处, ℓ′ 满足狄利克雷边界条件.

此时, 因为 λ0 是 ε2 阶量, 且是 J̃
(
xA
)
的定义中唯一一处出现 ε 的地方, 我们可以令 λ0 = 0 并只

考虑原来的区间 I = [0, λ1]:

J̃(xA) = 2f2(x
A(0)) +

∫
I

dλ
(D−2∑

A=1

(
dxA

dλ

)2

−
D−2∑

A,B=1

xAxBRAUBU

)
. (8.36)

与方程 (8.33) 类似, 我们把 H 当作是定义在这一区间上的. 这样做的原因是, 如果 J̃
(
xA
)
可以在全区

间 [0, λ1] 上取负值, 且满足混合的诺伊曼和狄利克雷边界条件, 那么在 ε 充分小时的区间 [λ0, λ1] 上这

也同样成立.

在区间 I = [0, λ1] 的左右端点处的诺伊曼与狄利克雷混合型的边界条件下, 算符 H 是自伴的, 而
等式 (8.33) 对 H 的每个本征函数成立. 如果在诺伊曼-狄利克雷边界条件下, H 的基态能量是负的, 那
么基态波函数就是一个满足恰当边界条件且有 J̃

(
xA
)
< 0 的 xA(λ) 的扰动的实例, 这表明 ℓ 并不是

一条从 W 到 p 的迅捷路径. 相反地, 虽然我们以后并不会用到这一点, 但如果 H 的能谱是非负的, 那
么对于在 λ = λ1 处满足狄利克雷边界条件的扰动而言 (且不在 xA(0) 处假定任何特定的边界条件), J̃
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就可以被证明是非负的.

就如同 8.2 节中的那样, 在一个足够小的区间上, 带有混合型的诺伊曼-狄利克雷边界条件的算符
H 总具有正的基态能量. 此外, H 在一区间 [0, λ1] 上的基态能量是 λ1 的单调递减函数, 因为在一个区
间上的基态可以被用做一更大区间上的变分波函数. 因此, 基态能量在足够大的区间上取负值当且仅
当存在 λ1 使得区间 [0, λ1] 上的基态能量为零. 如果这样的 λ1 存在, 那么对于任意的 λ2 > λ1, 基态能
量在区间 [0, λ2] 上都是负的, ℓ 在这一区间上也就不是迅捷的.

最后, 8.3 节的论证可以不加修改地过渡到混合的诺伊曼-狄利克雷边界条件的情形, 并且说明 H

在区间 [0, λ1]上的零模对应于 ℓ作为一条从 W 到 p且与 W 正交的类光测地线的一阶变形. 用 5.2节
的话说, 这一零模的存在性等价于 p 是从 W 发出的正交测地线的一个焦点. 在 5.2 节, 我们曾说明一
条正交类光测地线在经过这样一个焦点后将不再是迅捷的. 从我们当前的视角来看, 这是因为 H 的基

态能量是负值.

8.5 雷乔杜里方程与测地偏离

在第 5 章, 我们利用雷乔杜里方程来预测正交于一给定的余维数为 2 的类空曲面 W 的类光测地

线上的焦点. 在这一章, 我们已经用测地偏离方程完成了同样的事情, 它化约为了一个类薛定谔方程.
第二种探讨更为严格, 也给出了更详尽的信息. 这里我们将会说明如何从这种更完整的探讨中重新得
到雷乔杜里方程.

在其中, 我们会对之前的讨论做一个小小的推广: 我们考虑从一给定点 q 发出的类光测地线, 同时
也考虑正交于给定曲面 W 的类光测地线. (这两种情形可以用“无扭转类光测地线汇”的语言统一起
来, 如同在例如 [3] 中所解释的那样; 另一方面, 我们可以通过定义 W 为 q 未来光锥的一个截面而把

第一种情形用第二种的语言表达出来.)

如同以往, 我们使用根据 V = XA = 0 定义的测地线 ℓ 上的费米正则坐标 U , V , XA, A =

1, · · · ,D − 2. 我们只考虑或者从 U = V = XA = 0 的 q 点发出, 或者与由 V = f
(
XA
)
, U = h

(
XA
)

(其中 f , h 及其一阶导数在 XA = 0 处为零) 给出的余维数为 2 的子流形 W 正交的类光测地线. 我们
使用在 q 为零的仿射参数 λ = U .

对 ℓ 的扰动考察至一阶就足够了. 这就是说, 我们可以令 V = 0, XA = εxA, 并且将 8.4 节中的 λ0

设定为 0.
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在恰当的初始条件下, 对于 i = 1, · · · ,D − 2, 方程

d2

dλ2
xA +RA

UBUx
B = 0 (8.37)

在半直线 λ ≥ 0 上存在唯一解. 为研究被限制为从 q 出发的类光测地线, 我们选取初始条件为

xA(0) = 0,
dxA

dλ

∣∣∣∣
λ=0

= δAi , (8.38)

对某个 i ∈ {1, 2, · · · ,D − 2} 成立. 而对于被限制为从 W 发出且与之正交的类光测地线, 我们选择初
始条件为

xA(0) = δAi ,

(
dxA

dλ − ∂f2(x
A)

∂xA

)∣∣∣∣
λ=0

= 0. (8.39)

两种情形下的推导很多是一致的.

让我们把满足给定初始条件的解记作 EA
i(λ). 这样, EA

i(λ) 就是一个 (D − 2)× (D − 2) 矩阵, 且
在第一种情形下有

EA
i(0) = 0,

dEA
i

dλ

∣∣∣∣
λ=0

= δAi (8.40)

而在第二种情形下

EA
i(0) = δAi ,

(
dEA

i

dλ − ∂f2(x
A)

∂xA

∣∣∣∣
xA=EA

i

)∣∣∣∣∣
λ=0

= 0 (8.41)

方程 (8.37) 意味着
d2

dλ2
EA

i +RA
UBUE

B
i = 0. (8.42)

右乘满足 EB
i (E

−1)
i
C = δBC 的逆矩阵 (E−1)

i
C , 我们得到(

d2

dλ2
EA

i

)
(E−1)iC +RA

UCU = 0. (8.43)

取迹, 有

Tr d2E

dλ2
E−1 +RUU = 0. (8.44)

等价地,
d

dλ

(
TrdE

dλ E−1

)
+ Tr

[(
dE
dλ E−1

)2
]
+RUU = 0. (8.45)
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这实际上等价于雷乔杜里方程. 为此, 首先注意到一小丛从 q 点发出的测地线, 或是从 W 发出的

正交类光测地线的面元为

A = detE. (8.46)

因而类光膨胀为

θ =
1

A

dA
dλ = Tr dE

dλ E−1. (8.47)

“薛定谔方程”(8.42) 给出

0 =
d

dλ

(
EA

i
dEA

j

dλ − EA
j
dEA

i

dλ

)
, (8.48)

其中 EA
i

dEA
j

dλ −EA
j

dEA
i

dλ 叫做朗斯基行列式. 初始条件 (8.40) 或 (8.41) 说明朗斯基行列式在 λ = 0 或

λ = λ0 处为零, 因此对所有 λ 都为零. 这可以被写作

EtrE ′ − (Etr)′E = 0, (8.49)

其中 Etr 是矩阵 E 的转置, 而撇号表示 d/dλ. 左乘 (Etr)
−1 并右乘 E−1, 我们得到

E ′E−1 − (Etr)−1(Etr)′ = 0. (8.50)

这意味着矩阵 E ′E−1 是对称的.

因为 E ′E−1 对称, 且其迹为 θ, 我们得到

E ′E−1 =
1

D − 2
θ + σ, (8.51)

其中 σ 对称无迹. 方程 (8.45) 现在成为

dθ
dλ +

θ2

D − 2
+ Trσ2 +RUU = 0, (8.52)

而这再加上爱因斯坦方程 RUU = 8πGTUU 就是类光雷乔杜里方程 (5.12).

从方程 (8.43) 的无迹部分, 我们可以提取出一个支配着 σ 演化的方程:

dσAB

dλ +
2

D − 2
θσAB + σ2

AB + WAUBU = 0. (8.53)

此处W为外尔张量,即黎曼张量的无迹部分: WAUBU = RAUBU−δABRUU/(D−2). (为推导方程 (8.53),
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注意到 E ′′E−1 = (E ′E−1)
′
+ (E ′E−1)

2 是有帮助的.) 我们很快会看到, 为什么这一同样能够通过直接
计算度规 (5.5) 的 RAUBU 来得到的结论是有用的.

矩阵方程 (8.42) 也存在 E ′E−1 非对称的解 (在不同的初始条件下). 一般地, E ′E−1 的反对称部分

称为扭转, 而 E ′E−1 对称的解叫做无扭转的. 雷乔杜里方程 (8.52) 和 σ 的演化方程 (8.53) 的推导对
任何无扭转解都成立, 也就是说, 对于任何朗斯基行列式为零的解成立.

8.6 完备非时序类光测地线

最后, 让我们讨论如果假定经典类光能量条件成立, 也就是逐点条件 TUU ≥ 0 而不是其积分版本

成立, 那么会发生什么.

除非 TUU 在 ℓ 上恒为零, 否则不等式 (8.13) 总成立, 且意味着 ℓ 不是非时序的. 在符合类光能量
条件的经典场中, TUU 在一条类光测地线上恒为零是很特殊的, 所以一条非时序的完备类光测地线很
不同寻常.

但是就算在单纯的引力下, 完备非时序类光测地线也十分独特. 用霍金和彭罗斯的话来说, 类光测
地线 ℓ 的一般条件说明 RAUBU 在 ℓ 上不恒为零. 正如他们最初在 [45] 中论证的那样, 一条满足一般
条件的完备类光测地线不可能是非时序的. 对此的证明, 首先要观察到出于演化方程 (8.53), 一般条件
表明 σ 不可能在 ℓ 上处处为零. 先前说过的结论将会通过这一事实和雷乔杜里方程的结合得到.

考虑测地偏离方程 (8.42) 的取值为矩阵的解 E(λ), 满足初始条件

EA
i(λ0) = 0,

dEA
i

dλ

∣∣∣∣
λ=λ0

= δAi . (8.54)

此处的 λ0 是一个常数, 我们最终会把它取为一个充分负的值.

如果 RAUBU = 0, EA
i (λ) 的精确解为

EA
i (λ) = δAi (λ− λ0). (8.55)

这导致

θ(λ) = TrE ′E−1 =
D − 2

λ− λ0

, (8.56)

以及 σ = 0. 因此, θ(λ) 对所有 λ > λ0 都是正的, 但对于较大的 λ 变得很小. 此外, 如果 λ0 的值充分
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负, 那么 θ(λ) 对任何给定的 λ 都很小.

一般地, EA
i 的初始条件 (8.55) 对应于 θ 的初始性态

θ ∼ D − 2

λ− λ0

, λ− λ0 → 0+. (8.57)

特别地
1

θ

∣∣∣∣
λ=λ0

= 0. (8.58)

我们可以把雷乔杜里方程写为
d

dλ
1

θ
=

1

D − 2
+

Trσ2 +RUU

θ2
(8.59)

的形式. 对它积分并假定 RUU ≥ 0, 我们发现一般情况下 1/θ ≥ (λ− λ0) /(D − 2), 因此 (只要 θ > 0)

θ ≤ D − 2

λ− λ0

. (8.60)

我们想要证明对于某个 λ > λ0, θ(λ) 取负值. σ 的演化方程在 λ = λ0 处满足初始条件 σ = 0; 此
外,限界 (8.60)意味着如果 λ0 充分负,那么方程中的 θσ 项并不重要. 而在任何 WAUBU ̸= 0的区域里,
σ 都是非零的. 假定对于足够负的 λ0,在某个区间 λ′ ≤ λ ≤ λ′′ 内 σ ̸= 0. 更具体一点,假定在此区间内
对于某个 w > 0有 Trσ2 ≥ w. 我们假设 θ 对于 λ ≤ λ′ 是非负的,不然就没什么需要证明的了. 既然如
此,我们可以利用不等式 (8.60). 它表明通过令 λ0 取足够小的负值,我们能够保证 θ (λ′) < w (λ′′ − λ′).
由于雷乔杜里方程给出 dθ/dλ ≤ −Trσ2, dθ/dλ 对于 λ′ ≤ λ ≤ λ′′ 将充分负, 以保证 θ (λ′′) < 0. 基于
此, 雷乔杜里方程像通常一样说明在某些值 λ1 ≤ λ′′ + (D − 2)/ |θ (λ′′)| 处 θ(λ) → −∞.

λ → λ1 时 θ → −∞ 的事实意味着 E 列向量的线性组合是一个在 λ = λ1 处为零的雅可比场. 由
于初始条件 (8.54), 这一雅可比场也在 λ = λ0 处为零. 我们因而找到了一个有两个零点的雅可比场,
这表明 ℓ 不是非时序的.

这样一来, 很明显, 完备非时序类光测地线是很稀少的. 已知的含有完备非时序类光测地线的时空
的主要例子, 是诸如闵可夫斯基空间或反德西特这样的对称空间 (在这些时空中, 每条类光测地线都完
备且非时序), 以及史瓦西、克尔以及 Reissner-Nordström 黑洞解 (视界母线是完备非时序的). 完备非
时序类光测地线其实有着不同寻常的性质. 例如, Galloway 的一条分割定理 [46] 说明, 时空中任何满
足经典类光能量条件的完备非时序类光测地线都被包含在一个类光膨胀为零的类光超曲面当中, 并且
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此类光超曲面可以被定义为是 ℓ 的因果未来或过去的闭包的边界41. H“由非时序类光测地线所支配”,
这意味着任何 p ∈ H 都被包含在某一非时序类光测地线 ℓ′ ⊂ H 之中. 如果 ℓ 是通常的黑洞解之一的

视界母线, 那么 H 是黑洞视界, 而 ℓ′ 为其他母线.

A 反德西特时空

本节附录的目的是简要叙述一些关于反德西特 (AdS) 时空的事实，以帮助读者理解正文中的例
子.简单起见,除了本节附录的最后,我们都只考虑记作 AdS2 的 2维 AdS时空. 这是在第 2节和第 4.2
小节里所考虑的情况.

一个半径为 R 的普通 2 维球面由如下熟悉的方程描述

u2 + v2 + w2 = R2. (A.1)

它的线元是

ds2 = du2 + dv2 + dw2. (A.2)

SO(3)对称性是显然的. 坐标为 X⃗ = (u, v, w)的点 q 的“对径点”是坐标为 X⃗ ′ = −X⃗ = (−u,−v,−w)

的点 p. 因此我们也说 q 和 p 是一组对径点. SO(3) 将一组对径点映射到另一组对径点.

典型的测地线是圆 w = 0, 或者用参数形式写出

u = R cos θ, v = R sin θ, w = 0. (A.3)

沿测地线的弧长是 Rdθ. 取 q 为点 (u, v, w) = (R, 0, 0), p 为 q 的对径点 (u, v, w) = (−R, 0, 0). 方
程 (A.3) 中的测地线在 θ = 0 处经过 q, 运动一段距离 πR 后在 θ = π 处到达 p. 更一般地说, 任何经
过 q 的测地线在 SO(3) 旋转操作下都是等价的, 并且类似地在一段距离 πR 后抵达 p. 由于 SO(3) 对
称性, 这个结论适用于 2 维球面上的任意点 q: 经过 q 的测地线在一段距离 πR 后聚焦于 q 的对径点

p 这一焦点.
41即使在整体双曲时空中, 一条类光测地线的因果未来或过去也未必是闭的. 5.2 节证明的是在这样的时空中, 紧集 W
的因果未来 (或过去) 是闭的.
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为了描述 2 维反德西特时空, 我们从改变前面式子中的一些符号开始. 将方程 (A.1) 替代为

u2 + v2 − w2 = R2, (A.4)

线元是

ds2 = −du2 − dv2 + dw2. (A.5)

由于约束 (A.4), 上述方程描述了一个有着洛伦兹号差 −+ 的 2 维时空; 我们称这个时空为 AdS(0)
2 . 现

在对称性是 SO(2,1) 而不是 SO(3). 坐标分别为 X⃗ = (u, v, w) 和 X⃗ ′ = −X⃗ = (−u,−v,−w) 的两个点

仍然被定义为一组对径点. SO(2,1) 将一组对径点映射到另一组对径点.

典型的测地线同样是圆 w = 0, 或者用参数形式写出

u = R cos θ, v = R sin θ, w = 0. (A.6)

这条测地线所经过的固有时 τ 满足 dτ = Rdθ. 设 q 是点 (u, v, w) = (R, 0, 0), 对径点 p 是 (u, v, w) =

(−R, 0, 0). 方程 (A.5) 里的测地线在 θ = 0 处经过点 q, 经过一段固有时 πR 后, 测地线在 θ = π 处抵

达点 p. 每条经过 q 的测地线在 SO(2,1) 旋转操作下都是等价的, 就像 2 维球面的情况一样, 经过 q 的

所有测地线在经过一段固有时 πR 后聚焦于对径点 p.

我们刚才描述的时空 AdS(0)
2 具有闭合类时线, 这个时空不是通常所说的 AdS2. 事实上 AdS(0)

2 中

的测地线 (A.6) 是一条闭合类时线, 它经过一段固有时 2πR 后会回到起点. 通过考虑 AdS(0)
2 的万有覆

盖, 可以得到局域等价于 AdS(0)
2 但没有闭合类时线的时空 AdS2. 我们可以通过解方程 (A.4)来显式地

做到这一点

u = (R2 + w2)1/2 cos t, v = (R2 + w2)1/2 sin t. (A.7)

如果我们把 t 看作是一个角变量 t ∼= t+ 2π, 那么这些公式给出了有着坐标 t, w 的 AdS(0)
2 的可能描述.

将 t 只看作一个实变量就可以实现万有覆盖和去除闭合类时线. 利用 t, w, 线元有形式

ds2 = −(R2 + w2)dt2 + R2dw2

R2 + w2
. (A.8)

这是 AdS2 时空的一个显式描述.

映射 φ : AdS2 → AdS(0)
2 要求我们忘记 t 是一个实变量, 只把它看作一个角度. 换句话说, 映射 φ

做了 t ∼= t + 2π 这样一个等价. 对于 q ∈ AdS2, 我们将 φ(q) 记作 q̄. (到目前为止, 物理在在 AdS(0)
2

还是在它的万有覆盖中, 我们都不严谨地将一个点记作 q 或者 p.) 一个点 q̄ ∈ AdS(0)
2 有无限多个到
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AdS2 的“提升”, 不同提升有不同的 t → t+ 2πn , n ∈ Z.

考虑经过点 q ∈ AdS2 的去向未来的类时测地线. 当映射到 AdS(0)
2 时, 这些测地线被映射到经过

q̄ ∈ AdS(0)
2 的去向未来的类时测地线. 经过一段固有时 πR 后, 映射后的测地线聚焦在 q̄ 的对径点 p̄

上. 当把情况提升回至 AdS2 时, 这意味着经过 q ∈ AdS2 的去向未来的类时测地线在一段固有时 πR

后, 聚焦于从 p̄ 提升到 AdS2 里的点 p 处. 这种聚焦在第 2 节中的图 3 中描述了. 当我们进一步延伸
测地线一段固有时 2πR 会发生什么? 就像在方程 (A.6) 中所看到的那样, 在 AdS(0)

2 中测地线会回到

起点 q̄. 然而, 在 AdS2 中, 没有闭合类时线, 与之相反, 经过 q 的去向未来类时测地线, 在一段固有时
2πR 后, 到达另一个有着性质 φ(q′) = φ(q) = q̄ 的焦点 q′. 换句话说, q′ 和 q 是同一点 q̄ ∈ AdS(0)

2 到

AdS2 的两个不同的提升, 不同之处在于 t → t+ 2π. 如果我们向未来或者过去延伸经过 q 的类时测地

线, 那么这个过程将不断重复: 在一段固有时 πRn 之后, 对于任何整数 n, 测地线将抵达一个焦点, 如
果 n 是偶数, 这个焦点是点 q̄ ∈ AdS(0)

2 到 AdS2 的提升, 如果 n 是奇数, 则是点 p̄ ∈ AdS(0)
2 的提升. 在

图 3 中画出了这种重复的图像.

对于矢量 X⃗ = (u, v, w), X⃗ ′ = (u′, v′, w′), 我们可以定义 SO(2,1) 不变量 X⃗ · X⃗ ′ = uu′ + vv′ −ww′.
这个不变量与沿类时测地线所经过的固有时有关. 例如考虑类时测地线 (A.6), 设 q̄ 和 p̄为测地线上的

两个点, 例如分别对应于 X⃗ = (R, 0, 0) 和 X⃗ ′ = (R cos θ,R sin θ, 0) 的两个点. 假设沿 θ 增加的方向在

测地线上运动, 那么从 q̄ 到 p̄ 所经过的固有时是 τ = Rθ. 另一方面 X⃗ · X⃗ ′ = R2 cos θ. 因此

τ = R arccos(X⃗ · X⃗ ′/R2). (A.9)

由于对称性,42 这个公式适用于 AdS2 中任意点之间类时测地线的弧长. 对于 q̄, p̄ ∈ AdS(0)
2 到 q, p ∈

AdS2 的任意提升,从 q 到 p的类时测地线 (如果这些测地线存在的话)所经过的固有时都被方程 (A.9)
给出, 但 arccos 函数的恰当分支会取决于 q 和 p 的具体选择.

现在让我们提出以下问题: 在 AdS2 里, 从给定点 q 出发一条类时测地线可以到达哪些点? 这实
际上等价于问, 在 AdS(0)

2 中从 q̄ 出发一条类时测地线可以到达哪些点, 因为当且仅当可以从 q̄ 到达

p̄ ∈ AdS(0)
2 时, AdS2 中的类时测地线从 q 出发才可以用同样的方式到达 p ∈ AdS2. (如果存在从 q̄

到 p̄ 的类时测地线, 那么它提升到 AdS2 就给出了一条从 q 出发的、如果在过去和未来延伸得足够远

最终就会到达 p 的测地线.) 对于上一段考虑的例子, 取测地线 (A.6) 和对应于坐标 X⃗ = (R, 0, 0) 和

X⃗ ′ = (R cos θ,R sin θ, 0) 的点 q̄ 和 p̄, 我们可以看到

R2 ≥ X⃗ · X⃗ ′ ≥ −R2, (A.10)

42AdS2 的对称性实际上不是 SO(2,1) 而是这个群的万有覆盖 S̃O(2, 1).
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当且仅当 X⃗ = X⃗ ′ 或者 X⃗ = −X⃗ ′ 时, 上式的上界或下界取等. 由于 SO(2,1) 对称性, 结果是普遍的:
当且仅当 R2 ≥ X⃗ · X⃗ ′ ≥ −R2 时, 从 q̄ 出发的测地线能到达 p̄. 如果我们考虑类空测地线会如何呢? 一
条类空测地线的例子是 u = 0, 或者用参数形式写出

u = 0, v = R cosh θ, w = R sinh θ. (A.11)

典型点 (差一个 S̃O(2, 1) 的作用) 现在对应于 X⃗ = (0, R, 0), X⃗ ′ = (0, R cosh θ,R sinh θ), 所以 X⃗ · X⃗ ′ =

R2 cosh θ ≥ R2. 利用对称性, 可以得出在 AdS(0)
2 中, 一般来说当且仅当 X⃗ · X⃗ ′ ≥ R2 时, 有着坐标 X⃗,

X⃗ ′ 的两个点是由一条类空测地线连接的. 类似的分析表明, 当且仅当 X⃗ · X⃗ ′ = R2, AdS(0)
2 中的一对点

由一条类光测地线连接. AdS(0)
2 中满足 X⃗ · X⃗ ′ < −R2 的一对点根本不由任何测地线连接. 如果以适当

的方式将这两个点提升到 AdS2 里, 那么我们能得到一对点 q, p ∈ AdS2 (例如在图 3 中的一对点 q, p),
使得 p 在 q 的因果未来, 但不存在从 q 到 p 的测地线. 这些评论解释了在第 2 节中的一些结论.

最后, 让我们讨论 AdS2 中的空间无穷远. 在方程 (A.8) 的坐标 t, w 下, 空间无穷远对应于 w →
±∞ . 让我们关注其中一个无穷远, 比如 w → +∞. 我们注意到 w = ∞ 沿着类空超曲面 t = 0 是无穷

远的, 类似地沿着任何足够接近这个超曲面的类空超曲面也是如此. 然而, 类光测地线在有限的 t 内可

以达到 w = ∞. 实际上, 我们已经在第 7.3 小节里以不同的形式说明了这一点. 让我们取 z = R/w, 使
得 w → ∞ 变为 z → 0. 利用方程 (A.8), 我们看到在 z = 0 附近, AdS2 线元是

ds2 = R2

z2
(−dt2 + dz2). (A.12)

我们在第 7.3 小节中分析了这个度规中的类光测地线, 证明它们虽然在有限 t 内到达 z = 0, 但这时它
们的仿射参数值是无穷大的.

替换变量 sinσ = R/
√
R2 + w2, 其中对于 −∞ < w < ∞ 有 0 < σ < π , 是很方便的. AdS2 线元

变为

ds2 = R2

sin2 σ

(
−dt2 + dσ2

)
. (A.13)

外尔因子 R2/ sin2 σ 并不影响这个时空的因果结构, 因此结果与有着线元 ds2 = −dt2 + dσ2 的闵可夫

斯基时空里的条状区域 0 < σ < π, −∞ < t < ∞ 相同. 图 3 的彭罗斯图画出了这个条状区域. 由于线
元中的 1/ sin2 σ 因子, 条状区域的边界不是时空的一部分. 边界沿类空测地线的距离是无穷远, 或者沿
类光测地线会有仿射参数值的无限大. 但是有时候, 通过包括条状区域的边界来部分紧化时空是很方
便的.
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为了以类似的方式描述记作 AdSD 的 D 维反德西特时空, 我们以定义时空 AdS(0)
D 开始

u2 + v2 − w⃗2 = R2, (A.14)

现在其中的 w⃗ = (w1, w2, · · · , wD−1) 是一个 (D − 1) 维矢量了. 时空的线元是

ds2 = R2(−du2 − dv2 + dw⃗2). (A.15)

和前面一样这个时空有着闭合类时线. 为了去除它们, 我们再次写出

u = (R2 + w⃗2)1/2 cos t, v = (R2 + w⃗2)1/2 sin t, (A.16)

并把 t看作实变量来实现万有覆盖. 这给出了一个用 t和 w⃗ 参数化的记作 AdSD 的时空. 我们对 AdS2

讨论的所有内容对于 AdSD 都有很相近的类比. 在拓扑上 AdS2 是 R× I, 其中 R 由“时间”t 参数化,
I 是开区间 0 < σ < π, AdSD 是 R × BD−1, 其中 R 和前面一样, 但是 BD−1 现在是一个 (D − 1) 维开

球. 类似于 D = 2 的情况, 我们利用将边界点添加到 BD−1 来将开球替换为闭球 B̄D−1, 这就可以很方
便地得到一个部分紧化. 因此, 部分紧化是 R× B̄D−1, 如第 7.3 节里图 43 所画出的那样.

我们可以利用 sinσ = R/
√
R2 + |w⃗|2 引入一个新变量 σ. 当 |w⃗| 从 ∞ 变化到 0 时, σ 从 0 变化到

π/2. AdSD 的画出坐标 t 和 σ 的彭罗斯图看起来只是图 3 的一半, 例如 σ ≤ π/2 这一左半部分. 图中
的一个点表示一个由 w⃗ 参数化的有不变的 |w⃗| 的 (D − 1) 维球面. 这些 (D − 1) 维球面扫出了 AdSD

的所有. 或者我们可以为 AdSD 定义一个由包括全部 0 < σ < π 范围的 AdSD 的 2 维切片来组成整个
AdSD 的彭罗斯图. 从这个角度来看, AdSD 的彭罗斯图看起来就像图 3.

B 德西特空间的两类坐标系

这里我们将推导德西特空间度规的两种形式. 在阐明彭罗斯定理的细节时，方程 (5.16) 和 (5.17)
是用过它的.

维数 D、曲率半径 R 的德西特空间可以用坐标 X0, X1, · · · , XD 来描述，其满足

−X2
0 +

D∑
i=1

X2
i = R2, (B.1)
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而线元是

ds2 = −dX2
0 +

D∑
i=1

dX2
i . (B.2)

显然这里有 SO(1,D) 对称性.

为得到度规的简便形式，令 Y⃗ 为单位 D-向量, 满足 Y⃗ · Y⃗ = 1. 然后，我们可以通过

X0 = R sinh t/R, X⃗ = RY⃗ cosh t/R (B.3)

求解约束 (B.1). 线元是

ds2 = −dt2 +R2 cosh2 t/R dΩ2, dΩ2 = dY⃗ · dY⃗ . (B.4)

这解释了德西特度规的形式 (5.16). 显然，这些坐标覆盖了整个德西特空间.

也可另外选择这样的坐标系，定义

X0 −XD =
√
2V, X0 +XD =

√
2U. (B.5)

令 X⃗ 为 (D − 1)-向量 X⃗ = (X1, X2, · · · , XD−1)，并设

V = − exp(−t/R), X⃗ = V x⃗. (B.6)

线元正好就是

ds2 = −dt2 +R2e−2t/Rdx⃗2. (B.7)

这就解释了式 (5.17) 里度规的第二种形式. 显然，这些坐标只描述了德西特空间的一部分，即 V < 0

的部分. 图 35 把这一部分涂成了灰色．（图中 U 向右上增加，而 V 向左上增加）．

条件 V = 0 定义了一个超曲面 Y ，它限定了由我们第二组坐标 t, x⃗ 所描述的区域.这个超曲面有
一些有趣的性质. 令 W 是余维 2 的子流形 U = V = 0. 超曲面 Y 由与 W 正交的两个类光测地线簇

之一扫出 (另一簇扫出超曲面 U = 0). Y 的线元具有退化的形式 dX⃗2. 与 W 正交、与 Y 相切的类光

测地线简单定义为 V = 0, X⃗ = a⃗ (其中 a⃗ 是一个模长为 R 的常矢量). 这些测地线是完备且非时序的；
它们的膨胀为零, 因为 Y 在任意值 U 处的截面是半径为 R 的圆 (D − 2)-球，与 U 无关. 正如我们在
6.3 节末尾所指出的那样，Y 是某些观者的宇宙学视界. 正交于 W 的第二簇类光测地线定义为 U = 0,
X⃗ = a⃗，同样膨胀为零. 因其类光膨胀为零，W 被称为临界陷俘面. 一个 U, V < 0 的点——例如图 35
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的 q 点——定义了一个具有负膨胀的陷俘面.

C 完备欧氏度规的存在性

在第 3.3 节, 我们使用了这样一个事实 [16]，即任意流形 M 都存在一个欧氏号差的完备度规 (使
得每条不可延曲线都有无限弧长的度规). 这里将更详细地解释这一事实.

首先，之所以每个 M 都存在欧氏度规，是因为这些度规是可以加的.一个欧氏度规是一个对每个
x 都是正定的对称张量场 hij(x)；此外没有其他一般约束. 任意 M 都可以被小开集 Uα 覆盖，每一个

开集都同构于 Rn 中的一个开球. 为了定义 M 上的欧氏度规张量 h，我们只需为每个 α 选择一个在

Uα 上正定，但在 Uα 外为零的张量场 hα. 把它们加起来，得到一个在 M 上的张量场 h =
∑

α hα，这

样 h 在任何地方都是正定的. 通过选取合适的 hα 使其在 Uα 的闭包边界附近为零，就可以保证 h 是

光滑的.

一般来说，这种构造不会给出一个完备的度规. 在构造一个完备度规时，我们不妨假设 M 是连

通的，这样 M 中任意两点 p, q ∈ M 间都存在一条路径. 如果不是的话，我们如下的论证就默认在 M

的单个连通分支中讨论.

要想找到一个完备度规，先从任意欧氏度规 h0 开始. 如果这个度规不完备，那么就有一个点
q ∈ M 和一条从 q 出发的不可延路径 γ0，使得在度规 h0 下有有限长度. (路径 γ0“在有限长度内走向

M 的无穷远”.) 这意味着存在这样一条从任意 p ∈ M 出发的有限长度的不可延路径 γ：可以直接将

γ 定义为 γ0 ∗ γ1 的复合，其中 γ1 是从 p 到 q 的任意路径 (路径的复合由它们首尾相连组成). 所以我
们可以在 M 上定义如下函数 ϕ，其取值为正实数 R+：对于点 p ∈ M，ϕ(p)是 M 中从 p出发的所有

不可延曲线的长度的下确界. (ϕ(p) 对于每个 p 都是严格为正的，因为每个 p 都有一个小的邻域 B 可

以近似为欧氏空间里的一个开球；开球半径是 ϕ(p) 的下界，因为从 p 出发的任何路径都必须先从 B

中的路径开始.) 如果 |p− q|是点 p, q ∈ M 之间用度规 h0 衡量的最短距离，则 |ϕ(p)−ϕ(q)| ≤ |p− q|，
也就表明 ϕ是连续函数. 定义一个新的度规 h = exp(1/ϕ(x))h0.由于处处 1/ϕ(x) > 0，任何曲线在度

规 h 下的长度都超过其在度规 h0 下的长度. 所以要证明在度规 h 下，每条不可延曲线都有无限长度，

我们只需证明如果 γ 是一条从 p 开始的、在度规 h0 下为有限长度的不可延曲线，那么它在度规 h 下

的长度就是无限的. 假设 γ 在度规 h0 下的长度是 a，并在该度规下用一个弧长参数 t 将其参数化，因

此 t 的范围是半开区间 [0, a). 对于区间内任意点 t = t0，γ 中 [t0, a) 的那一段，是从点 x(t0) 出发的一

条不可延曲线，其在度规 h0 下长度为 a− t0. 所以 ϕ(x(t0)) ≤ a− t0，且 1/ϕ(x(t0)) ≥ 1/(a− t0). 从
而 exp(1/ϕ(x(t))) 在 t → a 时迅速发散，于是 γ 在度规 h 中有无限的长度. 综上，任何不可延曲线在
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度规 h 下弧长都会发散，而 M 配上这种度规后就成了一个完备黎曼流形. 尤其地，在度规 h 下，不

可延测地线在两个方向上都有无限弧长，也即 M 是测地完备的. (而反过来，测地完备性意味着所有
不可延曲线都有无穷长度.)

D 对紧致性的探讨

设 M 为一个整体双曲时空, 有着柯西超曲面 S, 设 q 是一个处于 S 的过去的一个点. 设 CS
q 是从

q 到 S 的因果路径空间. 一个重要的事实是 CS
q 是紧致的; 我们能推出 M 中能由自 q 到 S 的因果路径

到达的点集 DS
q 也是紧致的. 在第 3.3 小节中, 我们只描述了证明 CS

q 紧致性的一些初始步骤, 而把具
体细节推迟到本附录中. 这里我们将给出两种证明方法, 分别改编自 [3] (见其引理 8.1.5 的证明) 和 [7]
(见其命题 3.31 的证明).

设 γ1, γ2, · · · 是从 q 到 S 的因果线序列. 将 γi 向未来延拓为不可延因果线是方便的; 例如我们能
延伸 γi 到 S 的未来, 使之变为一条正交于 S 的一直延伸向未来的类时测地线.

设 γ̃ 是某条从 q 出发的去向未来的因果线. 我们没有假设 γ̃ 是不可延的. γ̃ 有一个过去端点 q.43

在下面的讨论中, 假设 γ̃ 没有未来端点是方便的, 因此它在拓扑上是一个半开区间 [0, 1). (如果 γ̃ 有一

个未来端点, 那么我们忽略这个点.) 如果取 γi 的可能子列之后, 发现这些子列拥有收敛到 γ̃ 的初始线

段, 我们就称 γ̃ 是 γi 的部分极限. 因为 γi 可能会延伸到 γ̃ 的未来, 我们称这样一条 γ̃ 为部分极限曲

线. 我们假设只有 γi 的初始线段会收敛到 γ̃.

第 3.3 小节的论证表明存在部分极限曲线, 进一步, 如果部分极限曲线 γ̃ 作为曲线能被延拓, 那么
它作为部分极限曲线就能被延拓. 为了解释清楚最后一点, 先假设 γ̃ 是一条作为曲线能被延拓的部分

极限曲线. 这实际上意味着我们可以将未来端点 p 添加到 γ̃ 上. 由于曲线 γi 是因果线, 在 p 过去的任

何地方都会收敛到 γ̃, 并且由于因果条件防止曲线 γi 在 p 附近有剧烈的振荡, 因此 γi 在 p 处也会收

敛到 γ̃. (实际上这个论证是第 2 节的起点.) 如果 p 处于 S 上, 那么我们已经找到了原始序列 {γi} 的
收敛子列, 这表明 CS

q 是紧致的. 如果不是的话, 正如在第 3.3小节中所讨论的那样, 我们知道至少在有
限的时间内, γi 收敛到 γ̃ 的子列也处于 p 的未来.

因此, 我们可以继续改进部分极限曲线, 以找到更好的接近 S 的曲线. 但是按照这种思路来完成
证明仍然是棘手的.

43我们在熟悉的意义上, 而不是在更严谨的数学向相对论里所使用的意义上使用“端点”这个术语. 可以参看第 3.1 小节
的脚注 10, 以及其后的讨论.
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设 L 是 γi 所有的部分极限曲线的集合. 取 γ̃, γ̃′ ∈ L, 如果 γ̃′ 是 γ̃ 的延拓, 那么我们称 γ̃ < γ̃′. 这
定义了 L 上的一个偏序. 它只是一个偏序, 因为一般来说对于任意的 γ̃, γ̃′ ∈ L, 这两者都不是彼此的
延拓.

如果对于任意的 γ̃, γ̃′ ∈ L (且 γ̃ ̸= γ̃′), 要么 γ̃ < γ̃′, 要么 γ̃′ < γ̃, 也就是说其中一个总是另一个的
延拓, 那么 L 就是一个全序, 而一个链是全序 L 的一个子集 W . 如果 W 是一个链, 那么我们可以通
过只取所有 γ̃ ∈ W 之并来定义自 q 出发的去向未来的因果线 γ̄ . 稍后我们将证明 γ̄ 是部分极限曲线.
在这种情况下, 由于每条 γ̃ ∈ W 都包含在 γ̄ 中, 所以任何这样的 γ̃ 都满足 γ̃ < γ̄ (或者 γ̃ = γ̄), 因此
γ̄ 是链 W 的“上界”.

集合论里一个被称为佐恩引理 44的抽象命题断言: 如果 L 是一个偏序集合, 其中每个链都有一个
上界, 那么 L 就有一个极大元 γ∗ . 在当前的语境下, L 的极大元是一条部分极限曲线 γ∗, γ∗ 作为一条

部分极限曲线不再可延. 但是这意味着, γ∗ 作为曲线实际上是不可延的 (因为我们已经看到, 如果一条
部分极限曲线作为曲线可以延拓, 那么它作为一条部分极限曲线就是可延的) 现在我们假设 M 整体双

曲. 由于 q 处于 S 的过去, 而 γ∗ 是自 q 出发去向未来的不可延因果线, 它与 S 相交, 因此这在 CS
q 中

定义了一个点. 于是任何序列 γ1, γ2, · · · ∈ CS
q 都有一个收敛到 γ∗ ∈ CS

q 的子列; 换句话说, CS
q 是紧致

的.

为了完成这个论证, 我们需要证明“ γ̄ 是部分极限曲线”这一陈述是正确的. 因为 γ̄ 没有未来端

点,所以它在拓扑上与半开区间 [0, 1)同构;假设我们已经选择了一个特定的同构. 由于 γ̄ 是全序集W
中曲线之并, 所以存在一个序列 ℓ1, ℓ2, · · · ∈ W , 这些序列之并是 γ̄ . 如果 ℓi 中的一个等于 γ̄ , 我们就
完成了证明. 如果不是的话, 在取可能子列之后, 我们可以假设对于每个正整数 n , 闭区间 [0, 1 − 1/n]

的像包含在 ℓn 中. 在 M 上选择一个任意的欧几里得号差度规 h , 对于任何正整数 n , 设 Φn 成为原始

序列 γ1, γ2, · · · 的子集, 这个子集由在整个区间 [0, 1− 1/n] 都处处与 γ̄ 在欧几里得距离 1/n 内的曲线

组成. 每个 Φn 都是非空的, 因为每条 ℓn 都是一条部分极限曲线. 设 γ′
1, γ

′
2, · · · 是原始序列 γ1, γ2, · · ·

的子列, 使得对于所有 n 有 γ′
n ∈ Φn . 然后 γ′

1, γ
′
2, · · · 是原始序列的一个子列, 它处处收敛到 γ̄ , 因此

γ̄ 是一条部分极限曲线.

如沃尔德注解的那样 (参看 [3]第 194页的脚注) ,除非不可避免,否则我们不愿意将物理学的具体
论述建立在集合论的微妙之处和对数学基础的假设之上. 以下讨论是避免45佐恩引理的一种方法, 改
编自 [7] . 再次选择一个 M 上的黎曼度规 h , 而且是一个欧几里得号差的度规. 在用一个以适当的方
式于无穷远处发散的因子对 h做共形重标度之后, 我们可以假定度规 h是完备的 [16] . (相关证明可以

44佐恩引理等同于选择公理 . 对一些人来说, 这是数学基础的重要组成部分, 对其他人来说, 这只是一种不必要的装饰.
45微积分的基础可能取决于佐恩引理, 这取决每个人不同的观点. 尽管如此, 在刚才描述的论证中使用佐恩引理似乎是我
们希望避免的.

94



参看附录 C .) 现在设 q 为 M 中的任意一点. 因为 M 上的度规 h 是完备的, 所以任何点 p ∈ M 都存

在尽可能短的测地线连接到 q .46 测地线的长度给出一个函数 f(p) . 由所有满足 f(p) = ρ 的点组成的

广义球面 Sρ ∈ M 总是紧致的47. 同样, 由满足 f(p) ≤ ρ 的点组成的广义球 Bρ ∈ M 是紧致的.

现在设 γ1, γ2, · · · 为从点 q ∈ M 处出发的任意不可延曲线序列. (目前没有必要假设 γi 是 M 上

洛伦兹号差度规下的因果线或 M 是整体双曲的.) 因为 M 的黎曼度规是完备的, 而 γi 是不可延的, 所
以这些曲线在黎曼度规下都有无限长度. 我们用取遍完整范围 [0,∞) 的黎曼弧长 t 来参数化它们. 如
果我们将 γi 限制到 t ≤ 1 , 那么它们就被包含在紧致集 B1 中. 因此, 通过第 2 节中解释的论证, γi 有
一个对于 t ≤ 1 收敛的子列 γi,1 . 类似地, 对于 t ≤ 2 , γi,1 包含在 B2 中, 因此它们有一个对于 t ≤ 2 收

敛的子列 γi,2 . 继续这种方式, 我们为每个正整数 n 定义一个前面所定义序列 γi,n−1 的子列 γi,n , 使得
γi,n 对于 t ≤ n 收敛. 然后“对角序列” γ1,1, γ2,2, · · · 是原始序列 γ1, γ2, · · · 的一个子列, 它对所有的
t ≥ 0 都收敛. 因此我们已经证明, 在没有因果条件或洛伦兹号差的假设下, 从 q 出发的每个不可延曲

线序列 γ1, γ2, · · · 都有一个收敛到极限曲线 γ̄ 的子列. 而且, 就像 γi 一样, γ̄ 有无限的欧几里得长度,
所以它是不可延的.

现在让我们转到 M 的洛伦兹号差度规情况. 如果 γi 是因果线, 那么作为因果线的一个极限, γ̄ 也
是因果线. 如果 γi 是自点 q ∈ M 出发去向未来的曲线, 那么 γ̄ 也是自 q 出发去向未来的曲线. 如果
M 是整体双曲的, q 处于柯西超曲面 S 的过去, 那么 γ̄ 会在某处与 S 相交. 因此, γ̄ 正是所期望的 γi

的子列的极限, 并且我们再次得到“从 q 到 S 的因果线空间是紧致的”这一结论.

我们也可以用这第二个论证作为出发点, 来证明如第 3.5 小节所声称的, 整体双曲时空是强因果
的. (为此, 我们不能使用第一个论证, 因为在第 3.3 小节一开始就假定了强因果条件.) 设 M 是有柯

西超曲面 S 的整体双曲时空. 设 q 为处于 S 的过去的一个点. 处于 S 的未来的一个点可以类似地处

理; 我们稍后再考虑 q ∈ S 的情况. 如果在 q 处违背了强因果条件, 这就意味着存在点列 p1, p2, · · · 和
p′1, p

′
2, · · · , 这两个点列都收敛到 q , 并且对于从 pi 到 p′i 的未来指向的因果线 γi , 尽管 pi 和 p′i 接近于

q , 但 γi 也会大幅偏离 q .“大幅偏离”的确切含义是, 包含 q 的足够小开集 U 不包含大的 i 时的曲线

γi . 在可能丢弃前几对点之后, 我们可以假设 pi 和 p′i 都处于 S 的过去, 因此曲线 γi 处于 S 的过去.

我们考虑两种情况: (1) 在前面讨论的完备黎曼度规下, 曲线 γi 的弧长是有界的; (2) 这些弧长是
无界的. 在情况 (1) 中, 对于足够大的 N , 曲线 γi 都包含在一个广义球 BN 中. BN 是紧致的, γi 是因

46设 b 是从 p 到 q 的路径长度的下确界, 设 γ1, γ2, · · · 是从 p 到 q 的长度趋于 b 的一个路径序列. 在一个完备欧几里得
号差的度规下, γ1, γ2, · · · 的一个子列将收敛到从 p 到 q 的有着最短可能长度 b 的测地线.

47自 q 出发的测地线 ℓ (在度规 h 下) 由其初始方向确定, 初始方向取一定紧致的普通球面 S 中的值. 将 ℓ 映射到 ℓ 上自
q 开始弧长为 ρ 的点, 这给出了从 S 到 Sρ 的连续满射, 表明 Sρ 是紧致的. 这一论证基于我们假设了每条测地线的长度取
最小值 ρ . 如果还没有取这个假设, 在做出这一论证之前, 我们可以将 S 替换为它的紧致子集, 这个子集由长度取最小值到
这个距离的测地线的初始方向组成.
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果的, 所以像前面一样推理, 我们发现 γi 的一个子列收敛到一条因果线 γ̄ . 由于序列 {pi} 和 {p′i} 都
收敛到 q , 所以 γ̄ 是从 q 到它自己的一条闭合因果线. ( γ̄ 是一条非平凡的闭合因果线, 不仅仅包含单
个点 q , 因为对于大的 i 存在一个 q 的开邻域 U 不包含 γi . ) 而在整体双曲时空中, 这是不可能的.

在情况 (2) 中, 在取一个可能子列之后, 我们可以假设, 对于所有的 k ≥ 1 , 曲线 γk 的欧几里得弧

长至少为 k. 我们用欧几里得弧长 t 参数化 γk , t = 0 对应于过去的端点 pk . 如前所述, 如果我们将 γk

限制到 0 ≤ t ≤ 1 上, 那么序列 {γk} 的子列 {γk,1} 收敛到极限曲线 γ̄1 . 因为 pk 收敛于 q , γ̄1 是一条
自 q 出发去向未来的因果线. 限制到 0 ≤ t ≤ 2 上, 序列 {γk,1} 的子列 {γk,2} 在区间 0 ≤ t ≤ 2 上收

敛到极限曲线 γ̄2 , 这一极限曲线是 γ̄1 的延拓. 这又是一条从 q 出发的去向未来的因果线. 继续按照这
种方式, 在第 n 个步骤中, 我们定义了一个 {γk,n−1} 的子列 {γk,n} , 这个子列对于 0 ≤ t ≤ n 收敛于一

条是 γ̄n−1 的延拓的极限曲线 γ̄n . 所有的 γ̄n 都是自 q 出发去向未来的因果线, 每一条都是前一条的延
拓. 因为所有的原始曲线都在 S 的过去里, 所以 γ̄n 的每一条也都在 S 的过去里. 对角序列的第 n 个

元素为 γn,n, 它收敛到一条为 γ̄n 之并的极限曲线 γ̄ . 因为所有的 γ̄n 都处于 S 的过去, 所以 γ̄ 处于 S

的过去. 因为曲线的欧几里得弧长在 n → ∞ 时发散, 所以 γ̄ 是不可延的. 综上, 我们发现, 从一个处
于 S 过去的点 q 出发, 存在一条不可延的去向未来的因果线, 它永远保持在 S 的过去中. 而在整体双
曲时空中, 这是不可能的.

读者可能想要考虑没有闭合因果线但违背了强因果条件的时空的一个例子 (3.5) 来看看情况 (2)
是如何出现的. 可以试着将 q 作为 v = 0 上的一个点, 然后描述合适的点对 pi , p′i 和相应的因果线 γi ,
并试着确定由此构造出来的不可延因果线 γ̄ .

最后, 我们必须考虑 q ∈ S 的情况. 通过在 q 的局部闵氏邻域中稍微在时间上向前移动 S , 我们
可以用一个不包含 q 的不同柯西超曲面 S ′ 替换它, 从而归约到前一种情况.

E 类光超曲面上的几何

在 5.4 节中，我们证明了由某个余维 2 类空子流形 W 的正交类光测地线扫出的超曲面 Y 是类光

的，即其度规的号差是 + + · · · + 0. 这个表述有一个相当惊人的逆命题，这里将对此进行解释. 令 Y

为任意类光超曲面，也即时空 M 中号差为 ++ · · ·+0 的任意超曲面. 并设 Kµ 为与 Y 相切的类光向

量场. 鉴于 Y 的号差，如果 Zµ 是任意与 Y 相切的向量场，那么

gµνK
µZν = 0. (E.1)
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这些条件不能唯一确定 K，因为我们可以做变换

Kµ → efKµ, (E.2)

其中 f 是 Y 上的任意实函数.

K 的积分曲线是求解方程 dXµ

ds = Kµ(X(s)) 并在 Y 上选定某初始点后所得的类光曲线. 注意，如
果用式 (E.2) 对 K 做变换，只会导致积分曲线重参数化而已. 我们想要证明积分曲线是类光测地线.
Y 中每一点都在一条唯一的积分曲线上，因此这将给出一个类光测地线簇，其中 Y 的每一个点都在

簇里唯一对应的线上. 我们可以这样描述，称 Y 是“由类光测地线所支配的”.

为了证明积分曲线是测地线，只需证明对某函数 w 有

KµDµK
ν = wKν , (E.3)

那么，通过做 Kµ → efKµ 的变换，我们可以化简为

KµDµK
ν = 0, (E.4)

这相当于积分曲线的测地线方程.

对于 p ∈ Y，令 TM |p 为 M 上 p 的切空间，并令 TY |p 为 Y 上 p 的切空间. TM |p 中的一个向
量是 K 的倍数，当且仅当它正交于 TY |p. 所以要验证 p 处有式 (E.3)，只需证明若 Z 是 TY |p 中的
任意向量，那么

gαβ(K
µDµK

α)Zβ = 0 (E.5)

在 p 处成立. 我们用任意方式将 Z 从 p 延伸，而只要求其与 Y 相切. 那么 K 和 Z 都是与 Y 相切的

向量场，故它们的对易子，即

Qα = KµDµZ
α − ZµDµK

α, (E.6)

也与 Y 相切. 因此如果把 Z 替换成 Q:
gµνK

µQν = 0, (E.7)

那式 (E.1) 也是成立的.
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微分一下式 (E.1)，得到

0 = KµDµ(gαβK
αZβ) = gαβ(K

µDµK
α)Zβ + gαβK

αKµDµZ
β. (E.8)

但等号右边最后一项为零，因为

gαβK
αKµDµZ

β = gαβK
αQβ +

1

2
ZµDµ(gαβK

αKβ) = 0, (E.9)

其中我们利用了 Q 满足式 (E.7) 且 K 处处类光的事实. 所以式 (E.8) 等价于所期望的结果 (E.5).

如果 W 是 Y 中任意余维 1 的类空曲面，那么积分曲线与 W 正交，因此 Y 由一簇与 W 正交的

类光测地线所支配，即 5.4 节中所考虑的情况.

F 迅捷性是怎样失效的

设 γ 是一条在整体双曲时空 M 中自点 q 出发去向未来的类光测地线. 正如第 5.1 小节所解释的,
在一个强因果时空中, γ 的一条初始线段是迅捷的. 一个可能是无论 γ 延伸到未来多远, 它都保持迅
捷. 如果不是这样的话, γ 的迅捷部分就只是初始线段. 设 p 作为这条线段的端点. 我们想知道在 p 处

发生了什么. 一个类似的问题涉及到这样的情况: γ 是与余维数为 2 的紧致类空超曲面 W 正交的类

光测地线. 这些问题分别在 [47] 和 [48] 中进行了分析. 我们从自给定点 q 出发的测地线开始, 概述这
些论证.

设 p1, p2, · · · 是沿 γ 处于 p 的未来的一个点序列, 并且这个序列趋于 p. γ 的线段 qpi 对于每个 i

都不是迅捷的, 所以这里存在一条从 q 到 pi 的严格类时曲线 γi. 在一个整体双曲时空中, 我们能选择
使得所经过固有时取最大值的 γi, 因此这些 γi 是类时测地线. 进一步, 在取一个可能子列后, 我们能假
设 γi 收敛于一条从 q 到 p 的因果线 γ̄. 存在着两种情况: (1) γ̄ ̸= γ; (2) γ̄ = γ.

在情况 (1) 中, γ̄ 是类光测地线, 因为如果不是类光的, 它可能会形变为从 q 到处于 p 的过去的因

果路径, 这意味着 γ 并不在点 p之前都保持迅捷. 所以情况 (1)意味着在点 p处, γ 和第二条也自 q 出

发的类光测地线相交. 这是完全可能的. 例如, 当引力透镜效应产生同一颗超新星爆发的多幅图像时,
就会有一些观者同时看到前两幅图像. 注意在情况 (1) 中, 当测地线 γ 延伸到任何超过 p 的点 p′ 时,
它总是非迅捷的, 因为从 q 到 p 沿 γ̄ 延伸, 然后从 p 到 p′ 沿 γ 延伸, 我们会得到一条从 q 到 p′ 的因

果路径, 它不是类光测地线. 我们留给读者来验证, 在情况 (1) 中, 直到点 p, γ̄ 总是迅捷的, 但之后就
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不再迅捷了.

我们想要证明的情况 (2) 是本文研究的主要失效情况: 它意味着在一阶近似下, 线段 qp 有一条类

光测地线形变, 或者换句话说, 沿 γ 有一个在 q 和 p 处为零的雅可比场.

为了证明这一点, 我们将在 M 上构造一组 D 个方便的函数, 并考察它们是否为 p 的一个小邻域

里一组好的坐标. 我们将利用方程 (8.1) 的费米正则坐标, 其中 γ 是通常的测地线 V = XA = 0, q 是
这条测地线上的点 U = 0. 我们考虑有着仿射参数 λ 的测地线方程

D2Xµ

Dλ2
= 0. (F.1)

因此 γ 是解 U = λ, V = XA = 0. 如果我们展开 U = U + εu, V = εv, XA = εxA, 那么在 ε 的一阶近

似下, 测地线偏离方程就给出
d2v

dλ2
= 0. (F.2)

这里没有曲率项, 因为沿 γ, RV
UAU = RUUAU = 0. (在第 8.3 小节, 我们没有考虑这个方程, 因为我们

只考虑了被约束到满足 v = 0 的类光形变.)

我们在如下初始条件下考虑测地线方程 (F.1)

U(0) = V (0) = XA(0) = 0

dU
dλ

∣∣∣∣
λ=0

= 1

dV
dλ

∣∣∣∣
λ=0

= v

dXA

dλ

∣∣∣∣
λ=0

= xA. (F.3)

有着 v = xA = 0 的测地线是原始的测地线 γ, 它在某值 λ = λ1 处抵达点 p. 我们将一个三元组 λ, v, xB

映射到坐标为 V (λ; v, xB), U(λ; v, xB), XA(λ; v, xB) 的点, 其中这些函数是利用初始条件 (F.3) 解出测
地线方程来确定的. 我们考察对于 M 里 p 的一个邻域, 也就是对应于 p 的 (λ, v, xB) = (λ1, 0, 0) 的邻

域来说, λ, v, 和 xB 是否是一个好的坐标集.

在情况 (2) 中, 由于以下事实, 这个问题的答案是“否”. 对于每个 i, γ 和 γi 是从 q 到 pi 的两条不

同测地线. 对于 i → ∞, 当 γi 收敛到 γ 时, γi 的初始条件对大 i 会收敛到 γ 的初始条件 v = xB = 0.
同样, γi 到达 pi 时的仿射参数也会收敛到 γ 的对应值. 因此存在一对三元组 (λ, v, xB), 它们彼此之间
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任意接近, 且接近于 (λ1, 0, 0), 以及表示 M 中的相同点; 因此不存在 (λ1, 0, 0) 的邻域, 其中 (λ, v, xB)
是好的坐标.

另一方面, 一般来说, 假设 Xµ, µ = 1, · · · ,D 是一个流形 M 上在点 p 邻近的一组好的坐标, 我们
用变量 fα, α = 1, · · · ,D 来参数化它们, 指定 Xµ = Xµ(fα) 作为 fα 的光滑函数. fα 在 M 上点 p 的

邻域里为一个好坐标集的条件是 ∆ = det ∂Xµ/∂fα 在 p 处非零. 让我们在 Xµ 是 (U, V,XA), fα 是

(λ, v, xB), 以及 p 是点 (λ1, 0, 0) 的情况下计算这个行列式.

首先, 在 p 处, 我们有
∂V

∂v ̸= 0,
∂V

∂λ
=

∂V

∂xA = 0, (F.4)

由于 (F.2) 连同初始条件在 v 和 xB 的一阶近似下给出 V = λv, 方程 (F.4) 是成立的. 因此在点 p 处,
∂V /∂v ̸= 0 以及 V 的其他导数为零. 因此当且仅当 V 和 v 省略的约化行列式在 p 处为零, 行列式 ∆

才在点 p 处为零. 换句话说, 我们能取 V = v = 0, 以及就把 Xµ 取为 U 和 XA 与把 fα 取为 λ 和 xB.

类似地, 在 xB = 0 处, 因为 v = xB = 0 的测地线方程的解是 U = λ, V = XA = 0, 我们有

∂U

∂λ
= 1,

∂XA

∂λ
= 0. (F.5)

这意味着当且仅当在 v = 0, λ = λ1 处只考虑 XA 和 xB 下的约化行列式为零时, 原始行列式 ∆ 才为

零.

换句话说, ∆ 为零的条件是

det ∂X
A(λ1, 0, x⃗)
∂xB

∣∣∣∣⃗
x=0

= 0. (F.6)

但是这个行列式为零的结果等价于区间 [0, λ1] 上存在一个于区间的端点处为零的雅可比场.

具体来说, 矩阵的行列式为零意味着它的列矢量的一些线性组合为零, 比如说

∑
B

∂XA(λ1, 0, x⃗)
∂xB

∣∣∣∣⃗
x=0

cB = 0, (F.7)

其中 cB 是常数. 如果我们在方程 (F.3) 里取 xA = εcA, v = 0, 那么在 ε 的一阶近似下, 测地线方程的
解就是一个由于初始条件而在 λ = 0 处为零和由于方程 (F.7) 而在 λ = λ1 处为零的雅可比场.

我们可以用类似的方法研究自点 q 出发的类时而不是类光测地线 γ. γ 的一条短初始线段所经过

的固有时取最大值. 当 γ 延伸到未来, 它可能无法在某个点 p 之后使固有时取最大值. 一个类似于我
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们刚才所描述的论证表明, 要出现这种情况, 要么 γ 在 p 处与另一条自 q 出发有相同固有时的类时测

地线相交, 要么存在一个在 q 和 p 处为零的雅可比场, 因此 p 是自 q 出发的类时测地线的焦点.

现在让我们考虑一条与余维数为 2 的紧致类空超曲面 W 正交的类光测地线 γ 的情况 [48]. 同样,
如果 γ 不能一直保持迅捷, 那么我们将 p 定义为 γ 的最大迅捷线段的未来边界, 并考虑从未来趋于点
p 的点序列 pi ∈ γ. 现在可以用与 W 正交的类时测地线 γi 从 W 出发到达 pi. 在取一个可能子列之
后, 我们可以假设 γi 收敛到从 W 到 p 的正交类光测地线 γ̄. 我们有和前面一样的选择: (1) γ̄ ̸= γ; (2)
γ̄ = γ. 情况 (1) 现在意味着在 W 到 p 之间存在某条其他的正交类光测地线 γ̄. 这是完全可能的, 当这
种情况发生时, γ 在延伸超过 p 时不是迅捷的. (此外, γ̄ 直到 p 之前都是迅捷的, 但更进一步就不再迅
捷了.)

和前面一样, 情况 (2) 是本文研究的主要失效情况. 为了证明这一点, 我们重复以前的论证, 现在
于测地线上使用不同的初始条件. 和之前一样, 设 γ 是测地线 U = λ, V = XA = 0, 并像第 8.4 小节一
样假设 W 在 γ 附近被描述为 V = f(XA), U = h(XA), 其中 f 和 h 在二阶近似下于 XA = 0 的附近

为零. 因此 γ ∩W 是有着 U = 0 的点 q. 现在我们引入一个与 W 正交的 (D − 1) 个参数的测地线簇.
对于这些测地线的初始条件, 我们取

XA(0) = xA, V (0) = f(xA), U(0) = h(xA), (F.8)

使得在 λ = 0 处测地线自 W 出发. 我们也取

∂U

∂λ

∣∣∣∣
λ=0

= 1,
∂V

∂λ

∣∣∣∣
λ=0

= ζ, (F.9)

其中 ζ 是自由参数, 并且约束 dXA/dλ|λ=0 使得在这一簇中的测地线正交于 W . 类似 (8.29), 除了现在
我们必须包括 ζ, 正交性的条件为

dXA

dλ

∣∣∣∣
λ=0

− ∂Af(x)− ζ ∂Ah(x) = 0. (F.10)

现在我们考察是否可以使用 xA, ζ,和 λ作为 p附近的一组好坐标. 出于与前面相同的原因,在情况 (2)
中, 答案是“否”. 另一方面, 一个类似于前面的分析表明, 对这个问题的“否”回答意味着沿 γ 有一个

满足在 q 处的边界条件和在 p处为零的雅可比场,或者换句话说, p是与 W 正交的类光测地线的焦点.

类时测地线的一个类似问题是, 考虑一条去向未来的与一个余维数为 1 的类空超曲面 S 正交的类

时测地线 γ. γ 的短初始线段使到它的端点处所经过的固有时取最大值. 如果当延伸 γ 到未来时固有
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时不再取最大值, 那么设 p 为 γ 固有时取最大值的最长线段的端点. 然后要么存在第二条从 S 到 p 的

类时正交测地线 γ̄, 它的固有时与 γ 相同, 要么存在沿 γ 于 γ ∩ S 处保持正交性条件和在 p 处为零的

雅可比场, 因此 p 是自 S 出发的正交类时测地线的焦点.
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译后记

2020 年，彭罗斯因其在黑洞奇性定理方面的工作而获得了诺贝尔物理学奖．只可惜，霍金此时早
已与世长辞．在运用整体拓扑学方法研究经典广义相对论（尤其是研究黑洞）的领域中，二位无疑皆

为璀璨夺目的代表人物．威滕这篇写于 2019 年的文章所讲述的，正是这方面最为重要且最为漂亮的
一些结果，其内容包括最初的彭罗斯的黑洞奇性定理、霍金的大爆炸奇性定理、黑洞面积不减定理、

关于时空虫洞的拓扑监督等等．这篇文章最终发表在 Reviews of Modern Physics 上．
我们在仔细拜读了这篇杰出的综述文章后，深切地认为，它是迄今为止涉及相关知识的所有文献

资料中，可读性最高的——甚至要易于沃尔德 (Wald)的经典教材，更不用提霍金的那本经典名著《时
空的大尺度结构》了．譬如，其对雷乔杜里方程的推导具有更强的动机，对读者的几何直觉要求较低；

将测地线二阶变分同量子力学变分问题联系在一起，手段干净利落；利用迅捷性 (promptness)研究类
光测地线，极大地简化了证明．当然，由于相关课题的艰深，威滕这篇文章的友好性只是与相似内容

的其它资料比较而言的. 就其本身来说，要想读懂它，依然需要付出一定的努力．于是，为进一步降
低中文读者阅读这篇杰作的门槛，同时也考虑到中文世界相关资料的匮乏，我们决定将其译为中文．

参与本文翻译及校订工作的有（按所译章节出现顺序）：夏草、Lie、陈童和深红．其具体贡献如
下：

• 夏草负责了第 1、2 节，以及附录 B、C、E 的翻译工作，也担任了全文排版等工作；
• Lie 负责了第 3、4 节，以及附录 A、D、F 的翻译工作；
• 陈童负责了第 5、6 节的翻译工作；
• 深红负责了第 7、8 节的翻译工作．

原文有不少笔误在译文中已修正过来．我们判断笔误是非常谨慎的，必须经由两位以上译者的交

叉确认．原本，我们想以脚注的形式注明每一处勘误，但考虑到细小的笔误较多，若全部注明的话极

可能影响读者对文章本身的阅读体验，故只好作罢．

群体翻译的材料鉴于不同译者的个人习惯，可能会在不少地方表现出行文风格上的差异．我们尽

量在专业术语和通用习语上保持了一致，并通过交叉校对的方式尽量降低风格上的差异，但也在一定

程度上尊重并保持了不同译者的习惯．限于水平，同时亦限于翻译经验的欠缺，我们的译文可能存在

诸多遗憾．如果读者发现译文的问题，烦请告知我们，我们大家一起来使译文变得更加完善．

最后，需要声明的是，我们的译文仅供学习和研究之用，不可用于商业或其它用途．原文版权归

属于爱德华·威滕 (E. Witten)．

威滕文章研习组

2022 年 12 月
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索引

B
饱和的 (saturated) 69
边界 (boundary) 69
变形、形变 (deformation) 72
部分极限 (partial limit) 93

C
簇 (family) 47

D
对径点 (antipodal point) 86

F
反德西特空间 (Anti de Sitter space) 86
发散 (blow up) 9
费米正则坐标 (Fermi normal coordinates) 73
非时序的 (achronal) 11
弗里德曼-勒梅特-罗伯逊-沃尔克解

(Friedmann-Lemaître-Robertson-Walker
solution) 35

复合 (compose) 20

G
Galloway 分割定理 (Galloway splitting

theorem) 85
高-沃尔德定理 (Gao-Wald Theorem) 70
格雷戈里-拉弗拉姆不稳定性

(Gregory-Laflamme instability) 59
共轭点 (conjugate point) 27
共形的 (conformal) 9

J
剪切 (shear) 33

焦点 (focal point), 同共轭点 27
极大元 (maximal element) 94
杰勒西 (Geroch) 24
局部闵氏邻域 (local Minkowski neighborhood) 8

均匀的 (homogeneous) 35

K
卡鲁扎-克莱因理论 (Kaluza–Klein theory) 59
卡西米尔 (Casimir) 68
克尔 (Kerr) 61

L
朗斯基行列式 (Wronskian) 83
类光无穷远 (null infinity) 67
类空相间的 (spacelike separated) 11
雷乔杜里 (Raychaudhuri) 31
链 (chain) 94
LIGO 系“激光干涉引力波天文台” 59
零模 (zero-mode) 76
路径 (path), 视曲线为映射时强调其像 5

M
磨圆拐角 (round out the kink) 26
母线 (generator) 62

N
内部 (bulk) 70
内行的、内向的 (incoming) 47
扭转 (twist) 84
诺伊曼 (Neumann) 80

P
膨胀 (expansion) 33
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偏序 (partial order) 94
平均类光能量条件 (averaged null energy

condition) 68

Q
期待值 (expectation value) 68
奇点、奇性 (singularity) 54
球面度规 (round metric) 25
奇性定理 (singularity theorem) 35

R
Reissner-Nordström 黑洞 22

S
萨克斯 (Sachs) 47
扫出、扫过 (sweep out) 47
上半连续的 (upper semicontinuous) 7
上极限 (lim sup) 7
时间定向的 (time-oriented) 5
史瓦西 (Schwarzschild) 61
双生子佯谬 (twin paradox) 8

T
凸法邻域 (convex normal neighborhood) 8

V
VIRGO 系“室女座干涉仪” 59

W
外尔 (Weyl) 9
外行的、外向的 (outgoing) 47
万有覆盖 (universal cover) 87

X
陷俘面 (trapped surface) 52
线汇 (congruences), 一般指测地线汇 81
肖凯-布吕阿 (Choquet-Bruhat) 24
下确界 (the greatest lower bound) 92
序列 (sequence) 7
迅捷的 (prompt) 36

Y
因果菱形 (causal diamond) 5
因果线/路径 (causal curve/path) 5
因果性、因果律 (causality) 5
余维数 (codimension) 11

Z
支配 (rule) 97
最大对称时空 (maximally homogeneous

spacetime) 9
最优的 (optimal) 5
佐恩 (Zorn) 94
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