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第七章 曲率的意义

陈陈陈童童童

前面我们引入了黎曼曲率张量，它是两维曲面高斯曲率的高维推广，

是一个内禀量，相应的黎曼几何也是一种内禀几何。所谓内禀几何，意思

就是黎曼几何所描述的高维时空流形不需要嵌入到一个更高维的欧氏空间

中，而是仅仅只需要一个在时空本身定义的度规张量就可以描述。但这种

内禀的描述就使得时空弯曲变成了一个很抽象很不好理解的东西，进而使

得黎曼曲率张量作为一个描述时空曲率的量显得非常抽象。从内禀几何的

角度，曲率的几何含义是什么呢？在第一章中，我们给出过一个回答，在

黎曼正则坐标系中，曲率张量就是对局部平坦的二阶偏离。本章我们将进

一步用内禀的方式讨论黎曼曲率张量的几何含义。

另一方面，第三章中提到过，对潮汐力的相对论性刻画就是黎曼曲率

张量。本章我们将进一步搞清楚这个潮汐力与黎曼曲率张量之间的关系，

并进而弄清楚黎曼曲率张量在广义相对论中的物理含义。特别的，我们将

清楚地看到爱因斯坦场方程如何在牛顿近似中回到牛顿引力理论。

而且，上一章我们引入了坐标无关的数学语言。本章我们将看到，有

些问题的处理、有些公式的推导，用这种坐标无关的数学语言来进行将会

简洁得多。

7.1 测地线偏离方程与牛顿近似

7.1.1 测地线偏离方程

为了看清楚黎曼曲率张量如何刻画时空弯曲，我们首先注意到，弯曲
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第七章 曲率的意义 3

时空中的测地线就是平直时空中直线概念的推广，原因有二：第一，在平

直的闵可夫斯基时空，自由粒子走的是直线，而在弯曲时空中，自由粒子

走的是测地线；第二，在第二章关于光锥与世界线的讨论中，我们看到，

闵可夫斯基时空中走直线的粒子，具有最大的固有时，也即是说，直线对

应固有时的极值，而根据第三章中对类时测地线的定义，弯曲时空中的类

时测地线正是对应固有时的极大值。因此，测地线就是弯曲时空中的“直

线”。

这就告诉我们一种刻画时空弯曲的方法：在时空中任意取初始时相互

平行的两根类时测地线，如果它们始终保持平行，那就说明时空是平直的。

相反，如果随着粒子往前飞行，这两根测地线之间的相对距离在变化(比方

说两者离得越来越近)，那就说明时空本身是弯曲的。

上述想法可以转化成精确的数学公式。为此我们考虑依赖于参数σ 的

一簇测地线xµ(τ, σ)(不同的σ对应不同的测地线)，τ为这些测地线的固有时

参数(或者对于类光的零性测地线簇，τ就是仿射参数)。记uµ(τ, σ)为这些

测地线的切向量，即

uµ(τ, σ) =
∂

∂τ
xµ(τ, σ), (7.1)

用坐标无关的写法则是

u(τ, σ) = uµ(τ, σ)∂µ = ∂τ . (7.2)

满足测地线方程

Duu = 0. (7.3)

如图(7.1)所示, 记两根无限靠近的测地线之间的相对偏离为δσξµ(τ, σ),

图 7.1: 测地线单参簇与偏离矢量ξ.
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式中δσ为无穷小量，向量ξµ(τ, σ)称作偏离向量，它由下式给出

ξµ(τ, σ) =
∂

∂σ
xµ(τ, σ), (7.4)

写成坐标无关的形式即是

ξ(τ, σ) = ξµ(τ, σ)∂µ = ∂σ, (7.5)

式中∂σ = ∂
∂σ
。由于τ和σ为两个相互独立的参数，因此∂τ∂σ = ∂σ∂τ , 从而

[u, ξ] = 0. (7.6)

利用克里斯托夫联络的无挠条件Duξ −Dξu = [u, ξ]，即有

Duξ = Dξu. (7.7)

利用上面的(7.3)式和(7.7)式，再利用R(u, ξ) = DuDξ−DξDu−D[u,ξ] =

DuDξ −DξDu, 即可以进行如下推导

D2ξ

Dτ 2
≡ DuDuξ = DuDξu

= DξDuu+R(u, ξ)u = R(u, ξ)u. (7.8)

即有测地线偏离方程

D2ξ

Dτ 2
= R(u, ξ)u. (7.9)

或者也可以根据上一章的知识，将之写成局部坐标中的形式，

D2ξµ

Dτ 2
= Rµ

αβνu
αuβξν . (7.10)

实际上，对于类时测地线簇，我们可以进一步要求偏离矢量与测地线

的切向量u正交。为了看清楚这一点，我们注意到τ为测地线的固有时，因

此切向量u其实就是四速度，从而满足

gµνu
µuν = −1 ⇒ ⟨u, u⟩ = −1. (7.11)

从而我们可以重新定义一个偏离矢量η

η = ξ + ⟨ξ, u⟩u. (7.12)
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很明显η与u正交，即满足

⟨η, u⟩ = 0. (7.13)

另外，利用(7.6)式，也有

[u, η] = [u, ξ + ⟨ξ, u⟩u]
= [u, ⟨ξ, u⟩u] = u

(
⟨ξ, u⟩

)
u, (7.14)

再利用u
(
⟨ξ, u⟩

)
= Du

(
⟨ξ, u⟩

)
= ⟨Duξ, u⟩ = ⟨Dξu, u⟩ = 1

2
ξ
(
⟨u, u⟩

)
= 1

2
ξ(−1) =

0(这里我们已经用到了(7.3)式和(7.7)式)，即有

[u, η] = 0. (7.15)

问题是，这样重新定义的η有权作为偏离矢量吗？即η满足测地线偏

离方程吗？回答是肯定的，因为测地线偏离方程的成立只需要Duu =

0和[u, η] = 0成立。当然我们也可以直接验证η满足测地线偏离方程，为此

只需注意到

DuDuη = DuDuξ +DuDu

(
⟨ξ, u⟩u

)
= DuDuξ +Du

(
⟨Duξ, u⟩u

)
= DuDuξ + ⟨DuDuξ, u⟩u
= R(u, ξ)u+ ⟨R(u, ξ)u, u⟩u
= R(u, ξ)u+R(u, u, u, ξ)u. (7.16)

式中我们已经代入了ξ所满足的测地线偏离方程(7.9)。又注意到曲率

算子R(X, Y )关于X, Y为线性依赖，而且满足R(X, Y ) = −R(Y,X), 从

而R(u, u) = 0，从而

R(u, η) = R(u, ξ). (7.17)

另外，根据R(X, Y, Z,W )关于X, Y反对称的性质，可知R(u, u, u, ξ) = 0. 将

这些代入(7.16)式，即有

D2η

Dτ 2
≡ DuDuη = R(u, η)u. (7.18)

从而，重新定义的与u正交的偏离矢量η同样满足测地线偏离方程。
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注意到测地线偏离方程是关于偏离矢量的一个线性微分方程，所以不

妨引入一个线性微分算子Ĵu，其在偏离矢量η上的作用如下

Ĵuη ≡ −D
2η

Dτ 2
+R(u, η)u. (7.19)

如此一来测地线偏离方程就可以简写为

Ĵuη = 0. (7.20)

测地线偏离方程清楚地告诉我们，黎曼曲率张量决定了两根邻近测地

线之间相对距离的变化情况，因此黎曼曲率张量是对时空弯曲情况的一种

刻画。

将测地线偏离方程限制在一条基准测地线γ上所得的结果也称作雅雅雅可可可

比比比方方方程程程，相应的偏离矢量ξ(或者η)也称作沿γ定义的雅可比场。如果基准测

地线γ是一簇临近测地线中的一条，那我们当然有测地线偏离方程。反过

来的情况却不一定成立，即是说，沿着γ有一个雅可比场并不意味着γ经过

变分δxµ = δσηµ以后得到的临近世界线一定是测地线，因为雅可比方程只

是关于偏离矢量η的线性方程，因此，它它它只只只意意意味味味着着着γ变变变分分分以以以后后后的的的临临临近近近曲曲曲线线线在在在

一一一阶阶阶近近近似似似上上上满满满足足足测测测地地地线线线方方方程程程。

如果基准测地线γ上存在两点p, q，使得雅可比场在这两点的值为零(但

在这两点之间不为零)，即满足η(p) = η(q) = 0，则称这两点为γ的一一一对对对共共共

轭轭轭点点点，如图(7.2)所示。 根据雅可比场的定义可以知道，如果测地线γ上存

图 7.2: p, q为一对共轭点.

在一对共轭点p, q，则有时候(但不是必然)意味着存在一簇从共同的p点发

出，又汇聚于q点的测地线单参簇，使得γ是这一簇测地线中的一条。比方

说，两维球面上的测地线就是大圆，因此地球仪上所有经线圈都是测地线，

它们构成了测地线簇，而南极和北极就是这测地线上的一对共轭点。共轭

点p, q的存在必然意味着的是，原测地线γ可以沿着雅可比场η作一个小的变
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动δxµ = δσηµ，变动以后的曲线依然连接p, q两点，并且在一阶近似上依然

满足测地线方程。

前面我们说过，类时测地线对应固有时的极大值，其实这个说法只在

固有时较小时才成立，如果两点的时空距离足够远，从而使得固有时足够

大，那这个说法一般来说是值得商榷的。后面我们将会看到，共轭点对的

存在对于决定类时测地线γ是否为两点之间固有时取极大值的曲线有重要

意义。

为了进一步考察沿着测地线γ的雅可比方程，下面取取取定定定一一一个个个沿沿沿着着着γ自自自由由由

下下下落落落的的的局局局部部部惯惯惯性性性系系系，则根据局部惯性系的定义，沿着γ有

gµν |γ = ηµν , Γρµν |γ = 0. (7.21)

由于沿着整个γ均有Γρµν |γ = 0, 所以当然也有∂τΓ
ρ
µν |γ = 0，从而即有

D2ηµ

Dτ 2
=
d2ηµ

dτ 2
. (7.22)

因此在这样的坐标系中，雅可比方程可以重写为

Ĵuη
µ = −d

2ηµ

dτ 2
+Rµ

αβνu
αuβην = 0. (7.23)

在这个沿着γ自由下落的局部惯性系中，粒子的四维速度uµ满足

uµ = (1, 0, 0, 0), (7.24)

即u0 = 1, ui = 0, i = 1, 2, 3，因此与之正交的偏离矢量ηµ必定满足

η0 = 0, (7.25)

从而雅可比方程的0分量变成

Ĵuη
0 = −d

2η0

dτ 2
+R0

αβνu
αuβην = 0

⇒Ĵuη
0 = 0 +R0

00νu
0u0ην = 0

⇒Ĵuη
0 = −R000νη

ν = 0, (7.26)

由于R000ν = 0, 所以最后是一个自动成立的平凡结果。类似的，可以得到

雅可比方程的非平凡空间分量(i, j = 1, 2, 3), 有

Ĵuη
i = −d

2ηi

dτ 2
+Ri

αβνu
αuβην = 0

⇒Ĵuη
i = −d

2ηi

dτ 2
+Ri00jη

j = 0. (7.27)
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即是说，在沿着测地线γ自由下落的局部惯性系中，决定雅可比方程的

线性微分算子Ĵu可以简单理解为如下3× 3矩阵值的微分算子

Ĵu = −δij
d2

dτ 2
+ Vij, 式中Vij = Ri00j = −R0i0j. (7.28)

由于R0i0j = R0j0i, 所以Vij = Vji，从而Ĵu作为3× 3矩阵是一个实对称矩阵。

进而类比于量子力学里的哈密顿算符可以知道，作为作用在“波函数”

ηj(τ)上的算符，算符Ĵu是一个厄密算符！

7.1.2 测地线偏离方程与潮汐力

引力场中自由下落的粒子所走的就是类时测地线，因此偏离矢量η就可

以理解为两个邻近的自由下落粒子之间的相对位置矢量，从而D2η/Dτ 2就

是这两个粒子的四维相对加速度，不妨记为aµ, 从而根据测地线偏离方程

aµ =
D2ηµ

Dτ 2
= Rµ

αβνu
αuβην . (7.29)

另一方面，假设以两个粒子中的一个为坐标原点，取定一个沿着粒子所走

的测地线自由下落的局部惯性系，那么根据第三章的知识，另一个邻近粒

子在这个局部惯性系中感受到的力就是潮汐力，从而相对加速度aµ其实就

是协变的潮汐加速度。根据上面式子可知，黎曼曲率张量完全决定了这个

协变的潮汐加速度，换言之，潮汐加速度正是黎曼曲率张量的物理反映。

下面，取这无限邻近的两个粒子之一所走的测地线为γ，并并并取取取定定定一一一个个个

沿沿沿着着着γ自自自由由由下下下落落落的的的局局局部部部惯惯惯性性性系系系，则根据上一小节的分析可知，协变潮汐加

速度可以写成

aµ =
D2ηµ

Dτ 2
=
d2ηµ

dτ 2
. (7.30)

又由于在此坐标系中η0 = 0，从而潮汐加速度也满足a0 = 0。进一步，对于

潮汐加速度的空间分量i, j = 1, 2, 3, 有

ai = Ri
00jη

j. (7.31)

下面，假设引力场不强，并且粒子的运动速度远小于光速，那这时候

第三章中对潮汐力的牛顿力学分析就近似成立了。在牛顿近似中，粒子固

有时约等于坐标时，即τ ≈ x0 = t, 从而上面的潮汐加速度ai就是普通牛顿

力学中的潮汐加速度(相对加速度)。
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另一方面，根据牛顿力学，自由落体的加速度为

d2xi

dt2
= −∂iΦ(x). (7.32)

式中Φ(x)为牛顿万有引力势。将上式对xi变分，并取δxi = ηi为偏离矢量，

即可以得到两个邻近的自由下落粒子之间的相对加速度(即潮汐加速度)

ai =
d2ηi

dt2
=
d2δxi

dt2
= −(∂i∂jΦ)δx

j

= −(∂i∂jΦ)η
j. (7.33)

将这个结果与(7.31)式进行比较，即有，在牛顿近似下

Ri
00j ≈ −(∂i∂jΦ). (7.34)

或者也可以写成

Ri
0j0 ≈ (∂i∂jΦ). (7.35)

在第三章中我们讲过∂i∂jΦ完全刻画了牛顿力学中的潮汐力，(7.35)式

告诉我们，黎曼曲率张量正是对这一刻画的相对论协变推广。

(7.35)式还能告诉我们一个重要结论，即里奇张量的00分量在牛顿近似

下为

R00 ≈ ∇2Φ. (7.36)

为了看清楚这一点，我们只需注意到，根据黎曼曲率张量指标的对称性，

有Rµ
000 = 0, 从而

R00 = Rµ
0µ0 = R0

000 +Ri
0i0 = Ri

0i0 ≈ ∇2Φ, (7.37)

上式的最后一个等于号我们代入了(7.35)式。

7.1.3 爱因斯坦场方程的牛顿近似

有了上一小节的准备，我们就可以来讨论爱因斯坦场方程的牛顿近似

了，我们将清楚地看到爱因斯坦场方程如何在牛顿近似中回到牛顿引力理

论。
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为了对爱因斯坦场方程进行牛顿近似，我们首先需要对方程右边的物

质能动量张量进行非相对论近似。为此，我们先回想一下第四章中导出的

多质点体系的能动量张量，为

T µν(x) =
1√
−g

∑
n

mn

∫
dτn

dxµn
dτn

dxνn
dτn

δ4
(
x− xn(τn)

)
=

1√
−g

∑
n

mn

∫
dσn

dxµn
dσn

dxνn
dτn

δ4
(
x− xn(σn)

)
. (7.38)

式中我们已经利用变量代换将粒子世界线参数换成了任意的σn。仿照第二

章中的相关做法，根据σn的任意性，取σn = x0n，并做完对σn的积分以后，

就可以得到

T µν =
1√
−g

[∑
n

pµnp
ν
n

p0n
δ3
(
x− xn(t)

)]
. (7.39)

式中pµn = mn
dxµn
dτn
为粒子的四维动量，并且根据四维速度满足的gµν

dxµn
dτn

dxνn
dτn

=

−1，有

−gµνpµnpνn = m2
n. (7.40)

以单个粒子为例，回想一下第三章中曾简略地提及如何对广义相对论

进行牛顿近似，为此只需假定粒子的速度为一阶小量，满足

v ≪ 1, (7.41)

并取度规张量为(i, j = 1, 2, 3为空间指标)

g00(x) = −(1 + 2Φ(x)), g0i(x) = 0, gij(x) = δij. (7.42)

其中小量

Φ(x) ≪ 1. (7.43)

在零阶近似上，gµν就是闵可夫斯基度规ηµν , 从而g = det(gµν)的零阶近似就

是−1。粒子的作用量可以近似为

S = −m
∫
dτ = −m

∫ √
(1 + 2Φ(x))dt2 − dx2

= −m
∫
dt
√
1 + 2Φ(x)− v2

≈ m

∫
dt
[1
2
v2 − Φ(x)

]
. (7.44)
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由此可见v2与牛顿引力势Φ是同阶小量，v为一阶小量，因此Φ就是二阶小

量。

但是对于一个质量为M的质点，其产生的牛顿引力势为Φ = GM
r
，我

们将M和r理解为有限大小的零阶量，因此Φ为二阶小量就意味着牛顿引力

常数G应该理解为二阶小量。

对于多质点系统，由以上假设，即有

pin = p0nv
i
n ≪ p0n. (7.45)

或者说，相对于零阶的p0n, 三维动量p
i
n是一阶小量。从而容易看出(7.40)式

的零阶近似为

(p0n)
2 ≈ m2

n ⇔ p0n ≈ mn. (7.46)

进而根据(7.39)式不难看出：T 0i为一阶小量，T ij为二阶小量，以及在零阶

近似上，有

T00 ≈ T 00 ≈
∑
n

mnδ
3
(
x− xn(t)

)
≡ ρ, (7.47)

即是说，能量密度就约等于质量密度ρ，这实际上就是爱因斯坦的质能关

系。同样在零阶近似上，我们也有

T 0i ≈ T ij ≈ 0, (7.48)

因为它们都是小量。进一步(在零阶近似上)，也有

T ≡ gµνT
µν ≈ −T 00 ≈ −ρ. (7.49)

为了得到爱因斯坦场方程的牛顿近似，我们将场方程Rµν − 1
2
gµνR =

κTµν进行指标缩并，进而得到

R− 1

2
4R = κT ⇔ R = −κT ≈ κρ. (7.50)

从而可以将爱因斯坦场方程近似为

Rµν ≈ κ
(
Tµν +

1

2
gµνρ

)
. (7.51)

取00分量，并利用上一节得到的R00 ≈ ∇2Φ以及T00 ≈ ρ, g00 ≈ −1, 即有

∇2Φ ≈ 1

2
κρ. (7.52)
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这就是场方程的牛顿近似。将之与下面的牛顿引力场方程进行比较

∇2Φ = 4πGρ, (7.53)

即可以定出常数κ为

κ = 8πG. (7.54)

最终的这个结果我们在引入场方程的那一章中就已经知道了，这里只是给

出了这个结果的具体推导过程。这个推导本身也说明了，爱因斯坦场方程

在牛顿近似上的确能回到牛顿的引力理论，这本身也是对广义相对论的一

个最基本的理论上的检验。

如果将上述近似过程用于带宇宙学常数的爱因斯坦场方程

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (7.55)

则在最低阶近似上，我们将得到

∇2Φ = 4πGρ− Λ. (7.56)

这是带宇宙学常数的牛顿引力场方程。如果考察的是单个质量为M的质点

所产生的引力场，则可以取ρ = Mδ3(x), 进而由上述方程的解可以得到引

力加速度g, 为

g = −∇Φ =
(
− GM

r2
+

Λr

3

)
er, (7.57)

式中er为径向方向的单位矢量。从这个结果可以看到，如果宇宙学常数为

负，则它将诱导出一个随距离线性增加的吸引力，而如果宇宙学常数为正,

则它所诱导出来的就是一个随距离线性增加的排排排斥斥斥力力力。天文观测表明，我

们的宇宙在加速膨胀，这通常被认为是由于我们的宇宙具有一个正的宇宙

学常数，它所产生的排斥力使得宇宙加速膨胀。

7.2 *粒子固有时的一阶和二阶变分公式

第三章中说过，有质量粒子所走的测地线是使得固有时取极大值的路

径，但这种说法其实是有漏洞的，这一节我们将具体分析漏洞出在哪里，

以及这漏洞和时空曲率有什么关系。具体来说，假设记时空流形为M , 则
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本节要考察的问题是：给定时空中的一段世界线γ : [a, b] →M , 如何确定在

连接γ(a) = p到γ(b) = q的所有可能世界线中，原来的γ是否具有极大的固

有时？

为此我们需要考察γ的变分，也就是考察与γ邻近的那些可能世界

线。具体来说，我们可以把γ嵌入到一个单参世界线簇{γσ}0≤σ≤ϵ中去，使
得γ = γ0(称作基准世界线), 而且这个单参簇的两个端点p, q固定，即满足

γσ(a) = γ(a) = p, γσ(b) = γ(b) = q, ∀σ ∈ [0, ϵ], (7.58)

如图(7.3)所示。 我们要验证的是，如下定义的函数L(σ) 在σ = 0处是否具

图 7.3: 世界线γ的单参变分.

有局部极大值1，

L(σ) =世界线段γσ的固有时长. (7.60)

如果L′(0) = 0, L′′(0) < 0(撇号表示对σ求导)，则函数L(σ)在σ = 0处

有局部极大值。如果对所有以γ为基准世界线的单参簇{γσ}, 均有L′(0) = 0,

L′′(0) < 0，那就表示γ这条世界线与邻近于γ的所有其它世界线相比，γ的

固有时都是极大的。所以，分析的关键是要找到L′(0), 和L′′(0)的公式，也

就是所谓的粒子固有时的一阶和二阶变分公式。

记τ为世界线本身的参数，则单参世界线簇就是γσ(τ), 它们共同的起

点是τ = a，共同的终点是τ = b。这个单参世界线簇在局部坐标中的表达

是xµ(τ, σ)。与上一节考察测地线偏离方程不同的是，现在要求这些世界线

在相同的τ“时间”之内，从共同的起点γ(a) = p到达共同的终点γ(b) = q,

1显然，L(σ)和粒子作用量S的关系为

S = −mL. (7.59)
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因此我我我们们们无无无法法法要要要求求求τ为为为单单单参参参簇簇簇中中中每每每一一一条条条世世世界界界线线线的的的固固固有有有时时时，不过，我们可可可以以以

取取取τ为为为基基基准准准世世世界界界线线线γ = γ0的的的固固固有有有时时时。

定义世界线γσ(τ)的切矢量为u = ∂τ ,

u = ∂τ =
∂xµ

∂τ
∂µ, (7.61)

因此uµ = ∂xµ

∂τ
。由于粒子世界线必定从光锥内部穿过，从而必定为类时曲

线，即必定满足

⟨u, u⟩ < 0. (7.62)

又由于τ为σ = 0这条世界线的固有时，所以u|σ=0必定为这条基准世界线的

四维速度，从而有

⟨u, u⟩|σ=0 = −1. (7.63)

注意，σ ̸= 0时可没有这个结果。由此我们可以写出函数L(σ)，为

L(σ) =

∫ b

a

dτ

√
−gµν

∂xµ

∂τ

∂xν

∂τ

=

∫ b

a

dτ
√
−⟨u, u⟩ ≡

∫ b

a

dτ |u|. (7.64)

式中|u| ≡
√
−⟨u, u⟩, 特别的|u|σ=0 = 1。

为了考察xµ(τ, σ)随着参数σ的变分，我们定义δxµ ≡ δσξµ, 式中

ξµ =
∂xµ

∂σ
. (7.65)

当然，ξµ的坐标无关化表达就是ξ = ∂σ。由于单参簇有共同的固定端点，

所以显然有ξµ(a) = ξµ(b) = 0，即

ξ(a) = ξ(b) = 0. (7.66)

另外，由于σ和τ相互独立，所以显然有

[ξ, u] = 0. (7.67)

进而利用无挠条件，即有Dξu = Duξ。
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利用|u|2 = −⟨u, u⟩可得2|u|ξ(|u|) = ξ(|u|2) = −ξ
(
⟨u, u⟩

)
= −2⟨Dξu, u⟩,

即有

ξ(|u|) = − 1

|u|
⟨Dξu, u⟩ = − 1

|u|
⟨Duξ, u⟩. (7.68)

进而可得

L′(σ) =

∫ b

a

dτ
∂

∂σ
|u| =

∫ b

a

dτξ(|u|)

= −
∫ b

a

dτ
1

|u|
⟨Duξ, u⟩. (7.69)

特别的，在σ = 0处，( 1

|u|
⟨Duξ, u⟩

)
|σ=0 =

(
⟨Duξ, u⟩

)
|σ=0 = u

(
⟨ξ, u⟩

)
|σ=0 − ⟨ξ,Duu⟩|σ=0. (7.70)

所以

L′(0) = −
∫ b

a

dτ
[
∂τ
(
⟨ξ, u⟩

)
− ⟨ξ,Duu⟩

]
σ=0

= −
(
⟨ξ, u⟩

)
|ba +

∫ b

a

dτ⟨ξ,Duu⟩|σ=0. (7.71)

利用路径两端的ξ = 0，即得

L′(0) =

∫ b

a

dτ⟨ξ,Duu⟩|σ=0. (7.72)

如果对于任意单参簇(从而任意的ξ)，均有L′(0) = 0，则σ = 0的基准世界

线必定满足

Duu = 0, (7.73)

这正是测地线方程！所以上面推导只不过是用一种坐标无关的方式从固有

时一阶变分为零导出了测地线方程，当然，这也就是重新处理了一遍最小

作用量原理。

二阶变分

下面来计算L′′(0), 由本节开头的叙述可以知道，仅当L′(0) = 0时，计

算L′′(0)才有意义。于是下面我们可以假设σ = 0的基准世界线γ = γ0为为为一一一

条条条类类类时时时测测测地地地线线线。
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由(7.69)式，可得

L′′(σ) = −
∫ b

a

dτ
∂

∂σ

( 1

|u|
⟨Duξ, u⟩

)
. (7.74)

利用(7.68)式，可以把式中的被积项表达为

ξ
( 1

|u|
⟨Duξ, u⟩

)
=

1

|u|3
⟨Duξ, u⟩2 +

1

|u|
⟨Duξ,Dξu⟩+

1

|u|
⟨DξDuξ, u⟩

=
1

|u|3
[
u
(
⟨ξ, u⟩

)
− ⟨ξ,Duu⟩

]2
+

1

|u|
⟨Duξ,Duξ⟩

+
1

|u|
[
⟨R(ξ, u)ξ, u⟩+ ⟨DuDξξ, u⟩

]
, (7.75)

最后一行我们利用了[ξ, u] = 0, 从而R(ξ, u) = DξDu −DuDξ。

然后，在上面结果中取取取σ = 0，并注意到这时候有测地线方程以

及|u| = 1, 即

Duu = 0, |u| = 1. (7.76)

也即有

⟨DuDξξ, u⟩ = u
(
⟨Dξξ, u⟩

)
=

∂

∂τ

(
⟨Dξξ, u⟩

)
. (7.77)

最后即得到

L′′(0) =−
∫ b

a

dτ
[(
u⟨ξ, u⟩

)2
+ ⟨Duξ,Duξ⟩+ ⟨R(ξ, u)ξ, u⟩+ ∂

∂τ
⟨Dξξ, u⟩

]
=−

∫ b

a

dτ
[(
u⟨ξ, u⟩

)2
+ ⟨Duξ,Duξ⟩+ ⟨R(ξ, u)ξ, u⟩

]
− ⟨Dξξ, u⟩|ba, (7.78)

式中⟨Dξξ, u⟩|ba为端点项，但是由于世界线单参簇的端点固定(即在端点

处恒有ξ = 0)，所以这个端点项其实恒等于零。再利用⟨R(ξ, u)ξ, u⟩ =

⟨u,R(ξ, u)ξ⟩ = R(u, ξ, ξ, u) = R(ξ, u, u, ξ) = ⟨ξ, R(u, ξ)u⟩，即可以将上面结
果重写成

L′′(0) = −
∫ b

a

dτ
[(
u⟨ξ, u⟩

)2
+ ⟨Duξ,Duξ⟩+ ⟨ξ, R(u, ξ)u⟩

]
. (7.79)
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重新定义一个变分矢量η

η = ξ + ⟨ξ, u⟩u, (7.80)

显然，η与u正交，即满足⟨η, u⟩ = 0, 同时η在世界线的两个端点处也为零。

注意σ = 0时有测地线方程Duu = 0, 从而易得Duη = Duξ + ⟨Duξ, u⟩u, 又注
意到⟨u, u⟩ = −1, 进而不难得到

⟨Duη,Duη⟩ = ⟨Duξ,Duξ⟩+ ⟨Duξ, u⟩2, (7.81)

又由于⟨Duξ, u⟩ = u⟨ξ, u⟩ − ⟨ξ,Duu⟩ = u⟨ξ, u⟩, 从而

⟨Duη,Duη⟩ = ⟨Duξ,Duξ⟩+
(
u⟨ξ, u⟩

)2
. (7.82)

另外，利用黎曼曲率张量的线性性和反对称性，可得

⟨ξ, R(u, ξ)u⟩ = R(ξ, u, u, ξ) = R(η, u, u, η) = ⟨η,R(u, η)u⟩. (7.83)

将(7.82)式和(7.83)式代入L′′(0)的表达式(7.79), 即得

L′′(0) = −
∫ b

a

dτ
[
⟨Duη,Duη⟩+ ⟨η,R(u, η)u⟩

]
. (7.84)

这就是最终的沿沿沿着着着类类类时时时测测测地地地线线线的的的二二二阶阶阶变变变分分分公公公式式式。

仔细看一看二阶变分的这个公式，我们发现重点是其中再次出现了起

决定性作用的时空曲率R(u, η, u, η), 这清楚地说明曲率是在二阶扰动(二阶

变分)的意义上影响自由下落粒子作用量的。

为了更进一步看清二阶变分公式的物理含义，我们可以完全类似于前

面关于测地线偏离方程的情形，在沿着测地线γ自由下落的局部惯性系中

讨论这个二阶变分公式。比方说，这时候我们也有η0 = 0, Duη
i = dηi

dτ
。则

最终可以将(7.84)式在此局部惯性系中重写成

L′′(0) = −
∫
dτ

[(dη⃗
dτ

)2
+Ri00jη

iηj
]
. (7.85)

若进一步取上面这个式子的牛顿近似，并记ηi ≡ yi, 则有

1

2
L′′(0) ≈ −

∫
dt
[1
2

(dy
dt

)2
+

1

2
Ri00jy

iyj
]

≈ −
∫
dt
[1
2
ẏ2 − 1

2
(∂i∂jΦ)y

iyj
]
. (7.86)
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上式第二行代入了(7.34)式。很显然，这正是第三章引入潮汐力概念时根据

牛顿自由落体作用量所得到的结果。

我们可以根据上述结果(7.85)进一步讨论在什么情况下L′′(0) < 0。首

先，假设基准测地线γ = γ0足够短，即粒子从p端点运动到q端点的固有时

足够短，不妨记这固有时为τ，则很显然dη⃗
dτ
在∆η⃗/τ的量级，这里∆η⃗为p, q之

间的相对空间位置矢量。进而即可以作如下估算:∫
dτ

(dη⃗
dτ

)2 ∼ τ
(∆η⃗
τ

)2
=

(∆η⃗)2

τ
. (7.87)

类似的， ∫
dτ

[
Ri00jη

iηj
]
∼ C(η, η)τ, (7.88)

式中C(η, η) ∼ Ri00jη
iηj。即是说，我们有

L′′(0) ∼ −
[(∆η⃗)2

τ
+ C(η, η)τ

]
. (7.89)

很显然，当τ足够小时，括号中的第一项占主导地位，第二项相比可以忽

略。即当τ足够小时，我们有

L′′(0) ∼ −(∆η⃗)2

τ
< 0. (7.90)

结论就是：当端点p和端点q离得足够近，从而p到q的固固固有有有时时时足足足够够够短短短时时时，必

定有

L′′(0) < 0, (7.91)

这这这时时时候候候从从从p到到到q的的的类类类时时时测测测地地地线线线有有有极极极大大大的的的固固固有有有时时时！！！

但是，如果从p到q的固有时很长，那上述结论就不一定成立了，因

为这时候二阶变分公式(7.84)中曲率项的贡献就变得很重要，从而使

得L′′(0) < 0不一定成立了。临界的情况当然就是，可能存在某些变分

矢量η，使得L′′(0) = 0。

为了更好地分析什么情况下会出现L′′(0) = 0，我们不妨改写一下二阶

变分公式(7.84)。为此我们可以利用⟨Duη,Duη⟩ = u⟨η,Duη⟩−⟨η,DuDuη⟩ =
∂τ ⟨η,Duη⟩ − ⟨η, D2η

Dτ2
.⟩ 进而对(7.84)式右边的第一项进行分部积分，得到

L′′(0) = −
∫ b

a

dτ
[
− ⟨η, D

2η

Dτ 2
⟩+ ⟨η,R(u, η)u⟩

]
− ⟨η,Duη⟩|ba

= −
∫ b

a

dτ⟨η,−D
2η

Dτ 2
+R(u, η)u⟩. (7.92)
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式中第二行我们利用了在路径的两个端点处η = 0。进一步，利用微分算

子Ĵu的定义(7.19)，就可以把这个结果简写为

L′′(0) = −
∫ b

a

dτ⟨η, Ĵuη⟩. (7.93)

很显然，当变分矢量η同时是沿着基准测地线定义的雅可比场时(即满足测

地线偏离方程Ĵuη = 0时)，则有L′′(0) = 0。也即是说，只要p, q之间存在非

零的雅可比场，那就能使得L′′(0) = 0的临界情况成立。进而我们可以得到

如下重要定理。

为了进一步简化问题，我们也可以在在在沿沿沿着着着γ自自自由由由下下下落落落的的的局局局部部部惯惯惯性性性系系系中中中

进进进行行行分分分析析析，这时候上一段的结果就变成，

L′′(0) = −
∫ b

a

dτ
[(dη⃗
dτ

)2
+Ri00jη

iηj
]

= −
∫ b

a

dτηi
(
− δij

d2

dτ 2
+Ri00j

)
ηj. (7.94)

式中已经利用了ηi(a) = ηi(b) = 0。根据前面讨论雅可比方程时定义

的(7.28)，这个结果显然与(7.93)式一致。

(7.94)式的形式激励我们将它类比于一个量子力学能量泛函的变分问

题。为此我们考虑定义在区间[a, b]上的一维量子力学问题，取τ为一维变

量，取量子力学波函数ψ(τ) =
(
η1(τ), η2(τ), η3(τ)

)T
(T表示矩阵转置)，并

且波函数在区间两端为零ψ(a) = ψ(b) = 0。同时，我们可以将变分矢

量ηi(τ)进行适当的归一化，进而给出波函数归一化条件

1 = ⟨ψ|ψ⟩ =
∫ b

a

dτψT (τ)ψ(τ). (7.95)

进一步，取系统的哈密顿算符H为

H = −δij
d2

dτ 2
+ Vij = Ĵu, 式中Vij = Ri00j = −R0i0j. (7.96)

则(7.94)式可以写成

L′′(0) = −⟨ψ|H|ψ⟩ = −E(ψ), (7.97)

式中能量泛函E(ψ)为

E(ψ) = ⟨ψ|H|ψ⟩ =
∫ b

a

dτψT (τ)Hψ(τ). (7.98)
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显然，要分析L′′(0)是否恒小于零，关键是要分析能量泛函E(ψ)的最小

值，也就是上述量子力学系统基态的能量，只要这个基态能量大于零，那

即有L′′(0) < 0，反过来也一样。不妨固定区间[a, b]的a端，将将将基基基态态态能能能量量量看看看

成成成b的的的函函函数数数，，，记记记作作作Eb, 即

Eb = min
ψ

{E(ψ)}. (7.99)

由前面对固有时足够小时(即b − a足够小)的分析可知，当当当b − a足足足够够够小小小时时时，，，

能能能量量量泛泛泛函函函E(ψ)是是是正正正定定定的的的，，，从从从而而而必必必有有有Eb > 0。。。

进一步，可以论证基基基态态态能能能量量量Eb关关关于于于b是是是单单单调调调递递递减减减的的的，原因在于，一个

更小区间的基态波函数可以自然地作为一个更大区间的能量泛函变分的试

探波函数。具体来说，假设a < b1 < b, 假设ψ0(τ)为[a, b1]区间上的基态波

函数，则我们可以自然地定义[a, b]区间上的试探波函数ψ(τ)为

ψ(τ) =

ψ0(τ), τ ∈ [a, b1]

0, τ ∈ [b1, b]
. (7.100)

真正基态的能量当然比试探波函数对应的能量要低，从而必有Eb ≤ Eb1。

进而结合上面两段的结果可知，要让某个大的区间[a, b]上的Eb ≤ 0,

充充充要要要条条条件件件是，存在某个小一些的临界c, a < c < b, 使得Ec = 0, 即是

说Hψ(τ) = 0在[a, c]区间上有非零解。由于H = Ĵu，因此这也意味着雅可

比方程Ĵuη
i = 0在[a, c]区间上有满足η(a) = η(c) = 0的非零解。这也就说

明，γ(c)是γ(a)的共轭点。结论就是，在某个大区间[a, b]上，Eb ≤ 0(进而

相应基态使得L′′(0) ≥ 0)的充充充要要要条条条件件件是，在γ(b)和γ(a)之间存在γ(a)的一个

共轭点γ(c)。进而即有如下重要定理。

重重重要要要定定定理理理：：：设γ是一条连接时空中p, q两点的类时曲线, 对应固有时

参数区间[a, b]，γ(a) = p、γ(b) = q。则γ的固有时取其任意单参变分(固

定p, q点)极大值的充要条件是，γ是一条类时测地线，并且在p, q两点之间

不存在任何点p的共轭点。

证证证明明明概概概要要要：首先，假设γ不是一条测地线，则根据一阶变分公式(7.72),

我们总可以选取一个合适的变分矢量ξ，使得L′(0) > 0，从而γ的固有时就

不是极大值。

其次，假定γ是一条类时测地线。则根据上面的讨论，存在变分矢

量η使得L′′(0) ≥ 0的充要条件是在p, q两点之间存在点p的共轭点r。不仅

如此，还可以进一步证明，假设存在共轭点r，则必定存在变分矢量η使
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得L′′(0) > 0(去掉了等于号)。因此这种情况下，γ的固有时也不是取极大

值。

证明如下，假设在p, q两点之间存在点p的共轭点r。则根据共轭点的定

义，在p, r之间存在一个非零的雅可比场η0, 它满足雅可比方程Ĵuη0 = 0, 同

时满足η0(p) = η0(r) = 0。因此这时候我们可以定义如下非零变分矢量η

η =

η0, 在p, r之间

0, 在r, q之间
. (7.101)

显然，对于这个变分矢量有L′′(0) = 0。进而我们只要将这个变分矢量在拐

角r处进行适当的圆滑化(如图(7.4)所示)，以降低(7.94)式中
(
dη⃗
dτ

)2
项在拐角

处的贡献，进而就可以得到一个新的使得L′′(0) > 0的单参变分。

图 7.4: 连接p, q的类时测地线γ上有点p的共轭点r，可以将变分矢量在拐

角r处适当圆滑化，得到一条新的类时曲线γ′, γ′的固有时长于γ.

反过来，假设γ是一条类时测地线，与此同时在p, q之间不存在任何

点p的共轭点。则这时候根据上述讨论的充分必要性可知，必有Eb > 0，进

而对于任意单参变分，均有L′′(0) < 0, 从而这时候γ的固有时就的确取极大

值。证证证明明明完完完成成成。

上述定理对于彭罗斯和霍金的奇性定理的证明来说至关重要，不过，

就本章来说，这个定理的重要性在于，它是关于固有时二阶变分公式，进

而关于时空曲率意义的一个重要说明。


