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第六章 坐标无关的数学语言初步

陈陈陈童童童

本章要初步解决一个数学问题。那就是，前面的章节中，我们都是通

过引入局部坐标来进行数学分析的，然后再通过协变性和张量的概念来将

这种局部的分析拼合成一个整体，这当然是一种极端重要的数学思想。但

是，局部坐标本身却是人为的和任意的，真正的几何和物理应该不依赖于

局部坐标，那么问题就是，如何才能用一种坐标无关的方式来讨论黎曼几

何？

实际上，现代数学中有精确的概念来刻画广义相对论的时空模型，

那就是所谓微分流形(manifold)的概念，不过本书并不需要微分流形的

精确数学定义，感兴趣的读者可以参阅Loring W.Tu那本大受好评的An

Introduction to Manifolds, 这本书的第二章就给出了流形的精确数学定义，

所需的点集拓扑知识这本书也用附录的形式包含了。

简言之，流形就是一个可以任意选取局部坐标，并能用局部坐标来进

行微积分计算，但真正的几何与拓扑却又不依赖于局部坐标具体选择的拓

扑空间。在广义相对论中，时空就是一个流形，是一个带有赝黎曼度规张

量结构的赝黎曼流形。所谓赝黎曼度规指的是广义相对论中的度规张量是

闵可夫斯基符号度规，而不是标准黎曼几何的欧几里德符号度规。

本章假设讨论一般的D = n维时空流形，记为M。
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第六章 坐标无关的数学语言初步 3

6.1 切向量场，余切向量场，张量场

6.1.1 切向量场

让我们先来讨论如何以坐标无关的方式处理时空中的逆变矢量场。不

妨把时空流形M上所有可能逆变矢量场的集合记为X (M)。X (M)是一个无

穷维向量空间，这是因为向量场本身是时空点x的函数，这样不同向量场进

行线性组合的时候组合系数也可以是点x的函数，具体来说，假设有两个任

意的逆变向量场Xµ(x)和Y µ(x)，则下面的线性组合也是一个向量场

a(x)Xµ(x) + b(x)Y µ(x), (6.1)

式中a(x)和b(x)是时空中的两个任意标量函数。由于组合系数可以依赖于x，

所以这就带来无穷的组合可能性，使得X (M)成为一个无穷维向量空间。

为了使得向量空间变成有限维，我们可以把向量场限制在某个固定时

空点p上，这时候向量场当然就成为p点的一个普通向量，我们把p点所有向

量所构成的向量空间记为Vp。很明显，由于时空为n维，所以向量空间Vp也

为n维向量空间。

但是上述对向量场以及Vp的讨论需要先取一个局部坐标x，p点的向

量Xµ(x)|p依赖于局部坐标x，常常记为Xµ
p (x)。我们知道，X

µ
p (x)在局部坐

标变换xµ → x′µ之下，按如下方式变换

X ′µ
p (x′) = Sµ

ν(x)X
ν
p (x), (6.2)

式中变换矩阵Sµ
ν为，

Sµ
ν(x) =

∂x′µ

∂xν
. (6.3)

这当然是以一种局部坐标依赖的方式讨论向量场以及p点的Vp。注意，这

里x和x′描述的是同一时空点p。

而正如我们熟知的，在线性代数中，向量是坐标无关的，具体来说，

在线性代数中，我们将一个向量A写成

A = Aµeµ, (6.4)

eµ称作第µ个基矢，A
µ就是向量A在这一组基矢下的分量形式。而在线性

代数中，所谓坐标变换就是换一组基矢，这时候向量的分量形式也会跟着

变，但是向量A本身是坐标无关的。
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可见，要用坐标无关的方式来讨论向量场Xµ，我们就需要在向量空

间Vp中引入基矢，并让坐标变换下基矢的改变正好补偿向量场分量形式的

改变，以使得最终向量场本身与具体坐标无关。当然，现在相比线性代数

复杂的是，变换矩阵Sµ
ν(x)本身不是一个常数，而是依赖于时空坐标x，这

就使得基矢eµ无法随意引入。但好在，我们注意到

∂′µ|p =
∂xν

∂x′µ
∂ν |p ⇒ ∂′µ|p = (S−1)ν µ(x)∂ν |p. (6.5)

不难发现这个变换正好能补偿分量形式的变换(6.2)。因此我们想到取

eµ = ∂µ|p, (6.6)

反正根据线性代数的知识，基矢eµ本身是一个抽象的客体，我们对它并没

有太多的限制，因此当我们将p点的偏导算符∂µ|p也看作一个抽象客体的时
候，当然就可以取eµ = ∂µ|p。最后我们发现

X ′µ
p (x′)∂′µ|p = Xµ

p (x)∂µ|p (6.7)

是坐标无关的。由于最终的表达式是坐标无关的，因此我们可以把p点处的

这个向量记作Xp，

Xp = Xµ
p (x)∂µ|p. (6.8)

最后，我们也可以将限制于p点这一条件去掉，得到向量场(而不是p点

的向量)的坐标无关表达式X，

X = Xµ(x)∂µ. (6.9)

这么处理的一个额外好处是，它使得向量场X具有了双重身份，当

将∂µ|p看作抽象的基矢量时，Xp是线性空间Vp中的一个向量。而当将∂µ看

作偏导运算时，X就成了一个偏导算符。因此，给定时空中的一个标量函

数f(x)，我们可以把偏导算符X作用上去

X(f) = Xµ∂µf(x), (6.10)

很显然，这表示的是函数f(x)沿着Xµ方向的方向导数。作为偏导算符，

X当然满足求导的一系列法则，比方说满足莱布尼兹法则，即，对于时空

中两个任意函数f(x), g(x), 我们有

X(fg) = X(f)g + fX(g). (6.11)
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给定向量场X = Xµ∂µ、Y = Y µ∂µ, 我们可以计算这两个偏导算符的对

易子，[X,Y ] = XY − Y X, 称作这两个向量场的李括号，并且显然有

[X, Y ] = −[Y,X]. (6.12)

为了计算出[X, Y ]，我们可以将它作用在标量函数f(x)上，

[X, Y ](f) = X(Y (f))− Y (X(f)) =
[
Xν∂ν(Y

µ)− Y ν∂ν(X
µ)
]
∂µf. (6.13)

由此不难看出，[X, Y ]依然是一个向量场，这个向量场的µ分量(记作[X,Y ]µ)

为

[X, Y ]µ = Xν∂νY
µ − Y ν∂νX

µ. (6.14)

与第四章引入的李导数进行比较，不难发现

[X,Y ]µ = LXY
µ. (6.15)

人们也常常以一种坐标无关的方式来讨论李导数，即定义

LXY ≡ (LXY
µ)∂µ. (6.16)

如此一来，即有

LXY = [X,Y ]. (6.17)

两个向量场的李括号，结果依然是一个向量场。而且很容易证明，向

量场的李括号满足所谓的雅可比恒等式，即任给三个向量场X,Y, Z，我们

有

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (6.18)

定义了李括号运算并且满足雅可比恒等式的向量空间称作李代数。所以，

时空中所有向量场的集合X (M)在李括号下构成一个无穷维李代数。

时空流形上的向量场直观上看起来像什么样子呢？为了弄清楚这个问

题，不妨举一个例子，假设我们的时空流形是一个两维球面，即M = S2，

而我们也可以超脱出这个时空之外来观察它，具体来说，就是设想把这个

两维球面放在三维空间中来观察它。这时候时空中的向量场直观上应该

怎么样呢？很显然它们应该躺在这个两维球面上，换言之，在球面的每一
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图 6.1: 球面上的切向量场。

点，向量场都应该和球面相切，看起来大体如图(6.1)所示。 这个例子告诉

我们，时空中诸如X = Xµ∂µ这样的向量场，从时空之外的更高维度来看，

它们在每一点都与时空流形相切，因此数学上也把这样的向量场称作切向

量场。给定一个时空点p，该点处所有可能切向量构成一个向量空间，称

作p点的切切切空空空间间间，当然它就是前面的向量空间Vp。

对于时空流形中一条以λ为参数的曲线xµ(λ)，我们也可以定义其切矢

量T , 用分量形式来说即是T µ = dxµ

dλ
, 因此用坐标无关的写法即是

T = T µ∂µ =
dxµ

dλ
∂µ =

∂

∂λ
= ∂λ. (6.19)

当然这个矢量只沿着曲线才有定义，因此不是一个向量场。特别的，如果

这条曲线是粒子运动的世界线，并且将粒子的固有时τ取作世界线参数，那

粒子的四维速度矢量u即是

u =
dxµ

dτ
∂µ =

∂

∂τ
= ∂τ . (6.20)

以上，我们只讨论了如何用坐标无关的方式来处理上指标的逆变矢量

场。结论就是，这样的逆变矢量场其实应该理解为时空流形上的切向量场。

那诸如ωµ(x)这样的下指标的协变矢量场用坐标无关的方式又该如何处理

呢？

6.1.2 余切向量场

我们可以用完全类似的方式处理时空中的协变矢量场。为此只需要注

意到ωµ(x)在坐标变换下按如下方式变换

ω′
µ(x

′) = (S−1)ν µ(x)ων(x), (6.21)
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而坐标微分dxµ按如下方式变换

dx′µ = Sµ
ν(x)dx

ν , (6.22)

从而下式是一个坐标无关的向量场

ω = ωµ(x)dx
µ, (6.23)

称作时空中的余切向量场。

ω限制在时空点p得到的向量叫做余切向量，记作ωp, p点所有余切向量

构成的空间称作p点的余切空间，记为V ∗
p。很显然

ωp = ωµ(x)|pdxµ|p, (6.24)

也即是说，dxµ|p作为一个抽象的代数客体，可以看成是余切空间V ∗
p的一组

基矢量。

利用向量场的缩并，我们可以把p点的余切向量ωp和切向量Xp缩并在

一起，形成一个坐标无关的量，也即

(ωµX
µ)|p, (6.25)

很显然，给定ωp，上面这个表达式对于切向量Xp是线性依赖的，可以看作

是Xp的线性函数。换言之，我们可以将余切向量ωp看作是切向量的线性函

数，即定义

ωp(Xp) = (ωµX
µ)|p, (6.26)

很明显，这满足线性函数的性质，即对于任意Xp,Yp，以及组合系数ap, bp，

我们有

ωp(apXp + bpYp) = apωp(Xp) + bpωp(Yp). (6.27)

但是，表达式(6.25)关于ωp和Xp完全对称，因此给定Xp，这个表达式

关于ωp也是线性依赖的。所以我们也可以把切向量Xp看成是余切向量的线

性函数，即定义

Xp(ωp) = (ωµX
µ)|p = ωp(Xp). (6.28)

它满足线性函数的性质，即对于任意余切向量ωp, 和ϕp = (ϕµdx
µ)|p, 有

Xp(apωp + bpϕp) = apXp(ωp) + bpXp(ϕp). (6.29)
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以上分析告诉我们，余切空间V ∗
p可以看成是切空间Vp上的所有线性

函数所构成的向量空间，反过来也一样，切空间Vp也可以看作是余切空

间V ∗
p上所有线性函数所构成的向量空间，因此，数学上常常称这两个向量

空间互为对偶空间，记作

Vp ↔ V ∗
p . (6.30)

给定余切向量ωp = ωµ|pdxµ|p和切向量Xp = Xµ
p ∂µ|p, 按照线性函数的理

解，我们有

ωp(Xp) = ωp(X
ν
p ∂ν |p) = Xν

pωp(∂ν |p)
= Xν

pωµ|pdxµ|p(∂ν |p), (6.31)

与ωp(Xp)的定义式(6.26)相比较，即有

dxµ|p(∂ν |p) = δµν . (6.32)

当然，同样也有

∂ν |p(dxµ|p) = dxµ|p(∂ν |p) = δµν . (6.33)

因此通常称dxµ|p和∂µ|p互为对偶基矢量。
注意到(6.32)式和(6.33)等号右边与p无关，因此我们可以去除限制

于p点这一要求，得到

dxµ(∂ν) = δµν . (6.34)

进而我们也可以在线性函数的定义式(6.26)和(6.28)中去除限制于p点这一要

求，进而定义时空中的标量ω(X) = X(ω)如下

ω(X) = ωµ(x)X
µ(x) = X(ω). (6.35)

也即是说，我们可以把余切向量场看作是切向量场的线性函数，满足如下

线性关系，即对于任意标量函数f(x)有

ω(fX) = fω(X). (6.36)

同样，切向量场也是余切向量场的线性函数。
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6.1.3 张量场

下面我们来讨论如何处理时空流形上的一般张量场。设要处理的张量

场为(k, l)阶张量场

T µ1...µk
ν1...νl

(x). (6.37)

与切向量场一样，所有(k, l)阶张量场的集合也构成一个无穷维线性空间。

与对切向量场的讨论一样，我们将T µ1...µk
ν1...νl

(x)限制在时空点p, 即考

察p点的(k, l)张量(不是张量场)T µ1...µk
ν1...νl

|p, 所有这样的张量当然构成一个
有限维线性空间。我们把这个线性空间的基矢量记为

(∂µ1 ⊗ ....⊗ ∂µk
⊗ dxν1 ⊗ ....⊗ dxνl)|p. (6.38)

式中⊗只是一个抽象的记号，用来把多重切空间基矢和多重余切空间基
矢并置在一起，通常称这一记号为张量积。显然，这样的独立基矢一共

有nk+l个，所以p点的(k, l)张量所构成的线性空间为nk+l维。记T µ1...µk
ν1...νl

|p的
坐标无关表达为Tp，很显然

Tp = T µ1...µk
ν1...νl

|p(∂µ1 ⊗ ....⊗ ∂µk
⊗ dxν1 ⊗ ....⊗ dxνl)|p. (6.39)

通常把所有可能Tp的线性空间称作k个Vp和l个V
∗
p的张量积空间，记为

Vp ⊗ ...⊗ Vp ⊗ V ∗
p ⊗ ...⊗ V ∗

p . (6.40)

去除掉限制于p点这一条件，即可以得到(k, l)张量场的坐标无关表达，

为

T = T µ1...µk
ν1...νl

(x)(∂µ1 ⊗ ....⊗ ∂µk
⊗ dxν1 ⊗ ....⊗ dxνl). (6.41)

当然，和前面切向量场以及余切向量场的情况类似，我们也可以把张

量场理解成某种线性函数。举例来说，比如对于(0, l)阶张量场ψν1...νl ,

我们可以把它理解为切向量场的l重线性函数，也即是，对于l个切向量

场X1, X2, ...Xl，我们定义

ψ(X1, X2, ..., Xl) = ψν1ν2...νlX
ν1
1 X

ν2
2 ...X

νl
l . (6.42)

特别的，度规场是一个(0,2)型张量场，记作g = gµνdx
µ ⊗ dxν，它可以理解

成切向量场的二重线性函数，即

g(X,Y ) = gµνX
µY ν . (6.43)
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由于度规场的指标对称性质，显然有

g(X,Y ) = g(Y,X). (6.44)

利用度规场g, 我们可以把任意切向量场映射为一个余切向量场，具体

来说，对于任意切向量场X，我们可以定义余切向量场

g(X, ·) = gµνdx
µ ⊗ dxν(X, ·) = gµνdx

µ(X)dxν(·)
= gµνX

µdxν(·) = Xνdx
ν(·), (6.45)

式中·表示一个可以插入任何切向量场的空槽。很显然，这就是我们早已经
熟悉的降指标操作。同样，利用gµν∂µ ⊗ ∂ν，我们也可以将任意余切向量场

映射为切向量场，也就是我们熟悉的升指标操作。

另一种处理度规场的方式是引入向量场内积的概念。对于任意两个向

量场X和Y，我们定义其内积⟨X,Y ⟩如下，

⟨X,Y ⟩ ≡ g(X,Y ) = gµνX
µY ν . (6.46)

不难看出这样定义的内积的确满足对向量内积的通常要求，具体来说即是

满足：1. 对对对称称称性性性，即有

⟨X, Y ⟩ = ⟨Y,X⟩. (6.47)

2. 双双双线线线性性性，即对于任意三个向量场X, Y, Z，以及任意两个标量函数a(x)

和b(x)，均有

⟨X, aY + bZ⟩ = a⟨X,Y ⟩+ b⟨X,Z⟩. (6.48)

注意，这里我们并不要求正定性，即不要求⟨X,X⟩ ≥ 0, 这是因为广义相对

论中的度规是闵氏符号度规，而不是正定的欧氏符号度规。

根据内积的双线性，我们又有

⟨X,Y ⟩ = ⟨Xµ∂µ, Y
ν∂ν⟩ = XµY ν⟨∂µ, ∂ν⟩, (6.49)

与上面内积的定义式(6.46)比较，即有

gµν = ⟨∂µ, ∂ν⟩, (6.50)

即是说，度规张量的各分量其实是切向量场相应基矢之间的内积。
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6.2 李导数与微分同胚群

这一节我们来讨论时空流形M的微分同胚变换以及李导数概念。假

设Φ为时空流形M上的一个微分同胚映射，它把任意的x点映射到某个x′点，

即Φ : x → x′。由于这个映射是可微的一一对映，所以可以把映射的箭头

倒过来，得到一个逆映射Φ−1, Φ−1 : x′ → x。很明显Φ和Φ−1的复合映射(记

作Φ−1 ◦ Φ)是一个恒等映射(记为id), 所以

Φ−1 ◦ Φ = Φ ◦ Φ−1 = id. (6.51)

记流形M上所有可能微分同胚映射的全体为Diff(M)。上面那一段实际

上引入了Diff(M)不同元素间(即不同微分同胚映射间)的一种“乘法”，即

映射的复合，具体来说，假设有两个微分同胚映射Φ1和Φ2，我们称这两

个映射的复合(先进行Φ1再进行Φ2)，即Φ2 ◦ Φ1，为Φ1和Φ2“相乘”。很显

然Φ2 ◦Φ1依然是一个微分同胚映射，所以Diff(M)在映射复合的“乘法”下

是封闭的。而且上一段也说明了，Diff(M)的每一个元素在映射复合的“乘

法”下都存在一个逆元素。数学上称具备这些性质的集合为一个群。所以，

流形M所有可能微分同胚映射的集合构成一个群，称作M的微分同胚群，

也即是Diff(M)。

回想一下第四章中关于无穷小微分同胚映射与李导数的讨论可以知道，

李导数与连续的微分同胚映射密切相关。具体来说，假设有某个切向量

场X，那我们就可以在流形M上画出一些参数为τ的流线，并让X是这些流

线的切向量，即满足X = ∂τ。如此一来，时空点沿着这些流线“流动”的

过程就生成了一簇依赖于连续参数τ的微分同胚映射Φτ，它当然是由切向

量场X生成的。由于每个切向量场都能生成一簇单参微分同胚映射，所以

也称切向量场为微分同胚群的生成元。

现在，设τ = 0时的Φ0 = id, 则一个张量场沿着向量场X的李导数LX，

就是τ取无穷小量ϵ时，张量场在Φτ作用前后的无穷小改变量与ϵ的比值。有

时也称李导数LX为微微微分分分同同同胚胚胚群群群在在在张张张量量量场场场上上上作作作用用用的的的生生生成成成元元元。

下面我们先回想一下李导数的几个性质：首先，任给向量场X和Y，

以及常数c1, c2, 有

Lc1X+c2Y = c1LX + c2LY . (6.52)

注意，这个性质只对常数c1, c2成立，c1, c2为标量函数的话结果并不成立，

这和上一节讨论的张量场作为线性函数的那种线性关系是不同的。其次，
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李导数满足莱布尼兹法则，包括对两个张量场的缩并运算也同样满足莱布

尼兹法则。第三，对于任意标量函数f(x)的李导数为

LXf = Xρ∂ρf = X(f). (6.53)

第四，对于切向量场Y的李导数为

LXY = [X,Y ]. (6.54)

前三条性质来自于第四章的相关讨论，第四条性质是本章前面讲过的。实

际上，反过来，这些性质也完全确定了任意张量场的李导数。

下面我们证明李导数的一个重要代数关系，即

[LX ,LY ] = L[X,Y ]. (6.55)

要证明这个等式，只需证明它在任意张量场上的作用都是成立的。

具具具体体体证证证明明明如如如下下下：第一步，我们证明上式作用在标量函数f(x)上是成立

的，因为等式左边的作用为

[LX ,LY ]f =
(
LXLY − LYLX

)
f = X(Y (f))− Y (X(f)). (6.56)

而等式右边的作用也为

L[X,Y ]f = [X,Y ](f) = X(Y (f))− Y (X(f)). (6.57)

所以左右两边相等。

第二步，我们证明(6.55)在任意切向量场Z上的作用是成立的，因为等

式左边的作用为

[LX ,LY ]Z =
(
LXLY − LYLX

)
Z = [X, [Y, Z]]− [Y, [X,Z]]. (6.58)

而等式右边的作用为

L[X,Y ]Z = [[X, Y ], Z] = −[Z, [X, Y ]]. (6.59)

又由切向量场的雅可比恒等式，我们有

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

⇒[X, [Y, Z]]− [Y, [X,Z]] = −[Z, [X, Y ]], (6.60)
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所以(6.55)式在Z上的作用成立。

第三步，我们再利用李导数的莱布尼兹法则，将(6.55)式推广到对任意

余切向量场ω = ωµdx
µ的作用情况。为此只需注意到, 根据两个缩并张量的

莱布尼兹法则

LX(ω(Z)) = (LXω)(Z) + ω(LXZ), (6.61)

从而可以得到

[LX ,LY ](ω(Z)) = ([LX ,LY ]ω)(Z) + ω([LX ,LY ]Z). (6.62)

注意，[LX ,LY ]关于X,Y反对称，所以在推导过程中，诸如(LY ω)(LXZ) +

(LXω)(LYZ)这样的交叉项都会自动消掉。注意到ω(Z)是一个标量，而Z是

一个切向量场，所以根据证明的前两步，可以把(6.62)式重写为

L[X,Y ](ω(Z)) = ([LX ,LY ]ω)(Z) + ω(L[X,Y ]Z). (6.63)

另一方面，根据莱布尼兹法则，我们又有

L[X,Y ](ω(Z)) = (L[X,Y ]ω)(Z) + ω(L[X,Y ]Z). (6.64)

将上面两个式子进行比较，可得，对于任意Z，有

([LX ,LY ]ω)(Z) = (L[X,Y ]ω)(Z). (6.65)

由于Z任意，所以这就说明

[LX ,LY ]ω = L[X,Y ]ω. (6.66)

最后一步，完全类似于第三步，可以证明(6.55)式在任意张量场上的

作用都成立。举例来说，比方要证明(6.55)式在(0, 2)型张量场θ = θµνdx
µ ⊗

dxν上的作用成立，则我们只需考察标量θ(Z,W ) = θZ(W ), 其中θZ =

(θµνZ
µ)dxν = θ(Z, ·)为一个余切向量场，然后对θZ(W )引用第三步的证明，

得到(6.55)式在θZ = θ(Z, ·)上的作用成立，最后再对θ(Z, ·)再次引用第三步
的证明过程，得到(6.55)式在θ上的作用成立，这样就完成了所需的证明。

对于更一般的任意张量场情形，可以考虑将类似的推理过程写成数学归纳

法的形式，并对张量场的阶数进行归纳，从而完成证明。
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由(6.55)不难验证，李导数也满足雅可比恒等式，证明如下

[[LX ,LY ],LZ ] + [[LY ,LZ ],LX ] + [[LZ ,LX ],LY ]

=[L[X,Y ],LZ ] + [L[Y,Z],LX ] + [L[Z,X],LY ]

=L[[X,Y ],Z] + L[[Y,Z],X] + L[[Z,X],Y ]

=L[[X,Y ],Z]+[[Y,Z],X]+[[Z,X],Y ] = L0 = 0. (6.67)

上式的最后一行利用了切向量场的雅可比恒等式。这个结果说明，微分同

胚群在张量场上作用的所有可能生成元(即李导数)构成一个李代数。事实

上，上面的(6.55)式告诉我们，李导数所构成的这个李代数与切向量场所构

成的李代数是同态的，所以当然也是一个无穷维李代数。

切向量场是微分同胚群Diff(M)的生成元，而所有连续微分同胚映射

构成的群是一个连续群，或者说李群，一个数学上熟知的事实是，李群的

生成元必然构成李代数，微分同胚群所对应的李代数就是切向量场在李括

号运算下所构成的那个无穷维李代数。反过来，李代数对应的群必定是李

群，无穷维李代数对应的李群就是无穷维李群。因此，流形M的微分同胚

群Diff(M)必定为无穷维李群。这个无穷维李群在张量场上的作用称之为微

分同胚群的表示，李导数就是这表示的生成元。因此李导数当然也会构成

一个无穷维李代数，并且这个李代数必然与微分同胚群本身的李代数同态。

这就是对上述关于李导数的两个结果(6.55)和(6.67) 本质性的理解。

6.3 协变导数，黎曼曲率张量

为了用一种坐标无关的方式处理协变导数，我们可以将某切向量

场Xµ与协变导数Dµ进行缩并，定义沿着X方向的协变导数DX

DX ≡ XµDµ. (6.68)

很显然，DX作用在标量函数f(x)上有

DXf = XµDµf = Xµ∂µf = X(f). (6.69)

为了将协变导数作用在某个切向量场Y上，我们定义

DXY ≡ (DXY
µ)∂µ, (6.70)

因此作用的结果依然是一个切向量场。
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很显然，DX对于向量场X是线性依赖的，即任给两个切向量场X和Y ,

以及任给两个标量函数a(x),b(x)，均有

DaX+bY = aDX + bDY . (6.71)

特别的，假设沿着某粒子的世界线xµ(τ)(粒子的四速度为u = ∂τ )平行

移动某个向量场X, 则根据第四章中引入的向量场平行移动方程，我们有

DX

Dτ
= uµDµX = DuX = 0. (6.72)

这就是坐标无关写法下的平行移动方程。特别的，如果我们平行移动的对

象是四速度本身，那就得到测地线方程

Duu = 0. (6.73)

这就是坐标无关语言中的测地线方程。

任给两个切向量场X和Y , 我们可以进行如下推导

DXY −DYX =
[
Xν(DνY

µ)− Y ν(DνX
µ)
]
∂µ

=
[
Xν(∂νY

µ) +XνΓµ
νρY

ρ − Y ν(∂νX
µ)− Y νΓµ

νρX
ρ
]
∂µ

=
[
Xν(∂νY

µ)− Y ν(∂νX
µ) +XρΓµ

ρνY
ν − Y νΓµ

νρX
ρ
]
∂µ

=
[
Xν(∂νY

µ)− Y ν(∂νX
µ)
]
∂µ = [X, Y ]. (6.74)

上式倒数第二行我们利用了克里斯托夫联络是一个对称联络，满足Γµ
ρν =

Γµ
νρ。也即是说，我们有

DXY −DYX = [X, Y ]. (6.75)

当然，正如上面推导过程所显示的，以上结果完全因为广义相对论中

的克里斯托夫联络是一个对称联络。如果我们是用一个不对称的仿射联

络Γ̃ρ
µν来定义协变导数，那就没有上面的结果了，这时候我们可以考察

T (X, Y ) ≡ DXY −DYX − [X, Y ], (6.76)

完全类似于前面的推导，不难得到

T (X,Y ) = XµY ν
[
Γ̃ρ
µν − Γ̃ρ

νµ

]
∂ρ. (6.77)
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根据第四章中给出的仿射联络在坐标变换之下的变换关系不难证明，虽

然Γ̃ρ
µν不是一个张量，但是

[
Γ̃ρ
µν − Γ̃ρ

νµ

]
却是一个张量，通常称作挠率张量，

上面给出的T (X,Y )实际上就是挠率张量的坐标无关化处理。当然，在广义

相对论中，由于克里斯托夫联络是对称的，因此挠挠挠率率率张张张量量量恒恒恒等等等于于于零零零, 也就

是恒有(6.75)式成立。

由于度规张量的协变导数为零，即DXgµν = 0(即是所谓的联络与度规

张量的相容性条件)，从而

X(⟨Y, Z⟩) = X(gµνY
µZν) = DX(gµνY

µZν)

= (DXgµν)Y
µZν + gµν(DXY

µ)Zν + gµνY
µ(DXZ

ν)

= gµν(DXY
µ)Zν + gµνY

µ(DXZ
ν)

= ⟨DXY, Z⟩+ ⟨Y,DXZ⟩. (6.78)

也即

X(⟨Y, Z⟩) = ⟨DXY, Z⟩+ ⟨Y,DXZ⟩. (6.79)

这就是联络与度规张量相容性条件的坐标无关化处理，注意，这个结果只

对克里斯托夫联络成立。

为了用坐标无关的方式处理黎曼曲率张量，完全类似于上一章引入黎

曼曲率张量时的推导，我们注意到

[Dµ, Dν ]Y
ρ = Rρ

σµνY
σ. (6.80)

即是说，黎曼曲率张量完全取决于协变导数的算符对易子[Dµ, Dν ]。为了用

坐标无关的方式处理这个算符对易子，我们将它和两个切向量场Z,W进行

缩并，即定义如下曲率算子

R(Z,W ) ≡ ZµW ν [Dµ, Dν ]. (6.81)

显然这样定义的曲率算子对于Z,W都是线性依赖的，因此是切向量场的二

重线性算符函数。并且很显然有

R(Z,W ) = −R(W,Z). (6.82)

下面我们来证明R(Z,W )可以重写成如下形式

R(Z,W ) = DZDW −DWDZ −D[Z,W ]. (6.83)
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为了证明这一点，显然只需要证明如下等式成立

DZDW −DWDZ = ZµW ν [Dµ, Dν ] +D[Z,W ]. (6.84)

根据算符的作用规则，可以证明如下

DZDW −DWDZ = DZW
νDν −DWZ

µDµ

= (DZW
ν)Dν − (DWZ

µ)Dµ +W νDZDν − ZµDWDµ

= DDZW −DDWZ + ZµW ν [Dµ, Dν ]

= DDZW−DWZ + ZµW ν [Dµ, Dν ]

= D[Z,W ] + ZµW ν [Dµ, Dν ]. (6.85)

上式的最后一个等号利用了无挠条件(6.75)。值得说明的是，为了得

到(6.83)式我们虽然利用了无挠条件，但这完全是因为我们对协变导数

的定义是通过分量形式来引入的，这和数学书中的处理有些微妙的区别，

结果就是，如果完全按照数学家的定义方式，(6.83)式其实并不需要无挠条

件成立，因此可以推广到克里斯托夫联络之外的任何仿射联络。

注意，我们不能把曲率算子定义成DZDW − DWDZ , 因为任给一个标

量函数f(x)，

DfZDW −DWDfZ ̸= f(x)
(
DZDW −DWDZ

)
, (6.86)

从而如果这样定义的话，那曲率算子就不是切向量场的二重线性算符函数,

这是我们所不希望的。

为了将曲率算子和分量形式的黎曼曲率张量具体联系起来，我们将它

作用在切向量场Y上，即定义

R(Z,W )Y ≡
(
R(Z,W )Y ρ

)
∂ρ. (6.87)

从而有

R(Z,W )Y =
(
R(Z,W )Y ρ

)
∂ρ =

(
ZµW ν [Dµ, Dν ]Y

ρ
)
∂ρ

=
(
Y σZµW νRρ

σµν

)
∂ρ. (6.88)

进而有

⟨X,R(Z,W )Y ⟩ = ⟨Xρ∂ρ,
(
Y σZµW νRλ

σµν

)
∂λ⟩

= XρY σZµW νRλ
σµν⟨∂ρ, ∂λ⟩

= XρY σZµW νRρσµν . (6.89)
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显然，这是切向量场的一个四重线性函数，通常记为R(X, Y, Z,W ), 即

R(X, Y, Z,W ) ≡ XρY σZµW νRρσµν = ⟨X,R(Z,W )Y ⟩. (6.90)

至此我们就完成了黎曼曲率张量的坐标无关化处理。根据黎曼曲率张

量的代数性质，我们有

R(X,Y, Z,W ) = −R(Y,X,Z,W )

R(X,Y, Z,W ) = −R(X, Y,W,Z)
R(X,Y, Z,W ) = R(Z,W,X, Y )

R(X,Y, Z,W ) +R(X,Z,W, Y ) +R(X,W, Y, Z) = 0. (6.91)

根据上面性质，我们可以定义一个切向量场上的对称型Q(X, Y )

Q(X, Y ) = R(X, Y,X, Y ), (6.92)

称作黎曼曲率张量的相配对称型。并且，由于曲率张量的代数性质，数学

上可以证明(见附录)，Q(X,Y )完全确定了黎曼曲率张量。

如果Π是p点切空间Vp的一个两维子空间，设{v1, v2}是Π的任意一组基

矢量，我们定义Π的截面曲率为

K(Π) =
R(v1, v2, v1, v2)

|v1 ∧ v2|2
, (6.93)

式中|v1 ∧ v2|2 = ⟨v1, v1⟩⟨v2, v2⟩ − ⟨v1, v2⟩2, 可以理解为切向量v1, v2所构成的
平行四边形面积的平方。利用黎曼曲率张量的代数性质(6.91) 可以直接证

明: 截面曲率K(Π)只依赖于两维切平面Π，与Π上基矢量{v1, v2}的具体选
取无关。

为了证明K(Π)与基矢的选取无关，我们在Π平面上重新选择一组基

矢{w1, w2}, 则存在实数a, b, c, d使得

w1 = av1 + bv2, w2 = cv1 + dv2, ad− bc ̸= 0. (6.94)

此时，直接的计算表明

|w1 ∧ w2|2 = (ad− bc)2|v1 ∧ v2|2. (6.95)

另一方面，根据R(X,Y, Z,W )关于X, Y, Z,W的四重线性性，以及代数性

质R(Y,X,Z,W ) = −R(X, Y, Z,W )和R(X,Y,W,Z) = −R(X, Y, Z,W ), 可
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得

R(w1, w2, w1, w2) = R(av1 + bv2, cv1 + dv2, av1 + bv2, cv1 + dv2)

= (ad− bc)R(v1, v2, av1 + bv2, cv1 + dv2)

= (ad− bc)2R(v1, v2, v1, v2). (6.96)

从而

R(w1, w2, w1, w2)

|w1 ∧ w2|2
=
R(v1, v2, v1, v2)

|v1 ∧ v2|2
, (6.97)

这就证明了截面曲率与Π平面上基矢的具体选取无关。

由于对称型Q(v1, v2)完全确定了黎曼曲率张量，从而可知：知道了Vp所

有2−平面Π的截面曲率K(Π), 就等价于知道了p点的黎曼曲率张量。另外，

如果时空流形M是一张两维曲面，那截面曲率其实就是这张两维曲面的高

斯曲率。

除了黎曼曲率张量以外，上一章我们还定义了里奇张量，它的坐标无

关化处理是作为切向量场上的二重线性函数Ric(X, Y )，定义如下

Ric(X, Y ) = RµνX
µY ν . (6.98)

由于里奇张量是一个对称张量，所以显然有

Ric(X,Y ) = Ric(Y,X). (6.99)

6.4 *附录：一个并非重点的证明

这里我们给出相配对称型Q(X, Y ) = R(X,Y,X, Y ) 完全决定黎曼曲率

张量R(X, Y, Z,W )的证明。

首先，利用R(X, Y, Z,W )关于X, Y, Z,W的线性性以及R(X, Y, Z,W ) =

R(Z,W,X, Y )的性质，不难得到

R(X + Z, Y,X + Z, Y ) = R(X,Y,X, Y ) +R(Z, Y, Z, Y ) + 2R(X,Y, Z, Y ),

即是说，

R(X, Y, Z, Y ) =
1

2

[
Q(X + Z, Y )−Q(X, Y )−Q(Z, Y )

]
, (6.100)
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记F (X, Y, Z) = R(X, Y, Z, Y )，称之为相配三变量函数，因此上式说明相相相

配配配三三三变变变量量量函函函数数数完完完全全全由由由相相相配配配对对对称称称型型型决决决定定定。

再次利用R(X, Y, Z,W )关于X, Y, Z,W的线性性，不难得到

R(X,Y +W,Z, Y +W ) = R(X, Y, Z, Y ) +R(X,W,Z,W )

+
[
R(X, Y, Z,W ) +R(X,W,Z, Y )

]
. (6.101)

记相配四变量函数G(X, Y, Z,W )为

G(X, Y, Z,W ) ≡ R(X, Y, Z,W ) +R(X,W,Z, Y ), (6.102)

则(6.101)式告诉我们

G(X,Y, Z,W ) = F (X,Y +W,Z)− F (X, Y, Z)− F (X,W,Z), (6.103)

因此，相配四变量函数完全由相配三变量函数决定，进而也就完全由相配

对称型决定。

在(6.102)式中，分别将变量Y, Z,W替换成Z,W, Y，即得

G(X,Z,W, Y ) = R(X,Z,W, Y ) +R(X,Y,W,Z). (6.104)

用(6.102)式减去(6.104)式，并注意到R(X, Y,W,Z) = −R(X,Y, Z,W ) 以

及R(X,Z,W, Y ) = −R(X,Z, Y,W ), 即得

G(X, Y, Z,W )−G(X,Z,W, Y ) =

2R(X,Y, Z,W ) +R(X,W,Z, Y ) +R(X,Z, Y,W ). (6.105)

根据

R(X,W,Z, Y ) +R(X,Z, Y,W ) +R(X,Y,W,Z) = 0

⇒R(X,W,Z, Y ) +R(X,Z, Y,W ) = −R(X, Y,W,Z) = R(X, Y, Z,W ).

代入(6.105)式，即得

G(X, Y, Z,W )−G(X,Z,W, Y ) = 3R(X, Y, Z,W ), (6.106)

这个式子说明，黎曼曲率张量R(X,Y, Z,W )完全由相配四变量函数决定，

进而也就完全由相配对称型决定。证明完成。


