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第五章 黎曼曲率张量和爱因斯坦

场方程

陈陈陈童童童

我们已经看到如何通过最小耦合原理得到弯曲时空中的物质场作用量，

下一步当然是要寻找引力场本身的作用量。从第二章关于经典场论的讨论

可以知道，这样一个引力场的作用量只能包括两个度规场导数（高次导数

不能出现，否则就会有Ostrogradsky 不稳定性），要么以一阶导数的“平

方”的形式，要么以度规场的二阶导数项的形式，在作用量原理中这两种

形式是等价的，因为一阶导数的“平方”分部积分以后就会得到一个二阶

导数项。与此同时，微分同胚不变性也要求引力场作用量在广义坐标变换

之下保持不变。

但是，要同时满足以上两个要求却并不容易。首先，如果度规场的导

数是普通导数的话，那就不容易满足广义协变性的要求。但是，如果将度

规场的导数取作协变导数，那由于Dρgµν = 0, 因此又不容易得到一个非零

的作用量。所以寻找引力场的作用量是一个高度非平凡的问题。结果表明，

解决这个高度非平凡的问题需要用到黎曼的伟大贡献，那就是黎曼曲率张

量。

5.1 黎曼曲率张量

我们已经看到，引力是时空的弯曲，但是，如何刻画时空的弯曲程度
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第五章 黎曼曲率张量和爱因斯坦场方程 3

呢？换言之，如何刻画时空的曲率呢？为了讨论这个问题我们不妨一一一般般般性性性

地地地假假假定定定时时时空空空是是是D维维维的。

在第一章的最后我们已经看到，为了刻画D维弯曲时空，我们需要寻

找这样一个量，它满足：第一，它得包括度规场的二阶导数项，因为在黎

曼正则坐标系(局部惯性系)的原点，度规场的一阶导数是零，要刻画这一

点的曲率就需要引入度规场的二阶导数。第二，这个刻画要在所有的坐标

系中均成立，也就是说，这个量得是协变的，它得是一个张量。第三，在

平直的闵可夫斯基时空中，这个量要恒等于零，因为它是刻画时空弯曲程

度的量。第四，这个量得有 1
12
D2(D2 − 1)个独立分量。正是黎曼找到了这

个量的具体表达式，这就是所谓的黎曼曲率张量。

5.1.1 寻找黎曼曲率张量

首先让我们来回顾一下平直空间的无穷小平移如何影响一个函数。

假设在平直时空从x点移动到邻近的x + δx点，则某个函数f(x)的值将变

为f(x+ δx)。很显然，在忽略高阶无穷小的意义上，我们有

f(x+ δx) =
(
1 + δxµ∂µ

)
f(x), (5.1)

即是说，
(
1 + δxµ∂µ

)
是无穷小平移算符，当将它作用在函数f(x)上，就得

到f(x+ δx)。

现在，我们要考察的是弯曲时空的移动，这时候当然就要将平移算符

中的偏导运算替换成协变导数，所以弯曲时空的无穷小移动算符就应该是(
1 + δxµDµ

)
. (5.2)

很显然的是，平直时空中的平移与具体的移动路径无关，从同一起点经不

同路径到达同一终点，结果总是相同的。但是，正如我们将要看到的，在

弯曲时空中，移动的结果依赖于具体的移动路径。这种依赖正好反应了时

空弯曲的曲率。

为了看清楚这一点，让我们考察在弯曲时空中沿着δ1x和δ2x两个不同

方向将一个矢量Sρ 从两个对角中的左下角移动到右上角，如图(5.1)所示。

现在我们有两条不同的移动路径，先沿着δ1x移动，再沿着δ2x移动，得

到的结果是
(
1 + (δ2x)

µDµ

)(
1 + (δ1x

ν)Dν

)
Sρ, 相反，先沿着δ2x移动，再沿

着δ1x移动，得到的结果将是
(
1 + (δ1x)

νDν

)(
1 + (δ2x

µ)Dµ

)
Sρ, 两条不同移
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动路径的差值是(
1 + (δ2x)

µDµ

)(
1 + (δ1x

ν)Dν

)
Sρ −

(
1 + (δ1x)

νDν

)(
1 + (δ2x

µ)Dµ

)
Sρ

=(δ2x)
µ(δ1x)

ν [Dµ, Dν ]Sρ, (5.3)

式中[Dµ, Dν ] = DµDν −DνDµ称作协变导数算符的对易子。我们认为两条

不同移动路径所得到的结果之差(δ2x)
µ(δ1x)

ν [Dµ, Dν ]Sρ 正好可以用来刻画

时空曲率。

图 5.1: 在弯曲时空中沿着δ1x和δ2x两个不同方向将一个矢量从两个对角中

的左下角移动到右上角。

由于(δ2x)
µ(δ1x)

ν正比于图(5.1)中无穷小四边形的面积，它是我们选取

移动路径的结果，所以和时空曲率无关，另外，时空曲率当然也应该和我

们具体移动的矢量Sρ无关。所以正确地说应该是，我们认为[Dµ, Dν ]Sρ模去

矢量Sρ的信息就可以用来刻画时空曲率。[Dµ, Dν ]Sρ是一个张量，而且显然

与Sρ成线性关系，所以我们可以假设

[Dµ, Dν ]Sρ = −Rσ
ρµνSσ, (5.4)

式中的负号只是为了使得Rσ
ρµν与通常的约定相符。根据上面的讨论可以知

道，上式中的张量Rσ
ρµν正好可以用来刻画时空曲率, 实际上，它就是所谓

的黎曼曲率张量。

为了得到Rσ
ρµν的表达式，我们进行如下计算：首先，

DµDνSρ = ∂µ(DνSρ)− Γσ
µνDσSρ − Γσ

µρDνSσ. (5.5)

而我们真正要计算的是[Dµ, Dν ]Sρ，为此我们需要将(5.5)式的结果减去将

它的µ、ν指标互换之后的结果。注意到(5.5)式右边的第二项关于µ、ν指

标是对称的，因此直接就被减掉了。而对于(5.5)式右边第一项和第三项中



第五章 黎曼曲率张量和爱因斯坦场方程 5

的DνSρ，我们可以直接代入协变导数的定义，由此不难得到

[Dµ, Dν ]Sρ = ∂µ(∂νSρ − Γσ
νρSσ)− Γσ

µρ(∂νSσ − Γλ
νσSλ)−

(
µ ↔ ν

)
= −(∂µΓ

σ
νρ)Sσ − Γσ

νρ∂µSσ − Γσ
µρ∂νSσ + Γσ

µρΓ
λ
νσSλ −

(
µ ↔ ν

)
= −

(
∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γσ

µλΓ
λ
νρ − Γσ

νλΓ
λ
µρ

)
Sσ. (5.6)

与Rσ
ρµν的定义式(5.4)进行比较，即有

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γσ

µλΓ
λ
νρ − Γσ

νλΓ
λ
µρ. (5.7)

这就是黎曼曲率张量的表达式。

下面我们来看一下，(5.7)式给出的黎曼曲率张量满不满足前面我们对

刻画时空曲率的量的四条要求。先看它满不满足前三条要求，回答是满

足的！首先，根据定义Rσ
ρµν是一个张量，因此是协变的。其次，从(5.7)式

可以清楚地看到，Rσ
ρµν 中包含克里斯托夫联络的一阶偏导，而克里斯

托夫联络本身又是度规场的一阶偏导，所以Rσ
ρµν中的确包含度规场的二

阶偏导，这个要求是满足的。第三，对于平直的闵可夫斯基时空，我们

可以在全局上选取惯性参考系，在这样的参考系中，恒有Γρ
µν ≡ 0，代

入(5.7)式即有Rσ
ρµν = 0，所以这第三条要求也是满足的。相反，在弯曲

的时空中，一般来说Rσ
ρµν将不等于零。因为虽然这时候可以取局部惯性

系(也即是局部平坦坐标系，或者说黎曼正则坐标系)，在局部惯性系的原

点(即P点)有Γρ
µν(P ) = 0，但是∂λΓ

ρ
µν |P ̸= 0, 所以Rσ

ρµν(P ) ̸= 0，而是等于

Rσ
ρµν(P ) = ∂µΓ

σ
νρ|P − ∂νΓ

σ
µρ|P . (5.8)

对第四条要求的验证我们稍后进行。实际上，仅仅只需要包含度规的

二阶偏导以及是一个张量这两个要求就可以唯一确定黎曼曲率张量了，因

为黎曼曲率张量其实是同时满足这两个要求的唯一量，关于这个结论的证

明，我们放在本章的附录中。正如后文将要看到的，黎曼曲率张量这种唯

一性强烈地限制了引力场的作用量！

5.1.2 黎曼曲率张量的代数性质

下面我们来研究黎曼曲率张量的一些代数性质，同时验证它满足对时

空曲率的第四条要求，即它有 1
12
D2(D2 − 1)个独立分量。
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为了把这些代数性质说清楚，我们引入如下定义：对于任意高阶张

量Tµ1µ2...µn...., 我们定义

T(µ1µ2...µn).... =
1

n!

(
Tµ1µ2...µn.... +对所有的关于µ1, µ2, ..., µn的置换求和

)
.

我们称T(µ1µ2...µn)....为张量Tµ1µ2...µn....关于前n个指标的全对称部分。类似的，

我们定义

T[µ1µ2...µn].... =
1

n!

(
Tµ1µ2...µn.... +对所有的关于µ1, µ2, ..., µn的置换交错求和

)
.

所谓交错求和，指的是，对于偶置换就直接取加号，而对于奇置换则在

表达式前面添上一个负号再求和。我们称T[µ1µ2...µn]....为张量Tµ1µ2...µn....关于

前n个指标的全反对称部分。比如对于二阶张量Aµν，我们有

A(µν) =
1

2

(
Aµν + Aνµ

)
, A[µν] =

1

2

(
Aµν − Aνµ

)
. (5.9)

由于广义坐标变换不会改变一个张量关于其指标间的各种对称性，所

以为了看清楚黎曼曲率张量的代数性质，我们不妨选取一个特殊的广义坐

标系，即选取局部惯性系。并且，相比于原来的Rσ
ρµν，我们不妨考察与之

密切相关的Rσρµν = gσλR
λ
ρµν。根据(5.7)式，同时再利用在局部惯性系的原

点，有Γρ
µν(P ) = 0, ∂ρgµν |P = 0, ∂ρg

µν |P = 0, 从而不难得到

Rσρµν(P ) =
1

2

(
∂µ∂ρgσν − ∂ν∂ρgσµ − ∂µ∂σgρν + ∂ν∂σgρµ

)
|P . (5.10)

根据上面的(5.10)式，很容易看出，Rσρµν满足如下代数性质：

(A). 反反反对对对称称称性性性，即

Rσρµν = −Rρσµν , Rσρµν = −Rσρνµ, (5.11)

即Rσρµν关于前两个指标反对称，也关于后两个指标反对称，或者说

Rρσµν = R[ρσ][µν]. (5.12)

(B). 对对对称称称性性性，即

Rσρµν = Rµνσρ. (5.13)

(C). 循循循环环环性性性，即

Rσρµν +Rσµνρ +Rσνρµ = 0. (5.14)
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结合反对称性，我们也可以将这条性质写成Rσ[ρµν] = 0。再结合对称性，又

可以进一步写成

R[σρµν] = 0. (5.15)

下面我们来数一下黎曼曲率张量Rσρµν一共有多少个独立分量。首先，

根据反对称性和对称性，Rρσµν = R[ρσ][µν]，可以看成是以[ρσ]和[µν]为行

列“指标”的一个对称矩阵，而由于反对称性，每一个“指标”有D(D −
1)/2种独立可能性。根据N ×N对称矩阵有1

2
N(N + 1)个独立矩阵元，进而

可知，Rρσµν = R[ρσ][µν]有

1

2

[1
2
D(D − 1)

][1
2
D(D − 1) + 1

]
=

1

8
D(D − 1)(D2 −D + 2) (5.16)

个独立分量。最后，根据循环性条件，R[σρµν] = 0，这是一个全反对称条

件，它相当于加上了D(D−1)(D−2)(D−3)/4!个限制，从而剩下的Rρσµν的

独立分量个数等于

CD =
1

8
D(D − 1)(D2 −D + 2)− 1

24
D(D − 1)(D − 2)(D − 3) (5.17)

并项后得到

CD =
1

12
D2(D2 − 1), (5.18)

正好符合关于曲率张量的第四条要求。特别的，在D = 4维时空中，黎曼

曲率张量有20个独立分量。而在D = 2维时空中，它只有唯一一个独立分

量，也就是两维曲面的高斯曲率。

5.2 爱因斯坦-希尔伯特作用量和爱因斯坦场方程

5.2.1 爱因斯坦-希尔伯特作用量

下面我们可以来探讨引力场本身的作用量了。对这个作用量的最重要

要求就是微分同胚不变性，其次还要求作用量中只含两个度规场导数，下

面我们会看到这两个要求几乎唯一确定了引力场的作用量。

首先，我们注意到四维体积元dv = d4x
√
−g是坐标变换不变的，因为

为了满足微分同胚不变性，我们可以把引力场作用量写成Sg =
∫
dvA(x),

其中A(x)表示一个标量。其次，标量A(x)中只含两个度规场导数，而我们
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又知道两个度规场导数构造出来的几乎唯一的张量就是黎曼曲率张量，所

以，标量A(x)应该由黎曼曲率张量Rρσµν通过指标缩并而来！注意，只是将

一个Rρσµν进行指标缩并，不是将两个或者更多个Rρσµν缩并在一起，后者

将包含四个以上度规场偏导，从而不符合要求。

根据黎曼曲率张量的代数性质（反对称性和对称性），不难看出，

由Rρσµν缩并得来的唯一独立二阶张量为

Rσν = gρµRρσµν , (5.19)

其它缩并方式要么得到零，要么得到−Rσν。Rσν称作里奇张量，由黎曼曲

率张量的对称性，不难看出，里里里奇奇奇张张张量量量为为为一一一个个个对对对称称称张张张量量量，而且刚刚已经说

了，它具具具有有有唯唯唯一一一性性性。

由里奇张量进一步缩并，得到的唯一标量为

R = gσνRσν , (5.20)

称作曲率标量。很明显，曲率标量本质上是由黎曼曲率张量缩并得来的唯

一标量，具具具有有有唯唯唯一一一性性性。

结合黎曼曲率张量的唯一性以及缩并的唯一性，可以知道，包含两个

度规偏导的唯一标量，就是曲率标量R。从而可以知道，引力场的作用量

必定可以写成如下形式

SEH =
1

2κ

∫
d4x

√
−gR, (5.21)

式中κ为某个待定常数。SEH就是所谓的爱因斯坦-希尔伯特作用量。

5.2.2 爱因斯坦场方程

因此，考虑到引力场，整个物理系统的作用量就应该是

S = SEH + Sm, (5.22)

Sm就是除引力场之外的物质的作用量。有了作用量就可以根据最小作用量

原理得到引力场的场方程。为此需要将作用量对度规场gµν进行变分，记这

个变分为δS = δSEH + δSm，则场方程由δS = 0给出。根据上一章的知识，

物质作用量对度规场的变分就是

δSm =
1

2

∫
d4x

√
−gT µνδgµν , (5.23)
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式中T µν就是物质的能量动量张量。即是说，为了得到引力场的场方程，关

键是要计算爱因斯坦-希尔伯特作用量对度规场的变分。

下面让我们来计算这个变分，注意到SEH = 1
2κ

∫
d4x

√
−gRµνg

µν , 从而

即有

δSEH =
1

2κ

∫
d4x

[√
−gRµνδg

µν +
√
−g(δRµν)g

µν + δ(
√
−g)R

]
. (5.24)

利用δ(
√
−g) = 1

2

√
−ggµνδgµν以及δgµν = −gµρδgρσg

σν , 即可以得到

δSEH =
1

2κ

∫
d4x

√
−g

[
− (Rµν − 1

2
gµνR)δgµν + (δRµν)g

µν
]
. (5.25)

所以最后要算的就是δRµν。

Rµν是由黎曼曲率张量Rρ
µσν将指标ρ, σ缩并而来，所以要算δRµν，我们

可以先算δRρ
µσν。为了计算δRρ

µσν，我们可以选择Γρ
µν |P = 0的局部惯性系，

利用(5.8)式，从而即有

δRρ
µσν |P = ∂σ(δΓ

ρ
νµ)|P − ∂ν(δΓ

ρ
σµ)|P . (5.26)

注意，克里斯托夫联络的变分δΓρ
µν 实际上就是改变之后的联络减去变分之

前的联络，所以δΓρ
µν的实质是两个联络之差。前面我们讲过，联络本身不

是张量，但是联联联络络络之之之差差差是是是张张张量量量，所以δΓρ
µν其实是一个张量。又由于在局部

惯性系中，有Γρ
µν |P = 0，所以协变导数就等于普通的导数，所以我们可以

将δRρ
µσν |P的表达式重写为

δRρ
µσν |P = Dσ(δΓ

ρ
νµ)|P −Dν(δΓ

ρ
σµ)|P . (5.27)

但这种写法显然是协变的，因此它并不依赖于原来的局部惯性系，而是在

任何坐标系中都成立，因此在任何坐标系中均有

δRρ
µσν = Dσ(δΓ

ρ
νµ)−Dν(δΓ

ρ
σµ). (5.28)

这个式子有时候也称作Palatini 恒等式。利用这个恒等式，即有

δRµν = Dρ(δΓ
ρ
νµ)−Dν(δΓ

ρ
ρµ). (5.29)

利用以上结果，容易看出(5.25)式中的δRµν项可以化成

1

2κ

∫
d4x

√
−g(δRµν)g

µν =
1

2κ

∫
dv

[
Dρ(δΓ

ρ
νµ)−Dν(δΓ

ρ
ρµ)

]
gµν

=
1

2κ

∫
dv

[
Dρ(g

µνδΓρ
νµ)−Dν(g

µνδΓρ
ρµ)

]
. (5.30)
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式中已经利用了Dρg
µν = 0。再利用高斯定理

∫
dvDµA

µ =
∫
∞ dSµA

µ，很容

易看到(5.30)式其实是一个时空无穷远处的表面积分项，由于在利用最小作

用量原理时我们总是假定场位形在时空无穷远处的变分等于零，从而可知

这这这个个个无无无穷穷穷远远远处处处的的的表表表面面面项项项实实实际际际上上上等等等于于于零零零。

表面项贡献等于零的这个结论我们这里就这么说了，但实际上这里有

一个非常微妙的细节问题，这个微妙的细节是Gibbons和Hawking等人解决

的，但我们现在还不具备讨论这个细节的数学基础，后面章节适当的时候

我们会再次回到这里。

根据上面这个结果，我们就可以将(5.25)式简化成

δSEH =
1

2κ

∫
d4x

√
−g

[
− (Rµν − 1

2
gµνR)δgµν

]
. (5.31)

结合能量动量张量的定义式(5.23)式，即有

δS =
1

2κ

∫
d4x

√
−g

[
− (Rµν − 1

2
gµνR− κT µν)δgµν

]
. (5.32)

根据最小作用量原理，即有引力场的场方程

Rµν − 1

2
gµνR = κT µν . (5.33)

这个方程即是著名的爱爱爱因因因斯斯斯坦坦坦场场场方方方程程程。我们看到，广义相对论中只有一个

常数κ, 而牛顿引力中也有一个常数，即牛顿万有引力常数G，既然两个理

论都是描述万有引力，那κ必定与G有关。为了定出κ与G的关系，我们需要

取广义相对论在引力场不太强时的牛顿引力近似，并将近似的结果和牛顿

引力理论进行比较，进而确定κ与G的定量关系，不过，我们将把这个步骤

放在后面的章节中进行。这里不妨先把结果写出来，结果就是κ = 8πG。

κ = 8πG这个结果是合理的，这可以从量纲分析看出来，也即是说κ其

实和G有相同的量纲。为了看清楚这一点，我们注意到黎曼度规是ds2 =

gµνdx
µdxν , 等式左边的ds2具有长度平方的量纲，记作[L]2([ ]表示取量纲),

等式右边dxµdxν也具有长度平方量纲[L]2，因此gµν是无量纲的。标量曲

率R由度规张量构造出来，但其中包含了二阶导数，因此是[L]−2量纲。

又注意到d4x是[L]4量纲，因此为了使得爱因斯坦-希尔伯特作用量SEH =
1
2κ

∫
d4x

√
−gR具有作用量的正确量纲，即能量乘以长度的量纲[E][L], 常

数κ必须具有如下量纲

[κ][E][L] = [L]4[L]−2 ⇔ [κ] = [L]/[E]. (5.34)
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另一方面，根据牛顿万有引力势能GMm/r具有能量量纲，而Mm是能量平

方量纲，所以G的量纲也是[G] = [L]/[E]。所以κ与G量纲相同，从而必定

与G成比例关系，所以κ = 8πG是合理的。

5.2.3 微分同胚不变性与比安基恒等式

我们知道，爱因斯坦-希尔伯特作用量具有微分同胚不变性。下面来看

看这会告诉我们什么进一步的知识。为此，考虑如下无穷小微分同胚

δgµν = −(Dµϵν +Dνϵµ), (5.35)

并假定在时空无穷远处ϵµ趋于零，从而在时空无穷远处δgµν = 0。在进行具

体考察之前，让我们先引入一个概念，叫爱爱爱因因因斯斯斯坦坦坦张张张量量量，记作Gµν，它的

定义是

Gµν = Rµν −
1

2
gµνR. (5.36)

这是一个对称张量。

根据(5.31)式，不难得到SEH 在上述无穷小微分同胚下的改变量为，

δSEH =
1

2κ

∫
d4x

√
−g

[
− (Rµν − 1

2
gµνR)δgµν

]
=

1

2κ

∫
d4x

√
−g

[
Gµν(Dµϵν +Dνϵµ)

]
=

1

κ

∫
d4x

√
−gGµνDµϵν

= −1

κ

∫
d4x

√
−g(DµG

µν)ϵν . (5.37)

式中最后一行我们进行了分部积分，并注意到了无穷远处的边界项为零。

但是，SEH是微分同胚不变的，因此在无穷小微分同胚下，其改变量必定

等于零，即δSEH = 0，因此根据上式，这就意味着爱因斯坦张量必然满足

如下恒等式

DµG
µν = 0. (5.38)

上述恒等式的成立确保了爱因斯坦场方程是自洽的。为了看清楚这一

点，我们利用爱因斯坦张量将场方程重写为

Gµν = κTµν . (5.39)
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由于能动量守恒，爱因斯坦方程的右边必然满足DµT
µν = 0, 因此方程的左

边也必然要满足DµG
µν = 0, 这正是上面根据微分同胚不变性导出来的恒等

式。实际上，根据上一章的相关知识和刚才的推导可知，能动量守恒和上

述恒等式(5.38)，它们都是微分同胚不变性的必然结果。

(5.38)式还有另一种不同的证明方式。为此我们取局部惯性系，则根据

前面的(5.10)式，我们有

Rσρµν |P =
1

2

(
∂µ∂ρgσν − ∂ν∂ρgσµ − ∂µ∂σgρν + ∂ν∂σgρµ

)
|P . (5.40)

从而

DλRσρµν |P = ∂λRσρµν |P =
1

2
∂λ
(
∂µ∂ρgσν − ∂ν∂ρgσµ − ∂µ∂σgρν + ∂ν∂σgρµ

)
|P .

对前三个指标轮换后求和，有

DλRσρµν |P +DσRρλµν |P +DρRλσµν |P

=
1

2

(
∂λ∂µ∂ρgσν − ∂λ∂ν∂ρgσµ − ∂λ∂µ∂σgρν + ∂λ∂ν∂σgρµ

+ ∂σ∂µ∂λgρν − ∂σ∂ν∂λgρµ − ∂σ∂µ∂ρgλν + ∂σ∂ν∂ρgλµ

+ ∂ρ∂µ∂σgλν − ∂ρ∂ν∂σgλµ − ∂ρ∂µ∂λgσν + ∂ρ∂ν∂λgσµ
)
|P

=0. (5.41)

由于P点是时空中的任意给定点，所以将上面结果写得更清楚一点，即是

DλRσρµν +DσRρλµν +DρRλσµν = 0. (5.42)

结合黎曼曲率张量的代数性质，我们也可以把这个结果写成

D[λRσρ]µν = 0, (5.43)

称之为比比比安安安基基基恒恒恒等等等式式式。

比安基恒等式其实是下面算符恒等式的一个自然结果

[Dλ, [Dσ, Dρ]] + [Dσ, [Dρ, Dλ]] + [Dρ, [Dλ, Dσ]] = 0. (5.44)

这个算符恒等式直接展开就能证明。把这个算符恒等式作用在任意的矢

量场Sρ上，再利用黎曼曲率张量的定义，就能导出比安基恒等式，细致的

推导有些繁琐，而且由于我们已经给出比安基恒等式的一个证明了，所
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以这里不再推了。但是，道理其实很简单，首先，从前面黎曼曲率张量

的引入过程可以看到，黎曼曲率张量起源于协变导数的不可对易性，所

以[Dσ, Dρ] ∼ Rσρµν , 而[Dλ, [Dσ, Dρ]]即是对黎曼曲率张量再进行一次协变

导数，即[Dλ, [Dσ, Dρ]] ∼ DλRσρµν , 从而就不难看出上面的算符恒等式等价

于比安基恒等式。

利用比安基恒等式，我们就能给出(5.38)的又一个证明。证明如下

0 = gµλgνσ
(
DλRρσµν +DρRσλµν +DσRλρµν

)
= DµRρµ −DρR +DνRρν

= 2Dµ
(
Rµρ −

1

2
gµρR

)
= 2DµGµρ. (5.45)

正好是(5.38)式。

5.2.4 广义相对论作为一个有效理论

宇宙学常数项

前面我们通过微分同胚不变性等要求确定了爱因斯坦-希尔伯特作

用量。但前面的推理其实还有一个小漏洞，那就是其实微分同胚不变

的项不只有标量曲率给出的爱因斯坦-希尔伯特作用量，简单的体积

项
∫
d4x

√
−g也是微分同胚不变的，当然，这一项不含有度规场的导数，

因此单独这一项当然不能构成引力场的作用量，但是，在已经有了一个含

度规偏导的标曲率项的前提下，
∫
d4x

√
−g这一微分同胚不变的项就没有

理论不加进来了。基于这个考虑，我们其实应该把更一般的引力场作用

量Sg写成如下形式

Sg =
1

2κ

∫
d4x

√
−g

(
R− 2Λ

)
, (5.46)

式中Λ为某个常数，称作宇宙学常数。不难得出按照新的作用量Sg变分而

来的引力场方程，为

Rµν −
1

2
gµνR + Λgµν = κTµν . (5.47)

在作用量Sg中，宇宙学常数Λ是和标曲率R加在一起的，因此Λ的量纲

必定与R相同，从而[Λ] = [R] = [L]−2。另外，天文观测表明，人类生存的

这个宇宙的宇宙学常数大于零，不妨令

Λ =
1

L2
, (5.48)



第五章 黎曼曲率张量和爱因斯坦场方程 14

式中L为某个标准长度，不妨称之为宇宙学长度，可以理解为宇宙的半径。

假设我们真正关心的是某一片时空区域的引力场，而不是关心整个大的宇

宙，假设这个时空区域的曲率半径量级为l，根据曲率的定义，这也就是说

标曲率R在1/l2的量级，即

R ∼ 1

l2
. (5.49)

很显然，只要l ≪ L, 那标曲率这一项对作用量的贡献将远远超过宇宙学常

数项，那这时候就可以忽略宇宙学常数项了。这就是为什么我们常常只考

虑爱因斯坦-希尔伯特作用量的原因。

处理宇宙学常数的另一种方式是，将之从爱因斯坦场方程(5.47)的左边

移项到右边，

Rµν −
1

2
gµνR = κ

(
Tµν −

Λ

κ
gµν

)
. (5.50)

即将宇宙学常数看成是一种物质，很显然这种物质的能动张量TΛ
µν为

TΛ
µν = −Λ

κ
gµν = − Λ

8πG
gµν . (5.51)

换言之，这种物质的能量密度ρΛ = −T 0
Λ0为

ρΛ =
Λ

8πG
, (5.52)

也就是说具有常数能量密度。

什么物质的能量密度为常数呢？这样的东西我们目前只知道一种，

那就是物质场作为量子场的真空零点能。所以，物质场的真空零点能

必然对宇宙学常数有贡献，甚至就是宇宙学常数。但问题是，天文观

测告诉我们, 如果采取合适的单位制(即取普朗克常数~ = 1的单位制)，

那ρΛ ∼ (10−3eV )4，但是物质场真空零点能密度即使以粒子物理标准模型

的能量标度来计算也大约是(200GeV )4，两者完全不在一个量级上，不仅

不在一个量级上，甚至是天差地远。这是一个很严重的问题，通常的观点

是认为，量子场论的计算在宇宙学的尺度上失效了，至于为什么失效，正

确的量子理论计算是什么，这些都依然是理论物理最为重大的未解难题。

这也就是著名的宇宙学常数问题。
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广义相对论作为一个有效理论

前面对爱因斯坦-希尔伯特作用量的一个要求是，作用量只包含两个度

规场导数，不包括高阶导数。这样的要求对于一个基本的量子场论是合理

的，因为否则的话系统的能量将没有下界，也就是会出现Ostrogradsky 不

稳定性。但是，广义相对论作为一个基本理论是不可重整的(学过量子场论

的读者不妨用量纲的观点思考一下这是为什么)，因此现代的观点是将它看

作是一个有效理论，相应的作用量也是有效作用量。有效作用量是要包含

量子修正的，而量子修正就会带来超过二阶的高阶导数修正项。

那么，这些量子效应应该怎么考虑呢？根据场论的路径积分量子化，

量子效应可以通过将相因子exp
(
iS/~

)
对所有的场位形进行积分（称作泛

函积分或者路径积分）来考察，其中S就是场论系统的作用量，对于广义

相对论来说S可以取作SEH。因此，考虑量子引力的一种粗糙方法是将如下

相因子进行泛函积分

exp
(
i

1

16πG~

∫
d4x

√
−gR

)
. (5.53)

可见，引力的量子效应依赖于常数G~，G的量纲是[G] = [L]/[E],

而~的量纲和作用量量纲相同，也就是[~] = [E][T ] = [E][L](式中T表示时

间)，所以[G~] = [L]2。不妨令

G~ = l2p, (5.54)

这里lp是一个刻画量子引力的基本长度，称作普朗克长度。当然，以上量

纲分析是在光速c = 1的单位制中进行的，如果恢复光速单位，那么就有

G~/c3 = l2p. (5.55)

代入这几个基本常数的测量值，就能得到lp大约是10−35m。

考虑到量子引力引起的修正，引力场的作用量就不能只包括爱因斯

坦-希尔伯特作用量了，而是可以加进更多的高阶导数项，比如我们可以取

引力作用量S为

S/~ =
1

16πl2p

∫
d4x

√
−gR + λ

∫
d4x

√
−gRµνR

µν + χ

∫
d4x

√
−gR3...(5.56)

其中等式右边的第一项就是爱因斯坦-希尔伯特作用量，等式右边的第

二项和第三项代表量子引力带来的高阶导数修正项，它们分别依赖于参
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数λ和χ。类似的修正项当然很多，我们只是写出其中两项作为代表。量

纲分析一下（注意S/~无量纲），不难发现λ的量纲为[λ] = [L]0，χ的量纲

为[χ] = [L]2。由于量子引力只有一个有量纲的常数lp, 所以可以令

λ ∼ 1, χ ∼ l2p. (5.57)

假设我们考察的时空尺度为l，也即是说时空的曲率半径在l的量级，

从而

R ∼ Rµν ∼ 1

l2
. (5.58)

因此上面考虑到量子引力修正的引力场作用量(5.56)的典型大小为

S/~ ∼
∫

dv
1

l2pl
2
+

∫
dv

1

l4
+

∫
dv

l2p
l6

+ ... (5.59)

等式右边的第一项代表爱因斯坦-希尔伯特作用量的贡献，第二项和第三项

代表量子引力带来的高阶导数修正。很显然，只要满足如下条件，那量子

引力修正项相比于爱因斯坦-希尔伯特作用量的贡献来说就可以忽略。这个

条件即是

l ≫ lp, (5.60)

即是说，在时空尺度远远大于普朗克尺度时，我们只需考虑爱因斯坦-希尔

伯特作用量，而量子引力带来的高阶导数修正项则完全都可以忽略！

量子引力同样会对物质场与引力场的耦合产生修正，使之不再是最小

耦合。以标量场为例，不考虑量子引力的修正，它与引力场之间的最小耦

合作用量Smm为

Smm =

∫ √
−gd4x

[
− 1

2
gµν∂µϕ∂νϕ− U(ϕ)

]
. (5.61)

考虑到量子引力修正，就需要加上各种修正项，比如

Sm =

∫ √
−gd4x

[
− 1

2
(1 + αl2pR)gµν∂µϕ∂νϕ− U(ϕ) + ...

]
, (5.62)

根据量纲分析，式中的参数α是无量纲的。很明显，和上一段的分析一样，

当l ≫ lp时，这些修正项相对都可以忽略，从而使得物质场与引力场的耦

合回到最小耦合。
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以上分析也说明，爱因斯坦广义相对论的成立是有条件的，条件就是

时空尺度远远大于普朗克尺度，如果时空尺度接近普朗克尺度，那这时候

无穷无尽的高阶导数修正项都将变得比爱因斯坦-希尔伯特作用量以及物质

场的最小耦合作用量更为重要。而我们当然无法考虑无穷无尽的修正项，

因此这实际上意味着，当时空尺度接近普朗克尺度时，时空作为黎曼几何

的这幅几何图像和分析方法是完全失效的。

总结一下：宇宙学常数问题告诉我们，通常量子场论的框架在宇宙大

小的尺度上是失效的，而刚才的分析又告诉我们，广义相对论的框架在普

朗克尺度上是失效的。所以今天的物理学理论有两个失效的尺度，一个是

大尺度（称之为红外尺度）的宇宙学尺度，一个是小尺度（称之为紫外尺

度）的普朗克尺度。至于在这两个失效的地方，正确的理论是什么，我们

今天依然不知道。不过人们相信最大的时空尺度和最小的时空尺度很可能

是有联系的，称之为紫外-红外对应，通常人们相信正确的量子引力理论将

能够告诉我们紫外-红外具体如何对应，并同时解决当前理论的两个失效尺

度的问题。

5.3 附录: 曲率张量的唯一性

下面我们来证明黎曼曲率张量Rσ
ρµν是唯一能从度规张量以及它的一阶

和二阶偏导中构造出来，且对二阶偏导是线性的张量。

为了证明这一点，首先让我们回想一下第四章中给出的克里斯托夫联

络在不同坐标下的变换关系

Γ′ρ
µν = Sρ

σΓ
σ
αβ(S

−1)αµ(S
−1)βν − (S−1)αµ(S

−1)βν∂αS
ρ
β. (5.63)

写得更清楚一点即是

Γ′ρ
µν =

∂x′ρ

∂xσ
Γσ
αβ

∂xα

∂x′µ
∂xβ

∂x′ν − ∂xα

∂x′µ
∂xβ

∂x′ν
∂2x′ρ

∂xα∂xβ
. (5.64)

其次，我们在某个任意的P点取局部惯性系，使得Γρ
µν |P = 0。此外，

我们仅限于考察P点的不同局部惯性系之间的坐标变换，也即保持克里斯

托夫联络在P点为零的那一类坐标变换。根据(5.64)式，这也就是满足下式

的一类坐标变换

∂2x′ρ

∂xα∂xβ
|P = 0, (5.65)
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这里x → x′表示坐标变换。很显然，一个一般坐标变换下的张量在这一类

特殊的坐标变换下也必然要像张量那样变。

由于克里斯托夫联络在P点为零，所以根据第三章的知识，度规张量

的任何一阶偏导在P点都必定为零。所以根据命题的要求，我们要构造的

张量一定只是度规张量二阶偏导的线性组合，或者等价地，必定只是克里

斯托夫联络一阶偏导的线性组合。

下面我们来考察克里斯托夫联络在P点的一阶偏导，由于在所考察的

坐标变换下，Γ′ρ
µν |P = Γρ

µν |P = 0, 所以根据(5.64)式，有

∂Γ′ρ
µν

∂x′η |P =
∂x′ρ

∂xσ

∂xα

∂x′µ
∂xβ

∂x′ν
∂xκ

∂x′η

∂Γσ
αβ

∂xκ
|P − ∂xα

∂x′µ
∂xβ

∂x′ν
∂xκ

∂x′η
∂3x′ρ

∂xκ∂xα∂xβ
|P . (5.66)

这显然不是一个张量变换关系，那么，我们能取什么样的∂Γ/∂x的线性组

合，使得结果在上述坐标变换下像一个张量那样变呢？很明显，我们必须

要能够消除这个变换中多出来的非齐次项 ∂xα

∂x′µ
∂xβ

∂x′ν
∂xκ

∂x′η
∂3x′ρ

∂xκ∂xα∂xβ |P。
然而，这个非齐次项关于指标µ, ν, η是完全任意的，唯一的限制就是，

它关于这三个指标对称。因此，要取∂Γ/∂x的线性组合，并使得它在一切

满足(5.65)式的坐标变换下像一个张量一样变，唯一的方法就是对κ和α指

标(或者等价地对κ和β)进行反对称化，也就是考虑

T σ
βκα =

∂Γσ
αβ

∂xκ
−

∂Γσ
κβ

∂xα
. (5.67)

从而(5.66)式就变成

T ρ
νηµ|P =

∂x′ρ

∂xσ

∂xα

∂x′µ
∂xβ

∂x′ν
∂xκ

∂x′ηT
σ
βκα|P . (5.68)

这就说明，在克里斯托夫联络Γ为零的点，我们所要构造的张量必定

为上面的T σ
ρµν。但在另外一方面，从(5.67)的表达式可以清楚地看到，在局

部惯性系的P点，T σ
ρµν其实就是黎曼曲率张量Rσ

ρµν , 即

T σ
ρµν |P = Rσ

ρµν |P . (5.69)

而作为张量等式，这就说明，我们所要构造的张量在任何坐标系中都必定

为黎曼曲率张量Rσ
ρµν。这就证明了黎曼曲率张量的唯一性。


