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刚体是非相对论力学中的一种理想模型，它是一个质点系，但是其中
任何两个质点之间的距离始终恒定不变，即

|xi − xj | = constant, (1)

式中 xi 表示组成刚体的第 i 个质点的位置矢量。在实际应用中，我们
常常认为一些刚体的质量是连续分布的，从而可以引入单位体积的质
量分布，即质量密度 ρ(x)，并进而将对离散的各质点的求和改成连续
的积分，比如将

∑
i mi 替换成

∫
dτρ(x)(这里 dτ 代表三维体积元

dxdydz)。
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但是，刚体只是非相对论力学中的理想模型，利用相对论的简单知识
可以证明，绝对符合定义的刚体是不存在的！这是因为，对于刚体来
说，当我们在它的一端踢一脚，由于距离绝对不变，它的另一端立即
就得有反应，但是，根据狭义相对论，任何信号的传递速度都有限，因
此一端的影响要传递到另一端肯定需要时间，即是说，另一端不可能
立即有反应。从而在一端被踢动而另一端还没来得及反应的这段时间
内，两端的距离就变了，因此根据狭义相对论，刚体是不存在的！但
是，在非相对论力学的近似下，我们可以近似认为信号的传播速度为
无穷大，从而可以近似将很多物体看成刚体。当然，大家以后学广义
相对论就能发现，在广义相对论中可以有流体模型，但刚体模型是没
有的，道理就是刚才讲过的道理。
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我们可以将刚体的运动看成是由 3个独立分量的平动叠加上绕某个点
O(比如质心)的转动。对于平动的分析来说，完全可以把整个刚体看成
单个质点而不需要引入任何新的知识，需要仔细讨论的是刚体绕某个
点 O 的转动。忽略平动以后我们可以认为 O 是固定的，从而这就是刚
体的定点转动。我们将会看到，描述刚体定点转动也需要 3个变量，
因此加上 3个平动自由度，刚体的总自由度数目为 6。

(说明一下，本章不再区分上下指标，但依然使用求和约定，即是说，
只要表达式中出现了两个重复指标我们就默认对它求和，不再要求这
两个指标分别为上下指标。)
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运动学
刚体转动的位形空间

为了考察刚体绕某个固定点 O 的转动，我们以 O 为坐标原点，引入两
种坐标系，其一是固定在空间的空间坐标系，记它的三个坐标分量的
单位矢量为 ẽa,a = 1, 2, 3。另一种坐标系是固定在刚体上随着刚体一
起转动的刚体坐标系，其三个坐标分量的单位矢量记为 ea,a = 1, 2, 3，
如图 (1)所示。

Figure:空间坐标系和刚体坐标系。
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运动学
刚体转动的位形空间

很显然，这些基矢量满足如下关系

ẽa · ẽb = ea · eb = δab. (2)

由于刚体坐标系是活动坐标系，所以其矢量基 {ea}实际上依赖于时间，
有时候记为 {ea(t)}。

很明显，刚体的取向状态 (称作刚体的位形)完全由刚体坐标系矢量基
的取向 {ea}确定。从而刚体的位形空间 (记为 C)就是刚体坐标系所有
可能取向所构成的空间。
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运动学
刚体转动的位形空间

给定刚体坐标系的一个取向 {ea}，我们可以把它在空间坐标系 {ẽa}中
作矢量展开，即 (注意，式中有默认的求和)

eb = ẽaRab. (3)

很显然，展开系数 Rab 构成一个 3× 3的矩阵，相应的矩阵形式可以记
为 R。容易证明 R 必定为正交矩阵，这是因为

δab = ea · eb = ẽcRca · ẽdRdb = RcaRcb = (RT R)ab, (4)

这就说明 RT R 为单位矩阵，从而 R 为 3× 3的正交矩阵。而且，由于
刚体坐标系和空间坐标系均为右手系，因此其变换矩阵的雅可比行列
式必定为 1，这就说明 det(R) = 1，从而排除了 det(R) = −1的情形。
综上可知，刚体坐标系的所有可能取向和行列式等于 1的正交矩阵一
一对应。从而刚体的位形空间就等价于所有行列式等于 1的正交矩阵
的集合。通常称这种正交矩阵为特殊正交矩阵 (Special Orthogonal
Matrix)并记它们的集合为 SO(3)。从而即有，刚体的位形空间 C 等于
SO(3)，即

C = SO(3). (5)
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运动学
刚体转动的位形空间

3× 3的矩阵有 9个矩阵元，但是考虑到正交矩阵的条件 RT R = 1，因
此这 9个矩阵元要满足 6个独立的限制方程，从而真正独立的参数只
有 3个。即是说，集合 SO(3)可以用 3个参数来参数化，从而刚体的
位形空间 C 也可以用 3个广义坐标来参数化，怎么选择这 3个参数是
后面会进一步讨论的内容。正因为 C 是 3维的，所以前面我们说刚体
有 3个转动自由度!
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运动学
角速度矢量

由于刚体坐标系 {ea}随着刚体一起运动，这就在位形空间 C 中画出一
条路径 {ea(t)},因此当然可以计算 ėa(t)。我们将 ėa 在刚体系 {ea}中
展开，即设

ėa = ωacec , (6)

式中 ωac 为展开系数。可以证明，它必然满足

ωab + ωba = 0, (7)

即 ωab 关于两个指标反对称。证明如下：首先，我们将方程 (6)点乘
eb，得到

eb · ėa = ωab. (8)

其次，我们将方程 ea · eb = δab 对时间求导，注意到右边 δab 是常数，
对时间求导等于零，从而即有

ėa · eb + ea · ėb = 0 ⇒ ωab + ωba = 0. (9)
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运动学
角速度矢量

进一步利用 3维空间特殊的列维-西维塔符号 1ϵabc，即可以定义角速度
矢量，其在刚体坐标系中的分量 ωa 为

ωa =
1

2
ϵabcωbc ⇔ ωbc = ϵabcωa, (10)

上面我们利用了列维-西维塔符号的恒等式 ϵabcϵade = δbdδce − δbeδcd。
进而就可以将方程 (6)重写为

ėa = ωacec = ϵacbωbec = −ϵabcωbec . (11)

或者也可以将这个式子写成

ėa = ω⃗ × ea, (12)

式中 ω⃗ 就是角速度矢量，其定义为 ω⃗ = ωaea。在 (12)式的推导过程
中，我们也利用了关系式 ea × eb = ϵabcec。由 (12)式可以知道，刚体
上一个位置矢量为 x = xaea 的质点的速度为，

ẋ = ω⃗ × x, (13)

为了得出这个结果我们只需注意这个质点在刚体坐标系中的坐标分量
xa 是不变的。

1参见第 2章的相关部分ct |经典力学新讲第 8章
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运动学
角速度矢量

以上结果也可以用更直观的方式推导出来。为此我们假设刚体在 δt 的
无穷小时间内绕着某个瞬时转轴 n⃗转过一个无穷小角度 δϕ，记
n⃗δϕ = δ⃗ϕ。如图 (2)所示，设刚体上的矢量 x转到了 x′,改变量为
δx = x′ − x。

Figure:绕瞬时转轴旋转 δϕ角。
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运动学
角速度矢量

从图中很容易看出 |δx| = δϕ|x| sin θ,也容易看出 δx的方向正好是 n⃗叉
乘 x的方向，因此即有

δx = δ⃗ϕ× x. (14)

将这个式子除以 δt 即得 (13)式，其中

ω⃗ =
δ⃗ϕ

δt
=
δϕ

δt
n⃗. (15)

这正给出了角速度矢量的直观含义。值得强调的是，转轴 n⃗通常不固
定，而是会随着时间改变。
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惯量张量
惯量张量

这一节我们要介绍刚体转动最重要的概念之一，叫做惯量张量。它其
实是大家在力学中学过的转动惯量概念的推广，不过在力学中我们只
分析转轴固定的定轴转动，所谓转动惯量描述的就是刚体绕这个固定
转轴的转动惯性。但现在我们研究的转动其转轴并不固定，从而描写
转动惯性的量就要更复杂，要推广成所谓的惯量张量。
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惯量张量
惯量张量

为了引入惯量张量，让我们计算一下刚体转动时的动能，

T =
∑

i

1

2
mi ẋ2

i =
∑

i

1

2
mi

(
ω⃗ × xi

)2
=

∑
i

1

2
mi

[
(x2

i )(ω⃗
2)− (xi · ω⃗)2

]
=

1

2
Iabωaωb. (16)

式中 Iab 为

Iab =
∑

i

mi
[
(x2

i )δab − (xi)a(xi)b
]
, (17)

其中 (x)a 表示矢量 x在刚体坐标中的第 a分量，即 (x)a = xa。
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惯量张量
惯量张量

很显然，Iab 关于两个指标是对称的，它可以看成是一个对称矩阵 I的
矩阵元。人们通常把 Iab 称作惯量张量的分量形式，简称为惯量张量。
对于刚体质量连续分布的情况，惯量张量 I为，

I =
∫

dτρ(x)

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 . (18)

值得强调的是，惯量张量是在刚体坐标系中定义的，并且从上面的表
达式很容易看出，Ixx = I11 就是绕 e1 轴 (即 x 轴)定轴转动的转动惯量，
Iyy = I22 和 Izz = I33 分别是绕 e2 轴和 e3 轴的转动惯量，可见惯量张量
的确是转动惯量的推广。
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惯量张量
惯量张量

但是刚体坐标系的选取有任意性，我们当然可以将刚体坐标系重新选
取为 e′a = Oabeb，这里 O 为正交矩阵。注意到角速度矢量 ω⃗ 应该与刚
体系的选取无关，即 ω⃗ = e′aω′

a = eaωa，从而新刚体坐标下的角速度分
量必为 ω′

a = Oabωb。进一步，刚体转动动能 T 当然也与刚体坐标的选
取无关，从而即有 I′abω

′
aω

′
b = Iabωaωb,由此可知新坐标下惯量张量的分

量 I′ab 必定为 I′ab = OacObd Icd。即是说，在坐标系的正交变换下，惯量
张量按照如下方式变换

Iab → I′ab = OacObd Icd , (19)

或者我们也可以用矩阵形式将这个变换关系写成

I → I′ = OIOT . (20)

在线性代数中这种变换也称作矩阵 I的正交变换。

ct |经典力学新讲第 8章
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惯量张量
惯量张量

而 I是一个对称矩阵，根据线性代数的知识可以知道，它必定可以正
交变换为一个对角矩阵，其对角元就是 I的本征值。换言之，我们总可
以选择一个合适的刚体坐标系,在这个坐标系中，惯量张量表现为对角
的形式，即

I =

I1
I2

I3

 . (21)

这样的刚体坐标系就称作惯量主轴坐标系，它的三个正交的坐标轴就
是惯量主轴，惯量张量在惯量主轴坐标系中的对角元 I1, I2, I3 就称之为
主转动惯量。对于一个有对称性的刚体，其对称轴通常是惯量主轴。
另外，由于转动动能 1

2 Iabωaωb 总大于等于零，所以矩阵 I是半正定的，
从而主转动惯量必定大于等于零，即 I1 ≥ 0, I2 ≥ 0, I3 ≥ 0。
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惯量张量
惯量张量

考察一个半径为 R 厚度可以忽略的薄圆盘，假设它绕其中心转动。根
据对称性我们可以找到圆盘的 3个惯量主轴，分别为沿着盘面的 e1, e2
轴，以及垂直盘面的 e3 轴，如图 (3)所示。

Figure:薄圆盘的惯量主轴。图片来自 David Tong,《classical dynamics》
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惯量张量
惯量张量

根据对称性很明显有 I1 = I2,即

I1 = I2 =

∫
dτρx2 =

∫
dτρy2 =

1

2

∫
dτρ[x2 + y2] =

1

2
I3. (22)

式中 ρ = m/(πR2)为质量面密度，dτ 为面积元。很容易算出上面的面
积分，进而得

I3 =
1

2
mR2 = 2I1 = 2I2. (23)
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惯量张量
惯量张量

下面来讨论一下如何用惯量张量和角速度分量来表达出刚体转动的角
动量 J。为此进行如下推导

J =
∑

i

mixi × ẋi =
∑

i

mixi × (ω⃗ × xi)

=
∑

i

mi
[
x2

i ω⃗ − xi(xi · ω⃗)
]
. (24)

我们可以在刚体坐标系中考察 J的分量形式 J = Jaea，则从上面的表
达式容易看出

Ja = Iabωb. (25)

从这个表达式可知，对于刚体定点转动而言，一般来说，其角速度矢
量的方向和角动量的方向并不相同，而是相差一个线性变换。特别的，
在惯量主轴坐标系中，我们有

J1 = I1ω1, J2 = I2ω2, J3 = I3ω3. (26)
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惯量张量
惯量张量

惯量张量的定义依赖于坐标原点，也就是固定点 O。O 点原则上可以
任意，但有一个点比较特殊，那就是质心 C。假设我们先在质心 C 处
建立质心刚体坐标系，然后再将这个刚体坐标系平移到 O 点，我们想
问，刚体绕 C 点转动和绕 O 点转动的惯量张量的关系是什么？不妨设
O 相对于质心的位置矢量为 a，设质点在质心系中的位置矢量为 x′，
在平移后的 O 点坐标系中的位置矢量为 x，很显然 x = x′ − a。另外，
不妨记绕质心 C 转动的惯量张量为 I(c)ab ，记绕 O 点转动的惯量张量为
Iab，则有
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惯量张量
惯量张量

Iab =
∑

i

mi
[
(xi)

2δab − (xi)a(xi)b
]
=

∑
i

mi
[
(x′

i − a)2δab − (x′
i − a)a(x′

i − a)b
]

=
∑

i

mi
[
(x′

i )
2δab − (x′

i )a(x′
i )b

]
+

∑
i

mi
[
(a)2δab − (a)a(a)b

]
− 2a ·

∑
i

(mix′
i )δab +

∑
i

mi
[
(x′

i )a(a)b + (x′
i )b(a)a

]
= I(c)ab + m

[
(a)2δab − (a)a(a)b

]
.

上面的推导过程中利用了质心系的定义
∑

i mix′
i = 0，式中的

m =
∑

i mi 代表刚体的总质量。不妨将最后的结果重写一遍

Iab = I(c)ab + m
[
(a)2δab − (a)a(a)b

]
. (27)

这个结果就是所谓的平行轴定理。值得注意的是，平行轴定理中多出
来的项 m

[
(a)2δab − (a)a(a)b

]
正好是刚体的质量全部集中在质心时绕

O 点的惯量张量。
ct |经典力学新讲第 8章
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惯量张量
惯量张量

前面说过，刚体的一般运动可以分解成质心的平动叠加上绕质心的转
动。但是前面仅仅只考虑了转动，为了同时考虑转动和平动，我们假
定刚体坐标系是一个质心系，它的坐标原点 (即质心)相对于空间坐标
系在运动。记质心在空间坐标系中的位置矢量为 xc，记刚体上的质点
在刚体坐标系中的位置矢量为 x′

i，而在固定的空间坐标系中的位置矢
量为 xi ,很显然

xi = x′
i + xc . (28)

由于刚体绕质心的转动，我们有

ẋ′
i = ω⃗ × x′

i , (29)

因此刚体坐标系中的一切分析都和前面一样。
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惯量张量
惯量张量

下面我们来计算一下同时考虑质心平动和刚体绕质心转动时刚体的动
能，

T =
∑

i

1

2
mi ẋ2

i =
∑

i

1

2
mi(ẋ′

i + ẋc)
2

=
∑

i

1

2
mi(ẋ′

i )
2 +

∑
i

mi ẋ′
i · ẋc +

1

2
mẋ2

c

=
1

2
Iabωaωb +

1

2
mẋ2

c . (30)

式中 m =
∑

i mi，上面的推导过程中利用了∑
i mi ẋ′

i = d(
∑

i mix′
i )/dt = 0 (因为对于质心系

∑
i mix′

i = 0)。由此可
见，刚体的总动能等于质心平动动能加上刚体绕质心转动的动能。因
此分析刚体的一般运动时，我们可以将质心的平动与绕质心的转动独
立分析。
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欧拉陀螺

现在我们来研究一个不受外力矩作用的刚体的转动，它可以是一个绕
着固定点自由转动的刚体，甚至也可以是一个悬挂在太空中的星星。
在后面这种情况中，假设我们不关心星星质心的运动，仅仅关心星星
绕质心的自由转动。欧拉最早研究了这样的自由转动，所以人们也常
常称这种自由转动的刚体为欧拉陀螺。由于不受外力矩，所以欧拉陀
螺的空间角动量是守恒的，即满足

dJ
dt

= 0. (31)

现在，将 J在刚体坐标系中表达为 J = Jaea,则有

dJa

dt
ea + Ja

dea

dt
= 0

⇒dJa

dt
ea + Jaω⃗ × ea = 0. (32)
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欧拉陀螺

现在，我们取惯量主轴坐标系，从而 J1 = I1ω1, J2 = I2ω2, J3 = I3ω3,
则可以算得上面方程的分量形式

I1ω̇1 + ω2ω3(I3 − I2) = 0

I2ω̇2 + ω3ω1(I1 − I3) = 0

I3ω̇3 + ω1ω2(I2 − I1) = 0. (33)

这一组方程就是所谓的欧拉方程。

顺带说一下，欧拉方程虽然常常用来研究自由转动的欧拉陀螺，但它
也可以推广到受力矩作用的刚体，这时候方程 (33)的右边就不再为零，
而分别是力矩的三个分量。
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欧拉陀螺

欧拉方程也可以在哈密顿力学框架下推导出来，为此只需要注意两点：
其一，角动量各分量满足如下代数关系

[Ja, Jb] = −ϵabcJc . (34)

注意这个代数关系和前面第五章讲泊松括号时作为例子推导出来的角
动量代数关系差一个负号。这是因为，第五章的那个代数关系各分量
是相对于空间固定坐标系而言的，而现在的各分量是相对于转动的刚
体坐标系的，即现在 Ja = ea · J,因此也需要考虑到矢量 ea 本身是变
量。最后再利用第五章中的标准角动量代数，推导出来的就是 (34)式，
推导虽不算难，但过程稍微有些长，我们留给感兴趣的读者自行探索2。

2值得说明的是，角动量代数完全是由空间旋转的数学性质决定的，数学上只允许这
两种形式，就是第五章的形式以及这里多出一个负号的形式。
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欧拉陀螺

其二，需要注意到，在惯量主轴坐标系中，欧拉陀螺的动能 (从而也就
是哈密顿量)为，

H =

3∑
a=1

J2
a

2Ia
. (35)

利用这两点，并代入物理量 Ja 的哈密顿运动方程 J̇a = [Ja,H]，就可以
算得比如 J̇1 = −J2J3

(
1
I2
− 1

I3

)
，代入 J1 = I1ω1, J2 = I2ω2, J3 = I3ω3

就可以得到前面的欧拉方程。以上的推导说明，欧拉陀螺是一个哈密
顿系统。
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欧拉陀螺

但是，欧拉陀螺作为哈密顿系统是不同寻常的，因为整个系统的基本
力学变量只有 Ja,a = 1, 2, 3，这 3个基本力学变量当然要参数化这个
哈密顿系统的相空间，但这就说明，欧拉陀螺的相空间是 3维的！我
们知道，通常的相空间由于可以分解成正则坐标和正则动量，所以一
定是 2n维的，因此欧拉陀螺不是通常的哈密顿系统。为了把它变成一
个通常的哈密顿系统，我们注意到 J2 = J2

1 + J2
2 + J2

3 与哈密顿量 H 泊
松对易,即

[J2,H] = 0. (36)

从而 J2 是这个哈密顿系统的守恒量，如此一来我们就可以把系统限制
在 J2 为常数的相空间球面 S2 上来考察问题，

J2 = J2
1 + J2

2 + J2
3 = C ≥ 0. (37)

我们可以把这个相空间球面 S2 看成限制以后的相空间，很显然它是 2
维的，因此在 S2 上就能构成一个通常的哈密顿系统！不仅如此，这个
限制以后的哈密顿系统还是一个可积系统，因为作为一个相空间为 2
维的哈密顿系统，它有一个守恒量，即 H，所以当然是可积系统。
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欧拉陀螺

相空间轨道可以由
∑3

a=1
J2

a
2Ia

= E 的椭球面和上述 S2 的相交线决定，
即为 (J1, J2, J3)空间中下面两个曲面的交线。假设 I1 < I2 < I3

J2
1 + J2

2 + J2
3 = C ≥ 0.

J2
1

2EI1
+

J2
2

2EI2
+

J2
3

2EI3
= 1. (38)

Figure:欧拉陀螺的相空间轨道。图片来自 Tom W.B. Kibble Frank H.
Berkshire，Classical Mechanics
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欧拉陀螺

从图中很容易看出来，在 J1 和 J3 轴附近，相空间轨道为环绕坐标轴
的圆周。这是因为，J1, J3 轴分别为椭球面的短轴和长轴，所以它和球
面的交线当然为简单的圆周 (请想象一下)。也即是说，如果欧拉陀螺
绕着 e1 或者 e3 轴转动，那这种转动将是稳定的，因为扰动它的话只相
当于将相轨道扰动到 J1 或 J3 轴附近的小圆周上，陀螺的转动大体上
依然绕着 e1 或 e3 轴。但是，从图 (4)中很容易看出，J2 轴附近的相轨
道完全不同，绕着 e2 轴的转动完全不稳定！e2 轴就是转动惯量 I2 大小
居中的轴，所以结论是，欧拉陀螺绕着转动惯量大小居中的主轴转动
是不稳定的！这个结论通常称作网球拍定理 (tennis racket theorem).
网球拍定理的直观演示非常有趣，请读者在知乎上搜索“网球拍定理”，
找一些相关的演示视频来看。
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欧拉陀螺

特别的，如果所考察的欧拉陀螺是一个对称陀螺，有绕 e3 轴的旋转不
变性，从而 I1 = I2 ̸= I3。那么相应的相空间轨道也将绕着 J3 轴旋转不
变，如图 (5)所示。

Figure:对称的欧拉陀螺的相空间轨道。图片来自 Tom W.B. Kibble Frank H.
Berkshire，Classical Mechanics
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欧拉陀螺

另一种证明网球拍定理的方法是直接分析欧拉方程。同样，我们假设
I1 < I2 < I3,假设初始时刚体绕着 e2 轴转动，即

ω2 = Ω, ω1 = ω3 = 0. (39)

下面假设加上一个小扰动，扰动后

ω2 = Ω+ ϵ2, ω1 = ϵ1, ω3 = ϵ3, (40)

式中 ϵ1, ϵ2, ϵ3 为随时间演化的小量。将上面的 ωa 代入欧拉方程 (33),
并保留到一阶小量 (即忽略 ϵ2 阶和更高阶小量)，即有

I1ϵ̇1 +Ωϵ3(I3 − I2) = 0

I2ϵ̇2 = 0

I3ϵ̇3 + ϵ1Ω(I2 − I1) = 0.
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欧拉陀螺

从上面方程中容易得到

ϵ̈3 +
Ω2

I1I3
(I2 − I3)(I2 − I1)ϵ3 = 0

⇒ϵ̈3 + Aϵ3 = 0, (41)

式中 A = Ω2

I1I3
(I2 − I3)(I2 − I1)。很显然，当 A > 0时，这是一个小振动

方程，描写的是一个小振动，从而系统稳定。但是，当 A < 0时，这个
方程的通解是指数增长的，从而不稳定。而按照我们的假设，
I1 < I2 < I3，很显然 A < 0，这就证明了绕 e2 轴的转动是不稳定的！
类似的证明也说明绕 e1 轴和 e3 轴的转动是稳定的。这就证明了网球
拍定理。
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欧拉角
欧拉角

前面说过，刚体转动的位形空间 C 是 3维的，但是到现在为止我们一
直没有给出过这个位形空间的广义坐标。现在我们来介绍一种最常用
的广义坐标选取，即所谓的欧拉角。

我们要做的就是参数化刚体坐标 {ea}的所有取向，或者等价地参数化
所有 3× 3的特殊正交矩阵。以固定的空间坐标系为基准，刚体坐标系
的一个一般取向如图 (6)所示。为了参数化刚体坐标系的取向，我们假
设初始时刚体坐标系与空间坐标系完全重合，然后按照下面 3步旋转
到达一般取向
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欧拉角
欧拉角

{ẽa}
R3(ϕ)−−−→ {e′a}

R1(θ)−−−→ {e′′a}
R3(ψ)−−−−→ {ea}. (42)

Figure:刚体坐标系相对于空间坐标系的一般取向。图片来自 David Tong，
Classical dynamics,下面 3幅图同样。
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欧拉角
欧拉角

首先第一步，将与空间坐标系重合的刚体坐标系绕 ẽ3 轴旋转 ϕ角，得
到 e′a = ẽbR3(ϕ)ba,其中矩阵 R3(ϕ)为

R3(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 . (43)

如图 (7)所示。

Figure:绕 ẽ3 轴旋转 ϕ角。
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欧拉角
欧拉角

第二步，将上面得到的 {e′a}绕 e′1 轴旋转 θ 角，得到 e′′a = e′bR1(θ)ba，
其中矩阵 R1(θ)为，

R1(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (44)

如图 (8)所示。

Figure:绕 e′1 轴旋转 θ 角。
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欧拉角
欧拉角

第三步，将上一步得到的 {e′′a}绕 e′′3 轴旋转 ψ 角，最终达到
ea = e′′b R3(ψ)ba,其中 R3(ψ)为

R3(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (45)

如图 (9)所示。

Figure:绕 e′′3 轴旋转 ψ 角。
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欧拉角
欧拉角

将三步联合起来，即有 ea = ẽbRba(ϕ, θ, ψ),式中

R(ϕ, θ, ψ) = R3(ϕ)R1(θ)R3(ψ). (46)

这三个角度 ϕ, θ, ψ 就是欧拉角，也就是我们要选取的转动位形空间广
义坐标。矩阵 R(ϕ, θ, ψ)可以直接算出来，为cosψ cosϕ− cos θ sinϕ sinψ − cosϕ sinψ − cos θ cosψ sinϕ sin θ sinϕ

sinϕ cosψ + cos θ sinψ cosϕ − sinψ sinϕ+ cos θ cosψ cosϕ − sin θ cosϕ
sin θ sinψ sin θ cosψ cos θ

 .

任何一个特殊正交矩阵都可以表示成这种形式。
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欧拉角
欧拉角

注意到 3个欧拉角中，θ 是 e3 轴与 ẽ3 轴的夹角，ϕ和 ψ 分别是绕 ẽ3
轴和绕 e3 轴转动的角度，所以通常约定 3个欧拉角的取值范围分别为

θ ∈ [0, π], ϕ ∈ [0, 2π], ψ ∈ [0, 2π]. (47)
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欧拉角
角速度的欧拉角表示法

我们可以将刚体的旋转角速度用欧拉角表示出来。为此首先注意到，
根据上面的 3步旋转，有

ω⃗ = ϕ̇ẽ3 + θ̇e′1 + ψ̇e3. (48)

下面只需将 ẽ3 和 e′1 用最终的刚体坐标 {ea}表示出来。这并不难，首
先根据上面的 3步，并利用矩阵 R(ϕ, θ, ψ)的正交性，我们有
ẽ3 = R3a(ϕ, θ, ψ)ea,即

ẽ3 = sin θ sinψe1 + sin θ cosψe2 + cos θe3. (49)

类似的，根据上面 3步的第 3步，也容易得到

e′1 = cosψe1 − sinψe2. (50)
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欧拉角
角速度的欧拉角表示法

进而即可以得到角速度在刚体坐标中的表达式，

ω⃗ = [ϕ̇ sin θ sinψ + θ̇ cosψ]e1 + [ϕ̇ sin θ cosψ − θ̇ sinψ]e2 + [ψ̇ + ϕ̇ cos θ]e3.

或者也可以写成

ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ
ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ
ω3 = ψ̇ + ϕ̇ cos θ. (51)
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欧拉角
角速度的欧拉角表示法

利用上面这个角速度的欧拉角表达式，我们就可以在解出 ω1, ω2, ω3 以
后，进一步把欧拉陀螺相对于空间坐标的转动情况用 ϕ̇, θ̇, ψ̇ 表达出来，
因为三个欧拉角就是相对于空间坐标系定义的。

ct |经典力学新讲第 8章



45

拉格朗日陀螺

欧拉陀螺通常可以指任何自由转动的刚体，而拉格朗日陀螺则通常指
的就是小朋友们玩的陀螺。如图 (10)所示，假设这个陀螺绕固定点 P
转动，其质心到 P 点的距离为 l ,并且陀螺当然受重力的作用。很显然，
这样的陀螺有一个对称轴，它绕这个对称轴旋转不变，这个对称轴当
然是惯量主轴，记为 e3，由于旋转不变性，与 e3 垂直的另两个主轴可
以任意选，只要两者相互垂直就行。显然，I1 = I2 ̸= I3，即是说拉格朗
日陀螺是一个对称陀螺。三个欧拉角如图 (10)所示，其中 ϕ的运动称
为进动，θ 的运动称为章动，ψ 的运动则称为自转。
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拉格朗日陀螺

Figure:绕固定点 P 转动的陀螺。图片来自 David Tong, classical dynamics,下
图同。
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拉格朗日陀螺

很容易写出欧拉陀螺的拉格朗日量，为

L =
1

2
I1(ω2

1 + ω2
2) +

1

2
I3ω2

3 − mgl cos θ

=
1

2
I1
(
θ̇2 + sin2 θϕ̇2

)
+

1

2
I3
(
ψ̇ + cos θϕ̇

)2 − mgl cos θ. (52)

很容易求出与 3个欧拉角对应的广义动量，为

pθ =
∂L
∂θ̇

= I1θ̇

pψ =
∂L
∂ψ̇

= I3(ψ̇ + cos θϕ̇) = I3ω3 = J3

pϕ =
∂L
∂ϕ̇

= I1 sin2 θϕ̇+ I3 cos θ(ψ̇ + ϕ̇ cos θ)

= I1 sin2 θϕ̇+ cos θpψ. (53)
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拉格朗日陀螺

利用这些广义动量，就可以将系统的能量 E 表达成哈密顿量

E =
1

2
I1
(
θ̇2 + sin2 θϕ̇2

)
+

1

2
I3
(
ψ̇ + cos θϕ̇

)2
+ mgl cos θ

⇒H =
p2
θ

2I1
+

(pϕ − pψ cos θ)2

2I1 sin2 θ
+

p2
ψ

2I3
+ mgl cos θ. (54)

由于这个哈密顿量的表达式与 ϕ, ψ 无关，所以显然有

[pϕ,H] = [pψ,H] = 0. (55)

从而系统有三个相互泊松对易的守恒量 pϕ,pψ,H。而这又是一个自由
度数为 3的哈密顿系统，从而拉格朗日陀螺是一个可积系统。
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拉格朗日陀螺

由于 pϕ,pψ 守恒，而且哈密顿量不显含 ϕ, ψ，所以我们可以先忽略
ϕ, ψ 的运动，进而将上述系统约化为单个自由度 θ 的系统，约化系统
的哈密顿量为

H =
p2
θ

2I1
+ U(θ), (56)

式中约化系统的势能 U(θ)由下式给出

U(θ) =
(pϕ − pψ cos θ)2

2I1 sin2 θ
+

p2
ψ

2I3
+ mgl cos θ. (57)

约化系统当然也是可积系统，其守恒量就是能量，

1

2
I1θ̇2 + U(θ) = E . (58)

这就是一个标准的一维问题，我们在第一章中就已经学会如何对这样
的问题进行积分了。根据第一章的分析可以知道，θ 的运动范围必定在
U(θ) ≤ E 的区间上。
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拉格朗日陀螺

我们可以画出 U(θ)的势能曲线。注意到当 θ → 0, π 时，U(θ) → ∞(除
非 pϕ = ±pψ，这种例外我们后面再分析)，并且根据微积分知识可以证
明 U(θ)只有一个极小值，记为 θ0，所以势能曲线必定如图 (11)所示。

Figure: U(θ)的势能曲线。图片来自 Kibble, classical mechanics,下面 3幅图
同样。
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拉格朗日陀螺

给定能量 E，很显然，θ 必定在 [θ1, θ2]的区间上来回运动，如图 (11)
所示。当然，如果能量水平线 E 和势能曲线在最低点相切，那 θ 就只
能等于 θ0，这种情况描述的就是一个以固定倾斜角度 θ0 绕着竖直轴稳
定进动的陀螺。

按照一维问题求解完 θ(t)的运动以后，就可以进一步求 ϕ, ψ 的运动，
方程如下

ϕ̇ =
∂H
∂pϕ

=
pϕ − pψ cos θ

I1 sin2 θ

ψ̇ =
∂H
∂pψ

=
pψ
I3

− cos θpϕ − pψ cos θ
I1 sin2 θ

. (59)

习惯上常常将 θ, ϕ的运动画在两维球面上，以 θ 为球面的纬度，以 ϕ
为球面的经度。ϕ的运动就是陀螺的进动，而 θ 在 [θ1, θ2]区间上的来
回运动就是陀螺的章动。很显然，这个球面上的运动轨迹也就是陀螺
转轴 e3 的运动轨迹。
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拉格朗日陀螺

从公式 (59)可以看出，进动角速度 ϕ̇ = 0当且仅当
θ = arccos(pϕ/pψ),如果这个角度落在 [θ1, θ2]的区间之外，或者
|pϕ/pψ| > 1，那在整个 [θ1, θ2]区间上进动角速度 ϕ̇将不会改变正负
号，即陀螺永远按照一个方向进动。这时候在 (θ, ϕ)球面上，e3 轴的
运动轨迹必定如图 (12)所示。

Figure:陀螺永远按照一个方向进动的情形。
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拉格朗日陀螺

反过来，如果 θ1 < arccos(pϕ/pψ) < θ2，那随着陀螺的章动，其进动角
速度将会变号，因此陀螺在纬度靠近 θ1 那一端的进动方向就和纬度靠
近 θ2 那一端的进动方向相反，从而 e3 轴的运动轨迹必定如图 (13)所
示 (注意 e3 轴总是顺着这条轨迹运动)。

Figure:陀螺的进动不断改变方向的情形。
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拉格朗日陀螺

特别的，如果 arccos(pϕ/pψ) = θ1，那 e3 轴的轨迹线在 θ1 的那一端就
会退化为尖点，如图 (14)所示。在那些尖点上，陀螺的章动速度
θ̇ = 0,进动角速度 ϕ̇也等于零，从而陀螺的动能达到最小。这种情形
当我们让陀螺转动但是初始时自转轴 e3 瞬时静止就会出现。

Figure:初始时自转轴瞬时静止的陀螺运动。

值得注意的是，e3 轴的轨迹曲线不会在 θ2 处变为尖点，原因在于，一
个初始时转轴瞬时静止的陀螺无法自动抬高其自转轴。
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拉格朗日陀螺

下面来分析一种重要的特殊情况，即陀螺的自转轴 e3 垂直且保持不变
的转动，也即 θ 恒等于零的情形。我们要分析什么时候这种转动是稳
定的，什么时候会转化为上面分析的有章动的一般情形。首先，从
U(θ)的表达式容易看出，θ = 0能出现就意味着必定有 pϕ = pψ = J3，
因为否则 θ = 0时必有 U(0) = ∞从而不可能。
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下面在 U(θ)的表达式中取 pϕ = pψ = J3，从而有

U(θ) =
J2
3

2I1
tan2(

1

2
θ) +

J2
3

2I3
+ mgl cos θ. (60)

为了研究 θ = 0的稳定性，我们将这个势能表达式在 θ = 0处泰勒展开
到二阶小量，即有

U(θ) =
( J2

3

2I3
+ mgl

)
+

1

2

( J2
3

4I1
− mgl

)
θ2 + ... (61)

很显然，如果

J2
3

4I1
− mgl > 0 ⇒ ω2

3 >
4I1mgl

I23
= ω2

0 , (62)

那 θ = 0就是势能的极小值，从而系统就是稳定的。即是说，如果角速
度 ω3 > ω0，那转轴垂直就是稳定的！但是反过来，如果 |ω3| < ω0，那
θ = 0就是势能的极大值，从而转动就是不稳定的。
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对于一个真实的陀螺来说，我们可以给它一个很大的角速度 ω3,让它
一直绕着垂直的转轴转动，但是摩擦力会逐渐将角速度降下来，当
ω3 < ω0 时，陀螺就开始章动和进动了。
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Thank You!
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