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1 引引引言言言

信息守恒是量子世界的特征，因为量子力学有幺正性，幺正性就意味着信

息守恒。而经典世界人们通常认为是信息不守恒的，毕竟大家随时都可以

删除电脑上的文章，删除文章就是擦除信息，擦除前后文章的信息并不守

恒。

但在另一方面，世界的本源是量子的，经典世界可以看作是普朗克常

数~相对可以忽略时的极限情况。那为什么量子世界信息守恒，而作为其
极限情况的经典世界却信息不守恒了呢？可见，传统的看法是经不住深究

的。本文就是要重新探讨这个问题。从技术上来说，本文也许没有太多新

的东西，但是本文的观念很可能是新的。
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本文的结论是，经典世界同样是信息守恒的！所有信息不守恒的情况，

都是因为我们考察的不是一个孤立系统，换言之，都是因为系统与外界

之间存在信息的擦除和交换，甚至由此进一步导致能量交换（通常是热

能），比如说，存在耗散的系统就属于这种情况。

量子世界的信息守恒是因为有量子力学幺正性。那么经典世界的信息守

恒反映在经典物理的什么特性上呢？我们的回答是：经经经典典典世世世界界界的的的信信信息息息守守守恒恒恒

反反反映映映为为为相相相空空空间间间辛辛辛结结结构构构的的的保保保持持持。。。正正正是是是因因因为为为信信信息息息守守守恒恒恒要要要求求求保保保持持持辛辛辛结结结构构构，，，所所所以以以

经经经典典典力力力学学学的的的孤孤孤立立立系系系统统统必必必定定定是是是哈哈哈密密密顿顿顿系系系统统统。。。换换换言言言之之之，，，由由由信信信息息息守守守恒恒恒可可可以以以导导导出出出

孤孤孤立立立系系系统统统的的的演演演化化化方方方程程程必必必定定定是是是哈哈哈密密密顿顿顿正正正则则则方方方程程程。。。由由由此此此我我我们们们甚甚甚至至至可可可以以以给给给哈哈哈密密密

顿顿顿系系系统统统下下下一一一个个个等等等价价价的的的定定定义义义，，，即即即，，，哈哈哈密密密顿顿顿系系系统统统即即即是是是信信信息息息守守守恒恒恒的的的动动动力力力系系系统统统。。。

与与与之之之相相相关关关的的的，，，能能能量量量这这这一一一概概概念念念可可可以以以看看看作作作信信信息息息守守守恒恒恒和和和动动动力力力学学学演演演化化化双双双重重重要要要求求求的的的

自自自然然然产产产物物物。。。

本文按如下方式组织：首先，在第二节中，我们将从经典世界作为量

子世界在~ → 0时极限的角度考察什么是经典世界的信息守恒。在这一节

中，我们首先讨论了量子和经典的对应原理，并表明经典系统的相空间上

自然地有一个辛结构。然后，通过给量子幺正性取经典极限，我们可以论

证经典世界的信息守恒就是相空间辛结构的保持。并且我们也论证了，信

息守恒的经典系统和哈密顿正则系统其实是同义词。其次，在本文第三节

中，通过回顾刘维尔定理，我们把信息守恒的概念引入到统计力学中，进

而又讨论了经典力学如何推广到信息不守恒的情况，最后再把这种推广用

到了对非平衡统计力学贾金斯基(Jarzynski)等式的推导中。在本文最后一

节中，我们从信息守恒的角度简单回顾了哈密顿系统辛数值算法的基本思

想。

2 从从从经经经典典典世世世界界界作作作为为为量量量子子子世世世界界界的的的极极极限限限看看看信信信息息息守守守恒恒恒

由于量子世界的信息守恒是毫无疑问的，它反映为量子力学幺正性。所以

这一节不妨让我们从这个毫无疑问的地方出发，从经典世界作为量子世界

在~ → 0时的极限这个角度来考察什么是经典世界的信息守恒，进而讲清

楚为什么说经典世界的信息守恒就是相空间辛结构的保持。
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2.1 量量量子子子与与与经经经典典典的的的对对对应应应原原原理理理与与与相相相空空空间间间辛辛辛结结结构构构

我们的基本假设是量子世界和经典世界之间的对应原理: 即假设在普朗克

常数~ → 0时，有

[Â, B̂]Q/(i~) = [A,B], (1)

式中Â, B̂为两个可观测量算符，A,B为与之相应的经典物理量，[Â, B̂]Q =

ÂB̂ − B̂Â为量子的算符对易子，[A,B]称之为经典物理量之间的泊松括

号，上式可以看作是它的一个基本定义。

当然，为了让泊松括号有更明确的表达式，我们还得假设量子系统的基

本力学算符为q̂a, p̂a, 分别称作正则坐标算符与正则动量算符，这里我们假

设指标a = 1, 2, ..., n，即假设我们考察的是一个n自由度系统。q̂a, p̂a满足如

下量子力学基本对易关系

[q̂a, p̂b]Q/(i~) = δab , (2)

以及

[q̂a, q̂b]Q = [p̂a, p̂b]Q = 0. (3)

可观测量算符Â、B̂通常是q̂a, p̂a的函数，记为Â(q̂, p̂), B̂(q̂, p̂)。

q̂a, p̂a的经典对应物就是正则坐标q
a和正则动量pa。在有些不强调

指标的时候，我们也把正则坐标笼统地记为q，把正则动量笼统地记

为p。(q, p)所构成的空间就是经典系统的相空间。与算符Â, B̂对应的经典

物理量A,B都是这个相空间上的函数，有时候记为A(q, p)和B(q, p)。根据

前面量子与经典的对应原理，我们有

[qa, pb] = δab , [qa, qb] = [pa, pb] = 0. (4)

进而可以得到泊松括号的明确表达式是

[A,B] =
∂A

∂qa
∂B

∂pa
− ∂A

∂pa

∂B

∂qa
, (5)

式中我们默认对指标a使用了爱因斯坦求和约定，同同同样样样的的的约约约定定定也也也适适适用用用于于于本本本

文文文其其其它它它地地地方方方。
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值得强调的是，我们并没有对经典系统的动力学演化方程作任何假设，

即我我我们们们并并并没没没有有有预预预先先先假假假设设设哈哈哈密密密顿顿顿正正正则则则方方方程程程成成成立立立！！！甚甚甚至至至，，，我我我们们们到到到现现现在在在还还还没没没有有有

引引引入入入哈哈哈密密密顿顿顿量量量的的的概概概念念念。。。 我们只是根据量子与经典的对应原理，为经典系

统引入了一个相空间，并根据量子与经典之间的对应关系定义了经典物理

量之间的泊松括号。上上上述述述泊泊泊松松松括括括号号号的的的明明明确确确表表表达达达式式式意意意味味味着着着相相相空空空间间间存存存在在在一一一个个个

所所所谓谓谓的的的辛辛辛结结结构构构。。。

为了看清楚这一点，我们注意到既然q, p都是相空间的坐标，地位其实

是平等的，那我们不妨把它们写得更平等一点。具体来说，即引入2n维

相空间的坐标x = (x1, x2, ....x2n)T = (q1, ..., qn, p1, ..., pn)
T，式中T表示转

置操作，所以x是一个具有2n个分量的列矢量，注注注意意意它它它不不不是是是三三三维维维坐坐坐标标标矢矢矢

量量量。x的各分量我们记为xi, i = 1, 2, ..., 2n，前n个i指标代表正则坐标q，

后n个i指标代表正则动量p。

进而我们就可以把泊松括号的表达式重写为

[A,B] =
∂A

∂xi
ωij ∂B

∂xj
= (∂iA)ω

ij(∂jB). (6)

式中同样使用了求和约定，不过现在的求和是从1加到2n。式中的ωij可以

看作一个2n× 2n矩阵J的第i行和第j列，而矩阵J的表达式为

J = (ωij) =

(
0n×n 1n×n

−1n×n 0n×n

)
, (7)

这是一个反对称矩阵，式中1n×n表示n× n的单位矩阵。特别的，我们有

[xi, xj] = ωij. (8)

注意，从泊松括号中，出现了反对称矩阵J，我们把它逆矩阵J−1的矩

阵元用下指标符号ωij来表示。很明显矩阵J
−1为，

J−1 = (ωij) =

(
0n×n −1n×n

1n×n 0n×n

)
. (9)

这同样是一个反对称矩阵，满足ωji = −ωij。

所以泊松括号的表达式意味着相空间存在一个二阶反对称张量ωij, 与之

对应的二阶微分形式为

ω =
1

2
ωijdx

i ∧ dxj = dpa ∧ dqa. (10)
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ω就是所谓的辛形式，很显然，这是一个非退化的闭形式，满足

dω = 0. (11)

相空间上给定了一个辛形式，就称之为定义了一个辛结构。所以，从从从量量量子子子

经经经典典典对对对应应应原原原理理理出出出发发发，，，我我我们们们得得得到到到了了了经经经典典典系系系统统统的的的相相相空空空间间间上上上存存存在在在一一一个个个辛辛辛结结结构构构的的的

结结结论论论！！！ 从而经典系统的相空间是一个辛流形。

2.2 幺幺幺正正正性性性的的的经经经典典典极极极限限限与与与信信信息息息守守守恒恒恒

幺幺幺正正正性性性和和和幺幺幺正正正变变变换换换

一个量子系统所有可能量子态的集合构成希尔伯特空间H。量子系统的
物理可观测量对应于H上的厄密算符。根据量子力学的玻恩规则，对于处
在|ψ⟩态上的系统，我们在|ϕ⟩态上测到它的概率为|⟨ϕ|ψ⟩|2，其中两个量子
态的内积⟨ϕ|ψ⟩也称之为概率幅，因为它的模方给出了概率。在量子力学
中，概率(而不是量子态)才是我们在物理上真正测量的东西。

所谓的量子力学幺正性，指的是量子系统的希尔伯特空间H可以进行
一个到其自身的可逆变换U，假设在这个变换的作用下，|ψ⟩ → |ψ′⟩ =

U |ψ⟩，|ϕ⟩ → |ϕ′⟩ = U |ϕ⟩，幺正性指的就是变换前后态的内积保持不变，
即

⟨ϕ′|ψ′⟩ = ⟨ϕ|ψ⟩. (12)

很显然，根据玻恩规则，态的内积保持不变就意味着测量概率保持不变，

从而也就意味着信息在变换之下的守恒。换言之，量子力学幺正性在物理

上就意味着信息守恒。

由态的内积保持不变的要求，不难看出，上述变换算符U必定是一个幺

正算符，即U是一个可逆算符，而且满足

U−1 = U †, (13)

U †表示算符U的厄密共轭算符。因为U是幺正算符，所以我们也将U变换称

作幺正变换。
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刚才我们定义量子力学幺正性的时候，是把幺正变换作用在系统的量

子态上。但其实，也可以等价地认为幺正变换对系统量子态没有作用，而

是对物理可观测量算符有作用。具体来说，考察一个幺正变换U，再考察

一个任意的可观测量算符Â。在物理上，我们关心的其实总是算符的矩阵

元，为此我们考察算符Â在系统量子态|ψ⟩和|ϕ⟩之间的矩阵元⟨ϕ|Â|ψ⟩。由
于在幺正变换之后|ψ⟩ → U |ψ⟩, |ϕ⟩ → U |ϕ⟩，所以在幺正变换的作用下矩阵
元⟨ϕ|Â|ψ⟩将变换为

⟨ϕ|Â|ψ⟩ → ⟨ϕ|U−1ÂU |ψ⟩. (14)

很显然，为了满足这个物理矩阵元的变换关系，我们完全可以等价地认为

幺正变换对系统量子态没有作用，而是会将算符Â变换为

Â→ U−1ÂU. (15)

根据幺正变换作用在系统量子态但是不作用在物理量算符上的观点，我

们实际上是认为，我们的变换操作是“转动”了系统，但是没有“转动”

实验室里测量系统的仪器，从而物理量算符不变。而根据幺正变换作用在

物理量算符而不作用在系统量子态上的观点，我们是等价地认为，我们的

操作是将实验室里的仪器作了一个反方向的“旋转”，同时保持待测系统

原地不动，从而算符按照(15)式变换，而系统的量子态不变。

幺幺幺正正正变变变换换换的的的经经经典典典极极极限限限

现在，假设我们考察一个幺正变换的单参簇U(θ)(满足U(0) = 1，1表示

恒等变换), 设

U(θ) = exp
(
− iθĜ/~

)
, (16)

式中Ĝ称作这个幺正变换单参簇的生成元。利用幺正条件U−1 = U †，容易

有

Ĝ† = Ĝ. (17)

也即是说，单参幺正变换的生成元必定为厄米算符，因此也就是一个物理

可观测量。而将单参幺正变换按照(15)式作用在物理可观测量Â上，我们就
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可以得到可观测量的单参变换簇

Â
(
q̂(θ), p̂(θ)

)
≡ exp

(
iθĜ/~

)
Â exp

(
− iθĜ/~

)
. (18)

幺正性意味着，量子系统在这一单参幺正变换之下保持信息守恒。

利用单参幺正变换，我们可以看到量子幺幺幺正正正变变变换换换的的的经经经典典典极极极限限限其其其实实实就就就

是是是经经经典典典力力力学学学中中中的的的正正正则则则变变变换换换。为了看清楚这一点，考虑一个单参幺正变

换U(θ)，我们来考察θ为无穷小量ϵ的无穷小变换U(ϵ) = exp(−iϵĜ/~)。
设某物理可观测量Â在这一无穷小幺正变换的作用下变换为Â → Â′ =

U−1(ϵ)ÂU(ϵ), 记变换前后物理量Â的无穷小改变为δÂ = Â′ − Â。则

根据(18)式，我们将有δÂ = (1 + iϵĜ/~ + ...)Â(1 − iϵĜ/~ + ...) − Â =

ϵ[Â, Ĝ]Q/(i~), 即

δÂ = ϵ[Â, Ĝ]Q/(i~). (19)

下面，我们取~ → 0的经典极限。则根据量子与经典的对应原理，算

符Â, Ĝ将分别变成经典物理量A和G，而(19)式将变成

δA = ϵ[A,G]. (20)

这正好是分析力学中的无穷小正则变换的方程1，其中G就叫做无穷小正则

变换的生成元。特别的，假设我们分别取A = qa和A = pa, 那么(20)式给出

的就是

δqa = ϵ[qa, G] = ϵ
∂G

∂pa
, δpa = ϵ[pa, G] = −ϵ ∂G

∂qa
. (21)

假设记算符单参变换簇Â
(
q̂(θ), p̂(θ)

)
的经典极限为A

(
q(θ), p(θ)

)
，并称

相空间参数曲线
(
q(θ), p(θ)

)
为相流，那么由于相空间参数曲线上两个无限

邻近的点相差的正好是一个无穷小量dθ = ϵ，从而由方程(21)可得相流满足

的方程

dqa

dθ
=
∂G

∂pa
,

dpa
dθ

= − ∂G

∂qa
. (22)

或者用相空间坐标x = (x1, x2, ....x2n)T = (q1, ..., qn, p1, ..., pn)
T将之写成

dxi

dθ
= ωij∂jG(x). (23)

1参见Goldstein H. Classical Mechanics. Third ed. 第9章-9.6节.
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这个方程描述的是相空间点随着参数θ的某种“流动”，因此称之为相流。

可见，量子的单参幺正变换的经典极限正是相空间满足(22)式(或(23)式)的

相流！物理量G(q, p) = G(x)就称作相流的生成元。

既然量子幺正变换的物理含义是信息守恒，那作为其经典极限的无穷小

正则变换和相流当然也具有信息守恒的含义，唯一的区别在于，一个是量

子的信息，一个是经典信息。量子信息守恒的关键是幺正性，那么经典信

息守恒的关键是什么呢？换言之，无穷小正则变换和相流是保持了经典力

学的什么结构才使得它们保持信息守恒的呢？下面让我们来探讨这一关键

问题。

首先我们将证明，无穷小正则变换和相流都保持相空间的辛结构！

当然，我们只需对无穷小正则变换完成这一证明就够了，因为相流的本

质就是持续进行的无穷小正则变换。记无穷小正则变换之前的正则变量

为(q, p)，变换之后的正则变量为(q′, p′), 其中

q′a = qa + δqa = qa + ϵ
∂G

∂pa

p′a = pa + δpa = pa − ϵ
∂G

∂qa
. (24)

式中，我们已经代入了(21)式。很容易直接验证，变换之后的辛形式ω′ =

dp′a ∧ dq′a与变换之前的辛形式ω = dpa ∧ dqa相等,

ω′ =dp′a ∧ dq′a

=
(
dpa − ϵ

∂2G

∂qb∂qa
dqb − ϵ

∂2G

∂pb∂qa
dpb
)
∧
(
dqa + ϵ

∂2G

∂pb∂pa
dpb + ϵ

∂2G

∂qb∂pa
dqb
)

=dpa ∧ dqa + ϵ
( ∂2G

∂pb∂pa
dpa ∧ dpb −

∂2G

∂qb∂qa
dqb ∧ dqa

)
+ ϵ
( ∂2G

∂qb∂pa
dpa ∧ dqb −

∂2G

∂pb∂qa
dpb ∧ dqa

)
=ω. (25)

所以，辛形式在无穷小正则变换之下保持不变，即无穷小正则变换保持相

空间辛结构。

反过来，也可以证明，相空间点(q, p)到临近(q′, p′)点的保持辛结构不变

的无穷小变换必定是满足(21)式的无穷小正则变换。为了证明这一点，不
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妨设我们要考察的无穷小变换为

qa → q′a = qa + ϵQa(q, p), pa → p′a = pa + ϵPa(q, p). (26)

式中ϵ为无穷小量，Qa, Pa均为相空间的函数。

假设上述变换保持辛结构，从而即有

dp′a ∧ dq′a − dpa ∧ dqa = 0. (27)

代入上面的无穷小映射(26)，并展开到一阶无穷小，即有(
dPa ∧ dqa + dpa ∧ dQa

)
ϵ = 0. (28)

由此即有

0 =dPb ∧ dqb + dpa ∧ dQa

=
∂Pb

∂qa
dqa ∧ dqb + ∂Pb

∂pa
dpa ∧ dqb +

∂Qa

∂qb
dpa ∧ dqb +

∂Qa

∂pb
dpa ∧ dpb

=
1

2

(
∂Pb

∂qa
− ∂Pa

∂qb

)
dqa ∧ dqb + 1

2

(
∂Qa

∂pb
− ∂Qb

∂pa

)
dpa ∧ dpb

+

(
∂Pb

∂pa
+
∂Qa

∂qb

)
dpa ∧ dqb. (29)

由此即可得到Qa, Pa必须满足的方程

∂Pb

∂qa
− ∂Pa

∂qb
= 0

∂Qa

∂pb
− ∂Qb

∂pa
= 0

∂Pb

∂pa
+
∂Qa

∂qb
= 0. (30)

这三个方程看起来复杂，实际上它们的通解非常简单，不难验证，下面为

它们的通解

Qa =
∂G

∂pa
, Pa = − ∂G

∂qa
. (31)

式中G为某个任意的相空间函数。即是说，保持辛结构的无穷小映

射(26)必定具有(31) 的形式, 从而也即满足(21)式。所以，它就是一个

由G生成的无穷小正则变换。
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实际上，保持相空间辛结构不变即是正则变换的一般定义，数学上也称

这种保持辛结构不变的将(q, p)映射到(q′, p′)的微分同胚变换为辛同胚，辛辛辛

同同同胚胚胚和和和正正正则则则变变变换换换是是是一一一回回回事事事。而相流就是一个依赖于参数θ的单参辛同胚。

根据上面的论证可以知道，量子的单参幺正变换在~ → 0 的经典极限下就

成为经典相空间的一个单参辛同胚。

推而广之，可以设想任何一个幺正变换都能通过选取一个合适的生

成元Ĝ 而写成U(θ0) = exp
(
− iθ0Ĝ/~

)
的形式，其中θ0为某个给定的数。

换言之，可以设想将一个任意的幺正变换看成是位于某个单参幺正变换

簇U(θ)中。因此，根据以上关于单参幺正变换经典极限的讨论可以知道，

这个幺正变换的经典对应物可以看成是由某个相流生成，从而必定为一个

辛同胚。因此我们就可以下一个结论说，任任任何何何一一一个个个幺幺幺正正正变变变换换换在在在合合合适适适的的的经经经典典典

极极极限限限下下下，，，都都都会会会成成成为为为经经经典典典相相相空空空间间间上上上一一一个个个保保保持持持辛辛辛结结结构构构的的的辛辛辛同同同胚胚胚。。。

注意，幺正变换的经典极限是由U(θ0) = exp
(
− iθ0Ĝ/~

)
并取~ → 0定义

的。很显然，根据这个定义，幺正算符U(θ0)本身并没有定义良好的经典极

限，因为它的指数因子在~ → 0极限下是剧烈振荡的，并且正是因为相位

因子的这种振荡消除了量子相干性，所以我们才能在极限之下得到一个经

典世界。但是，任何物理可观测量Â在这个幺正变换之下的变换关系却有

良好定义的经典极限，这个经典极限正好是相空间的辛同胚。

不妨举一些简单的例子：比方说对于一个单自由度的系统，记其正则

坐标为x，正则动量为p。则变换x → p、p → −x显然是一个辛同胚。不难
验证这个辛同胚对应的量子幺正变换为U = exp

(
− i π

4~(p̂
2 + x̂2)

)
。再比方

说空间反演变换，在经典上它作用为qa → −qa, pa → −pa，很显然这也是
一个辛同胚。而它对应的量子的空间反演算符也的确是一个幺正变换。而

比方说时间反演变换，在经典上它作用为qa → qa, pa → −pa，因此这会
将辛形式映射为ω → −ω，从而这不是一个辛同胚。而它对应的量子的时
间反演算符也的确不是一个幺正变换，众所周知，那是一个反幺正变换。

实际上，不难猜测，任何量子幺正变换对应的经典相空间变换都应该是保

持辛形式的辛同胚，而任何量子反幺正变换对应的经典变换都应该将辛形

式ω映射为−ω。这可以看作是量子的维格纳对称表示定理2的经典对应物。

2参见Steven Weinberg, The quantum theory of fields, Volume I, 第二章的Appendix

A。
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因此，量量量子子子幺幺幺正正正变变变换换换的的的经经经典典典对对对应应应物物物是是是相相相空空空间间间上上上保保保持持持辛辛辛结结结构构构的的的辛辛辛同同同胚胚胚映映映

射射射，，，也也也称称称作作作正正正则则则变变变换换换。。。从从从而而而量量量子子子幺幺幺正正正性性性的的的经经经典典典对对对应应应物物物就就就应应应该该该是是是对对对相相相空空空间间间

辛辛辛结结结构构构的的的保保保持持持。。。量量量子子子幺幺幺正正正性性性的的的物物物理理理含含含义义义是是是量量量子子子信信信息息息的的的守守守恒恒恒，，，从从从而而而经经经典典典上上上

保保保持持持相相相空空空间间间辛辛辛结结结构构构的的的物物物理理理含含含义义义就就就应应应该该该是是是经经经典典典信信信息息息的的的守守守恒恒恒。。。

能能能量量量的的的起起起源源源

量子幺正性意味着量子系统在时间演化之下是信息守恒的，而这又要求

量子系统的时间演化是一种以时间为参数的单参幺正变换，这时候相应的

幺正变换算符为

U(t) = exp
(
− itĤ/~

)
, (32)

Ĥ就是这一单参幺正变换的生成元。通常称U(t)为时间演化算符，称Ĥ为

哈密顿算符，或者称之为能量算符，因为Ĥ的本征值就定义为系统的能

量。很明显，可观测量算符在时间演化之下的单参变换簇为

Â
(
q̂(t), p̂(t)

)
≡ exp

(
itĤ/~

)
Â exp

(
− itĤ/~

)
. (33)

这就是所谓的海森堡绘景中的算符。特别的，容易看出，海森堡绘景中的

哈密顿算符就等于Ĥ本身，即是说哈密顿算符在时间演化之下是守恒的，

相应于这一算符的本征值就是守恒量。这也就是为什么称哈密顿算符为能

量算符的原因之一，因为它对应能量守恒。

根据前面关于单参幺正变换经典极限的讨论可以知道，量子时间演化的

经典极限必定是经典相空间的一个相流，这个相流以物理的时间t为参数，

以哈密顿量H为生成元，相应的相流方程为

dqa

dt
=
∂H

∂pa
,

dpa
dt

= −∂H
∂qa

. (34)

或者写成

dxi

dt
= ωij∂jH(x). (35)

这就是著名的哈密顿正则方程。根据前面的讨论可知，哈密顿正则方程生

成的相流必定是辛同胚。反过来，只要要求经典系统的时间演化是辛同
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胚，也就是保持相空间辛结构，那它就必定是一个以时间t为参数的相流，

从就必定有哈密顿正则方程！相应的时间演化的生成元就称作哈密顿量，

哈密顿量的取值就称作能量。

由此可见，能量正是起源于时间演化之下保持信息守恒的要求，正是

这一要求使得经典系统的时间演化是相空间的相流，而这一相流的生成元

所刻画的就是能量。所以能量概念是以信息守恒为前提的，当然在热力

学情况下可以稍作推广，后文会进一步讨论这种推广，并将之和贾金斯

基(Jarzynski)等式联系起来。

3 信信信息息息守守守恒恒恒与与与统统统计计计力力力学学学

3.1 信信信息息息守守守恒恒恒与与与刘刘刘维维维尔尔尔定定定理理理

所以经典信息守恒的含义就是保持相空间辛结构，这样的系统必定是哈密

顿系统，其时间演化必定满足哈密顿正则方程，而时间演化的生成元就是

哈密顿量，也就是系统的能量。

另一方面，辛形式又决定了相空间的体积形式。对于一个n自由度的系

统，其相空间体积形式Ω可以写成

Ω = dp1 ∧ dq1 ∧ dp2 ∧ dq2.... ∧ dpn ∧ dqn =
1

n!
ω∧n, (36)

式中ω∧n表示n个ω以外积的形式乘起来。信息守恒保持辛形式就意味着，

信信信息息息守守守恒恒恒的的的经经经典典典系系系统统统必必必定定定保保保持持持相相相空空空间间间体体体积积积。。。 特别的，假设初始t = 0时

刻在相空间任取一个区域D0, 假设这个区域随时间演化到t时刻变成了区

域Dt, 即D0内的点在t时刻“流到”了Dt。则信息守恒必定意味着Dt的体积

等于D0的体积，记为

Vol(Dt) = Vol(D0). (37)

或者也可以简单地记作

Ωt = Ω0, (38)

式中Ω0表示0时刻的某个体积元，Ωt表示这个初始体积元随时间“流

到”t时刻所构成的t时刻体积元。这也就是著名的刘维尔定理。根据这

个定理，相空间的相流必定是一种不可压缩“流体”。
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在统计力学中，人们不再是考察单个系统，而是考察一个系综。换言

之，人们考察相空间的一个概率密度分布ρ(q, p, t)。即假设系统在t时刻以

概率ρ(q, p, t)Ω处在相点(q, p)附近的体积元Ω中。

由于系统在相空间的轨迹不会凭空产生或者消失，这就意味着

ρ
(
q(t), p(t), t

)
Ωt = ρ

(
q(0), p(0), 0

)
Ω0. (39)

进一步，根据刘维尔定理，Ωt = Ω0，从而必有ρ
(
q(t), p(t), t

)
= ρ
(
q(0), p(0), 0

)
,

换言之

0 =
dρ

dt
=
∂ρ

∂t
+ [ρ,H]. (40)

特别的，以上结果意味着，经典系综的信息量S(也就是熵)是不变的！

因为

dS

dt
=

d

dt

∫ (
− ρ ln ρ

)
Ωt = 0. (41)

所以，刘维尔定理意味着经典系综的信息量守恒。

正如大家熟知的，以上结论并不违反热力学第二定律！原因在于，热力

学定律是在所谓的热力学极限下考虑问题，更重要的是，上面考察的熵是

所谓的精细熵，而热力学熵则是一种粗粒化以后的粗粒化熵。经典系综的

精细熵是守恒的，但是热力学极限下的粗粒化熵却是随时间增长的。

以上推理过程告诉我们，经典系统的信息守恒必然意味着按香农熵定

义的信息量守恒。但是反过来则不然。从上面的推理过程可以看到，信息

量守恒只需时间演化保持相空间体积，而信息守恒要求保持相空间辛结

构。保持辛结构必定保体积，但是保体积不一定保辛结构，两者的区别可

以从Gromov的不可压缩定理(non-squeezing theorem)看得很清楚。在物理

上，这个区别是因为，保持信息量不变并不能完全排除系统和外界发生了

信息的交换，因为有可能是达到了信息的“收支平衡”。

3.2 推推推广广广到到到信信信息息息不不不守守守恒恒恒的的的经经经典典典力力力学学学

前面我们讨论的都是信息守恒情形，但是现实中很多系统与外界之间是存

在信息流耦合的，比如系统与外界存在热交换就属于这种情形，这一节我

们就是要把经典力学理论推广到这种信息不守恒情形。
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首先，根据刘维尔定理，对于信息守恒情形，我们有Ωt = Ω0，从而必

有

Ωt+ϵ = Ωt, (42)

式中ϵ为一个无穷小的时间间隔。推广到信息不守恒情形，那这个等式就不

能成立了，根据熵与相空间体积的关系，这时候我们应该有

ln
(Ωt+ϵ

Ωt

)
= δS

(
xt

)
, (43)

式中xt = x(t)，而δS(x)表示系统在ϵ时间之内熵的增加量，或者说从外界

流入的信息量。不妨将这个信息增量写成δS(xt) = κ(xt)ϵ，κ(xt)为为为单单单位位位时时时

间间间之之之内内内流流流入入入的的的信信信息息息量量量，，，如如如果果果是是是从从从系系系统统统中中中擦擦擦除除除信信信息息息，，，那那那么么么κ(xt)就就就取取取负负负值值值，

从而根据(43)式，即有

Ωt+ϵ = Ωt exp
(
κ(xt)ϵ

)
. (44)

将这个式子沿着相空间的演化轨迹积分，即有

Ωτ = Ω0 exp
( ∫ τ

0

κ(xt)dt
)
. (45)

另一方面，信息不守恒的系统当然不再是哈密顿正则系统，所以我们需

要对哈密顿正则方程(35)进行修正。最简单的修正是给它加上一个反映与

外界之间信息耦合的项κi(x)

dxi

dt
= ωij∂jH(x) + κi(x). (46)

问题是，加上的这一项和前面的单位时间输入的信息量κ(x)之间是什么关

系呢？

为了看清这两者的联系，我们根据坐标变换可以写出

Ωt+ϵ = Ωt|
∂xt+ϵ

∂xt

| = Ωt

(
1 + ϵ∂i(ẋ

i)
)
, (47)

式中|∂xt+ϵ

∂xt
|表示雅可比行列式。代入修改以后的演化方程(46)，即有

Ωt+ϵ = Ωt

(
1 + ϵ(ωij∂i∂jH + ∂iκ

i)
)
= Ωt

(
1 + ϵ∂iκ

i
)
. (48)
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与(44)式相比，即有

∂iκ
i(x) = κ(x). (49)

即是说，给定外界输入信息的比特率κ(x), 通过求解这个方程，我们就能得

出有信息输入时哈密顿正则方程的修正项κi(x)。这样，我们就把经典力学

推广到了信息不守恒情形。

比如对于一个有阻尼的振子，阻尼力的存在使得系统“摩擦发热”，根

据兰道尔原理，这就意味着系统的信息在不断被擦除，那么，什么信息被

擦除了呢？回答是系统的初值信息在不断被擦除，这个擦除初值信息的过

程，就是系统相空间的缩减过程。不难验证，有阻尼振子的相空间的确是

随着时间缩减的。从系统擦除信息意味着相空间缩减，向系统额外输入信

息当然就意味着相空间膨胀，因为需要更大的相空间来承载输入的信息。

3.3 信信信息息息不不不守守守恒恒恒与与与贾贾贾金金金斯斯斯基基基等等等式式式

下面我们来研究一个置于温度为T的恒温热库中的封闭系统，假设我们通

过对系统的控制参数λ(t)，使得它在两个热力学平衡态之间演化。在演化

的中间阶段，系统与热库之间有热量交换，因此这是一个信息不守恒的问

题，在演化的中间阶段，其满足的动力学方程应该是(46)。

令系统在0 ≤ t ≤ τ的时间段内经历从平衡态A到平衡态B的不可逆演

化过程。在演化的初末态，也就是A态和B态，系统可以用正则系综来描

述，从而相空间的概率分布函数为

ρ(x0, λA) = e[FA−H(x0,λA)]/T , ρ(xτ , λB) = e[FB−H(xτ ,λB)]/T , (50)

式中FA, FB分别为A,B态的自由能，并且我们已经取了玻尔兹曼常数kB =

1。

则我们有

ρ(xτ , λB)Ωτ = e[FB−H(xτ ,λB)]/TΩτ

= e[FB−H(xτ ,λB)]/T exp
( ∫ τ

0

κ(xt)dt
)
Ω0

= e

[
FB−FA−H(xτ ,λB)+H(x0,λA)+T (

∫ τ
0 κ(xt)dt)

]
/Tρ(x0, λA)Ω0. (51)
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式中第二个等号我们代入了(45)式。由于
∫ τ

0
κ(xt)dt是整个演化过程热库向

系统输入的熵，从而

Q = T (

∫ τ

0

κ(xt)dt) (52)

就是整个过程热库向系统输入的热量。因此

W = H(xτ , λB)−H(x0, λA)− T (

∫ τ

0

κ(xt)dt) (53)

就是从初态到末态的整个过程，外界对系统所做的功。

从而我们就可以把(51)式改写成

ρ(xτ , λB)Ωτ = e∆F/T e−W/Tρ(x0, λA)Ω0, (54)

式中∆F = FB − FA为初末态自由能的增量，这是一个纯粹的宏观状态参

量，与微观过程无关。将上面这个式子两边对相空间积分，利用概率密度

的归一化条件，即得

e−∆F/T = e−W/T , (55)

式中e−W/T表示e−W/T的统计平均值。(55)式就是著名的贾金斯基等式, 它

以定量的形式给出了封闭系统经历不可逆过程前后自由能的改变量与过程

中外界对系统所做的功的统计平均值之间的联系。

4 信信信息息息守守守恒恒恒与与与辛辛辛算算算法法法

写出了一个经典系统的哈密顿量，有了哈密顿正则方程，剩下的任务就是

求解它，然而可以精确求解的哈密顿系统并不多，更多的时候我们要求助

于数值计算方法。对于求解哈密顿正则方程，数学家冯康先生注意到“如

果在算法中能够保持辛几何的对称性，将可以避免人为耗散性这类算法的

缺陷，成为具有高保真性的算法”，冯先生进而在国际上首次提出了著名

的辛算法。与传统数值方法相比，辛算法具有长时间的稳定性和跟踪能

力，在哈密顿系统的数值求解上显示了压倒性的优越性。

辛算法的关键是，其差分格式保持相空间的辛结构！因此从本文的观点

来看，它具有信息守恒的特点，具体来说就是，辛算法既避免了在差分近
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似中人为向系统输入额外信息，也避免了人为擦除信息。在我们看来，这

正是辛算法具有优越性的根本原因。

下面我们以n = 1的单自由度系统为例，简单说明传统的显式欧拉算法

如何不具有信息守恒，而辛欧拉算法又如何保持信息守恒。当然，我们要

数值求解的，就是如下哈密顿正则方程

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
. (56)

取时间步长为∆t, 并令第m步迭代的正则变量取值为

qm ≡ q(m∆t), pm ≡ p(m∆t). (57)

记第m步时的哈密顿量为H(qm, pm), 则根据显式欧拉算法，我们将有如下

差分格式

qm+1 − qm
∆t

=
∂H

∂pm
pm+1 − pm

∆t
= − ∂H

∂qm
. (58)

根据这个差分格式，不难得到

dqm+1 =
(
1 + ∆t

∂2H

∂qm∂pm

)
dqm +∆t

∂2H

∂p2m
dpm

dpm+1 =
(
1−∆t

∂2H

∂qm∂pm

)
dpm −∆t

∂2H

∂q2m
dqm. (59)

由此不难计算辛形式，得

dpm+1 ∧ dqm+1 =
[
1 + (∆t)2

(∂2H
∂q2m

∂2H

∂p2m
− (

∂2H

∂qm∂pm
)2
)]
dpm ∧ dqm. (60)

显然，这种差分格式并不保持辛形式不变，从而信息不守恒！

而在辛欧拉算法中，人们近似取哈密顿量的函数形式为H(qm, pm+1)。

相应的差分格式为

qm+1 − qm
∆t

=
∂H

∂pm+1

pm+1 − pm
∆t

= − ∂H

∂qm
. (61)
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根据这个差分格式，不难得到

dqm+1 −∆t
∂2H

∂p2m+1

dpm+1 =
(
1 + ∆t

∂2H

∂qm∂pm+1

)
dqm(

1 + ∆t
∂2H

∂qm∂pm+1

)
dpm+1 = dpm −∆t

∂2H

∂q2m
dqm. (62)

进而容易得到

dpm+1 ∧ dqm+1 = dpm ∧ dqm. (63)

很显然，这种算法保持相空间辛结构，所以称之为辛欧拉算法。因此，根

据本文的观点，辛欧拉算法是信息守恒的。
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