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第三章 从等效原理到时空弯曲

陈陈陈童童童

3.1 等效原理

3.1.1 自由下落的小房间

1907年十一月的一天，坐在瑞士伯尔尼专利局里的爱因斯坦突然想到

一个他称之为这辈子最幸福的想法。爱因斯坦想到，一个从屋顶上自由下

落的人将感觉不到引力存在(失重)，或言之，对自由下落者来说，引力不

存在！这个看似平凡其实深刻的想法最终把爱因斯坦导向了正确的引力理

论，即广义相对论。

为了看清爱因斯坦的想法有何深刻之处，设想某一天你睡醒来，发现

自己在一个密闭的小房间里，你看不到外面，房间布置得就和一个太空舱

一样，但其实房间是在地面上方从高空中自由下落，不过这一点你并不知

道，请问你能否发现这个事实，你能否判断出自己不是被送上了外太空自

由漂浮？

爱因斯坦告诉你，你不能！因为这两种情况在物理学上是等价的。外

太空远离所有物质的自由漂浮当然是一个惯性系，因此爱因斯坦断言，自

由下落的一个小房间也是惯性系！也即是说，自由下落的你在小房间里观

察到的一切物理规律都和惯性系中的规律一样，都是狭义相对论中的那些

物理规律，而对你来说，引力场是不存在的！
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第三章 从等效原理到时空弯曲 3

如果用牛顿的语言来分析爱因斯坦的想法，那就是，自由下落的小房

间是一个加速参考系，其中的你会感受到一个向上的惯性力，这个惯性力

正好将你的重力抵消了，因此你就失重了。但是爱因斯坦说，惯性力之所

以总是能抵消重力，是因为它们本质是一回事，都是引力(或者也可以说都

是惯性力)！只不过，对于地面上静止不动的人来说，引力存在，但是对于

自由下落的你来说，引力不存在，所以随着你自由下落的小房间实质是一

个惯性系，就和漂浮在外太空的太空舱一样，在这个惯性系中，不含引力

的狭义相对论规律总是成立。

反过来，如果你真在外太空的太空舱里，那只要将太空舱加速，那你

也无法区分自己感受到的是惯性力还是引力，因为它们两者是一回事！换

言之，按照爱因斯坦的观点，引力就是相对于牛顿力学的惯性系加速的观

察者所感受到的力。

当然，正如爱因斯坦自己所强调的，以上所述只在一个足够小的小房

间里成立。自由下落的小房间只在一个足够小的局部上抵消掉了地球引力，

但在美国自由下落的小房间和在中国自由下落的小房间，是两个不同的小

房间！不存在一个参考系能整体地抵消掉全部地球引力。

3.1.2 潮汐力

自由下落的房间在多大的局部上抵消掉了引力呢？这个问题的答案很

容易分析，因为地球就受月球的引力作用，地球就是一个向着月球自由下

落的参考系，只不过地球不足够小，所以月球的影响不能完全抵消掉，这

个抵消不掉的影响就表现为潮汐力！同样，在地球表面自由下落的参考系

里也有地球施加的潮汐力，潮汐力就是不能被自由下落的局域参考系完全

抵消的引力。图(3.1)中(b)的小箭头表示的就是潮汐力。

为了进一步分析潮汐力，假设有一个在引力势Φ(x)中自由下落的小房

间，假设小房间下落的速度远小于光速，因此可以采用非非非相相相对对对论论论的的的分分分析析析。

取房间质心的坐标为x0(t), 由于在自由下落，所以它满足方程

ẍ0 = −∇Φ(x0). (3.1)

下面考察房间中一个质量为m的小球，它相对于房间的运动速度也远小于

光速，假定它相对于自由下落的房间质心的坐标为y，而在地面上的人看

来，小球的坐标为x(t)，因此

x(t) = x0(t) + y(t). (3.2)
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图 3.1: 一圈正在自由下落的小球：(a)从地面上观察者的角度看，(b)从跟

随小球一起自由下落的观察者角度看。图片来自A Zee, Einstein Gravity in

a Nutshell

由于房间很小，所以小球在这个自由下落参考系中的坐标y(t)是一个小

量！

我们可以在地面参考系中写出小球的作用量

S[x(t)] = m

∫
dt
[1
2
ẋ2 − Φ(x)

]
. (3.3)

代入(3.2)式，并将Φ(x0 + y)按照小量y展开，即可得到

S[x(t)] =m

∫
dt
[1
2
(ẋ0 + ẏ)2 − Φ(x)

]
=m

∫
dt
[1
2
ẋ2
0 +

1

2
ẏ2 + ẋi

0ẏ
i − Φ(x0)− ∂iΦ(x0)y

i

− 1

2
∂i∂jΦ(x0)y

iyj + ...
]

=m

∫
dt
[1
2
ẋ2
0 − Φ(x0) +

1

2
ẏ2 − ẍi

0y
i − ∂iΦ(x0)y

i

− 1

2
∂i∂jΦ(x0)y

iyj + ...
]
. (3.4)

式中最后一个等号是对ẋi
0ẏ

i进行分部积分，代入ẍi
0 = −∂iΦ(x0)，容易看

到y的线性项正好消去了！另外，x0的运动是给定的，所以与之相关的项可

以丢掉，进而即有小球在自由下落参考系中的作用量，为

S[y(t)] = m

∫
dt
[1
2
ẏ2 − 1

2
∂i∂jΦ(x0)y

iyj + ...
]
. (3.5)
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式中1
2
∂i∂jΦ(x0)y

iyj代表的正是潮汐力的势能，因为这一项正是没有完全抵

消的引力的贡献。

以上结果告诉我们，潮汐力的贡献是一个二阶小量。换言之，对于足

够小的自由下落参考系而言，引力的效应直到一阶小量为止都完全抵消了，

只在二阶小量上对自由下落参考系里的小球作用量有修正！

不妨简单举例计算一下刻画潮汐力的张量∂i∂jΦ(x0)。比方说对于Φ(x) =

−GM
|x|(比如地球的引力势)，容易算得

∂i∂jΦ(x) = GM
δij − 3eiej

|x|3
, (3.6)

式中ei = xi/|x|。比如说在沿着z轴的x = (0, 0, r)点，我们有

∂i∂jΦ(x) =
GM

r3

1 0 0

0 1 0

0 0 −2

 . (3.7)

即是说，在x = (0, 0, r)点附近，x, y方向的潮汐力是指向这一点的，而z方

向的潮汐力是背离这一点的，正如图(3.1)中(b)的小箭头所示。

3.1.3 局部惯性系与等效原理

上两小节中自由下落的足够小房间就是所谓的局部惯性系，因为在这

个参考系中，狭义相对论的规律直到一阶小量为止都成立，引力的效应只

在二阶小量上体现为潮汐力的势能。在上一小节中，为了分析的方便，我

们假定了粒子运动的速度远小于光速，从而可以用非相对论近似。现在，

我们要进行完整的相对论分析。

首先，假定在引力场中自由下落的粒子在地面坐标系(非局部惯性

系)中的坐标为xµ(σ)。假定跟着粒子一起下落的局部惯性系的坐标原点

为xµ
0(σ)。记粒子在此局部惯性系中的坐标为yµx0

(
x(σ)

)
，由于x0为坐标原

点，所以当然有yµx0
(x0) = 0。根据上面的分析，只要局部惯性系足够小(从

而可以假定yµx0
很小)，粒子的作用量就是标准的狭义相对论自由粒子作用

量，即为

S[yx0(σ)] = −m

∫
dτ = −m

∫
dσ

√
−ηµν

dyµx0

dσ
|x0

dyνx0

dσ
|x0 . (3.8)

引力的效应只在yµx0
的二阶小量上对上述作用量有修正，因此在坐标原

点x0，引力场的效应可以完全忽略。
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下面，假设我们变换到地面上的非局部惯性系xµ(σ)，则粒子的作用量

将为

S[x0(σ)] = −m

∫
dσ

√
−ηµν

dyµx0

dσ
|x0

dyνx0

dσ
|x0

= −m

∫
dσ

√
−ηµν

∂yµx0

∂xα
|x0

∂yνx0

∂xβ
|x0 ·

dxα
0

dσ

dxβ
0

dσ

= −m

∫
dσ

√
−gαβ(x0)

dxα
0

dσ

dxβ
0

dσ
. (3.9)

式中gαβ(x0)为(注意yµx0
不只是x的函数，且它的定义本身依赖于x0)

gαβ(x0) = ηµν
∂yµx0

∂xα
|x0

∂yνx0

∂xβ
|x0 . (3.10)

但是我们说过，在非局部惯性系中，是有引力场的，这个引力场只可能

由gαβ(x0)来刻画！

假定我们让自由下落的x0变动，即在任意一个x点都定义一个自由下落

的局部惯性系，那就能得到一个一般地刻画引力场的gαβ(x)场。从而可以

将引力场中自由粒子的作用量写为

S[x(σ)] = −m

∫
dτ = −m

∫
dσ

√
−gαβ(x)

dxα

dσ

dxβ

dσ
. (3.11)

(3.11)式的写法中其实对于坐标系xµ没有任何限制，我们当然也可以采

用另外一个比方说x′µ坐标系，这时候粒子的作用量有如下关系

S[x(σ)] = −m

∫
dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ

= −m

∫
dσ

√
−g′µν(x

′)
dx′µ

dσ

dx′ν

dσ
. (3.12)

很显然，刻画引力的gµν(x)场不同坐标下的变换关系为

g′ρσ(x
′) = gµν(x)

∂xµ

∂x′ρ
∂xν

∂x′σ . (3.13)

这与前面第一章黎曼几何中度规场在不同坐标下的变换关系完全一样。

这强烈地暗示我们可以把刻画引力场的gµν(x)场看成是黎曼几何中的

度规场，从而将时空看成是某种弯曲的黎曼几何，具有如下黎曼度规

ds2 = gµν(x)dx
µdxν . (3.14)



第三章 从等效原理到时空弯曲 7

它与在引力场中自由运动粒子固有时的关系是

−dτ 2 = ds2. (3.15)

但引力场是黎曼度规这个看法要成立的话，还需要验证黎曼几何的局部平

坦性质，即是说，需要验证总是存在局部坐标系(有时候称之为黎黎黎曼曼曼正正正则则则坐坐坐

标标标系系系)，使得其中度规场在给定点的泰勒展开直到一阶小量为止都是平坦

的，只在二阶小量上受黎曼曲率张量的修正。

但根据第一章中的相关论证可知，局部平坦性本身正是坐标变换关

系(3.13)的结果。实际上，这个体现局部平坦的黎曼正则坐标系正是等效

原理中所说的局部惯性系，因为根据(3.10)式，变换到局部惯性系中的度

规场在坐标原点x0处的值正是平坦的闵可夫斯基度规张量ηµν，而且我们也

知道，在局部惯性系中，度规场刻画的引力的确只在二阶小量上(在x0点的

泰勒展开)有效应，也就是潮汐力。这意味着，潮汐力在数学上就是某种黎

曼曲率，而引力场完全是一种黎曼几何，有引力场的时空一般来说是弯曲

的。

所以所谓的爱因斯坦等效原理(有时候也称之为强等效原理)，说的正

是：在在在引引引力力力场场场中中中，，，总总总是是是存存存在在在局局局部部部惯惯惯性性性系系系，，，而而而且且且局局局部部部惯惯惯性性性系系系正正正是是是黎黎黎曼曼曼几几几何何何

中中中的的的黎黎黎曼曼曼正正正则则则坐坐坐标标标系系系。由此可知，在在在局局局部部部惯惯惯性性性系系系的的的坐坐坐标标标原原原点点点，，，度度度规规规场场场对对对

时时时空空空坐坐坐标标标的的的一一一阶阶阶偏偏偏导导导均均均等等等于于于零零零，而二阶偏导由于要反映黎曼曲率所以通常

不为零。局部惯性系的存在反映了引力场可以由一种局部平坦的时空几何

来描述，这样的几何当然就是黎曼几何。

另外，(3.12)式告诉我们，对于引力场中的自由落体，其质量m果然是

作为一个整体的常数因子而出现的，这正符合第一章所说的弱等效原理的

要求。即是说，弱等效原理是爱因斯坦等效原理的一个推论，所有对弱等

效原理的实验检验同时也是在检验爱因斯坦的等效原理。

由于黎曼度规gµν(x)描写了引力场，而引力场是一个动力学场，所以

在广义相对论中，黎曼度规本身是动力学变量，有动力学自由度，需要寻

找它们所满足的动力学微分方程，也就是后面的章节中将要讲述的爱因斯

坦场方程。从动力学这个角度来说，广义相对论与黎曼几何可不是一回事，

黎曼几何的黎曼度规是人为给定的，而广义相对论中的黎曼度规是通过动

力学方程求解出来的，无需预先给定！

当然，广义相对论中的黎曼度规gµν(x)与标准黎曼几何中的黎曼度规

还有一个区别，即：广义相对论中的黎曼度规作为一个4× 4矩阵，它有一

个负本征值和三个正本征值(这从定义式(3.10)可以看出)，分别对于一个时
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间方向和三个空间方向。有时候称这种度规为闵氏符号度规。而标准黎曼

几何中的黎曼度规通常是正定矩阵，也称之为欧氏符号度规。

3.2 引力场中的自由粒子

3.2.1 统一自由落体定律

在上一节中，我们已经看到，根据等效原理，引力场中自由落体的相

对论作用量为

S[x(σ)] = −m

∫
dτ = −m

∫
dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ
(3.16)

但在前面第一章中，我们也给出了牛顿力学中自由落体的作用量，为

S = m

∫
dt
[1
2
ẋ2 − Φ(x)

]
. (3.17)

如何统一这两个作用量呢？

实际上，牛顿力学中的自由落体是广义相对论自由落体的非相对论极

限，为了看清楚这一点，我们只需取(i, j = 1, 2, 3为空间指标)

g00(x) = −(1 + 2Φ(x)), g0i(x) = 0, gij(x) = δij. (3.18)

这基本上就是闵可夫斯基度规ηµν，只不过用引力势Φ对g00分量作了一个小

修正，即假定1

Φ(x) ≪ 1. (3.19)

从而相对论作用量(3.16)可以重写成

S[x(σ)] = −m

∫
dτ = −m

∫ √
(1 + 2Φ(x))dt2 − dx2

= −m

∫
dt
√
1 + 2Φ(x)− v2

≈ m

∫
dt
[1
2
v2 − Φ(x)

]
(3.20)

上式最后一行我们利用了非相对论极限v ≪ 1,Φ ≪ 1。可见，从广义相对

论的自由落体作用量中，我们能够正确地得到非相对论极限下的自由落体

作用量。这也是对作用量(3.16)正确性的一个检验。

1注意，我们采用了c = 1单位制，如果恢复c，那即是Φ(x)/c2 ≪ 1.
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3.2.2 测地线方程

根据作用量(3.16)的形式和最小作用量原理可知，引力场中的自由落

体将走固有时极大的路径。数学上常常称这样的路径为起末两点间的测地

线，或者更精确地称之为类时测地线。这是因为dτ 2和线元ds2只差一个负

号，因此人们完全可以将固有时看作是对粒子世界线上两点间曲线弧长的

一个度量。固有时极大相当于说粒子走的是弧长距离最长的路径。

之所以粒子走的是最长路径而不是最短路径，是因为广义相对论中的

度规是闵氏符号度规而不是欧氏符号度规。但这里的本质和欧氏符号度规

下的最短路径其实是一样的。而在黎曼几何中，两点间的最短路径就叫做

测地线，它是平坦欧几里得空间直线概念的推广。与此类比，我们就称引

力场中自由粒子走的是测地线。

而之所以强调是类时测地线，是因为有质量粒子走的一定是类时曲线，

即只能从每一点的光锥内部穿过的曲线。或者说，曲线上每一点的四维速

度uµ = dxµ

dτ
都是类时向量，即满足

gµνu
µuν < 0. (3.21)

实际上，由−dτ 2 = gµνdx
µdxν，很显然有gµνu

µuν = −1。所有的概念都和

上一章狭义相对论中的相应概念类似，只是将度规张量从闵可夫斯基度

规ηµν替换成了一般性的gµν(x)。

为了利用最小作用量原理导出类时测地线的方程，我们可以在(3.16)中

记

L =

√
−gµν

dxµ

dσ

dxν

dσ
, (3.22)

因此当取固有时本身为世界线参数时，即σ = τ时，我们有L = 1，即

−gµν
dxµ

dτ

dxν

dτ
= 1. (3.23)

现在，我们可以把相对论粒子的作用量(3.16)写成S[x(σ)] = −m
∫
dσL,

为了导出粒子的运动方程，我们需要计算变分δS[x(σ)] = −m
∫
dσδL。利

用

LδL =
1

2
δ(L2) = −gµν

dxµ

dσ
δ
(dxν

dσ

)
− 1

2
δgµν

dxµ

dσ

dxν

dσ

= −gµρ
dxµ

dσ

d(δxρ)

dσ
− 1

2
(∂ρgµν)

dxµ

dσ

dxν

dσ
δxρ. (3.24)
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可以得到

δS[x(σ)] = −m

∫
dσδL = m

∫
dσ

1

L

[
gµρ

dxµ

dσ

d(δxρ)

dσ
+

1

2
(∂ρgµν)

dxµ

dσ

dxν

dσ
δxρ

]
=m

∫
dσ

d

dσ

( 1
L
gµρ

dxµ

dσ
δxρ

)
−m

∫
dσ

[ d

dσ

( 1
L
gµρ

dxµ

dσ

)
− 1

2L
(∂ρgµν)

dxµ

dσ

dxν

dσ

]
δxρ

=−m

∫
dσ

[ d

dσ

( 1
L
gµρ

dxµ

dσ

)
− 1

2L
(∂ρgµν)

dxµ

dσ

dxν

dσ

]
δxρ. (3.25)

式中最后一个等于号是利用了路径两端是固定的(即在两端δxρ = 0)，从而

全微分项的积分结果为零。进而根据最小作用量原理δS[x(σ)] = 0，就可以

得到运动微分方程

δS

δxρ(σ)
= −m

[ d

dσ

( 1
L
gµρ

dxµ

dσ

)
− 1

2L
(∂ρgµν)

dxµ

dσ

dxν

dσ

]
= 0. (3.26)

我们可以通过取σ = τ来简化这个运动方程，这时候L = 1，从而即有

0 =
d

dτ

(
gµρ

dxµ

dτ

)
− 1

2
(∂ρgµν)

dxµ

dτ

dxν

dτ

=gµρ
d2xµ

dτ 2
+ (∂νgµρ)

dxµ

dτ

dxν

dτ
− 1

2
(∂ρgµν)

dxµ

dτ

dxν

dτ

=gµρ
d2xµ

dτ 2
+

1

2

(
∂µgνρ + ∂νgµρ − ∂ρgµν

)dxµ

dτ

dxν

dτ
. (3.27)

将最后一行乘上度规矩阵gµρ的逆逆逆矩矩矩阵阵阵gρσ(也是一个对称矩阵)，满足gµρg
ρσ =

δσµ , 即可以得到

d2xσ

dτ 2
+ Γσ

µν

dxµ

dτ

dxν

dτ
= 0. (3.28)

方程(3.28)就是所谓的测地线方程，式中

Γσ
µν =

1

2
gσρ

(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
(3.29)

称作克里斯托夫联络。很显然，Γσ
µν关于两个下指标对称，即满足

Γσ
µν = Γσ

νµ. (3.30)

至于为什么叫联络，后面的章节中会进一步解释。

测地线方程不依赖于粒子质量，因此也可以推广到零质量粒子(比如光

子)，只不过这时候由于gµνdx
µdxν = 0, 即固有时恒为零，从而不能选固有
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时为世界线的参数。不过这时候依然可以选择某个所谓的仿射参数σ，使

得下面方程成立

d2xρ

dσ2
+ Γρ

µν

dxµ

dσ

dxν

dσ
= 0

gµν
dxµ

dσ

dxν

dσ
= 0. (3.31)

我们称这种测地线为零性测地线。

为了得到测地线方程的非相对论版本，我们只需对非相对论落体作用

量(3.17)变分，即可得

d2xi

dt2
= −∂iΦ. (3.32)

另外，根据(3.20)可知，在v和Φ的最低阶(零阶)近似上，有

dτ = dt. (3.33)

所以这两个式子又可以写成(在最低阶近似上),

d2t

dτ 2
= 0,

d2xi

dτ 2
= −∂iΦ

dt

dτ

dt

dτ
. (3.34)

与测地线方程(3.28)进行比较，即可得到在非相对论极限下

Γi
00 = ∂iΦ, (3.35)

其余的联络分量均为零。∂iΦ正是引力场强度，由此可知，克里斯托夫联络

正是对引力场强度的一个相对论刻画！

另外，我们也知道，潮汐力由Φ的二阶偏导∂i∂jΦ刻画，也就是由∂jΓ
i
00刻

画。前面说过，潮汐力的相对论性刻画就是黎曼曲率张量，由此可知黎曼

曲率张量必定和克里斯托夫联络对时空坐标的一阶偏导有关，具体什么关

系我们在后面的章节中再来研究。

3.2.3 克里斯托夫联络与等效原理

克里斯托夫联络的坐标变换

由于自由落体的作用量(3.12)不依赖于特定坐标系，所以测地线

方程(3.28)的形式当然也不依赖于特定坐标系。即是说，从xµ坐标变换

到x′µ坐标，xµ(τ) = xµ
(
x′(τ)

)
，依然有方程

d2x′ρ

dτ 2
+ Γ′ρ

µν

dx′µ

dτ

dx′ν

dτ
= 0. (3.36)
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另一方面

d2xσ

dτ 2
=

d

dτ

( ∂xσ

∂x′ρ
dx′ρ

dτ

)
=

∂xσ

∂x′ρ
d2x′ρ

dτ 2
+

d

dτ

( ∂xσ

∂x′µ

)dx′µ

dτ

=
∂xσ

∂x′ρ
d2x′ρ

dτ 2
+

∂2xσ

∂x′µ∂x′ν
dx′µ

dτ

dx′ν

dτ

=
(
− ∂xσ

∂x′ρΓ
′ρ
µν +

∂2xσ

∂x′µ∂x′ν

)dx′µ

dτ

dx′ν

dτ
(3.37)

上式最后一行我们代入了x′坐标系中的测地线方程(3.36)。

进而根据x坐标系中的测地线方程(3.28)，我们有

0 =
d2xσ

dτ 2
+ Γσ

αβ

dxα

dτ

dxβ

dτ

=
d2xσ

dτ 2
+ Γσ

αβ

∂xα

∂x′µ
∂xβ

∂x′ν
dx′µ

dτ

dx′ν

dτ
, (3.38)

代入(3.37)式，即可得(
− ∂xσ

∂x′ρΓ
′ρ
µν +

∂2xσ

∂x′µ∂x′ν + Γσ
αβ

∂xα

∂x′µ
∂xβ

∂x′ν

)dx′µ

dτ

dx′ν

dτ
= 0

⇒− ∂xσ

∂x′ρΓ
′ρ
µν +

∂2xσ

∂x′µ∂x′ν + Γσ
αβ

∂xα

∂x′µ
∂xβ

∂x′ν = 0. (3.39)

由此即可以得到克里斯托夫联络在不同坐标下的变换关系

Γ′ρ
µν =

∂x′ρ

∂xσ

(
Γσ
αβ

∂xα

∂x′µ
∂xβ

∂x′ν +
∂2xσ

∂x′µ∂x′ν

)
. (3.40)

局部惯性系回顾

根据等效原理，在任意时空点P，我们都可以选取一个局部惯性系(也

就是黎曼正则坐标系)，使得在此局部惯性系中

gµν(P ) = ηµν , ∂ρgµν |P = 0. (3.41)

当然，通常来说，∂σ∂ρgµν |P ̸= 0，因为黎曼曲率通常不为零。进而根据克

里斯托夫联络的定义式(3.29)，即可知，在此局部惯性系中

Γρ
µν(P ) = 0. (3.42)

而且通常来说∂σΓ
ρ
µν |P ̸= 0。即在局部惯性系的P点，不存在引力场(引力

场完全被惯性力抵消了)！从而在局部惯性系中，自由落体的测地线方

程(3.28)变为

d2xρ

dτ 2
|P = 0. (3.43)
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即在局部惯性系的P点，自由落体作直线运动。从这个角度我们也可以理

解为什么说测地线是直线在弯曲时空中的推广。

另一方面，根据克里斯托夫联络的定义(3.29), 可以得到

gρσΓ
σ
µν =

1

2
(∂µgνρ + ∂νgµρ − ∂ρgµν). (3.44)

将三个指标ρ, µ, ν进行轮换, 即可得

gµσΓ
σ
νρ =

1

2
(∂νgρµ + ∂ρgνµ − ∂µgνρ), (3.45)

gνσΓ
σ
ρµ =

1

2
(∂ρgµν + ∂µgρν − ∂νgρµ). (3.46)

将这两个式子相加，即可得

gµσΓ
σ
νρ + gνσΓ

σ
ρµ = ∂ρgµν . (3.47)

利用Γρ
µν关于两个下指标对称，即可得

∂ρgµν − gµσΓ
σ
ρν − gσνΓ

σ
ρµ = 0. (3.48)

这个结果非常重要，在后面的章节中常用。

反过来，(3.48)式以及Γρ
µν关于两个下指标对称的性质也唯一地决定了

克里斯托夫联络。为了看清楚这一点，我们将(3.48)式的三个指标ρ, µ, ν进

行轮换，从而得到

∂µgνρ − gνσΓ
σ
µρ − gσρΓ

σ
µν = 0, (3.49)

∂νgρµ − gρσΓ
σ
νµ − gσµΓ

σ
νρ = 0. (3.50)

利用Γ·
·· 关于两个下指标对称的性质计算(3.49)+(3.50)-(3.48)，并将结果除

以2，即可得(3.44)式，从而即有克里斯托夫联络的表达式(3.29)。

由(3.48)式可知，若在某个坐标系的P点有Γρ
µν(P ) = 0, 则也必定

有∂ρgµν |P = 0。综上可知，∂ρgµν |P = 0的要求和Γρ
µν(P ) = 0的要求完全

等价。从而即知局部惯性系的等价定义，就是使得下式成立的参考系

gµν(P ) = ηµν , Γρ
µν(P ) = 0. (3.51)

等效原理从物理上说，对于任意引力场，这样的坐标系总存在。而黎曼几

何的局部平坦性质则是从数学角度证明，这样的坐标系总存在。实际上，

正因为等效原理从物理上确保了这样的参考系总存在，所以广义相对论的

时空几何才是黎曼几何！
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3.3 等效原理的预言

3.3.1 引力红移

根据本章第一节的知识，引力场中的一架跟着物体一起运动的标准钟，

它测到一个物理过程的固有时dτ为

dτ =
√

−gµνdxµdxν . (3.52)

特别的，如果物体和钟都静止，则有

dτ =
√
−g00(x)dt ⇒ dt = dτ(−g00)

−1/2, (3.53)

式中dt就是这个物理过程的坐标时, 这个式子告诉我们，引力场的存在影响

时间的流逝！

但是，我们不能通过简单地测量某地物理过程的坐标时dt，并将它和

固有时dτ进行比较来确定引力场如何影响时间。这是因为，引力场对一切

事物的时间流逝施加了同样的影响。也即是说，如果标准钟指出某一物理

过程在没有引力场并静止时进行了一秒钟，那在有引力场时它还是指出进

行了一秒钟，因为标准钟和物理过程以同样的方式受引力场影响。换言之，

同样的物理过程，无论它是否在引力场中，无论它在引力场的什么位置，

它用当地的标准钟测出来的固有时总是一样的！因为引力场对时间的标准

和对物理过程一样，施加了同样的影响。

简单来说，假设你正在黑洞的边上，那在空间无穷远处的观察者看来，

很可能你的时间会变慢，你的一切物理过程都变得很缓慢，但是，对于当

地的你来说，你发现不了任何异常，你也感觉不到任何变慢，因为引力场

对你的物理过程和你的时间标准施加了同样的影响。

为了测出引力场如何影响时间，我们需要将引力场中两个不同地点的

物理过程进行比较。例如，假设一个位于xE位置的观察者(不妨称之为发

射者(emitter))，正以dτE的固有时间间隔发射电磁波信号给位于xR位置的

接收者(receiver)。假设发射者和接收者均静止在引力场中，并且假定引力

场是一个不随时间变化的静态引力场。那么信号从xE处传到xR处所需的坐

标时t将是一个常数，因此相继到达接收者的两个信号的坐标时之差dtR将

等于它们离开发射者时的坐标时之差dtE, 即dtR = dtE。由(3.53)式，

dtR = dtE = dτE(−g00(xE))
−1/2. (3.54)
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对于xR位置的接收者来说，他将测到信号的固有时间间隔dτR为

dτR = (−g00(xR))
1/2dtR = (−g00(xR))

1/2dtE. (3.55)

联立(3.54)式和(3.55)式，即有

dτR
dτE

=
(g00(xR)

g00(xE)

)1/2

. (3.56)

对于g00(x) = −(1 + 2Φ(x))的牛顿引力场，我们有

dτR
dτE

=
(1 + 2Φ(xR)

1 + 2Φ(xE)

)1/2

. (3.57)

特别的，假设Φ(x) = −GM
|x|，假设发射者处于引力场中，而接收者位

于空间无穷远处，从而Φ(xR) → 0。则(3.57)式告诉我们，

dτR
dτE

=
(
1− 2G

M

|xE|

)−1/2

> 1. (3.58)

即是说，在无穷远处的接收者看来，信号的发射时间间隔变长了！换言之，

在无穷远处的观察者看来，引力场中的发射者的时间变慢了！这就是所谓

的引力场的时间膨胀效应，也即是引力场使得时间变慢的效应。但要强调

的是，这个变慢是在无穷远处的观察者看来变慢了，对于引力场中当地的

观察者而言，他不会感觉到任何异常，也不会感觉到任何变慢。

由于电磁波的频率是时间周期的倒数，因此，假设记发射者发射电磁

波的频率为νE，接收者接收到的电磁波频率为νR，则根据(3.56)式，有

νR
νE

=
(g00(xR)

g00(xE)

)−1/2

. (3.59)

对于g00(x) = −(1 + 2Φ(x))的牛顿引力场，我们有

νR
νE

=
(1 + 2Φ(xR)

1 + 2Φ(xE)

)−1/2

. (3.60)

对于Φ ≪ 1的弱引力场，这个结果可以进一步近似成

νR
νE

= 1 + Φ(xE)− Φ(xR). (3.61)

或者引入∆ν = νR − νE，ν = νE，进而将这个结果写成

∆ν

ν
= Φ(xE)− Φ(xR). (3.62)
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特别的，假设发射者处于Φ(x) = −GM
|x|的引力场中，接收者位于空间

无穷远处，则上式就成为

∆ν

ν
= Φ(xE) = −G

M

|xE|
< 0. (3.63)

即是说，对于无穷远处的观察者而言，引力场中的信号频率变小了！或者

说，信号向红端移动了。这就是所谓的引力红移！

自从广义相对论预言了引力红移以后，差不多过了近50年它才被实验

证实！以太阳为例，记其半径为R, 质量为M，则在太阳表面(恢复了光速c)

Φ(R)/c2 = GM/(Rc2) ∼ 10−6。这就是太阳所产生的引力红移的数量级。

但是在太阳表面发光的原子由于剧烈的热运动，它还要受到一个标准的多

普勒频移，而且多普勒频移在量级上将完全盖过太阳的引力红移，这就使

得太阳的引力红移无法测量。对于地球而言，其表面GM/(Rc2) ∼ 10−9，

所以地球的引力红移似乎更难测量。好在，1958年发现了穆斯堡尔效应。

什么是穆斯堡尔效应呢？正常来说，晶体原子的发光谱线会被原子发光时

的反冲加宽。但是穆斯堡尔发现，在一定的条件下，晶体中的原子将“锁

链”在一起，使得每个原子在发光时的反冲都转化为整个晶体的微不可

见的反冲，从而使得原子的发光谱线变得很尖细。1960年，庞德、雷布卡

和斯奈德采用穆斯堡尔效应的实验方法，测量由地面上高度相差22.6米的

两点之间引力势的微小差别所造成的谱线频率的移动，定量地验证了引

力红移。结果表明实验值与理论值完全符合！今天，即使在我们日常使用

的GPS系统中，也已经考虑了引力红移所带来的修正了，从这个意义上来

说，广义相对论早已走进了人们的日常生活。

3.3.2 光线偏折

虽然引力红移过了近50年才得到实验验证，但是等效原理的另一个预

言在提出后却很快得到了验证，这就是光线偏折。

根据牛顿的引力理论，任何有质量的物体都要受到引力场的作用。但

是，光是没有质量的，当然光有能量，那引力场会不会对光线产生作用

呢？根据爱因斯坦的等效原理，答案是肯定的，引力场的存在会使得光线

偏折。

为了回答引力场如何作用于光线，根据等效原理，我们只需分析光线

在太空中的一个加速参考系中如何运动。如图(3.2)所示，假设在太空中一

个“向上”加速运动的小房间里，一个手持激光枪的人水平地开了一枪，
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在这个加速参考系中，激光枪打出的光线如何运动呢？很显然，由于小房

间在向上加速，光线看起来就会往下偏折，如图(3.2)所示。

图 3.2: 加速参考系中，激光枪打出的光线会偏折。图片来自A Zee, Einstein

Gravity in a Nutshell

而根据等效原理，向上加速的参考系等效于一个向下的引力场(惯性力

等效于引力)，因此我们就可以得到结论，即在引力场中，光线会偏折！

实际上根据牛顿的理论，对于质量为m以光速c运动的粒子，引力场也

会使得它偏折，有一个牛顿理论的偏折量。但是，这里我们没有具体计算

广义相对论中光线的精确偏折量，在后面的章节中我们将完成这样的计算，

我们将发现，广义相对论给出的偏折量是牛顿理论偏折量的两倍！对于光

线刚好掠过太阳表面的情况，广义相对论给出的偏折量约为1.75弧秒。

要检验光线通过大质量物体附近发生偏折的程度，最好的机会莫过于

在日全食时对太阳所在的天区进行照相。在日全食时拍摄若干照相底片，

然后等若干时间之后，太阳远离了发生日食的天区，再次对该天区拍摄若

干底片。通过将前后两组底片进行对比测算，就能确定星光被偏折的程

度。

为了回应爱因斯坦关于光线偏折的预言，爱丁顿和戴森组织了两支考

察队去观测1919年5月29日发生的日食，分别到非洲几内亚海湾的普林西比

岛（Principe）和巴西北部的索布拉尔（Sobral）做了观测。两支考察队所

得到的观测结果与爱因斯坦的预言符合得很好。但是这一结果后来受到不

少质疑，因为导致结果产生误差的因素很多，而爱丁顿的处理更远没有达

到无懈可击。
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光学观测的精度似乎到了极限，后来人们想到通过观测太阳对无线电

波的偏折来检验广义相对论的预言。1974年到1975年间，福马伦特（A. B.

Fomalont）和什拉梅克（R. A. Sramek）利用甚长基线干涉技术，观测了

太阳对三个射电源的偏折，最后（1976年）得到太阳边缘处射电源的微波

被偏折1.761″±0.016″。终于，天文学家以误差小于百分之一的精度证实

了广义相对论的预言。到1991年，更是利用多家天文台协同观测的技术，

以万分之一的精度证实了广义相对论对光线弯曲的预言。只不过这时观测

的不再是可见光而是无线电波。


