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第三章 对称性与对称性自发破缺

陈陈陈童童童

上一章中我们已经看到洛伦兹不变性如何限制经典场论的作用量，更

一般的，场论系统的任何对称性都限制着它的作用量，这种限制通过要求

作用量在对称变换之下保持不变来完成。在现代物理中有一条构造作用量

的基本原则，即首先猜测出场论系统的对称性，然后再写出这些对称性所

允许的作用量的一般形式。物理学家杨振宁先生称这条原则为：“对称性决

定相互作用”。

在现代物理中，对称性的重要性再怎么强调都不为过。比方说，对称

性和守恒定律密切相关。每一种连续对称性都对应着一条守恒定律，这就

是所谓的诺特定理。在《经典力学新讲》中，我们对于粒子系统证明过这

条定理，现在，我们要将这个证明推广到场论系统。

在基本规律的层次上，我们的世界也许有很高的对称性，但是我们所

生活的低能世界却没有那么高的对称性，它反而展现出千奇百怪的多样性。

如何从基本层次的对称性到现实的多样性呢？回答是通过对称性的破缺，

尤其是通过对称性的自发破缺。所谓对称性的自发破缺，指的就是作用量

是对称的，但是运动微分方程的解没有那么高的对称性，作用量的对称性

在解的层次上破缺了，特别的，场方程的真空解没有那么高的对称性，真

空破缺了作用量的对称性，这就是对称性自发破缺。本章我们还将研究这

种自发破缺是如何发生的。

为了简单起见，本章将限于考察标量场系统。
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第三章 对称性与对称性自发破缺 3

3.1 对称性与守恒定律

3.1.1 诺特定理

为了让读者看清楚诺特定理证明的关键思想，我们先限于考察不改变

时空坐标的对称变换，后文在考察时空平移对称性和洛伦兹对称性时再推

广到时空坐标跟着变换的对称性。

假设我们的场论系统由n个标量场组成，记为ϕa(x), a = 1, 2, ..., n，相

应的作用量泛函记为S[ϕ] =
∫
d4xL(ϕ, ∂µϕ)。假设S[ϕ]在某簇连续对称变

换g(θ)的作用下保持不变，这里θ为这簇连续对称变换所依赖的连续参数，

特别的，θ = 0对应恒等变换(即不进行任何变换操作)。为了证明诺特定理，

下面考察无穷小对称变换，即θ = ϵ的对称变换, ϵ为无穷小量。假设在此变

换之下，时空坐标保持不变，但是场位形ϕa(x)变换为ϕ̃a(x),

ϕa(x) → ϕ̃a(x) = ϕa(x) + ϵF a(ϕ(x)), (3.1)

F a(ϕ(x))为场ϕ的某个函数，其具体形式取决于对称变换的定义。作用量的

变换不变意味着，在此无穷小变换前后，作用量的改变量为零，即

δS = S[ϕ̃]− S[ϕ] =

∫
d4x
(
L(ϕ̃, ∂µϕ̃)− L(ϕ, ∂µϕ)

)
= 0. (3.2)

前面的无穷小量ϵ是一个常数，下面我们将它变成一个关于时空坐

标x的任意函数ϵ(x), 同时要求ϵ(x)在时空的无穷远处趋于零，则原来的无

穷小对称变换就变成如下无穷小变换，

ϕa(x) → ϕ̃a(x) = ϕa(x) + ϵ(x)F a(ϕ(x)), (3.3)

它在时空无穷远处保持ϕ不变。现在这个变换就不再是对称变换了，从而

变换前后的作用量一定会发生改变。注意到拉格朗日密度里只含一阶偏导，

从而容易知道变换前后作用量的改变量必定为

δS =

∫
d4xJµ∂µϵ, (3.4)

式中Jµ为ϕ和∂νϕ的某个函数。特别的，作用量的改变量只能依赖于∂µϵ而

不能依赖于ϵ，这是因为，当我们将ϵ(x)恢复为无穷小对称变换的常数ϵ时，

作用量的改变量必须要恢复为零。
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下面我们将表达式(3.4)分部积分，并丢掉无穷远处的边界项(因为ϵ(x)在

无穷远处趋于零)，即有

δS = −
∫

d4x∂µJ
µϵ(x). (3.5)

下面，假设我们的无穷小变换是作用在满足运动微分方程的真实场位形上，

则由于真实场位形必定满足最小作用量原理δS = 0，从而有

δS = −
∫

d4x∂µJ
µϵ(x) = 0. (3.6)

注意到ϵ(x)的任意性，从而必有

∂µJ
µ(x) = 0. (3.7)

这就是四维时空的流守恒方程。从而任何连续对称性都意味着存在一个守

恒流Jµ，这就是场论系统的诺特定理。

记J0(x) = ρ(x), J = (J1, J2, J3), 则上面的流守恒方程可以重写成，

∂ρ

∂t
+∇ · J = 0. (3.8)

将上式对三维空间积分，并记
∫
d3xρ(x, t) = Q, 则有

dQ

dt
= −

∫
d3x∇ · J = −

∫
∞
dS · J = 0, (3.9)

上式最后我们假定了在空间无穷远处J趋于零。因此，Q =
∫
d3xρ(x, t)是

一个守恒量，称之为守恒荷，而ρ(x)就称作荷密度，J(x)就是流密度。根

据《经典力学新讲》第五章的相关知识可以知道，守恒荷Q作为场论相空

间上的函数，它就是对称变换的生成元，即有如下泊松括号关系

ϵ[ϕa, Q] = δϕa = ϵF a(ϕ(x)). (3.10)

现在，恢复光速c，则(3.8)式就变成

∂(ρc)

∂(ct)
+∇ · J = 0. (3.11)

这意味着恢复量纲以后，实际上J0 = ρc，从而守恒流四矢量为Jµ =

(ρc,J)。
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3.1.2 内部对称性

其实，保持时空坐标不变的对称性就是所谓的内部对称性，现在让我

们来考察两个具体的内部对称性。

U(1)对称性

我们将要考察的第一个内部对称性是所谓的相位不变性，也称

作U(1)不变性。具体来说，假设我们考察的场论系统由一个复标量场组

成，并具有如下作用量

S[ϕ] = −
∫

d4x
[
∂µϕ∂

µϕ+ U(|ϕ|2)
]
. (3.12)

显然，这个作用量在如下复标量场的相位变换(也称作U(1)变换)下保持不

变，

ϕ(x) → eiθϕ(x), ϕ(x) → e−iθϕ(x). (3.13)

取θ为无穷小量θ = ϵ, 则U(1)变换前后场的改变量为

δϕ = iϵϕ, δϕ = −iϵϕ. (3.14)

现在，将上面无穷小参数ϵ变成依赖于时空坐标的ϵ(x)，则变换前后作用量

的改变量为

δS = −
∫

d4x
[
∂µϕ∂µ(δϕ) + ∂µ(δϕ)∂

µϕ
]

= −i

∫
d4x
[
∂µϕϕ− ϕ∂µϕ

]
∂µϵ. (3.15)

根据诺特定理的证明过程可知，相应的守恒流Jµ为

Jµ = i
[
ϕ∂µϕ− ∂µϕϕ

]
. (3.16)

特别的，现实世界的电荷守恒就对应于这样一个U(1)守恒流。

U(N)对称性

U(1)对称性的一种简单推广是所谓的U(N)对称性。这时候我们的场论

系统有N个复标量场ϕi, i = 1, 2, ..., N，它们组成列矢量Φ,

Φ =

(
ϕ1

ϕ2

...
ϕN

)
. (3.17)
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所谓的U(N)变换就是用一个N × N可逆复矩阵U作用在场Φ上，即是说

场Φ变换为

Φ(x) → UΦ(x), Φ†(x) → Φ†(x)U †. (3.18)

式中符号†表示共轭转置，即将每一个矩阵元取复数共轭同时将整个矩阵转
置，†也称作厄密共轭。只不过，在上面变换中我们同时要求可逆矩阵U满

足

U †U = 1 ⇔ U−1 = U †. (3.19)

这样的矩阵也称之为幺正矩阵。

考虑到N × N复矩阵一共有N2个复数矩阵元，对应2N2个实参数，而

幺正性U †U = 1施加了N2个限制，所以独立的实参数个数为N2个。即是

说，所有N ×N幺正矩阵的集合可以由N2个实参数刻画。实际上，任何幺

正矩阵必定可以写成如下形式，

U = exp(iθaTa), (3.20)

式中θa, a = 1, 2, ..., N为刻画幺正矩阵的N2个实参数，Ta为矩阵，式中要对

重复指标a求和，从1求到N2。幺正性的U−1 = U †意味着

exp
(
− iθaTa

)
= exp

(
− iθaT †

a

)
, (3.21)

即

T †
a = Ta, (3.22)

这样的矩阵称作厄密矩阵。

从而场Φ的U(N)变换即如下变换，

Φ(x) → exp(iθaTa)Φ(x), Φ†(x) → Φ†(x) exp(−iθaTa). (3.23)

很明显，如下作用量S[Φ]在这种U(N)变换下是不变的，

S[Φ] = −
∫

d4x
[
∂µΦ

†∂µΦ + U(Φ†Φ)
]
, (3.24)

我们称这样的场论具有U(N)对称性。
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为了导出上述具U(N)对称性场论系统的守恒流，我们令(3.23)变换中

的参数θa为无穷小量ϵa，并进而将ϵa改变成依赖于时空坐标的ϵa(x)，则在

这种改变后的无穷小变换之下，场的改变量为

δΦ(x) = iϵa(x)TaΦ(x), δΦ†(x) = −iϵa(x)Φ†(x)Ta. (3.25)

相应的作用量S[Φ]的改变量为

δS = −
∫

d4x
[
∂µ(δΦ

†)∂µΦ + ∂µΦ
†∂µ(δΦ)

]
= i

∫
d4x
[
Φ†Ta∂

µΦ− ∂µΦ†TaΦ
]
∂µϵ

a. (3.26)

从而U(N)对称性的相应守恒流为

Jµ
a = i

[
Φ†Ta∂

µΦ− ∂µΦ†TaΦ
]
. (3.27)

3.1.3 时空对称性

前面我们考察的是保持时空坐标不变的内部对称性，下面我们来考察

时空本身的对称性。为了简单起见，本节假定所考察的场论系统由一个实

标量场组成。

时空平移对称性与能动量张量

首先我们考察时空平移对称性，假定在某个时空平移操作之下xµ →
x′µ = xµ + aµ, 其中aµ为某常数四矢量，即假定整个场论系统反向(向

后)平移了aµ, 从而使得其时空坐标增加了aµ。在此平移之下，场ϕ(x)变换

为ϕ(x) → ϕ(x′)。很容易验证作用量S[ϕ] =
∫
d4xL(ϕ, ∂µϕ)在此平移之下保

持不变，具体验证过程如下

S[ϕ] =

∫
d4xL(ϕ(x), ∂µϕ(x)) →∫
d4xL(ϕ(x′), ∂µϕ(x

′)) =

∫
d4x′L(ϕ(x′), ∂′

µϕ(x
′))

=

∫
d4xL(ϕ(x), ∂µϕ(x)) = S[ϕ] (3.28)

式中倒数第二个等号只是将x′重记成了x。
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下面考察无穷小时空平移，即将aµ取成无穷小量ϵµ。进一步，根据诺

特定理的证明过程，我们将ϵµ变成依赖于时空坐标x的无穷小量ϵµ(x), 即考

察如下无穷小时空变换

xµ → x′µ = xµ + ϵµ(x). (3.29)

记坐标变换的雅可比行列式为|∂x′

∂x
|, 利用矩阵恒等式det(A) = eTr(lnA), 易得

在一阶近似上有

|∂x
′

∂x
| = 1 + ∂µϵ

µ(x) ⇒ | ∂x
∂x′ | = 1− ∂µϵ

µ. (3.30)

从而变换以后的作用量S[ϕ(x′)]为

S[ϕ(x′)] =

∫
d4xL(ϕ(x′), ∂νϕ(x

′)) =

∫
d4x′| ∂x

∂x′ |L(ϕ(x
′),

∂x′µ

∂xν
∂′
µϕ(x

′))

=

∫
d4x′(1− ∂µϵ

µ)L
(
ϕ(x′), ∂′

νϕ(x
′) + ∂νϵ

µ∂′
µϕ(x

′)
)

=

∫
d4x′ ∂L

∂
(
∂′
νϕ(x

′)
)∂′

µϕ(x
′)∂νϵ

µ −
∫

d4x′∂µϵ
µL
(
ϕ(x′), ∂′

νϕ(x
′)
)

+

∫
d4x′L

(
ϕ(x′), ∂′

νϕ(x
′)
)

=

∫
d4x
[ ∂L
∂(∂νϕ)

∂µϕ(x)− δνµL
(
ϕ(x), ∂ρϕ(x)

)]
∂νϵ

µ

+

∫
d4xL

(
ϕ(x), ∂νϕ(x)

)
. (3.31)

式中最后一个等号是将时空坐标x′重记成了x。由上面的推导易知，变换前

后作用量的改变量为

δS = S[ϕ(x′)]− S[ϕ(x)]

=

∫
d4x
[ ∂L
∂(∂νϕ)

∂µϕ(x)− δνµL
]
∂νϵ

µ. (3.32)

完全类似于前面诺特定理证明过程的论证可知，时空平移对称性对应的守

恒流为

T ν
µ = −

[ ∂L
∂(∂νϕ)

∂µϕ(x)− δνµL
]
. (3.33)

相应的流守恒方程为

∂νT
ν
µ = 0. (3.34)
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注意到T 00 = ∂L
∂ϕ̇
ϕ̇(x) − L = πϕ̇ − L正好是哈密顿密度，即能量密度，

从而可知时间平移对称性对应的守恒荷正是系统的总能量，即

H = P 0 =

∫
d3xT 00(x). (3.35)

进而易知空间平移对称性对应的守恒荷是系统的总动量，即对于i =

1, 2, 3有，

P i =

∫
d3xT 0i(x) = −

∫
d3xπ(x)∂iϕ(x). (3.36)

能量和动量一起构成了四矢量P µ = (H,P), 通常称P µ为四动量。人们通常

称T µν为能动量张量，其中T 00为能量密度，T i0为能量流密度，T 0j为动量

密度，T ij为动量流密度。

假设我们考虑L = −1
2
∂µϕ∂

µϕ− U(ϕ)的场论模型，则容易算得，

T µν = ∂µϕ∂νϕ+ ηµνL

= ∂µϕ∂νϕ− 1

2
ηµν∂ρϕ∂

ρϕ− ηµνU(ϕ). (3.37)

很明显，这个T µν的两个指标是对称的。实际上，可以证明，对于任何洛

伦兹不变的标量场论，其T µν都必定是对称张量。但是当我们的考察范

围超出标量场论时，其按照诺特定理求出来的T µν就不一定为对称张量

了，比方说对于矢量场，它的T µν就不是对称张量。不过，T µν的流守恒方

程∂µT
µν = 0告诉我们，T µν的定义不是唯一的，实际上人们很容易看出，

对于任何Xρµν，只要Xρµν = −Xµρν，则T µν + ∂ρX
ρµν同样满足流守恒方程，

因此可以定义为新的能动量张量。从而只要我们合适地选取Xρµν , 我们总

可以让重新定义以后的能动量张量为一个对称张量。在广义相对论中，物

质系统总是通过能动量张量和引力场相耦合，由于引力场由一个对称的度

规场描述，因此相应的能动量张量必定是对称张量。因此，以后我们常常

假定守恒的能动量张量T µν为对称张量。

洛伦兹对称性

上一章考察相对性原理时说过，我们考察的经典场论都是具有洛伦兹

不变性的场论，即拉格朗日密度为洛伦兹标量的理论，具体来说即是拉氏

密度在如下坐标变换下保持不变的理论，

xµ → x′µ = Λµ
νx

ν , (3.38)
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Λµ
ν就是所谓的洛伦兹变换。

为了利用诺特定理，我们需要考察无穷小洛伦兹变换，即取

Λµ
ν = δµν + ϵµν , (3.39)

式中ϵµν为无穷小量。很显然，无穷小洛伦兹变换由于可以和恒等变换连续

过渡，从而必定是正洛伦兹变换，即满足1

det(Λ) = 1 ⇒ ϵµµ = 0. (3.40)

进一步，利用洛伦兹变换的定义ηµνΛ
µ
αΛ

ν
β = ηαβ, 易得

ηµν(δ
µ
α + ϵµα)(δ

ν
β + ϵνβ) = ηαβ ⇒ ϵαβ + ϵβα = 0. (3.41)

即ϵµν是一个二阶反对称张量。

为了利用诺特定理，我们将无穷小参数ϵµν变成依赖于时空坐标的ϵµν(x)，

进而考察如下无穷小时空坐标变换，

xµ → x′µ = xµ + δxµ, δxµ = ϵµν(x)x
ν . (3.42)

则完全类似于前面从(3.31)式到(3.32)式的推导，可知在此时空变换之下作

用量的改变量为

δS = S[ϕ(x′)]− S[ϕ(x)]

=

∫
d4x
[ ∂L
∂(∂νϕ)

∂µϕ(x)− δνµL
]
∂ν(δx

µ)

= −
∫

d4xT ν
µ

(
ϵµν + xρ∂νϵ

µ
ρ

)
. (3.43)

注意到ϵµν关于指标反对称，从而有

δS = −1

2

∫
d4x
[
(T νµ − T µν)ϵµν + (xρT νµ − xµT νρ)∂νϵµρ

]
=

1

2

∫
d4x
[
(T µν − T νµ)ϵµν

]
+

1

2

∫
d4x
[
(xµT ρν − xνT ρµ)∂ρϵµν

]
. (3.44)

如果我们将ϵµν取回常数则∂νϵµρ = 0, 从而上式最后一行只剩下前面那项，

但是洛伦兹不变性告诉我们，当ϵµν为常数时作用量应该不变，即这时候必

有δS = 0，由此可知

T µν − T νµ = 0, (3.45)

1利用矩阵恒等式det(A) = eTr(lnA).
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即能动量张量必定是对称张量(当然，这是因为我们考察的是标量场论)。

在(3.44)式中代入T µν = T νµ，即有

δS =
1

2

∫
d4x
[
(xµT ρν − xνT ρµ)∂ρϵµν

]
. (3.46)

根据诺特定理的证明，这意味着Mρµν = xµT ρν − xνT ρµ为守恒流，满足守

恒方程

∂ρM
ρµν = 0. (3.47)

以上我们证明了，对于标量场理论，按照诺特定理求出来的能动量张

量必定是对称张量。但是，如果我们考察的不是标量场，而是比方说矢量

场，那这个证明是不成立的。不过，仿照这个证明的思路人们可以证明，

总能够选取到合适的Xρµν , 使得可以将能动量张量重定义成一个对称张量。

具体的证明过程参见Weinberg 量子场论第一卷7.4节。有些时候人们也称

这种对称的能动量张量为Belinfante(贝林凡特)张量。一旦人们将能动量张

量取成对称张量，则Mρµν = xµT ρν − xνT ρµ就一定是守恒流(即使我们不限

于标量场论)，这是因为

∂ρM
ρµν = T µν − T νµ = 0. (3.48)

通常记Mρµν相应的守恒荷为Jµν ,

Jµν =

∫
d3xM0µν . (3.49)

根据诺特定理，Jµν当然是洛伦兹变换的生成元。实际上，当取i, j =

1, 2, 3时，相应的

J ij =

∫
d3x
[
xiT 0j − xjT 0i

]
, (3.50)

就是角动量，它和通常角动量矢量的关系是Jk = 1
2
ϵijkJ

ij。而Ki = J i0称作

洛伦兹推动(boost)的生成元，

Ki =

∫
d3x
[
xiT 00 − x0T 0i

]
. (3.51)

或者写得更清楚一点，

K = −tP+

∫
d3x
[
xT 00(x, t)

]
. (3.52)
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3.2 对称性自发破缺

自然界中常常发生的是，基本物理规律具有某种对称性，但是它描述

物理系统的某个特定解却没有那么高的对称性，这就是对称性自发破缺。

特别的，对称性自发破缺尤其指场论系统的能量最低解(即真空解)没有那

么高的对称性，仅管作用量的对称性比较高。

为了说清楚对称性自发破缺的机制，本节我们着重考察如下复标量场

模型

L = −∂µϕ∂
µϕ− U(ϕ), U(ϕ) = g

4

(
|ϕ|2 − u

)2
. (3.53)

其中ϕ = ϕ1 + iϕ2为一个由两实标量场ϕ1, ϕ2所组成的复标量场，式中u为一

个实常数。显然，这样的场论系统具有如下U(1)对称性，

ϕ → eiαϕ, ϕ → e−iαϕ. (3.54)

我们可以画出势函数U(ϕ)的样子，当u < 0时，很显然U(ϕ)为一个
倒放的钟形曲面，这时候它的最小值位置只有一个，即在ϕ = 0处。而

当u > 0时，U(ϕ)如图(3.1)所示，形如一个墨西哥帽，这时候U(ϕ)的最小值
位置有无穷多个，分布在ϕ复平面上|ϕ| =

√
u的圆周上。

图 3.1: u > 0时的U(ϕ)，它的最小值有无穷多个，分布在|ϕ| =
√
u的圆周

上。

容易求出上述复标量场系统的能动量张量，进而可得其总能量为

H =

∫
d3x
[
|∂tϕ|2 + |∇ϕ|2 + U(ϕ)

]
. (3.55)

所谓真空，即使指系统能量最低的场位形，显然，这样的场位形必然满足

∂tϕ = ∇ϕ = 0, (3.56)
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从而是一种常数场位形。其次，真空场位形还要使得势函数U(ϕ)取最小值。
因此，当u < 0时，系统的真空是唯一的，即ϕ = 0，很显然这时候真空位

形本身具有U(1)对称性。但是，当u > 0时，真空场位形有无穷多个，分布

在|ϕ| =
√
u的圆周上，换言之，这时候对于任何实数α，下面的场位形均为

真空位形，

ϕ =
√
ueiα. (3.57)

但是物理系统只可能处于这无穷多个真空中的某一个，比方说处于ϕ =
√
u，相应于在图(3.1)中那个最低能圆周上选定了一点，很显然，任何这样

选定的点本身都不再具有U(1)的相位不变性。因此，当u > 0时，虽然理论

具有U(1)对称性，但是系统的物理真空会自发破缺这种对称性，这就是所

谓的对称性自发破缺！

假设最初时我们所考察的这个系统u < 0，因此其真空也具有U(1)对称

性，我们称这时候的系统处在对称相。设想随着某些物理条件的改变，参

数u从小于零变成了大于零，那么系统的真空将会自发破缺U(1)对称性，我

们称这时候的系统处于对称破缺相。而从对称相到对称破缺相的转变过程

就是相变。

Nambu和Goldstone发现，对于发生了某种连续对称性(比如这里的U(1)

对称性)自发破缺的系统，其对称破缺相具有某种特殊的性质，具体来说就

是系统中必定存在某种以光速传播的波动，在量子化以后这种光速传播的

波动会给出一种零质量的粒子(和光波量子化以后给出的光子质量为零类

似)，通常称作Nambu-Goldstone 玻色子。

下面回到本节的例子，我们将用它来说明这种光速传播的波动是如何

出现的。为此假设处于对称破缺相的系统的真空位形ϕ0如下

ϕ0 =
√
u. (3.58)

下面我们将复标量场重新写成两个实标量场ρ(x)和θ(x)，即定义

ϕ = (
√
u+ ρ)eiθ. (3.59)

这样定义的目的是使得真空对应于ρ = θ = 0。将上式代入原来的拉格朗日

密度(3.53), 可得

L = −(
√
u+ ρ)2∂µθ∂

µθ − ∂µρ∂
µρ− guρ2(x)− g

√
uρ3(x)− g

4
ρ4(x). (3.60)
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设想θ(x)场在真空上传播，从而可以取ρ = 0(它一定满足ρ(x)场的运动微分

方程)，这时候θ场的拉氏密度为

L = −u∂µθ∂
µθ. (3.61)

从而很容易求出场θ(x)的运动微分方程，为

∂µ∂
µθ = 0 ⇔ (∂2

t −∇2)θ(x, t) = 0. (3.62)

很显然，这正是一个以光速自由传播的波动方程。从而这就证明了对称破

缺相的系统中存在一种以光速传播的波动。

对称性自发破缺对于粒子物理非常重要，比方说，同样是由夸克所组

成，但相对于重子，π介子之所以这么轻(近似于无质量)，就是因为它是

一种所谓手征对称性的连续对称性自发破缺所产生的Nambu-Goldstone 玻

色子。只不过由于手征对称性是一种近似对称性，而不是精确对称性，所

以π介子才有很小的质量。

对称性自发破缺不仅对于粒子物理很重要，在非相对论性的凝聚态物

理中它同样很重要。比方说，晶体的晶格结构自发破缺了空间平移(指任意

平移)对称性，由此导致的波动就是声波，即以声速传播的一种波动(在固

体物理中声速就相当于相对论物理中的光速。)，声波量子化以后就是声

子，所以声子就是一种平移对称性自发破缺所对应的Nambu-Goldstone 玻

色子。


