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第十章 杨-米尔斯理论

与t’Hooft-Polyakov 磁单极

陈陈陈童童童

本章讨论杨-米尔斯理论，也就是非阿贝尔规范场论。同时我们也将讨

论磁单极子如何可以作为一类非阿贝尔规范场的孤立子解而自动出现，这

就是所谓的t’Hooft-Polyakov磁单极。

10.1 杨-米尔斯理论

前面的章节中，我们通过将U(1)整体对称性局域化得到了电磁场理论，

而在第三章中也讨论过更一般的U(N)整体对称性，将之局域化得到的理论

就是所谓的非阿贝尔规范场论，因为是杨振宁和米尔斯首先作了这样的推

广，所以也称作杨-米尔斯理论。将U(1)规范对称性推广到U(N)规范对称

性是一件高度非平凡的事情，因为U(1)规范理论是一个满足线性叠加原理

的线性理论，但是正如我们将要看到的，杨-米尔斯理论是非线性的！这种

非线性甚至使得杨-米尔斯理论在量子层次上可以和电磁场有根本性的不

同，导致出诸如夸克禁闭之类神奇的量子效应。

杨-米尔斯理论在整个现代物理中都举足轻重，它是描写强相互作用的

量子色动力学的基础，也是整个粒子物理标准模型的基础。甚至通过全息

对偶，它还可以用来非微扰地定义渐近AdS时空的量子引力理论。
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10.1.1 SU(N)群

不过，由于一些群论的细节因素，人们讨论得更多的是SU(N)规

范理论而不是U(N)规范理论。SU(N)和U(N)一样都是群的名字，只不

过U(N)是所有N ×N幺正矩阵的集合，而SU(N)还额外要求这些幺正矩阵

的行列式等于1。

即是说，SU(N)里的元素U除了可以写成如下形式以外，

U = exp(iθaTa). (10.1)

还要求其中的厄密矩阵Ta满足

tr(Ta) = 0. (10.2)

这是因为

1 = det(U) = exp
(
iθatr(Ta)

)
⇔ tr(Ta) = 0. (10.3)

独立的N × N厄密矩阵共有N2个，加上额外的(10.2)式的要求，最后符合

条件的独立N × N厄密矩阵就共有N2 − 1个，记作Ta, a = 1, 2, ..., N2 − 1，

称之为SU(N)群的生成元。为了具体确定这些生成元Ta，我们还要求它们

满足如下归一化条件

tr(TaTb) =
1

2
δab. (10.4)

记[A,B] = AB − BA，称作矩阵A,B的对易子。不难验证−i[Ta, Tb]结

果依然是一个迹为零的厄密矩阵，从而必定可以写成不同Tc的线性组合。

即是说，我们必定有

[Ta, Tb] = iCabcTc ⇔ [−iTa,−iTb] = Cabc(−iTc). (10.5)

这个式子称为SU(N)群的李代数，式中

Cabc = −2itr
(
[Ta, Tb]Tc

)
. (10.6)

利用tr(AB) = tr(BA)不难证明，Cabc关于3个指标a, b, c是全反对称的。

以SU(2)群为例，它有3个独立的生成元，可以取为Ta = 1
2
σa, a =

1, 2, 3，式中σa为3个泡利矩阵，分别为

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (10.7)
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由此不难验证，

[Ta, Tb] = iϵabcTc ⇔ [−iTa,−iTb] = ϵabc(−iTc). (10.8)

式中ϵabc为列维-西维塔符号。

10.1.2 协变导数与规范场强

在第四章中我们看到，为了将复标量场ϕ的U(1)整体对称性变成一个

局域规范对称性，我们引入了协变导数

Dµ = ∂µ − iAµ, (10.9)

并要求Dµϕ在如下局域U(1)变换下协变

ϕ → ϕ′ = eiϵ(x)ϕ, (10.10)

即要求Dµϕ也和ϕ一样变换

Dµϕ → D′
µϕ

′ = eiϵ(x)Dµϕ. (10.11)

从而可知协变导数在规范变换下的变换规则为

Dµ → D′
µ = ∂µ − iA′

µ = eiϵ(x) ·Dµ · e−iϵ(x)

⇒Aµ → A′
µ = Aµ + ∂µϵ(x). (10.12)

并且不难发现，U(1)规范场强Fµν可以由下式给出，

−iFµνϕ = [Dµ, Dν ]ϕ. (10.13)

[注意：和上一段不同，后文中的Aµ代表杨-米尔斯理论中的规范势，

Fµν代表杨-米尔斯理论中的规范场强，它们均另有定义。]

为了将以上U(1)规范理论的结果推广到SU(N)规范理论，我们引

入N维复标量场Φ，它的N个分量一起构成一个N维列矢量。类似的，我们

引入协变导数

Dµ = ∂µ + Aµ, 这里 Aµ = −iTaA
a
µ. (10.14)
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式中Ta为SU(N)群的生成元，Aa
µ是实的规范场，类似于U(1)规范理论中

的Aµ,因此也和Aµ = −iTaA
a
µ一样都称作规范势。类似的，我们要求DµΦ在

如下局域SU(N)规范变换下协变

Φ → Φ′ = U(x)Φ, 这里 U(x) = exp
(
iϵa(x)Ta

)
. (10.15)

即是说，在这样的规范变换下，

DµΦ → D′
µΦ

′ = U(x)DµΦ. (10.16)

从而即知协变导数在SU(N)规范变换下的变换规则为

Dµ → D′
µ = ∂µ + A′

µ = U(x) ·Dµ · U−1(x). (10.17)

进而可知规范势Aµ的变换规则为

Aµ → A′
µ = UAµU

−1 + U∂µU
−1. (10.18)

特别的，当规范变换参数ϵa(x)为无穷小量时，我们将变换矩阵U按照ϵa(x)展

开，可得

δAµ = A′
µ − Aµ = ∂µϵ+ [Aµ, ϵ]. (10.19)

式中ϵ = −iTaϵa(x)。

仿照U(1)情形，我们可以定义规范场强Fµν = −iTaF
a
µν (常常也将F a

µν称

作规范场强)，

FµνΦ = −iTaF
a
µνΦ = [Dµ, Dν ]Φ. (10.20)

通常也将这个式子简写成

[Dµ, Dν ] = Fµν . (10.21)

根据协变导数的定义即有

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (10.22)

我们发现，相比于U(1)规范理论，现在的规范场强多了一个非线性项[Aµ, Aν ]。

正是这一项使得杨-米尔斯理论成为一个非线性理论，而U(1)规范理论没有
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这样的项从而是一个线性理论。当然，我们也可以写出F a
µν的表达式，利

用SU(N)群的李代数，不难得到

F c
µν = ∂µA

c
ν − ∂νA

c
µ + CabcA

a
µA

b
ν . (10.23)

完全类似于U(1)情形，我们也可以引入规范场1-形式A = Aµdx
µ, 以及

场强2-形式F = 1
2
Fµνdx

µ ∧ dxν。则根据(10.22)式不难得到，

F = dA+ A ∧ A. (10.24)

式中矩阵按照矩阵乘法相乘，而外微分形式则按照外代数乘法相乘。

但是，与U(1)情形不同，在非阿贝尔的杨-米尔斯理论中，场强张

量Fµν不再是规范不变的了，根据(10.18)式，不难得到它在规范变换下的变

换规则为

Fµν → F ′
µν = UFµνU

−1. (10.25)

所以，为了得到规范不变的量，我们不能仅仅考虑Fµν，而是需要考虑

诸如tr
(
FµνFρσ

)
这样的量！(注意，由于tr(Ta) = 0，所以tr(Fµν) = 0) 当

然，如果加入物质场Φ，那我们就可以构造更多规范不变量，比如有Φ†Φ、

Φ†DµΦ、(DµΦ)
†DµΦ、Φ†FµνΦ等等。

以上我们是将物质场Φ取为N维列矢量，它在规范变换下按照(10.15)式

变换。我们称这样的物质场取SU(N)规范群的基础表示。但是，如果物质

场本身是一个N ×N的矩阵，记为ϕ

ϕ(x) = −iTaϕ
a(x), (10.26)

而它在规范变换的作用下变换为

ϕ(x) → U(x)ϕ(x)U−1(x), (10.27)

那这时候我们就称物质场取SU(N)规范群的伴随表示。这时候，协变导数

在物质场ϕ上的作用关系应该定义成

Dµϕ = ∂µϕ+ [Aµ, ϕ] (10.28)

容易验证这正好使得Dµϕ协变，即在(10.18)式和(10.27)式的规范变换下，

Dµϕ也按照ϕ同样的规则变换

Dµϕ → U(x)DµϕU
−1(x). (10.29)
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特别的，根据这种定义，我们可以将规范势Aµ的无穷小规范变换式((10.19)式)

写成

δAµ = Dµϵ. (10.30)

另外，利用如下雅可比恒等式

[Dµ, [Dν , Dρ]] + [Dν , [Dρ, Dµ]] + [Dρ, [Dµ, Dν ]] = 0, (10.31)

并结合Fµν的定义式(10.21), 即可得到

DµFνρ +DνFρµ +DρFµν = 0, (10.32)

通常称这为杨-米尔斯场的Bianchi 恒等式。

用规范场Aµ和取伴随表示的物质场ϕ，我们可以构造诸如tr(ϕ2)、

tr
(
ϕDµϕ

)
、tr

(
DµϕD

µϕ
)
等等这样的规范不变量。特别的，ϕaϕa = −2tr(ϕ2)

是规范不变的。

值得注意的是，在数学文献中，通常称Aµ为SU(N)向量丛上的联络，

而称Fµν为SU(N)向量丛的曲率。相应的，1-形式A就是联络1-形式，而2-形

式F就是曲率2-形式。

10.1.3 杨-米尔斯作用量

为了构造杨-米尔斯理论的作用量，我们只需要求它在上文所讨论

的SU(N)规范变换下是不变的！

最简单的规范不变且洛伦兹不变的规范场作用量Sg取如下形式，

Sg = a

∫
d4x

1

2
tr
(
FµνF

µν
)
+ b

∫
tr
(
F ∧ F

)
= −a

∫
d4x

1

4
F a
µνF

aµν + b

∫
tr
(
F ∧ F

)
. (10.33)

和第四章中对U(1)规范场的讨论一样，为了使得规范场的动能项为正，必

有系数a > 0。通常将a写成a = 1
e2
，其中e就是所谓的规范场耦合常数。另

外，对于Sg表达式中的第2项，注意到1

tr
(
F ∧ F

)
= dtr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (10.34)

1这个式子可以直接证明，但是为了证明它，你需要同时用到矩阵求迹的轮换性质

以及外代数的反交换性质。比如你可以先证明tr
(
dA ∧ A ∧ A

)
= −tr

(
A ∧ dA ∧ A

)
=

tr
(
A ∧A ∧ dA

)
, 以及tr(A ∧A ∧A ∧A) = −tr(A ∧A ∧A ∧A) = 0。
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所以这是一个全微分项，它只在时空边界上对作用量有贡献，从而对规范

场的场方程没有任何贡献。因此在经典场论的层次上常常可以将这一项忽

略，就和第四章中忽略U(1)规范场作用量中的相应项一样。因此，最终我

们可以将规范场的作用量Sg写成

Sg =

∫
d4x

1

2e2
tr
(
FµνF

µν
)
= −

∫
d4x

1

4e2
F a
µνF

aµν . (10.35)

为了以后求规范场的场方程，我们需要将作用量Sg对Aµ进行变分。为

了进行这样的变分，下面两个结果是很有用的(请读者先证明它们)：第一

个结果是

δFµν = DµδAν −DνδAµ, (10.36)

式中DµδAν = ∂µδAν + [Aµ, δAν ]; 第二个有用的结果是，对于任何两个取伴

随表示的场O1以及O2，有

∂µtr
(
O1O2

)
= tr

(
DµO1O2

)
+ tr

(
O1DµO2

)
, (10.37)

这个结果常常可以用来进行分部积分。利用这两个结果，我们不难得到

δSg =
2

e2

∫
d4xtr

(
−DµF

µνδAν

)
=

1

e2

∫
d4x(DµF

µν)aδAa
ν . (10.38)

式中DµF
µν = −iTa(DµF

µν)a。

下面考察物质场的作用量。对于物质场取SU(N)基础表示Φ的情

形，通过将第三章中所讨论的具有SU(N)整体对称性的Φ场作用量中的

偏导∂µ替换成协变导数Dµ，我们可以得到Φ与SU(N)规范场的耦合作用

量Sm为

Sm = −
∫

d4x
[
(DµΦ)

†DµΦ + U(Φ†Φ)
]
. (10.39)

将Sm对Aa
µ变分，易得

δSm = i

∫
d4x
[
(DµΦ)†TaΦ− Φ†TaD

µΦ
]
δAa

µ. (10.40)

由于系统完整的作用量为S = Sg + Sm，所以结合(10.38)式和(10.40)式容易

得到规范场的场方程

− 1

e2
(DµF

µν)a = i
[
(DµΦ)†TaΦ− Φ†TaD

µΦ
]
. (10.41)
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为了得到场Φ的运动方程，我们需要将Sm分别对Φ和Φ†变分。为了进

行这样的变分，我们需要用到下面的结果来进行分部积分：对于任何两个

取基础表示的场Φ1和Φ2，有

∂µ(Φ
†
1Φ2) = (DµΦ1)

†Φ2 + Φ†
1DµΦ2. (10.42)

结果不难得到，

DµD
µΦ =

∂U
∂Φ† , (10.43)

以及这个方程的厄密共轭方程。

而如果物质场ϕ取SU(N)的伴随表示。则物质场作用量Sm可以取成诸

如下面这样，

Sm =

∫
d4x
[ 1
e2
tr(DµϕD

µϕ)− U(ϕaϕa)
]
, (10.44)

式中我们已经合适地标度化ϕ场，以使得前面出现的系数为 1
e2
。注意

到tr
(
A[B,C]

)
= tr

(
[A,B]C

)
, 由此不难得到

δSm =
2

e2

∫
d4xtr

(
[ϕ,Dµϕ]δAµ

)
. (10.45)

结合(10.38)式，就可以得到这时候的规范场场方程

DµF
µν = [ϕ,Dνϕ]. (10.46)

另外，将这时候的Sm对ϕa变分，就能得到ϕ场的场方程

1

e2
(
DµD

µϕ
)a

=
∂U
∂ϕa

. (10.47)

10.1.4 规范对称性是一种冗余

规范对称性实际上并不是一种真正的对称性，而是我们描述物理系统

的方式中的冗余！这是因为，在规范场论中，我们要求所有的物理可观测

量都是规范不变的！而在真正的对称性情形中，我们并不会要求所有的物

理可观测量都在对称变换下保持不变，我们只是利用对称变换来将物理可

观测量进行分类而已。由于要求所有的物理可观测量都规范不变，所以规

范对称性只是我们用并非规范不变的量(诸如Aµ)来描述物理系统时，蕴含

在这样的描述方式中的冗余。
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为什么要求所有的物理可观测量都规范不变呢？在量子层次上，这是

因为只有这样我们才能去除系统的一些非物理的量子态(诸如归一化模长为

负数的态)，使得量子力学幺正性得以保持。在经典的层次上，这是因为：

从上一小节的各种场方程可以看到，它们在规范变换下都是协变的，也即

是在规范变换下都保持形式不变。因此我们每次求出场方程的一个解，就

可以得到它的整个一类由规范变换相联系的解。要求物理可观测量规范不

变就相当于说，这些解并不是物理上不同的解，而是解的一个等价类，规

范场的场方程可以理解为是这样的规范等价类所满足的方程。

那么，为什么不直接用规范不变的量来描述物理系统呢？或者说，引

入诸如规范场Aµ这样含有冗余的量来描述物理系统有什么好处呢？回答

是，好处就在于这样的描述方式可以使得场论的局域性和量子力学幺正性

都很明显，也可以使得理论的洛伦兹协变性很明显，而代价就是引入了冗

余。为了去除这种描述方式上的冗余，我们就要求所有物理上可观测的量

都规范不变。比方说对于电磁场情形，我们知道在物理上，电磁波只有两

个横向偏振模式，那为什么不用一个两分量的场描写电磁场，而要用一个

四分量的Aµ场描写电磁场呢？答案就是，只有这样才能使得理论的洛伦兹

协变性变得明显。当然，这样的代价就是多了两个非物理的分量，而它们

可以通过要求物理可观测量为规范不变的来进行去除。

10.2 t’Hooft-Polyakov磁单极

Dirac磁单极需要手动地放入电磁场理论中，特别的，狄拉克磁单极的

场在原点处是奇异的。但是1974年t’Hooft 和Polyakov各自独立发现，在一

类SU(2)规范场论中，磁单极子可以作为系统场位形的处处非奇异的孤立

子解而自动出现！他们的这一发现经由Goddard, Nuyts 和Olive的重要推

广，进而促成了电磁对偶观念在现代物理中的最终确立2。

[电磁对偶将一个以带电荷的场为基本物质场的“电”理论对偶到一个

以带磁荷的场为基本物质场的“磁”理论，由于“电”理论的耦合常数e和

“磁”理论的耦合常数g之间满足狄拉克量子化条件eg = 2π~，当电耦合常
数e很大时，磁耦合常数g就很小，因此电磁对偶可以将一个强耦合的规范

理论对偶到一个弱耦合的规范理论，从而是一种研究强耦合规范理论的利

2值得注明的是，在现代物理中精确的电磁对偶是C. Montonen and D. Olive, Phys.

Lett. 72B (1977) 117.提出的，但第1个在量子层次上实现这种对偶的例子要等到所谓

的N = 4的超对称杨-米尔斯理论。
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器。]

10.2.1 有限能量场位形的拓扑分类

下面我们来介绍t’Hooft-Polyakov 磁单极解。为此我们考虑一个具

有SU(2)规范对称性的场论系统，它的作用量为

S =

∫
d4x
[ 1

2e2
tr
(
FµνF

µν
)
+

1

e2
tr(DµϕD

µϕ)− λ

4

(
|ϕ|2 − v2

)2]
, (10.48)

式中|ϕ|2 = ϕaϕa，a = 1, 2, 3。通常称这个系统中的标量场ϕ为希希希格格格斯斯斯场场场。

所以这是一个SU(2)规范场与取伴随表示的希格斯场耦合的系统。

仿照第四章中求规范场系统能动量张量的办法，我们可以得到这个系

统的能动量张量

T µν =
1

e2
[
F aµ

ρF
aνρ − 1

4
ηµνF a

ρσF
aρσ
]

+
1

e2
(Dµϕ)a(Dνϕ)a + ηµν

[ 1
e2
tr(DµϕD

µϕ)− λ

4

(
|ϕ|2 − v2

)2]
. (10.49)

从而可得系统的能量密度H = T 00，为

H =
1

2e2
[
Ea · Ea +Ba ·Ba + (D0ϕ)

a(D0ϕ)
a + (Diϕ)

a(Diϕ)
a
]
+ U(|ϕ|),(10.50)

式中U(|ϕ|) = λ
4

(
|ϕ|2 − v2

)2
，而“电”场Ea与“磁”场Ba的定义分别为

Ea
i = F a0i, Ba

i =
1

2
ϵijkF

ajk. (10.51)

很显然，H ≥ 0，等号当且仅当F aµν = Dµϕ = U(|ϕ|) = 0时才成立。

由于使得H = 0的场位形具有最低的能量，所以也称之为真空，或者真空

场位形。因此这个系统的真空具有取零值的规范场和一个满足|ϕ|2 = v2的

常数希格斯场。不难看出，这种ϕ取常数的真空解在完整的SU(2)规范变换

下通常不能保持不变，而是要形成一个解的等价类。然而，由于

e−αϕ
v ϕeα

ϕ
v = ϕ, (10.52)

所以不难看出，对于取真空解的ϕ，整个真空解在e−α(x)ϕ
v这种U(1)规范变

换下都保持不变！传统上人们称这种现象为发生了规范对称性的自发破缺，

称真空解将规范对称性从SU(2)破缺到了U(1)3。

3这种传统说法虽然有其方便之处，但也有误导之处，因为规范对称性并不是一种真的

对称性，而是一种描述上的冗余，它本身并不会破缺！无非是要多考虑一个真空解的规

范等价类而已。严格来说，所谓的规范对称性从SU(2)破缺到了U(1)，是指系统发生了相

变，规范对称性依然是SU(2)，不过它在“破缺”前后是处在两个不同的相。
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下面我们考察这个系统的有限能量的解。为此先把注意力集中在希格

斯场ϕ上，很显然，为了使得系统的能量尽可能低，我们需要让U(|ϕ|) = 0。

由此可以定义所谓的希格斯真空MH(请和上一段讨论的真空区分开来)

MH =
{
ϕ : U(|ϕ|) = 0

}
. (10.53)

很显然，MH其实就是由ϕaϕa = v2定义的两维球面，记为MH = S2。

很明显，对于系统的有限能量场位形来说，虽然不需要它处处都处在

希格斯真空上，但在空间无穷远处的场位形必须趋于希格斯真空，否则空

间无穷远处U(|ϕ|)的积分就会趋于无穷大，从而使得总能量发散。三维空
间的无穷远为一个两维球面，记为S2

∞，因此对于有限能量场位形，其希格

斯场在空间无穷远处就定义了一个从S2
∞到希格斯真空的映射

ϕ : S2
∞ → MH = S2. (10.54)

根据覆盖S2的次数，我们可以将这个映射进行拓扑学分类，每一个拓扑类

里的映射都无法连续地变化成另一个不同拓扑类里的映射，因为它们覆

盖S2的次数不同。在拓扑学中有一个专门的概念描述这种拓扑分类，称

为S2的第二同伦群，记为π2(S
2)，根据不同的覆盖次数可知

π2(S
2) = Z. (10.55)

给定一个到S2的映射ϕ，其覆盖S2的次数ν可以由下式计算，

ν =
1

8πv3

∫
S2
∞

ϵabcϕ
adϕb ∧ dϕc. (10.56)

因此，有限能量场位形可以用π2(S
2)来进行拓扑分类！并且和真空场

位形的对称性自发破缺类似，在无穷远处的希格斯真空上，规范对称性都

从SU(2)破缺到了U(1)，这个U(1)同样可以记为

U(1) = e−α(x)ϕ
v , (10.57)

与真空场位形的唯一不同是，这里的ϕ不是常数，而是到希格斯真空的映

射。

另一方面，我们需要注意到，当希格斯场的覆盖次数ν ̸= 0时，为

了使得总能量有限，规范场Aµ必须取非零的场位形。这是因为，否则，

假设Aµ = 0，则这时候协变导数就是普通导数，从而(Diϕ)
2 = (∂iϕ)

2 ∼
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(∂θϕ)
2/r2，然而由于ν ̸= 0，因此这时候球坐标极角方向的导数∂θϕ在S2

∞上

必定不为零。如此一来，场位形的总能量中必有如下项

1

2e2

∫
d3x(∂iϕ

a)2 ∼ 1

2e2

∫
S2
∞

d2Ω

∫
drr2

(∂θϕ
a)2

r2
, (10.58)

这个积分是线性发散的，从而会使得场的总能量发散。

其实，从能量密度H的表达式可以看出，为了使得总能量有限，我们
必须在空间无穷远处打开一个非零的规范场Aµ，以抵消Dθϕ中按1/r降低的

项，从而使得在空间无穷远处有

(Dµϕ)
a = ∂µϕ

a + ϵabcA
b
µϕ

c ∼ 0, (10.59)

符号∼表示在空间无穷远处渐近地趋于。利用在空间无穷远处ϕaϕa ∼ v2，

从而ϕa∂µϕ
a ∼ 0，不难验证上面这个方程的一般解为

Aa
µ ∼ 1

v2
ϵabcϕ

b∂µϕ
c +

1

v
ϕaaµ(x), (10.60)

式中场aµ(x)是任意的。

我们可以利用上面Aa
µ场的渐近表达式计算规范场强的渐近行为，并得

到其中未破缺的U(1)部分的规范场强为

Fµν ≡ ϕa

v
F a
µν ∼ fµν +

1

v3
ϵabcϕ

a∂µϕ
b∂νϕ

c, (10.61)

这里fµν = ∂µaν − ∂νaµ正是我们天真地期望的U(1)规范场强。但是上面的

结果表明，真正的未破缺U(1)规范对称性的场强是Fµν。相比于fµν，它多

了一个非平凡的额外项。正是这个额外项使得我们的解带上了U(1)磁荷

g =

∫
S2
∞

F =
1

2v3

∫
S2
∞

ϵabcϕ
adϕb ∧ dϕc = 4πν, (10.62)

这里ν正是希格斯场在空间无穷远处覆盖希格斯真空S2的次数。

上面的分析告诉我们，任何拓扑非平凡的有限能量场位形都要携带

非零的磁荷，因此从空间无穷远处的未破缺U(1)规范对称性来看，这样

的解就是一个磁单极子！因此通常称这样的解为t’Hooft-Polyakov 磁单极。

而且，利用SU(2)规范场在空间无穷远处满足的方程DµF
µν ∼ 0, 不难证

明Fµν正好满足无源电磁场的麦克斯韦方程，即满足∂µFµν = ∂µ(∗Fµν) =

0，这正是一个狄拉克磁单极子在源点之外所要满足的电磁场方程。所
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以t’Hooft-Polyakov磁单极在空间足够远处看来，就像是一个狄拉克磁单极

子。

我们发现，上面的磁单极子的磁荷满足量子化条件∫
F
2π

= 2ν, (10.63)

即，它使得U(1)规范场的第1陈类取偶数，而不是简单地取整数。这是因

为，上述理论还允许引入取SU(2)群基础表示的物质场，而这种物质场的

电荷q = 1
2
，这样正好满足1

2
· 2ν = ν ∈ Z，正如狄拉克量子化条件所要求的

那样。

10.2.2 磁单极解

到现在为止，我们还没有真正求解杨-米尔斯场以及希格斯场的场方

程，并得到带磁荷的单极子解。实际上，当覆盖次数ν > 1时，人们并不能

期望找到相应的静态场位形解，这是因为，ν > 1对应有多个磁单极，而这

些磁单极之间通常都存在排斥力，从而整个系统不能保持静止。因此，为

了将注意力集中在较为简单的静态解上，本小节我们将限于考虑ν = 1情

形。

我们可以选取A0 = 0的规范，从而对于静态场位形，进一步有D0ϕ =

∂tϕ = 0，以及Ea
i = F a0i = −∂tA

a
i = 0。因此静态场位形的总动能为零，总

能量密度完全由势能提供

H =
1

2e2
[
Ba ·Ba + (Diϕ)

a(Diϕ)
a
]
+ U(|ϕ|). (10.64)

下面，我们假设ν = 1磁单极解的希格斯场取如下形式

ϕa =
xa

r2
h(r), 这里h(r) =

0, r → 0

vr, r → ∞
. (10.65)

其中h(r)在r → 0处的渐近形式是为了使得能量密度中的(Diϕ)
a(Diϕ)

a项

在r → 0处的积分有限。而h(r)在无穷远处的渐近形式由ϕaϕa ∼ v2确定，并

且代入覆盖次数ν的计算公式(10.56)不难验证的确有ν = 1。

相应的，我们假设规范场Aa
i取如下形式

Aa
i = −ϵaij

xj

r2
[1− k(r)], 这里k(r) =

1, r → 0

0, r → ∞
. (10.66)
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这里k(r)在r → 0处的渐近形式是为了使得在原点附近规范场能量密度的

积分有限。而k(r)在r → ∞处的渐近形式是通过上一小节的(10.60)式得到

的。

现在，我们将上述假设代入下面的场方程

DµF
µν = [ϕ,Dνϕ],

1

e2
(
DµD

µϕ
)a

=
∂U
∂ϕa

, (10.67)

结果就能得到一组有关于h(r)和k(r)的微分方程。这组微分方程通常没有

解析解，但是人们不难求出它们的数值解。

10.2.3 Bogomolnyi能限以及BPS磁单极

下面我们为每一个拓扑类的有限能量场位形推导一个能量下限，称之

为Bogomolnyi能限。

首先，注意到能量密度的表达式可以写成

H =
1

2e2
[
(Ea)2 + (Ba)2 + (D0ϕ

a)2 + (Diϕ
a)2
]
+ U(|ϕ|)

=
1

2e2
[
(Ea

i −Diϕ
a sin θ)2 + (Ba

i −Diϕ
a cos θ)2 + (D0ϕ

a)2
]
+ U(|ϕ|)

+
1

e2
[
Ea

i Diϕ
a sin θ +Ba

i Diϕ
a cos θ

]
. (10.68)

其次，注意到DiBi = 0(Bianchi恒等式)。从而

1

v

∫
d3xBa

i Diϕ
a =

1

v

∫
d3x∂i(B

a
i ϕ

a) =
1

v

∫
S2
∞

(Baϕa) · dS, (10.69)

结果正是系统在未破缺的U(1)规范场中的总磁荷g(为了强调它是磁荷，下

面将改记为gm), 即是说

gm =
1

v

∫
d3xBa

i Diϕ
a. (10.70)

类似的，我们可以定义系统的总电荷(记为qe)为

qe =
1

v

∫
d3xEa

i Diϕ
a. (10.71)

根据以上关于总电荷和总磁荷的定义，以及能量密度的表达式(10.68),

容易知道系统的总能量E满足

E =

∫
d3xH =

v

e2
[
qe sin θ + gm cos θ

]
+

1

2e2

∫
d3x
{[

(Ea
i −Diϕ

a sin θ)2 + (Ba
i −Diϕ

a cos θ)2 + (D0ϕ
a)2
]
+ U(|ϕ|)

}
.
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由于U(|ϕ|) ≥ 0，所以由上面的结果不难看出

E ≥ v

e2
[
qe sin θ + gm cos θ

]
. (10.72)

又由于θ是任意的，所以我们总可以选一个合适的θ = θm (tan θm = qe
gm

), 使

得上式右边等于 v
e2

√
q2e + g2m。从而即有

E ≥ v

e2

√
q2e + g2m. (10.73)

这就是所谓的Bogomolnyi能限。

很显然，仅当势函数U(|ϕ|) ≡ 0(即参数λ = 0)时，我们才可能达

到Bogomolnyi能限(虽然U(|ϕ|) ≡ 0，但依然人为地要求在空间无穷远处

有ϕaϕa ∼ v2)。且在Bogomolnyi能限上必有如下BPS方程成立，

Ea
i = Diϕ

a sin θm, Ba
i = Diϕ

a cos θm, D0ϕ
a = 0. (10.74)

特别的，对于t’Hooft-Polyakov磁单极子解，我们有qe = 0，从而θm =

0, 从而BPS方程简化为，

Ea
i = 0, D0ϕ

a = 0, Ba
i = Diϕ

a. (10.75)

这组BPS方程的解就称之为BPS磁单极。由于以上BPS方程使得总能量取

极值，因此它的解必定也是这时候(即参数λ = 0时)系统场方程的解！但

是，场方程是一组二阶偏微分方程，而BPS方程是一阶偏微分方程，所以

求解BPS方程当然是要远为容易的。事实上，对于ν = 1的磁单极子，以

上BPS方程的解析解为

h(r) = vr coth(vr)− 1, k(r) =
vr

sinh(vr)
. (10.76)

这个解是Prasad 和Sommerfield 首先发现的。

势函数U(|ϕ|) ≡ 0当然是一个很特殊的要求，它通常是无法满足的。但

是，在一些超对称规范场论中，的确自动就有U(|ϕ|) ≡ 0。事实上，BPS方

程和BPS磁单极子最自然出现的场合就是在这样的超对称规范场论中。这

时候BPS磁单极会构成所谓的超对称代数的短多重态(short multiplets), 从

而是受到超对称性保护的。


