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第九章 磁单极子和θ项

陈陈陈童童童

本章将处理狄拉克磁单极子以及θ项的相关课题，本章的有些论证将

超出经典场论的范畴，即是说，我们将使用一些可以归之为量子力学范

畴的论证。本章将和本书的多数章节一样采用电磁学的自然单位制，即

取ϵ0 = µ0 = c = 1。

9.1 电磁对偶与磁单极子

麦克斯韦方程组有一种深层次的对称性，称之为电磁对偶。这种对偶

在无源的麦克斯韦方程中体现得最为清楚，这时候麦克斯韦方程可以写为

∇ · E = 0, ∇×B =
∂E

∂t

∇ ·B = 0, ∇× E = −∂B

∂t
. (9.1)

显然这个方程组在如下变换下保持不变

E → B, B → −E, (9.2)

因为这个变换交换了电场和磁场，所以称作电磁对偶。

如果利用电磁场的外微分形式(differential form)表述，电磁对偶实际

上就是电磁场的场强2形式F的霍奇对偶变换。为来看清楚这一点，我们首

2



第九章 磁单极子和θ项 3

先注意到如下外微分形式表达的无源麦克斯韦方程在霍奇对偶下是保持不

变的，

d(∗F ) = 0, dF = 0, (9.3)

在霍奇对偶下，这两个方程正好相交换，使得整体的方程组保持不变。其

次，为了进一步看清楚霍奇对偶与电磁对偶的关系，我们定义对偶场强张

量F̃µν

F̃µν = (∗F )µν =
1

2
ϵµνρσF

ρσ. (9.4)

而(9.3)式的第二个方程又可以写成

∂µF̃
µν = 0. (9.5)

利用ϵµνρσ的反对称性以及ϵ0123 = 1，不难得出

Ẽ = −B, B̃ = E, (9.6)

式中Ẽi = F̃ 0i, B̃k = 1
2
ϵijkF̃

ij。由此可见，霍奇对偶操作正好交换了电场和

磁场，因此正是电磁对偶变换。

以上讨论的是无源麦克斯韦方程组的电磁对偶对称性，它是无源麦克

斯韦方程组的一个很美妙的性质。为了将这种美妙性质拓展到有源情形，

与电荷和电流密度对应的，就需要引入磁荷和磁流密度。为了以示区分，

不妨记电荷密度为ρe，电流密度为Je，记磁荷密度为ρm，磁流密度为Jm。

进而将有源的麦克斯韦方程修改为

∇ · E = ρe, ∇×B =
∂E

∂t
+ Je

∇ ·B = ρm, −∇× E =
∂B

∂t
+ Jm. (9.7)

显然，这组方程在如下电磁对偶变换下保持不变

E → B, ρe → ρm, Je → Jm

B → −E, ρm → −ρe, Jm → −Je. (9.8)

而一个带电荷e磁荷g的粒子(称作双荷子)在电磁场中受到的洛伦兹力公式

就应该推广成

F = e
(
E+ v ×B

)
+ g

(
B− v × E

)
. (9.9)
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由此可见，为了将电磁对偶不变性拓展到有源的麦克斯韦方程组，我

们就需要引入磁荷。在场论的层次上，引入磁荷的一种办法是引入带磁荷

的物质场，并让它和电磁场耦合。但这里的问题是，在作用量的层次上，

带磁荷的场与带电荷的场不容易兼容。具体来说即是，对于单独的带磁荷

的场，我们可以用基本场变量写出它与电磁场的耦合，对于单独的带电荷

的场，我们也可以用基本场变量写出它与电磁场的耦合，但是这两种写法

中的基本场变量根本不同，一种写法中的基本场变量在另一种写法中根本

不基本，从而使得我们无法用同一套基本场变量同时写出磁的耦合与电的

耦合。这个困难到今天为止依然没有被克服。

当然，我们也可以不引入带电荷或磁荷的场，而仅仅引入粒子，带电

荷的粒子比如电子，而带磁荷的粒子就是所谓的磁单极子。这时候上述困

难要稍微弱一点，虽然要想在作用量的层次上同时写出电子和磁单极子各

自与电磁场的耦合项依然不容易。但是狄拉克证明了，同时兼容电子和磁

单极子的量子力学理论是可以定义的，前提是电子的电荷e和磁单极子的磁

荷g之间满足如下量子化条件，

eg = 2πn~, n ∈ Z. (9.10)

我们将在下一小节详细讨论狄拉克的这一理论。

从历史的发展来看，狄拉克的磁单极子是手动引入的，理论上其存在

并没有必然性，但是，1974年t’Hooft1 和Polyakov2各自独立地发现，在一

类具有SU(2)非阿贝尔规范对称性的规范场论中，磁单极子将作为场方程

的一种孤立子解而必然存在。1977年3，Goddard, Nuyts 和Olive又进一步

将t’Hooft和Polyakov 的发现推广到一般的规范群，并且他们还研究了在这

些非阿贝尔规范场论中，电磁对偶将是什么样子的。

关于磁单极子，尽管理论上有这么多漂亮的结果，但它最大的问题就

是，直到今天，实验上依然没有发现磁单极子的存在。因此，和前面的一

些章节不同，本章我们讨论的主要是一种理论结构，而不是试图发展理论

来描述实验上的事实。

1G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,”Nucl. Phys. B 79,

276 (1974).
2A. M. Polyakov,“Particle Spectrum in the Quantum Field Theory,”JETP Lett. 20,

194 (1974) [Pisma Zh. Eksp. Teor. Fiz. 20, 430 (1974)].
3P. Goddard, J. Nuyts and D. I. Olive,“Gauge Theories and Magnetic Charge,”Nucl.

Phys. B 125, 1 (1977).
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9.2 狄拉克与陈省身

假设我们引入一个位于空间坐标原点的磁单极子，其磁荷为g，则磁场

将满足如下方程

∇ ·B = gδ3(x), (9.11)

类比于点电荷的库伦场，可知这个方程的解为

B =
1

4π

g

r2
er. (9.12)

式中r = |x|, 而er = x/r为径向指向的单位矢量。这个解在空间坐标原

点是奇异的。现在，设想将这个奇异的空间坐标原点去掉，进而考察方

程(9.11)在R3\{0}上的解。注意，R3\{0}由于有一个洞，从而是拓扑非平
庸的。

由于在R3\{0}上，方程(9.11)变成了如下形式

∇ ·B = 0, (9.13)

所以显而易见的想法是，在R3\{0}上依然可以引入矢量势A，使得B =

∇×A。但这种想法其实是过于天真的，为了看清楚其问题，考察R3\{0}上
一个包围原点的球面S2，其包围的空间区域记为V , 若B = ∇×A, 则有∫

S2

B · dS =

∫
S2

(∇×A) · dS =

∫
V

d3x∇ · (∇×A) = 0. (9.14)

但在另一方面，根据方程(9.11)，我们有∫
S2

B · dS =

∫
V

d3x∇ ·B = g

∫
V

d3xδ3(x) = g ̸= 0. (9.15)

这就说明，虽然在R3\{0}上有∇ · B = 0, 但是由于R3\{0}拓扑非平庸，我
们并不能整体地有B = ∇×A。换言之，不可能存在一个在整个R3\{0}上
都定义良好的矢量势A，使得B = ∇×A。

但是由于∇ · B = 0，根据所谓的庞加莱引理可知，在R3\{0}的任何
一个拓扑平庸的开子集U上，必定都可以找到一个AU , 使得在U上有B =

∇ × AU。比方说，对于上面的磁单极子，在球坐标中我们可以构造一

个AN，

AN = AN
ϕ eϕ =

g

4πr

1− cos θ

sin θ
eϕ, (9.16)
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式中eϕ为周角ϕ增加方向的单位矢量。根据球坐标中的旋度运算，容易验证

B = ∇×AN =
1

r sin θ

∂

∂θ

(
AN

ϕ sin θ
)
er −

1

r

∂

∂r

(
rAN

ϕ

)
eθ, (9.17)

代入(9.16)式，即可得B = g
4πr2

er, 正是磁单极子的磁场。这说明，(9.16)式

是一个正确的构造。

进而根据前面的讨论可知，AN必定不可能在整个R3\{0}上都定义良
好。事实上，(9.16)式给出的AN有奇异性，这个奇异性不仅在已经被扣掉

了的坐标原点处，而且是沿着整个负z轴都是奇异的。这是因为AN表达

式(9.16)中的1/ sin θ因子，这个因子在θ = 0和θ = π处都奇异，但是θ = 0处

的奇异性被分子的1− cos θ经由0比0消去了，从而AN仅在θ = π处奇异，也

就是在整个负z轴上奇异。也即是说，AN在负z轴上没有定义，而在除此

之外的区域都定义良好。限制在包围原点的球面S2上来考察的话，即是，

AN在南极处没有定义，在除南极之外的区域都定义良好，特别的，AN在

整个北半球面都定义良好，事实上，这就是上标N所表示的含义。

现在考虑一个不同的规范势

AS = AS
ϕeϕ = − g

4πr

1 + cos θ

sin θ
eϕ. (9.18)

不难验证，它同样可以给出磁单极子的磁场(9.12)。但是现在，这个规范势

在北极θ = 0处是奇异的，而在整个南半球都定义良好，这也就是上标S的

含义。

很明显，在S2球面赤道附近的区域，AN和AS均有定义，因为它是南

北半球的交叠区。在交叠区上，由于给出的场强相同，所以这两个不同的

规范势当然只能相差一个规范变换。

谈到规范变换，这个里要做个注解。首先，以前我们都将协变导数写

成Dµ = ∂µ − ieAµ 并称e为带电荷的物质场与规范场的耦合常数。但是现

在，由于我们用e来代表物质场的电荷了，所以就要将这个协变导数重记成

Dµ = ∂µ − i
e

~
Aµ, (9.19)

因为在量子力学中，电荷e与普朗克常数~的比值正是耦合常数。即是说，
本章中的e/~相当于前面章节中的e。从而现在物质场的U(1)规范变换就应

该为

eieϵ(x)/~, (9.20)
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同时规范场的规范变换为

A → A+∇ϵ. (9.21)

根据AN的表达式(9.16)AS的表达式(9.18)，再根据球坐标中的梯度运

算，人们不难发现，在赤道附近的交叠区，AN与AS间的规范变换为

AN
ϕ = AS

ϕ +
1

r sin θ
∂ϕϵ, 其中 ϵ =

gϕ

2π
. (9.22)

也即是说绕着赤道走一圈，我们有ϵ(2π) = ϵ(0)+g。另一方面，根据U(1)规

范变换的(9.20)式，绕行一圈，必有

eϵ(2π)/~ = eϵ(0)/~+ 2πn

⇒ϵ(2π) = ϵ(0) +
2πn~
e

, (9.23)

其中n为整数。综上即可知，

eg = 2πn~, n ∈ Z. (9.24)

这就是所谓的狄拉克量子化条件。

狄拉克量子化条件是一个理论中任意带电粒子的电荷与任意磁单极子

的磁荷间都必须满足的条件。这里有两种可能性，第一，理论中所有带电

粒子的电荷都是某个最小电荷单位的整数倍，显然，这时候只要最小电荷

单位满足狄拉克量子化条件，就必然有任何电荷都满足它。假设记最小电

荷单位为e，则(9.24)告诉我们，∫
S2

B · dS = g =
2πn~
e

. (9.25)

即闭合球面上的磁通(即磁单极子的磁荷)是量子化的，最小的磁通(磁荷)为

Φ0 =
2π~
e

, (9.26)

称作磁通量子。

第二种可能性是，理论中带电粒子的电荷互相为无理数比例，比方说，

理论中包含电荷为e以及电荷为
√
3e的带电粒子。那这时候狄拉克量子化条

件是不可能满足的，从而结论就是这样的理论中不可能存在磁单极子。好

在，现实世界的理论满足的是第一种可能性，因此是允许磁单极子存在的，

虽然我们到今天为止都没有发现它。
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以上关于狄拉克量子化条件的推导还可以推广到更为一般的情形，比

方说球面S2内包围了多个磁单极子的情形。在这种更一般的情形中，庞加

莱引理告诉我们，依然存在北半球的规范势AN , 以及南半球的规范势AS，

只不过这时候的AN和AS不是由(9.16)式和(9.18)式给出。但是在赤道附近

的交叠区，我们依然有

AN = AS +∇ϵ, (9.27)

虽然ϵ可能不再是 gϕ
2π
, 不过，它将依然满足(9.23)式。

不妨以
∫
N
表示在北半球面上的积分，以

∫
S
表示在南半球面上的积分，

以C表示赤道回路，从而我们将有∫
S2

B · dS =

∫
N

(∇×AN) · dS+

∫
S

(∇×AS) · dS

=

∮
C

AN · dx−
∮
C

AS · dx

=

∮
C

∇ϵ · dx = ϵ(2π)− ϵ(0), (9.28)

式中我们注意到了回路C与北半球的法向成右手关系，而与南半球的法向

成左手关系。代入(9.23)式, 即有∫
S2

B · dS =
2πn~
e

. (9.29)

这就是一般的磁通量子化关系，它实际上对任何两维闭合曲面(不只是球

面)Σ均成立，因此也写作 ∫
Σ

B · dS =
2πn~
e

. (9.30)

它告诉我们，在两维闭合曲面上的磁通量必定为磁通量子Φ0的整数倍。

注意到Bk = 1
2
ϵijkFij, 我们也可以将(9.30)式重写成

∫
Σ

1
2
Fijdx

i ∧ dxj =

2πn~/e。这个式子的洛伦兹协变化推广即是∫
Σ

F =
2πn~
e

. (9.31)

式中Σ代表四维时空中任意一个两维闭合曲面，而F = 1
2
Fµνdx

µ ∧ dxν。
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(9.31)式即使在纯数学上也是一个很著名的式子。只不过数学家的写法

和我们略有不同。具体来说即是，数学家常常把 e
~Aµ的整体叫作规范联络，

并依然记为Aµ，也就是说，数学家的协变导数定义如下

Dµ = ∂µ − iAµ. (9.32)

因此为了得到数学家的写法，我们需要做如下替换

e

~
Aµ → Aµ,

e

~
F → F. (9.33)

从而按照数学家的写法，(9.31)式就是∫
Σ

F

2π
= n ∈ Z. (9.34)

通常称式中的 F
2π
为第1陈类，因为它是陈省身首先引入的，也记作c1，

c1 =
F

2π
. (9.35)

因此(9.34)式说的就是，第1陈类在任何两维闭合曲面上的积分均为量子化

的整数。

所以，数学上第1陈类的量子化，和物理上磁单极子的狄拉克量子化条

件，它们本质是一样的，虽然两者的公式写法看起来很不相同。

以上考察狄拉克量子化条件的时候，我们考虑的是单纯的电荷和单

纯的磁单极子。但是类似的考察可以推广到既带电荷同时又带磁荷的双

荷子(dyon)情形，假设一个理论既包含一种(e1, g1)的双荷子，又包含另一

种(e2, g2)的双荷子，则它们必定要满足如下Dirac-Zwanziger量子化条件

e1g2 − e2g1 ∈ 2π~Z. (9.36)

这个条件当然是狄拉克量子化条件的推广。

9.3 θ项

9.3.1 初识θ项

第四章引入电磁场作用量的时候，我们说过，最简单的电磁场作用量

其实有如下两项

S = SMaxwell + Sθ (9.37)
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式中SMaxwell = −
∫
d4x1

4
F µνFµν , 而Sθ为

Sθ = θ
e2

~
1

4π2

∫
d4xE ·B = θ

e2

~
1

4π2

∫
d4x

1

4
F̃ µνFµν

= θ
e2

~
1

4π2

∫
d4x

1

8
ϵµνρσFµνFρσ

= θ
e2

~
1

2

∫ ( F
2π

)
∧
( F
2π

)
. (9.38)

这里的Sθ就是所谓的θ项，只不过，第四章我们说过，这一项其实是全微

分项，对电磁场的运动微分方程没有影响。但是，详细的考察表明，当系

统中存在磁单极子时，这一项其实是有物理效应的，所以现在我们要把这

个θ项加上。

之所以将θ项写成具有如上(9.38)式那样的常数系数，原因有二：其一

是使得参数θ为无量纲参数。其二是进一步使得参数θ为一个以2π为周期的

角度变量。

现在我们来详细分析一下为什么θ无量纲。为了看清楚这个问题，我们

不妨按照数学家的写法，进行如下替换

e

~
Aµ → Aµ,

e

~
F → F. (9.39)

替换以后的协变导数为

Dµ = ∂µ − iAµ, (9.40)

由此可见Aµ的量纲与∂µ量纲相同，均为长度的负1次方量纲，记作[Aµ] =

L−1。进而即知替换以后Fµν的量纲为[Fµν ] = L−2, 从而替换以后的2形

式F的量纲为[F ] = L0。

另一方面，替换以后作用量的麦克斯韦项为

SMaxwell = −
(~
e

)2 ∫
d4x

1

4
F µνFµν , (9.41)

而替换以后的θ项为，

Sθ = ~θ
1

2

∫ ( F
2π

)
∧
( F
2π

)
. (9.42)

注意到作用量的量纲与普朗克常数~的量纲相同，从而即知：第一，参
数θ无量纲，第二， e2

~也无量纲，因此可以引入无量纲常数

α =
e2

4π~
, (9.43)
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称作精细结构常数，它大约等于1/137。在国际单位制中，α即是

α =
e2

4πϵ0~c
. (9.44)

为了看清楚为什么参数θ是一个以2π为周期的角变量，我们将注意力

集中在变量替换以后的θ项(9.42)上。我们记四维时空为M , 并假设M可以

分解成两个二维闭合曲面(分别记作Σ1和Σ2)的笛卡尔积
4，即设

M = Σ1 × Σ2. (9.45)

又根据第1陈类的量子化公式(9.34)，我们有∫
Σ1

F

2π
= n1,

∫
Σ2

F

2π
= n2, n1, n2 ∈ Z. (9.46)

从而即有

1

2

∫
M

( F
2π

)
∧
( F
2π

)
=

1

2

(∫
Σ1

F

2π
·
∫
Σ2

F

2π
+

∫
Σ2

F

2π
·
∫
Σ1

F

2π

)
=

∫
Σ1

F

2π
·
∫
Σ2

F

2π
= n1n2 ∈ Z. (9.47)

也即是说，其实θ项(9.42)为

Sθ = ~θn1n2. (9.48)

另一方面，根据量子场论的路径积分表述，θ项对路径积分的贡献为

exp
(
i
Sθ

~
)
= exp

(
iθn1n2

)
, (9.49)

由于结果必须是单值的，而n1n2 ∈ Z, 从而即知θ必必必为为为以以以2π为为为周周周期期期的的的角角角变变变

量量量。

9.3.2 轴子电动力学

回到如下作用量，

S =

∫
d4x

[
− 1

4
F µνFµν +

e2

~
1

32π2
θ(x)ϵµνρσFµνFρσ

]
, (9.50)

4严格说来，我们要将场论系统作一个解析延拓，从四维闵可夫斯基时空延拓到四维欧

氏流形，M指的其实是这个延拓以后的欧氏流形。
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现在，我们假设参数θ依赖于时空坐标x，从而是一个θ场，这种θ场通常称

作轴子场(axion field)，尽管这个场是额外给定的而不是动力学演化的，而

真正物理的轴子场本身应该是动力学演化的。我们称作用量(9.50)描写的电

动力学为轴子电动力学。

将上述作用量对Aµ变分，就能得到

δS =

∫
d4x

[
∂µF

µνδAν +
e2

~
1

16π2
θ(x)ϵµνρσFµνδFρσ

]
=

∫
d4x

[
∂µF

µνδAν +
e2

~
1

4π2
θ(x)F̃ ρσ∂ρ(δAσ)

]
, (9.51)

进行合适的分部积分并丢弃边界项，即可得

δS =

∫
d4x

[
∂µF

µνδAν −
e2

~
1

4π2
∂µ
(
θ(x)F̃ µν

)
δAν

]
. (9.52)

根据最小作用量原理即得轴子电动力学的场方程

∂µ
[
F µν − e2

~
1

4π2
θ(x)F̃ µν

]
= 0. (9.53)

注意到∂µF̃
µν = 0, 这个方程也可以重写为

−∂µF
µν = −e2

~
1

4π2
(∂µθ)F̃

µν . (9.54)

我们有两种等价的观点来看待上面的方程。第一种观点是将 e2

~
1

4π2 θ(x)F̃
µν

看作磁化极化张量Mµν，从而方程(9.53)可以看成(注意ϵ0 = µ0 = 1)

∂µH
µν = 0, Hµν = F µν − α

π
θ(x)F̃ µν . (9.55)

利用H0i = Di(c = 1单位制)，H ij = ϵijkHk，即有

D = E+
α

π
θB, H = B− α

π
θE. (9.56)

而场方程∂µH
µν = 0则可以给出

∇ ·D = 0, ∇×H =
∂D

∂t
. (9.57)

再加上∂µF̃
µν = 0给出的

∇ ·B = 0, ∇× E = −∂B

∂t
, (9.58)
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这两组方程就构成轴子电动力学的麦克斯韦方程。

第2种看待方程(9.54)的观点是，将− e2

~
1

4π2 (∂µθ)F̃
µν看作诱导电流四矢

量Jν
I，

Jν
I = −α

π
(∂µθ)F̃

µν . (9.59)

进一步也可以写出诱导电荷密度ρI以及诱导电流密度JI，分别为

ρI = −α

π
∇θ ·B, JI =

α

π

(
θ̇B+∇θ × E

)
. (9.60)

进而场方程(9.54)也可以写作

∇ · E = −α

π
∇θ ·B = ρI

∇×B− ∂E

∂t
=

α

π

(
θ̇B+∇θ × E

)
= JI . (9.61)

9.3.3 拓扑绝缘体

轴子电动力学并非理论上的空想，实际上它可以在一类奇妙的材料中

实现，那就是所谓的拓扑绝缘体材料，典型的比方说Bi2Se3和Bi2Te3。在

拓扑绝缘体材料的内部θ = π，而在拓扑绝缘体材料的外部当然就是通常

的θ = 0( θ = 0和θ = π有什么特殊性后文会进一步讨论) , 因此在拓扑绝缘

体与外界的交界面上θ不是常数，从而就需要考虑轴子电动力学。

考察一块拓扑绝缘体材料，假设其填满z < −ϵ的下半空间(这里ϵ为无

穷小量)，其体内θ = π。假设z > +ϵ的上半空间为真空，因此θ = 0。从而

在z ∈ [−ϵ, ϵ]的交界区，有∂zθ ̸= 0, 因此就需要考虑轴子电动力学。

图 9.1: 朝着界面施加一个磁场。
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首先，我们假设从下方沿着垂直界面的方向施加了一个磁场Bz = B,

如图(9.1)所示。则根据(9.60)式可知，在界面上会聚集诱导电荷，电荷密度

为ρI = −α
π
∂zθB。即是说，每单位面积上的面电荷密度σ为

σ =

∫ +ϵ

−ϵ

dzρI = αB. (9.62)

这个面电荷密度当然要在拓扑绝缘体的外面产生一个电场，如图(9.1)所示。

这里我们看到拓扑绝缘体材料表面的一种神奇性质：当朝着界面施加一个

磁场，它就会在外面产生一个电场！

图 9.2: 沿着平行界面的方向施加一个电场。

反过来，我们也可以在材料内部沿着界面的平行方向施加一个电

场Ey = E，如图(9.2)所示。则根据(9.60)式可知，在界面上沿着x方向会诱

导一个电流密度，Jx = −α
π
∂zθEy, 换言之，面电流密度Kx为

Kx =

∫ +ϵ

−ϵ

dzJx = αEy. (9.63)

现在，这个x方向的面电流密度当然会在拓扑绝缘体外面产生一个沿着y方

向的磁场，如图(9.2)所示。

以上面电流的公式(9.63)意味着我们可以定义一个横向电导(指电场的

方向和相应电流的方向相垂直)σxy, 其定义是Kx = σxyEy，通常称σxy为霍

尔电导。量子霍尔效应的标准结果告诉我们，霍尔电导σxy 只能取
e2

2π~的有

理数倍。在现在的例子中，由(9.63)式易见，

σxy = α =
1

2
· e2

2π~
. (9.64)

因此通常人们简称拓扑绝缘体表面的霍尔电导是1/2！
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以上讨论的电场诱导出磁场，磁场也诱导出电场的一般现象，就是所

谓的拓扑磁电效应(topological magneto-electric effect)。

以上对拓扑磁电效应的讨论也可以从轴子电动力学的边值关系来进行。

为此注意到，根据标准的电动力学教科书，由方程(9.57)我们可以得到如下

边值关系

n ·∆D = 0, n×∆H = 0, (9.65)

式中n表示界面的法向，∆表示界面两侧场值的差。类似的，由方程(9.58)，

又可以得到边值关系

n ·∆B = 0, n×∆E = 0. (9.66)

不难证明，通过应用以上两组边值关系，人们同样能得到本小节关于拓扑

磁电效应的那些结论。

9.3.4 Witten效应

当存在磁单极子时，θ项会有一个重要的效应，它会使得磁单极子带上

一定的电荷。这就是所谓的Witten效应。

图 9.3: Witten效应

设想把一个带磁荷g的磁单极子放在θ = 0的真空中，然后围绕着这个

真空腔包裹上θ ̸= 0的介质，如图(9.3)所示。则根据前面讨论过的拓扑磁电

效应，我们很容易明白将会发生什么。首先，磁单极子的磁场在跨过真空

与介质的交界面(为球面)以后，将会在介质内诱导出一个电场，因此使得
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介质内既有磁场又有电场，如图(9.3)所示。这是因为由于θ改变，在交界面

上会诱导出一层电荷。这种诱导电荷满足(9.60)式的第一个方程。因此，从

介质内部来看，就好像磁单极子也携带了一定的电荷(所以在介质内产生了

电场)，这个电荷量是

q =

∫
d3xρI = −α

π

∫
d3x∇θ ·B

= −α

π

∫
dr(∂rθ)

∫
S2

dS ·B

= −α

π
θg = − e2

4π~
θ

π
g. (9.67)

这个结果不依赖于真空腔的大小，因此我们可以设想把真空腔的半径缩小

为零，结果将依然成立。但是，真空腔缩小为零以后，这个电荷就真是由

磁单极子携带的了！这时候正确的解释就变成，当θ ̸= 0时，磁单极子会自

动带上一份q的电荷，进而成为一个双荷子，这就是Witten效应！

现在，假设上面这个磁单极子携带的是狄拉克量子化条件所允许的最

小磁荷，即g = 2π~
e
，则代入上面的(9.67)式，即有

q =
θ

2π
e. (9.68)

特别的，对于一个放置在拓扑绝缘体材料内部的磁单极子来说，它通

过Witten效应携带的电荷将是q = 1
2
e。

下面我们给出Witten效应的一个略有不同的推导。同样是先假定把一

个磁单极子放置在θ = 0的介质中，但是现在，我们设想介质的θ随时间缓

慢地增加！则这时候，根据轴子电动力学方程(9.61)的第二个方程可知，这

个过程会激发出一个平行于磁场B的电场，最终的电场将是

E = −α

π

∫
θ̇dtB = −α

π
θB. (9.69)

很显然，这同样意味着磁单极子携带了一份由(9.67)式给出的电荷。

9.3.5 空间反演，时间反演，以及θ = π

下面我们来解释θ = 0和θ = π有什么特殊性。简单概括的话，这个特

殊性就在于：θ项虽然同样有规范不变性和洛伦兹协变性，但是它破坏了空

间反演对称性和时间反演对称性，除非θ刚好等于0或π。
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所谓的空间反演操作，记作P，即是将空间位置矢量反向的操作，即

P : x → −x. (9.70)

而所谓的时间反演操作，记作T，即是将时间反向的操作，即

T : t → −t. (9.71)

但是P、T在电磁场上是如何作用的呢？

为了搞清楚这个问题，我们回到带电粒子受洛伦兹力作用的方程

mẍ = e(E+ ẋ×B). (9.72)

空间反演对称性和时间反演对称性意味着，这个方程在空间反演和时间反

演下均要保持不变！不难看出，为了满足这一点，空间反演操作和时间反

演操作在电磁场上的作用就必须为

P : E(x, t) → −E(−x, t), P : B(x, t) → B(−x, t). (9.73)

以及

T : E(x, t) → E(x,−t), T : B(x, t) → −B(x,−t). (9.74)

即是说，电场E在空间反演下为奇的，而在时间反演下则是偶的。与之相

反，磁场B在空间反演下是偶的，而在时间反演下则是奇的。

根据(9.38)式，θ项是

Sθ = θ
e2

~
1

4π2

∫
d4xE ·B. (9.75)

很显然，它无论是在空间反演之下还是在时间反演之下，都是奇的！都相

当于将θ变换成了−θ！所以θ项破坏了空间反演对称性和时间反演对称性，

除非θ = 0, π。为什么θ = π也是例外呢？原因在于θ是一个以2π为周期的角

变量，对它来说，θ = −π和θ = π其实是等同的，因此θ = π时也有空间反

演对称性和时间反演对称性。

拓扑绝缘体正是一种具有时间反演对称性的材料。根据上面的讨论

可知，这样的材料可以分成两类，一类具有θ = 0，另一类具有θ = π。

θ = 0的材料就是普通的能带拓扑平凡的材料，而拓扑绝缘体是一种能带的

拓扑不平凡的材料，因此对应θ = π。

――――――――――――――――――――

本章参考了David Tong的在线讲义Gauge Theory。


