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第八章 介质中的电磁场以及偶极

辐射

陈陈陈童童童

本章将用统一的方法处理介质中的电磁场方程以及偶极辐射问题。本

章将采用完整的国际单位制。本章中指标i, j, k = 1, 2, 3, 而指标µ, ν, ρ =

0, 1, 2, 3。

8.1 偶极耦合

让我们从电荷体系与电磁场的偶极耦合开始。假设一个电荷为q质量

为m的粒子围绕着空间坐标原点处的一个电荷为−q的核运动。假设记核的

时空坐标为xµ
2 , 记围绕其运动的粒子的时空坐标为xµ

1 , 则根据第6章的知识

可知，整个系统作用量的电磁相互作用项SI为

SI = −q

∫
Aµdx

µ
2 + q

∫
Aµdx

µ
1

=

∫
dt
[
qϕ(x2)− qA(x2) · ẋ2

]
+

∫
dt
[
− qϕ(x1) + qA(x1) · ẋ1

]
. (8.1)

假设核很重，只能在空间坐标原点附近作微小运动，同时由于核的束缚，

粒子1也只能在空间坐标原点附近运动。因此我们可以将电磁势在空间坐标

2
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原点处泰勒展开，进而将上式近似成

SI ≈
∫

dt
[
qA(t, 0) · (ẋ1 − ẋ2)

]
+

∫
dt
[
− q∇ϕ(t, 0) · (x1 − x2)

]
+

∫
dt
[
q∂iAj(t, 0)(x

i
1ẋ

j
1 − xi

2ẋ
j
2)
]
. (8.2)

将第一行右边的第一项分部积分，并丢弃边界项，即可得
∫
dt
[
−q∂tA(t, 0) ·

(x1 − x2)
]
, 注意到E = −∂tA − ∇ϕ，从而易知上面(8.2)式的第一行正好

是， ∫
E(t, 0) · p. (8.3)

式中p = q(x1 − x2)为系统的电偶极矩。

为了处理(8.2)式的第二行，我们将注意力集中在下面这样的项∫
dt∂iAj(t, 0)x

iẋj. (8.4)

这一项处理起来比较微妙，不过，注意到最初的相互作用项
∫
Aµdx

µ是规范

不变的1，因此我们可以对上式进行如下规范变换

Aj → Aj − ∂jϵ, (8.5)

并选择规范变换参数为

ϵ =
1

2
A(t,x) · x =

1

2
Ai(t,x)x

i, (8.6)

从而∂iϵ =
1
2
Ai(t, x)+

1
2
(∂iAj)x

j, ∂j∂iϵ(t, 0) =
1
2
[∂jAi(t, 0)+ ∂iAj(t, 0)]。则在

规范变换之后即有∫
dt∂iAj(t, 0)x

iẋj →
∫

dt
[
∂iAj(t, 0)− ∂j∂iϵ(t, 0)

]
xiẋj

=
1

2

∫
dt
[
∂iAj(t, 0)− ∂jAi(t, 0)

]
xiẋj

=
1

2

∫
dtFij(t, 0)x

iẋj =

∫
dtBk(t, 0)

1

2
ϵijkx

iẋj. (8.7)

1在规范变换下会多出一个全微分，因此只相差一个边界项，而我们要求边界处的变分

为零，从而这样的项实际上是规范不变的。详细讨论参见《经典力学新讲》第三章的相关

内容。
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从而易知，(8.2)式的第二行在上述规范变换之后将可以替换成∫
dt
[
Bk(t, 0)q

1

2
ϵijk(x

i
1ẋ

j
1 − xi

2ẋ
j
2)
]
. (8.8)

通常称

(m)k = q
1

2
ϵijk(x

i
1ẋ

j
1 − xi

2ẋ
j
2) ⇒ m =

1

2
(qx1 × ẋ1 − qx2 × ẋ2). (8.9)

为系统的磁偶极矩，简称磁矩。则由上可知，(8.2)式的第二行可以替换成∫
dtB(t, 0) ·m. (8.10)

综上可知，当电荷的运动限制在空间坐标原点附近时，我们有

SI ≈
∫

dt
[
p · E(t, 0) +m ·B(t, 0)

]
. (8.11)

很明显，这个式子也可以推广到空间坐标原点附近任意一个整体呈电中性

的偶极子情形(比如一个原子或分子)。假设这个偶极子由多个带电粒子组

成，以xn来表示组成这个偶极子的第n个粒子的坐标，qn为这个粒子的电

荷，mn为它的质量，则这时候，偶极子的电偶极矩和磁偶极矩的定义将分

别为

p =
∑
n

qnxn, m =
1

2

∑
n

qnxn × ẋn, (8.12)

式中
∑

n qn = 0。另外，根据粒子相对于空间原点轨道角动量的定义Ln =

mnxn × ẋn，易知

m =
∑
n

qn
2mn

Ln. (8.13)

假设电磁场中有一个偶极子位于空间坐标原点，则根据上面的分析，

偶极子拉格朗日量中与电磁场的相互作用项为

LI = p · E(t, 0) +m ·B(t, 0). (8.14)

对带电粒子的完整拉格朗日量进行勒让德变换，就可以得到偶极子的哈密

顿量，其中与外电磁场的相互作用项HI为

HI = −p · E(t, 0)−m ·B(t, 0). (8.15)
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很显然，这正是我们在电磁学和电动力学课程中熟悉的形式。只不过，相

比于电动力学中的推导，这里的推导具有更大的一般性，比方说，我们这

里允许电磁场随时间变化，而不限于静电场和静磁场。

很显然，上述拉格朗日量的相互作用项LI也可以写成如下形式

LI =

∫
d3x

[
P · E+M ·B

]
, (8.16)

式中P(x)称为极化强度, M(x)称为磁化强度，在上述情况下它们分别为

P(x) = pδ3(x), M(x) = mδ3(x). (8.17)

并且类似的，我们也可以得到哈密顿量的相互作用项HI为

HI =

∫
d3x

[
−P · E−M ·B

]
. (8.18)

如果偶极子不是位于空间坐标原点，而是位于x0点，则显然

P(x) = pδ3(x− x0), M(x) = mδ3(x− x0). (8.19)

现在

p =
∑
n

qnrn, m =
1

2

∑
n

qnrn × ṙn, (8.20)

式中rn = xn − x0为组成偶极子的第n个粒子相对于偶极子中心的坐标，对

于上面那个位于空间原点的偶极子而言，即有rn = xn。

如果有多个位于不同位置的偶极子，那就有

P(x) =
∑
a

paδ
3(x− xa), M(x) =

∑
a

maδ
3(x− xa). (8.21)

其中，pa,ma分别为a偶极子的电偶极矩和磁偶极矩，xa为a偶极子的位置。

另一方面，注意到本章最开始处作为推导出发点的作用量相互作用

项SI是明显协变的。因此，作偶极子近似以后的耦合项SI必然依旧是协变

的。这意味着下式必定可以写成明显协变的形式，

SI =

∫
d4x

[
P · E+M ·B

]
. (8.22)

为了看出这一点，我们引入四维极化-磁化张量Mµν , 它是一个二阶反对称

张量，并且满足

M0i(x) = −cPi(x), M ij = ϵijkMk. (8.23)
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利用极化磁化张量Mµν，并注意到F 0i = Ei/c, F
ij = ϵijkBk，不难验证偶极

子与电磁场耦合的作用量SI可以写成如下明显协变的形式

SI =

∫
d4x

[
P · E+M ·B

]
=

1

2

∫
d4x

[
MµνF

µν
]
. (8.24)

8.2 介质中的电磁场

8.2.1 介质中的电磁场方程

现在考虑一块介质，它由许多分子组成，每一个分子整体都呈电中性，

但是在电磁场的作用下，它们可能会被极化和磁化，也就是表现出非零的

电偶极矩和非零的磁偶极矩，进而与电磁场产生偶极耦合。从上一节可以

知道，相应作用量的耦合项为，

SI =
1

2

∫
d4x

[
MµνF

µν
]
. (8.25)

将这个耦合项对电磁势Aµ进行变分，在进行必要的分部积分并丢弃边界项

后，即可得

δSI = −
∫

d4x(∂µM
µν)δAν . (8.26)

与电流四矢量和电磁势的标准耦合形式δSI =
∫
d4xJνδAν比较，可知极化

磁化张量会诱导出一个电流四矢量Jν
I ,

Jν
I = −∂µM

µν . (8.27)

分别取ν = 0, i即可得诱导电荷密度ρI以及诱导电流密度JI，分别为

ρI = −∇ ·P, JI = ∂tP+∇×M. (8.28)

在电动力学书中常常称ρI为极化电荷密度，称JI为极化磁化电流密度。

假设除了分子中的束缚电荷之外，系统中还存在一些可以自由运动的

电荷，它们形成自由电流四矢量Jµ
f。Jµ

f同样要耦合到电磁场上，相应的耦

合关系可以写成δSf =
∫
d4xJµ

f δAµ。

记电磁场自身的作用量为Sem = −
∫
d4x 1

4µ0
FµνF

µν , 则除了分子自身的

动能和势能之外，整个系统的作用量可以写成

S = Sem + SI + Sf . (8.29)
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将这个作用量对电磁势Aµ变分，就能得到麦克斯韦方程

− ∂µF
µν = µ0(J

ν
f + Jν

I )

⇒− ∂µ
(
F µν − µ0M

µν
)
= µ0J

ν
f . (8.30)

上式第二行我们代入了诱导电流的定义式(8.27)。

人们常常引入一个Hµν场，其定义为

Hµν =
1

µ0

F µν −Mµν . (8.31)

进而将(8.30)式写成

−∂µH
µν = Jν

f . (8.32)

这个式子与Fµν满足的如下恒等式一起，就构成了介质中的麦克斯韦方程组

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (8.33)

通常还会引入电位移矢量D以及H-场矢量H, 其定义为,

H0i = cDi, H ij = ϵijkHk. (8.34)

代入Hµν场的定义式(8.31), 并注意到1/(µ0c) = ϵ0c, 即可知

D = ϵ0E+P, H =
1

µ0

B−M. (8.35)

进而方程(8.32)又可以写成

∇ ·D = ρf , ∇×H = ∂tD+ Jf . (8.36)

这组方程，再加上如下由(8.33)式给出的两个方程，就构成了通常用矢量形

式写出来的介质中的麦克斯韦方程组，

∇ ·B = 0, ∇× E = −∂tB. (8.37)

但是由于引入了额外的D场和H场，介质中的麦克斯韦方程组本身是

不完备的。为了求解它们，通常还要附加如下两组关系

D = D(E,B), H = H(E,B). (8.38)
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这两个方程实际上是描述介质的极化和磁化性质的方程，通常称作本构关

系(consitutive relations)。这样的本构关系可以通过实验来测定，也可以通

过量子力学和统计力学中关于极化(磁化)强度对电磁场的响应的计算来得

出。

如果电磁场不太强且变化不太迅速，则介质对电磁场的响应一般是线

性的，在均匀各向同性介质内，这种线性关系可以写成(限于介质整体静止

的参考系)，

P = χϵ0E, D = ϵE

M = κH, B = µH. (8.39)

χ和κ分别称作介质的极化率和磁化率，ϵ和µ则分别称作介质的介电常数和

磁导率。根据上面的(8.35)式可知

ϵ = ϵ0ϵr, ϵr = 1 + χ,

µ = µ0µr, µr = 1 + κ. (8.40)

这里ϵr和µr分别称作介质的相对介电常数和相对磁导率。ϵr通常大于等于1，

但是µr既可以大于1也可以小于1，µr > 1的介质称作顺磁质，µr < 1的介质

称作抗磁质。经典物理有可能解释介质是如何极化的，进而可以计算出极

化率。但是，可以证明，经典物理无法正确地解释介质的磁化机制，为了

正确地解释介质具体如何磁化并计算出磁化率，人们必须求助量子物理。

关于极化和磁化机制的讨论和计算，初步的探讨参见《费曼物理学讲义第

二卷》第32章至第37章的相关内容。

以上具有线性本构关系的介质就称作线性介质，但是，在铁电介质、

铁磁介质，或者强场的情形下，线性的本构关系不再成立。

对于导电介质，则还要加上一个方程，即欧姆定律，在最简单的情形

中，它取如下形式

Jf = σE. (8.41)

式中σ称作导体的电导率。

8.2.2 线性介质中电磁场的能量与动量

这一小节我们来讨论线性介质中电磁场能量和动量的守恒关系。根据
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第四章的知识，电磁场本身的能量-动量张量T µν
em为

T µν
em =

1

µ0

[
F µ

ρF
νρ − 1

4
ηµνFρσF

ρσ
]
. (8.42)

根据第6章的知识，我们又有

∂µT
µν
em = −F ν

ρJ
ρ, (8.43)

式中Jρ是总的电流四矢量，包括自由电流和极化磁化的诱导电流。现在，

不妨先假设不存在自由电流，只有诱导电流，从而上式就可以写成

∂µT
µν
em = −F ν

ρJ
ρ
I . (8.44)

将前面的(8.27)式代入(8.44)式，可得

∂µT
µν
em = F ν

ρ∂µM
µρ = ∂µ

(
F ν

ρM
µρ
)
− (∂µF νρ)Mµρ

= ∂µ
(
F ν

ρM
µρ
)
− 1

2

(
∂µF νρ − ∂ρF νµ

)
Mµρ

= ∂µ
(
F ν

ρM
µρ
)
+

1

2

(
∂µF ρν + ∂ρF νµ

)
Mµρ (8.45)

代入麦克斯韦方程组中的恒等式方程(8.33)，可得

∂µ
[
T µν
em −MµρF ν

ρ

]
= −1

2
(∂νF µρ)Mµρ

=− 1

4
∂ν

(
F µρMµρ

)
+

1

4
F µρ(∂νMµρ)−

1

4
(∂νF µρ)Mµρ

将上面的结果移一下项，即得

∂µ
[
T µν
em −MµρF ν

ρ

]
+

1

4
∂ν

(
F µρMµρ

)
=

1

4

[
F µρ(∂νMµρ)− (∂νF µρ)Mµρ

]
.(8.46)

在上面的结果中取ν = 0，可得

∂0
(
T 00
em −M0iF 0

i −
1

4
F µρMµρ

)
+ ∂i

(
T i0
em −M ijF 0

j

)
=− 1

2

[
E · (∂0P)− (∂0E) ·P+B · (∂0M)− (∂0B) ·M

]
. (8.47)

对于线性介质，P与E成正比，M与B成正比，从而等式的右边等于零，从

而即有守恒方程

∂0
(
T 00
em −M0iF 0

i −
1

4
F µρMµρ

)
+ ∂i

(
T i0
em −M ijF 0

j

)
= 0. (8.48)
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根据第四章的相关讨论，可知

T 00
em =

1

2
ϵ0E

2 +
1

2

1

µ0

B2, T i0 =
1

µ0c
(E×B)i. (8.49)

进而不难算得

T 00
em −M0iF 0

i −
1

4
F µρMµρ =

1

2

[
E ·D+B ·H

]
(8.50)

以及

T i0
em −M ijF 0

j =
1

c
(E×H)i. (8.51)

从而守恒方程(8.48)可以写作

∂t
[1
2
E ·D+

1

2
B ·H

]
+∇ · [E×H] = 0. (8.52)

上面这一结果清楚地告诉我们，在线性介质中，我们可以定义有效的

电磁场能量密度H为

H =
1

2

[
E ·D+B ·H

]
, (8.53)

同时可以定义有效的能流密度S为

S = E×H. (8.54)

它们满足局域的能量守恒方程

∂tH +∇ · S = 0. (8.55)

类似的，通过在方程(8.46)中取ν = i，我们可以讨论线性介质中的局

域动量守恒方程。具体的讨论还是留给读者自行练习吧。

8.3 偶极子的场

这一节求解单个偶极子所产生的电磁场，进而讨论偶极辐射。
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8.3.1 静态偶极子的场

假设给定一个静态偶极子，其电偶极矩p和磁偶极矩m均为不随时间

变化的定值，我们想求解这个静态偶极子所产生的静态电磁场。对于这样

的静态问题，其拉格朗日量将仅仅依赖于场位形，而不依赖于场位形对时

间的导数，因此这时候最小作用量原理就等价于拉格朗日量对场位形的变

分取极值这一原理。

假设这个偶极子位于空间坐标原点，则根据(8.16)式可知，系统的拉格

朗日量可以写成

L =

∫
d3x

[1
2
ϵ0E

2 − 1

2

1

µ0

B2 + δ3(x)p · E+ δ3(x)m ·B
]
. (8.56)

由于考察的是静态场位形，所以E和B可以分别写成

E = −∇ϕ, B = ∇×A. (8.57)

代入拉格朗日量(8.56)，即有

L =

∫
d3x

[1
2
ϵ0(∇ϕ)2 − 1

2

1

µ0

(∇×A)2 − δ3(x)p · ∇ϕ+ δ3(x)m · (∇×A)
]
.

根据拉格朗日量取极值，将上式对ϕ以及A变分，即可得方程

ϵ0∇2ϕ = p · ∇δ3(x) (8.58)

− 1

µ0

∇× (∇×A) = m×∇δ3(x). (8.59)

取如下库伦规范

∇ ·A = 0, (8.60)

从而即可把方程(8.59)改写成

1

µ0

∇2A = m×∇δ3(x). (8.61)

下面要做的就是求解方程(8.58)和方程(8.61)。这两个方程看起来有点

复杂，但只要注意到

−∇2
( 1

4π|x|
)
= δ3(x), (8.62)
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则我们就能直接写出(8.58)和(8.61)的解，

ϕ = − 1

ϵ0
p · ∇

( 1

4π|x|
)
=

1

4πϵ0

p · x
|x|3

A = −µ0m×∇
( 1

4π|x|
)
=

µ0

4π

m× x

|x|3
. (8.63)

将这个结果代入(8.57)式，即可得

E =
1

4πϵ0

3(p · n)n− p

|x|3

B =
µ0

4π

3(m · n)n−m

|x|3
. (8.64)

式中单位矢量n = x
|x|。这个结果当然是电动力学中熟知的结果。

8.3.2 偶极辐射

还是考察位于空间坐标原点的这个偶极子，不过现在，我们假设其电

偶极矩和磁偶极矩都随时间变化，分别记为p(t),m(t)。那这时候它就会产

生电磁波辐射，相应的就要求解麦克斯韦方程−∂µF
µν = µ0J

ν
I (Jµ

I为偶极

子的诱导电流四矢量)。根据上一章的知识，这个方程可以在洛伦兹规范中

用推迟势来求解。因此我们可以根据学过的推迟势公式算出洛伦兹规范下

的电磁势Aµ, 进而算出偶极子辐射出来的电磁场强。为了方便参考，我们

将推迟势公式重写如下

ϕ(x, t) =
1

4πϵ0

∫
d3x′ρ(x

′, t− |x− x′|/c)
|x− x′|

.

A(x, t) =
µ0

4π

∫
d3x′J(x

′, t− |x− x′|/c)
|x− x′|

. (8.65)

当然，现在代入上面(8.65)式的电流四矢量应该是偶极子的诱导电流四

矢量，将P = p(t)δ3(x), M = m(t)δ3(x)代入(8.28)式，可以算得

ρI(x, t) = −p(t) · ∇δ3(x),

JI(x, t) = ṗ(t)δ3(x)−m(t)×∇δ3(x). (8.66)

将这个结果代入上面的推迟势公式，就可以算得电磁势Aµ。比方说我们
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将ρI(x, t)的结果代入推迟势公式，即有(下式中∇′表示对x′求梯度)

ϕ(x, t) =
1

4πϵ0

∫
d3x′−p(t− |x− x′|/c) · ∇′δ3(x′)

|x− x′|

=
1

4πϵ0

∫
d3x′δ3(x′)∇′ ·

[p(t− |x− x′|/c)
|x− x′|

]
= − 1

4πϵ0

∫
d3x′δ3(x′)∇ ·

[p(t− |x− x′|/c)
|x− x′|

]
= − 1

4πϵ0
∇ ·

[p(t− |x|/c)
|x|

]
. (8.67)

类似的，可以求得

A(x, t) =
µ0

4π|x|
ṗ(t− |x|/c) + µ0

4π
∇×

[m(t− |x|/c)
|x|

]
. (8.68)

记p(t− |x|/c) = [p], m(t− |x|/c) = [m], 并注意到

∂i[pj] = −[ṗj]∂i
( |x|
c

)
= −1

c
ni[ṗj]. (8.69)

式中ni = (n)i =
xi

|x|，以及完全类似的，

∂i[mj] = −1

c
ni[ṁj]. (8.70)

则根据E = −∇ϕ − ∂tA, B = ∇ × A我们就能算出偶极子的电磁场强。

比如说，假设我们仅关心|x|足够大足够远处的场，则保留到1/|x|阶为
止(1/|x|2阶及更高的1/|x|3阶均忽略)算出来的电场强度如下

Ei =
µ0

4π

ninj[p̈j]− [p̈i]

|x|
+

µ0

4πc
ϵijk

nj[m̈k]

|x|

⇒ E =
µ0

4π

n
(
n · [p̈]

)
− [p̈]

|x|
+

µ0

4πc

n× [m̈]

|x|
. (8.71)

类似的，我们也能算出磁场，为

B = − µ0

4πc

n× [p̈]

|x|
+

µ0

4πc2
n
(
n · [m̈]

)
− [m̈]

|x|
. (8.72)

这个结果与电动力学教材上给出的结果完全一致，比如与Andrew Zang-

will的Modern Electrodynamics第20章20.7节给出的结果一致。相比于电动
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力学书上的推导，这里的推导方法好处在于，原则上可以算出偶极子的精

确的电磁场。至于偶极辐射功率等等结果的计算也请读者参考Zangwill这

本书，我们这里不再赘述。

这一小节以及上一小节给出来的偶极子场均体现一种电磁对偶性，具

体来说即是，在ϵ0 = µ0 = c = 1的自然单位制中，这两小节的最终结果均

在如下变换下保持不变

E → B, p → m, B → −E, m → −p. (8.73)

我们将在下一章中进一步讨论麦克斯韦方程组的这种电磁对偶性质。


