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第七章 运动电荷的电磁场

陈陈陈童童童

运动电荷会产生电磁场，本章就是要通过求解麦克斯韦方程，求出这

个电磁场。和本书其它章节一样，本章也主要采用c = 1单位制，但与此

同时，我们将保留公式中真空磁导率以及真空介电常数的符号，当然，由

于c = 1，在恢复光速前即有µ0 = 1/ϵ0。另外，在各种推导结束以后，我们

也常常通过恢复光速c来得到国际单位制中的相应公式。

7.1 延迟格林函数和推迟势

为了求解运动电荷所产生的电磁场，我们需要求解麦克斯韦方程。我

们知道，在洛伦兹规范∂µA
µ = 0之下，麦克斯韦方程等价于如下波动方

程，

−∂ν∂
νAµ(x) = µ0J

µ(x). (7.1)

式中Jµ为电流四矢量。为了求解这个方程，我们定义格林函数G(x, x′), 它

满足如下方程

−∂ν∂
νG(x, x′) = δ4(x− x′) (7.2)

式中x = (t,x),x′ = (t′,x′)为两个四维时空点，δ4(x−x′) = δ(t−t′)δ3(x−x′)。

利用格林函数，我们可以得到方程(7.1)的解，

Aµ(x) = µ0

∫
d4x′G(x, x′)Jµ(x′). (7.3)
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第七章 运动电荷的电磁场 3

注意到方程(7.2)在时空坐标平移下是不变的，从而即有G(x, x′) =

G(x− x′), 进而就可以将(7.2)式改写成

−∂ν∂
νG(x) = δ4(x). (7.4)

而方程(7.1)的解就可以写成，

Aµ(x) = µ0

∫
d4x′G(x− x′)Jµ(x′). (7.5)

利用流守恒方程∂µJ
µ = 0以及关系式∂µG(x− x′) = −∂′

µG(x− x′)(式中∂′
µ =

∂
∂x′µ ), 很容易验证这样的解一定满足洛伦兹规范。验证过程如下，

∂µA
µ(x) = µ0

∫
d4x′∂µG(x− x′)Jµ(x′)

= −µ0

∫
d4x′∂′

µG(x− x′)Jµ(x′)

= µ0

∫
d4x′G(x− x′)∂′

µJ
µ(x′) = 0, (7.6)

式中第3个等号我们进行了分部积分，并注意到Jµ在无穷远处等于零，从

而扔掉了分部积分的边界项，同时，式中最后一个等号我们利用了流守恒

方程∂µJ
µ = 0。

为了求出格林函数G(x)的具体表达式，我们对(7.4)式进行傅里叶变换，

注意到δ4(x) =
∫

d4k
(2π)4

eik·x，式中kµ = (ω,k), k · x = kµx
µ = −ωt+ k · x，并

令

G(x) =

∫
d4k

(2π)4
G̃(k)eik·x, (7.7)

进而即可得到

k2G̃(k) = 1 ⇒ G̃(k) =
1

k2
=

1

k2 − ω2
= − 1

ω2 − |k|2
. (7.8)

从而

G(x) = −
∫

d3k

(2π)3
eik·x

∫
dω

2π

e−iωt

ω2 − |k|2
. (7.9)

我们可以将变量ω延拓到整个复平面来看待(7.9)这个积分。很明显，

被积函数 e−iωt

ω2−|k|2在ω复平面上有两个极点，分别是ω = ±|k|。而对ω的积
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分是沿着实轴进行的，积分路径会经过这两个极点，因此为了让积分收

敛，就必须给出积分路径在极点附近如何绕过的方案。这样的方案并非

唯一，不同的绕行方案将给出不同的格林函数。但在经典场论中，最重

要的绕行方案是从极点的上方绕过，如图(7.1)所示。这种绕行方案给出

来的格林函数就是所谓的延迟格林函数(retarded Green’s function)，记

作Gret(x) = Gret(x, t)，这个函数的行为取决于t > 0还是t < 0。

图 7.1: t < 0时延迟格林函数在复ω平面的积分回路。

我们首先来看t < 0情形。这时候被积函数中的指数因子e−iωt显然满足

ω → i∞ : e−iωt → 0. (7.10)

因此我们可以将ω的积分路径在复上半平面上添加一个无穷远半圆，如

图(7.1)所示，因为在这个无穷远半圆上，被积函数等于零，从而对积分是

没有贡献的。但这样一来，我们就使得ω的积分路径在复ω平面上形成了一

个闭合围道，从而可以利用围道积分来计算积分结果。很明显，由于积分

路径从极点的上方绕过，所以这个闭合围道并不包围任何极点，从而围道

积分的结果必定为零，即

Gret(x, t) = 0 t < 0. (7.11)

反过来，当t > 0时，有

ω → −i∞ : e−iωt → 0. (7.12)

从而我们只能给积分路径在复下半平面上添加无穷远处的半圆，从而在复

下半平面形成闭合围道。那这时候积分围道将同时包围两个极点，围道积

分的结果将给出∮
dω

2π

e−iωt

ω2 − |k|2
=

1

2π
(−2πi)

[e−i|k|t

2|k|
− ei|k|t

2|k|

]
. (7.13)
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代入(7.9)式，即有

G(x) = −
∫

d3k

(2π)3
eik·x

∫
dω

2π

e−iωt

ω2 − |k|2

= i

∫
d3k

(2π)3
1

2|k|
[
ei(k·x−|k|t) − ei(k·x+|k|t)]. (7.14)

下面以x的方向为z方向，在3维k空间引入球坐标，并记r = |x|, 即有

i

∫
d3k

(2π)3
1

2|k|
ei(k·x−|k|t) = i

1

(2π)3
(2π)

∫ +∞

0

|k|2d|k|
∫ π

0

sin θdθ
1

2|k|
ei|k|r cos θe−i|k|t

= i
1

2(2π)2

∫ +∞

0

|k|d|k| 1

i|k|r
[
ei|k|r − e−i|k|r]e−i|k|t

=
1

2(2π)2r

∫ +∞

0

d|k|
[
ei|k|(r−t) − e−i|k|(r+t)

]
. (7.15)

类似的，也有

i

∫
d3k

(2π)3
1

2|k|
ei(k·x+|k|t) =

1

2(2π)2r

∫ +∞

0

d|k|
[
ei|k|(r+t) − e−i|k|(r−t)

]
. (7.16)

将(7.15)式和(7.16)式代入(7.14)式，即有

G(x) =
1

2(2π)2r

∫ +∞

0

d|k|
[
ei|k|(r−t) − e−i|k|(r+t) − ei|k|(r+t) + e−i|k|(r−t)

]
=

1

2(2π)2r

∫ +∞

−∞
d|k|

[
ei|k|(r−t) − e−i|k|(r+t)

]
=

1

4πr

[
δ(t− r)− δ(t+ r)

]
=

1

2π
δ(t2 − r2)

=
1

2π
δ(x2). (7.17)

即仅仅在光锥x2 = 0上，延迟格林函数才非零。

刚才我们计算的是t > 0情形，现在将t < 0和t > 0综合起来，即有

Gret(x, t) =
1

2π
δ(x2)θ(t). (7.18)

其中θ(t)是所谓的阶跃函数，当t > 0时，θ(t) = 1，当t < 0时θ(t) = 0。

(7.18)式是延迟格林函数的明显协变的形式，它在正洛伦兹变换下明显保持

不变。但实际上，当t > 0时，必有(7.17)式中的δ(r + t) = 0, 从而延迟格林

函数也可以写成如下不明显协变的形式

Gret(x, t) =
1

4πr
δ(t− r). (7.19)



第七章 运动电荷的电磁场 6

利用延迟格林函数，即可得到

Aµ(x) = µ0

∫
d4x′Gret(x− x′)Jµ(x′)

=
µ0

2π

∫
d4x′δ((x− x′)2)θ(t− t′)Jµ(x′)

=
µ0

4π

∫
d4x′ δ(t− t′ −R)

R
Jµ(x′). (7.20)

式中

R = x− x′, R = |R|. (7.21)

我们也常常将(7.20)式中的时间变量t′先积掉，进而得到

Aµ(x) =
µ0

4π

∫
d3x′J

µ(x′, t−R)

R
(7.22)

从(7.20)式和(7.22)式可以清楚地看到，t时刻的势场Aµ取决于更早的t−R时

刻的源，因此这两个式子又叫做推推推迟迟迟势势势公公公式式式。推迟的原因就在于场的传播

需要时间，t − R时刻x′点源的运动情况经过时间R刚好在t时刻影响x点的

势场。

其它格林函数

假如在计算(7.9)式的积分时我们让积分路径从两个极点的下方绕过，

如图(7.2)所示，相应的积分结果将给出另一种可能的格林函数，即超前格

林函数(advanced Green’s function)Gadv(x, t)，为

Gadv(x, t) = − 1

2π
δ(x2)θ(−t) =

1

4πr
δ(t+ r)θ(−t). (7.23)

利用超前格林函数，我们就能得到所谓的超前势，

Aµ(x) =
µ0

4π

∫
d3x′J

µ(x′, t+R)

R
. (7.24)

超前势同样是方程(7.1)的解，但是这种解显然是非物理的，因为它t时刻的

场值取决于未来的t + R时刻的源分布，这显然违反了因果律。因此唯一合

理的处理就是丢弃这种可能性。

最后，在量子场论中，(7.9)式的积分围道还有另一种可能性，即从两

个极点中左边极点的下方绕过，但却从右边极点的上方绕过，如图(7.3)所

示，这时候相应的格林函数就称作费曼格林函数，或者称作费曼传播子。

这种格林函数在量子场论中是最基本的，但它没有经典物理解释，从而当

我们仅仅考虑经典场论时也应该丢弃它。
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图 7.2: t > 0时超前格林函数在复ω平面的积分回路。

图 7.3: 费曼传播子。

7.2 带电粒子的电磁场

7.2.1 Lienard-Wiechert势

现在考察一个带电的运动粒子，设电量为q，粒子的世界线为x̃µ(τ) =

(t̃(τ), x̃(τ))，其中τ为世界线的参数，通常就取为粒子的固有时。记粒子的

速度为v(t) = dx̃
dt
, 则这个粒子贡献的电荷密度ρ(x, t)以及电流密度J(x, t)分

别为，

ρ(x, t) = qδ3(x− x̃(t))

J(x, t) = qv(t)δ3(x− x̃(t)). (7.25)

或者也可以写成明显协变的形式

Jµ(x) = q

∫
dτ

dx̃µ(τ)

dτ
δ4(x− x̃(τ)). (7.26)

在上式中将变量τ代换成t̃就可以得到前面不明显协变的电荷密度以及电流

密度。
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将(7.26)式代入(7.20)式，就可以得到这个运动电荷产生的场

Aµ(x) =
µ0q

2π

∫
dτ

∫
d4x′dx̃

µ

dτ
δ4(x′ − x̃(τ))δ((x− x′)2)θ(t− t′)

=
µ0q

2π

∫
dτ

dx̃µ

dτ
δ((x− x̃)2)θ(t− t̃)

=
µ0q

4π

∫
dτ

dx̃µ

dτ

δ(t− t̃−R)

R
. (7.27)

式中R(τ) = x− x̃(τ)为从带电粒子到场点x的位置矢量。在(7.27)式中将变

量τ代换成变量t̃, 即有(注意到在光速c = 1的单位制中有µ0 = 1/ϵ0)

ϕ(x, t) =
q

4πϵ0

∫
dt̃
δ(t− t̃−R(t̃))

R(t̃)

A(x, t) =
µ0q

4π

∫
dt̃v(t̃)

δ(t− t̃−R(t̃))

R(t̃)
. (7.28)

式中v(t̃) = dx̃/dt̃。式中的δ函数将时间t̃约束为满足下式

t− t̃−R(t̃) = 0 ⇔ t̃ = t−R(t̃). (7.29)

满足这个式子的时间t̃称作迟缓时间(retarded time)，通常记为tret，很显然

它是t时刻到达x点的光从带电粒子发出的时间。

利用

δ(t− t̃−R(t̃)) =
δ(t̃− tret)

| ∂
∂t̃
(t− t̃−R(t̃))|

, (7.30)

并注意到

∂

∂t̃
(t̃+R(t̃)− t) = 1 +

dR(t̃)

dt̃

=1− dx̃

dt̃
· ∇R = 1− v(t̃) · n(t̃). (7.31)

式中n(t̃) = ∇R(t̃) = R
R
为从带电粒子指向场点的单位矢量，通常称1−v(t̃) ·

n(t̃)为多普勒因子。利用这些结果，我们很容易将(7.28)式的积分算出来，

得到

ϕ(x, t) =
1

4πϵ0

[ q

R− v ·R

]
ret

A(x, t) =
µ0q

4π

[ qv

R− v ·R

]
ret
. (7.32)
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其中下标ret表示方括号里的量在迟缓时刻tret计算。(7.32)就是所谓的Lienard-

Wiechert势。

为了得到运动带电粒子所产生的电场E(x, t)和磁场B(x, t), 我们利用

E(x, t) = −∇ϕ− ∂A

∂t
, B(x, t) = ∇×A. (7.33)

代入带电粒子的标势和矢势(即(7.28)式)，即有

E(x, t) = − q

4πϵ0
∇

∫
dt̃
δ(t− t̃−R(t̃))

R(t̃)
− µ0q

4π

∂

∂t

∫
dt̃v(t̃)

δ(t− t̃−R(t̃))

R(t̃)
.

利用∇R = n, ∇
(
1
R

)
= − R

R3 , 即有

∇δ(t− t̃−R(t̃)) = (−∇R)
∂

∂t
δ(t− t̃−R(t̃)) = −n(t̃)

∂

∂t
δ(t− t̃−R(t̃)).

代入E(x, t)的表达式，即有

E(x, t) =
q

4πϵ0

[ ∫
dt̃δ(t− t̃−R(t̃))

n

R2
+

∂

∂t

∫
dt̃δ(t− t̃−R(t̃))

n− v

R

]
.

将对t̃的积分积出来，即有

E(x, t) =
q

4πϵ0

[ n

(1− v · n)R2

]
ret

+
q

4πϵ0

d

dt

[ n− v

(1− v · n)R

]
ret
. (7.34)

类似的，也可以得到磁场的表达式，为

B(x, t) =
µ0q

4π

[ v × n

(1− v · n)R2

]
ret

+
µ0q

4π

d

dt

[ v × n

(1− v · n)R

]
ret
. (7.35)

7.2.2 Heaviside-Feynman公式

以上关于带电粒子电场强度和磁场强度的结果虽然精确成立，但相关

的公式应用起来却不够方便。为了得到更好用的表达式，我们将迟缓时间

的定义式tret = t−R(tret)对tret求导，从而得到

dt

dtret
= 1 +

dRret

dtret
. (7.36)

再利用dR
dt

= −dx̃
dt

· ∇R = −v · n, 即有

dt

dtret
= [1− v · n]ret. (7.37)
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类似的，也可以得到

dtret
dt

= 1− dRret

dt
=

1

[1− v · n]ret
. (7.38)

而且也有

vret = −dRret

dtret
= −[1− v · n]ret

dRret

dt

⇒
[ v

1− v · n

]
ret

= −dRret

dt
. (7.39)

利用(7.38)式和(7.39)式消去(7.34)式中的 1
[1−v·n]ret 和

[
v

1−v·n

]
ret
, 即可以

得到

E =
q

4πϵ0

{nret

R2
ret

(
1− dRret

dt

)
+

d

dt

[nret

Rret

(
1− dRret

dt

)
+

1

Rret

dRret

dt

]}
. (7.40)

经过一些运算就可以整理得

E(x, t) =
q

4πϵ0

{[ n

R2

]
ret

+Rret
d

dt

[ n

R2

]
ret

+
d2nret

dt2

}
. (7.41)

这个结果就是所谓的Heaviside-Feynman公式，这个公式的第一项就是库伦

场项，第二项是时间延迟带来的修正项，第三项则可以描述运动电荷的电

磁波辐射。通过简单的量纲分析，我们容易恢复Heaviside-Feynman公式中

的光速c，进而得到

E(x, t) =
q

4πϵ0

{[ n

R2

]
ret

+
Rret

c

d

dt

[ n

R2

]
ret

+
1

c2
d2nret

dt2

}
. (7.42)

上面得到的Heaviside-Feynman公式是关于电场的，为了得到磁场的相

应公式，我们将n = R
R
对t求导，并利用dR

dt
= −v · n, 即可得

dn

dt
=

1

R
[−v + n(v · n)] = 1

R
n× (n× v). (7.43)

进而即有

nret ×
dnret

dt
= nret ×

dnret

dtret

dtret
dt

. (7.44)

代入(7.38)式和(7.43)式，即可得

nret ×
dnret

dt
=

[ v × n

(1− v · n)R

]
ret
. (7.45)
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将这个结果应用到(7.35)式，即得

B(x, t) =
µ0q

4π

{[n
R

]
ret

× dnret

dt
+ nret ×

d2nret

dt2

}
. (7.46)

这就是关于带电粒子磁场的Heaviside-Feynman公式，恢复光速c，即有

B(x, t) =
µ0q

4π

{[n
R

]
ret

× dnret

dt
+

nret

c
× d2nret

dt2

}
. (7.47)

比较(7.42)式和(7.47)式，容易看出

B = nret × E/c. (7.48)

除了公式本身非常简洁好记以外，Heaviside-Feynman公式的好处还在

于，它可以用于直观地讨论运动电荷的电磁辐射，关于这方面的内容，请

读者阅读费曼物理学讲义第一卷第34章。这里我们想指出的是，Heaviside-

Feynman公式用于讨论场的频谱分析非常方便。比方说，对于运动电荷电

场的辐射场部分Erad,

Erad(t) =
q

4πϵ0

1

c2
d2nret

dt2
, (7.49)

记其傅里叶变换为Ẽrad(ω)，

Ẽrad(ω) =

∫ +∞

−∞
dtErad(t)e

iωt, (7.50)

则很容易可以得到

Ẽrad(ω) =
q

4πϵ0

1

c2

∫ +∞

−∞
dt
d2nret

dt2
eiωt

= − q

4πϵ0

ω2

c2

∫ +∞

−∞
dtnret exp(iωt). (7.51)

很显然，为了得到运动电荷电场的频谱分析，我们只需将从运动电荷的延

迟点指向观察点的单位矢量进行傅里叶变换。

7.2.3 运动电荷的电磁辐射

另外，我们也可以直接用(7.38)式将(7.34)式中对t的导数变换成对迟缓

时间tret的导数，进而有

E(x, t) =
q

4πϵ0

[ n

(1− v · n)R2
+

1

(1− v · n)2R
(dn
dt

− dv

dt

)
− n− v

(1− v · n)3R2

(
R

d

dt
(1− v · n) + (1− v · n)dR

dt

)]
ret
. (7.52)
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代入(7.43)式以及dR
dt

= −dx̃
dt

· ∇R = −v · n即可以算得

E(x, t) =
q

4πϵ0

[(n− v)(1− v2)

(1− v · n)3R2
+

n× {(n− v)× v̇}
(1− v · n)3R

]
ret
. (7.53)

通过简单的量纲分析恢复光速c，即有

E(x, t) =
q

4πϵ0

[(n− v
c
)(1− v2

c2
)

(1− v
c
· n)3R2

+
n× {(n− v

c
)× v̇}

c2(1− v
c
· n)3R

]
ret
. (7.54)

得到电场的这个表达式以后，进一步就可以由(7.48)式得到磁场的表达式。

带电粒子电场表达式(7.54)的两项中，随距离按照 1
R2下降的第一项可

以理解为是对静电荷库伦场的推广，而按 1
R
下降的第二项则代表带电粒子

加速运动所产生的辐射场，它正比于粒子的加速度a = v̇，不妨记这一项

为Ea，

Ea =
q

4πϵ0

[n× {(n− v
c
)× a}

c2(1− v
c
· n)3R

]
ret
, (7.55)

很显然有

nret · Ea = 0. (7.56)

7.2.4 运动电荷的辐射功率

为了考察运动电荷的辐射功率，我们需要考虑坡印廷矢量S，

S(t) =
1

µ0

E×B =
1

µ0

E× (nret × E)/c

=
1

µ0c
E2nret −

1

µ0c
(E · nret)E. (7.57)

为了考察辐射场的能流密度，我们在上式中取E = Ea，从而即有

S(t) = ϵ0cE
2
anret = ϵ0c

( q

4πϵ0

)2∣∣∣n× {(n− v
c
)× a}

c2(1− v
c
· n)3R

∣∣∣2
ret
nret. (7.58)

单位时间流过半径为R的球面立体角dΩ的能量为

dP (t) =
dW

dt
= R2dΩS(t) · nret. (7.59)
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但这是远处观察者单位时间内测到的能量，它并不等于粒子附近观察者单

位时间内测到的辐射能量。粒子附近观察者测到的辐射率为

dP (tret) =
dW

dtret
=

dW

dt

dt

dtret

=
q2

16π2ϵ0c3
|n× {(n− v

c
)× a}|2

(1− v
c
· n)5

∣∣∣
ret
dΩ. (7.60)

特别的，我们可以考虑上述辐射率公式(7.60)的非相对论极限(即v ≪
c的极限), 这时候(7.60)近似为

dP (tret) =
q2

16π2ϵ0c3
|n× {n× a}|2retdΩ =

q2

16π2ϵ0c3
|n× a|2retdΩ. (7.61)

取带电粒子的位置为坐标原点，取粒子的瞬时加速度沿着z轴，则

dP (tret) =
q2

16π2ϵ0c3
a2
ret sin

2 θdΩ. (7.62)

显然，在垂直于粒子加速度的方向上辐射最强。进一步，将这个辐射率对

立体角积分，就能得到带电粒子的辐射总功率，为

P (tret) =
q2

6πϵ0c3
a2
ret =

2

3

e2s
c3
a2
ret. (7.63)

这称之为拉莫公式，式中e2s =
q2

4πϵ0
。

另外，注意到(7.62)式关于粒子加速度aret的轴对称性，可以知道，在

非相对论极限下，dt时间之内辐射的总动量为零，即

dPrad = 0. (7.64)

我们可以将以上非相对论极限下的辐射功率推广到相对论情形。这就

是要将(7.60)式对所有的立体角积分，这个积分算起来很麻烦，结果是

P (tret) =
q2

6πϵ0c3
γ6
[
a2 −

(v × a

c

)2]
ret
. (7.65)

式中γ = 1√
1−v2

c2

. 好在我们有另一种办法推导这个结果，下面讲述推导过

程。

首先，我们要证明，辐射总功率P (t)是相对论不变量，它不依赖于参

考系。为此我们选择一个特殊的S ′系, 使得带电粒子在这个参考系中的瞬
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时速度v′ = 0, 从而0 = v′ = dx′

dt′
⇒ dx′ = 0。很显然在S ′系中，粒子的辐射

总功率完全由上面的非相对论极限的拉莫公式(7.63)描述。注意到辐射能

量dW和辐射动量dP构成了一个四维矢量，并注意到在S ′系中dP′
rad = 0, 即

有

P (t) =
dWrad

dt
=

γ(dW ′
rad + v · dP′

rad)

γ(dt′ + v · dx′/c2)
=

dW ′
rad

dt′
= P ′(t′). (7.66)

进一步，有

dPrad

dt
=

γ(dP′
rad + vdW ′

rad/c
2)

γ(dt′ + v · dx′/c2)
=

v

c2
dW ′

rad

dt′
=

v

c2
dWrad

dt
. (7.67)

由此容易进一步证明，辐射总功率P (t)在任何参考系中都是一样的。

所以，为了得到P (t)的一般公式，我们只需要将非相对论极限的拉莫

公式(7.63)推广成一个协变的形式。一个很明显的推广就是将加速度a推广

成四维协变的加速度aµ, 从而得到

P (tret) =
q2

6πϵ0c3
(
aµa

µ
)
ret
, (7.68)

式中

aµ =
1

m

dpµ
dτ

, (7.69)

m为带电粒子质量，pµ为其四维动量，τ是它的固有时。

注意到

dpµ
dτ

dpµ

dτ
=

dp

dτ
· dp
dτ

− 1

c2
(dE
dτ

)2
= (mγ)2

[d(γv)
dt

· d(γv)
dt

− c2
(dγ
dt

)2]
. (7.70)

利用

dγ

dt
= γ3 1

c2
v · a, d(γv)

dt
= γa+ γ3 1

c2
(v · a)v. (7.71)

联合从(7.68)式开始的这四个式子，即得(7.65)式。
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7.3 低速带电粒子体系的有效作用量

带电粒子体系可以通过电磁势(ϕ,A)而产生耦合。如果我们只关心带

电粒子的运动，而不关心系统中的电磁场，则可以通过本章前几节的方法

求解出电磁势，将它们用各粒子坐标变量表达出来，就可以得到一个以各

粒子位置坐标为基本变量的有效拉格朗日量，形如下式

L =
∑
a

[
−ma

√
1− v2

a − qaϕ+ qaA · va

]
, (7.72)

式中ϕ,A是需要代入具体表达式的电磁势解, ma, qa分别是第a个粒子的质量

和电荷，va是第a个粒子的速度。一般来说，ϕ,A的表达式是非常复杂的，

所以这个有效拉格朗日量其实很复杂。不过，当各粒子的运动速度远小于

光速时，即va ≪ 1时，我们可以将上述有效拉格朗日量按照粒子速度va进

行泰勒展开，而正如我们将要论证的，这一展开的低阶项(到v2阶)有比较

简单的表达式。

不过，值得说明的是，(7.72)式实际是在c = 1的单位制中写的，因

此按照无量纲的v进行泰勒展开在恢复常数c以后其实就是按照v/c进行

展开，或者简化一点说就是按照1/c进行展开，展开到v2阶其实就是展开

到v2/c2阶, 或者简单地说展开到1/c2阶。另一方面，(7.72)式右边的第一项

比较特殊，由于拉格朗日量要和能量量纲相同，因此恢复c以后这一项其实

应该是−mac
2
√

1− v2
a/c

2, 它展开到v2/c2阶就应该是

−mac
2 +

1

2
mav

2
a +

1

8
ma

v4
a

c2
. (7.73)

其中领头的−mac
2虽然值很“大”, 但它是一个常数，可以从拉格朗日量中

舍弃。总之，这个地方要保留v4项。

下面我们来具体讨论有效拉格朗日量按照v/c的泰勒展开。首先，展开

到(v/c)0阶，这时候带电粒子运动对电磁势的影响可以完全忽略，带电粒

子之间的电磁相互作用完全由库仑势描述，因此这时候的有效拉格朗日量

为

L(0) =
∑
a

1

2
mav

2
a −

∑
a>b

1

4πϵ0

qaqb
Rab

, (7.74)

式中Rab为第a个粒子与第b个粒子之间的距离，即Rab = |xa − xb|。
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但是，如果想进一步展开到v2/c2阶，那电荷运动所产生的势的推迟效

应就不可忽略！这时候我们就需要回到推迟势的公式(7.22)来讨论如何近

似。我们恢复常数c以后将(7.22)式重写如下，

ϕ(x, t) =
1

4πϵ0

∫
d3x′ρ(x

′, t−R/c)

R
.

A(x, t) =
µ0

4π

∫
d3x′J(x

′, t−R/c)

R

=
1

4πϵ0

1

c2

∫
d3x′J(x

′, t−R/c)

R
. (7.75)

如果所有电荷的速度都远小于光速，则电荷的分布在时间R/c内不会有显

著的变化，因此我们可以将ρ(x′, t−R/c),J(x′, t−R/c)按照R/c进行泰勒展

开。由于我们是要得到有效拉格朗日量的1/c2阶，所以对于矢量势只需保

留R/c泰勒展开的零阶项，而对于标量势，我们要保留到(R/c)2项，从而有

ϕ(x, t) =
1

4πϵ0

∫
d3x′ρ(x

′, t)

R
− 1

4πϵ0

1

c

∂

∂t

∫
d3x′ρ(x′, t)

+
1

4πϵ0

1

2c2
∂2

∂t2

∫
d3x′Rρ(x′, t).

A(x, t) =
1

4πϵ0

1

c2

∫
d3x′J(x

′, t)

R
. (7.76)

注意到
∫
d3x′ρ(x′, t)是整个体系的总电荷，它是一个与时间无关的常量，从

而

ϕ(x, t) =
1

4πϵ0

∫
d3x′ρ(x

′, t)

R
+

1

4πϵ0

1

2c2
∂2

∂t2

∫
d3x′Rρ(x′, t). (7.77)

假设只有一个点电荷q，则由(7.76)式和(7.77)式，有

ϕ(x, t) =
1

4πϵ0

q

R
+

1

4πϵ0

q

2c2
∂2R

∂t2
, A(x, t) =

1

4πϵ0

1

c2
qv

R
. (7.78)

式中R为这个运动的点电荷到x点的距离，v为这个点电荷的瞬时速度。

ϕ,A本身不是物理的，我们可以对它进行任意规范变换而不改变物理内

容，

ϕ′ = ϕ− ∂ε

∂t
, A′ = A+∇ε. (7.79)

特别的，我们可以选取规范参数ε如下，

ε(x, t) =
1

4πϵ0

q

2c2
∂R

∂t
. (7.80)
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则规范变换以后，有

ϕ′ =
1

4πϵ0

q

R
, A′ =

1

4πϵ0

1

c2
qv

R
+

1

4πϵ0

q

2c2
∇∂R

∂t
. (7.81)

利用∇∂R
∂t

= ∂
∂t
∇R, 以及∇R = n, n为从运动电荷指向场点x的单位矢量，

即有

A′ =
1

4πϵ0

1

c2
qv

R
+

1

4πϵ0

q

2c2
∂n

∂t
. (7.82)

前面(7.43)式我们曾经得到过

∂n

∂t
=

1

R
[−v + n(v · n)]. (7.83)

代入A′的表达式，最后就得到

ϕ′ =
1

4πϵ0

q

R
, A′ =

1

4πϵ0

q

2c2
[v + n(v · n)]

R
. (7.84)

简单的推广就可以告诉我们，对于多个带电粒子的系统，其余粒子在

第a粒子处产生的势场为

ϕ′ =
1

4πϵ0

∑
b,b ̸=a

qb
Rab

, A′ =
1

4πϵ0

∑
b,b ̸=a

qb
2c2

[vb + nab(vb · nab)]

Rab

. (7.85)

式中nab为从qb指向qa的单位矢量。

用上面式子给出的ϕ′,A′替换ϕ,A(因为它们规范等价)并代入有效拉格

朗日量的(7.72)式，即可得

L =
∑
a

[1
2
mav

2
a +

1

8
ma

v4
a

c2
]
− 1

4πϵ0

∑
a>b

qaqb
Rab

+
1

4πϵ0

∑
a>b

qaqb
2c2

[va · vb + (va · nab)(vb · nab)]

Rab

. (7.86)

这就是我们最终求得的精确到v2/c2阶的有效拉格朗日量。

由上面的有效拉格朗日量，还可以求出有效哈密顿量。为此我们注意

到(7.86)式中的第二项和第四项是对零阶拉格朗日量L(0)的微扰修正。因此

我们完全可以近似地用pa = ∂L(0)

∂va
= mava来定义正则动量，然后根据勒让

德变换H =
∑

a pa · va − L来得到有效哈密顿量H, 结果为

H =
∑
a

p2
a

2ma

+
1

4πϵ0

∑
a>b

qaqb
Rab

−
∑
a

[ p4
a

8c2m3
a

]
− 1

4πϵ0

∑
a>b

qaqb
2c2mamb

[pa · pb + (pa · nab)(pb · nab)]

Rab

. (7.87)


