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第六章 带电粒子与电磁场耦合

陈陈陈童童童

前面的章节中我们考察了复标量场与电磁场的耦合系统。本章开始考

察带电粒子与电磁场的耦合系统。对于电动力学在宏观世界的应用而言，

这样的系统也许更为重要。因为宏观世界很少有机会出现一个复标量场来

与电磁场相互作用，但却常常需要处理带电粒子与电磁场相互作用的问题。

本章先考察自由粒子体系的能量动量张量，之后再进一步考察它们和电磁

场的耦合。

6.1 多粒子系统的能量动量张量

考虑多个相对论性自由粒子所构成的系统，我们以n = 1, 2, ..., N来标

记不同的粒子。根据《经典力学新讲》第三章的知识可以知道，这个系统

的作用量可以写成

S[x(s)] = −
∑
n

mn

∫
dτn = −

∑
n

mn

∫
dsn

√
−ηµν

dxµ
n

dsn

dxν
n

dsn
. (6.1)

式中xµ
n为粒子n的时空坐标，mn为它的质量，τn为它的固有时，sn为它的

世界线参数。由于上式在sn → s̃n(sn)的重参数化之下保持不变，所以sn的

选择有很大的任意性，特别的，我们可以将sn选作固有时τn。
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不妨以固有时参数(即sn = τn)下的粒子作用量来进一步讨论。我们可

以利用最小作用量原理求出上述自由粒子系统的运动微分方程，为此注意

到

δS = −
∑
n

mn

∫
δ(dτn) = −

∑
n

mn

∫
1

2

δ(dτ 2n)

dτn

=
∑
n

mn

∫
1

2
δ(ηµνdx

µ
ndx

ν
n)/dτn

=
∑
n

mn

∫
dxµ

n

dτn
ηµνδ(dx

ν
n)

=
∑
n

mn

∫
dxµ

n

dτn
ηµνd(δx

ν
n). (6.2)

将最后一行的结果分部积分，并利用在边界上δxµ
n = 0, 即可得

δS = −
∑
n

mn

∫
dτn

d2xµ
n

dτ 2n
ηµνδx

ν
n. (6.3)

根据最小作用量原理的δS = 0，即可得

mn
d2xµ

n

dτ 2n
= 0. (6.4)

定义第n个粒子的四维动量pµn = (p0n,pn)为

pµn = mn
dxµ

n

dτn
. (6.5)

则上述运动微分方程可以重写成

dpµn
dτn

= 0. (6.6)

另外，利用x0
n = tn, dτn =

√
1− v2

ndtn，我们也可以得到

p0n =
mn√
1− v2

n

, pn =
mnvn√
1− v2

n

. (6.7)

进而也有

vn =
pn

p0n
. (6.8)
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作用量(6.1)显然具有xµ
n → x̃µ

n = xµ
n + aµ(aµ为常矢量) 的时空坐标平移

不变性。为了考察这一时空平移对称性所对应的能动量张量，我们考虑如

下局域化的无穷小时空坐标变换

xµ
n → x̃µ

n = xµ
n + ϵµ(xn) ⇔ δxµ

n = ϵµ(xn). (6.9)

(从而δ(dxµ
n) = d(δxµ

n) =
∂ϵµ

∂xν
n
dxν

n) 完全仿照(6.2)式，可得在此局域时空坐标

变换下，作用量的改变量为

δS =
∑
n

mn

∫
dxµ

n

dτn
ηµνd(δx

ν
n)

=
∑
n

mn

∫ (dxµ
n

dτn

) ∂ϵµ
∂xν

n

dxν
n

=
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

) ∂ϵµ
∂xν

n

. (6.10)

通过引入四维时空δ函数δ4
(
x− xn(τn)

)
=

∏3
µ=0 δ

(
xµ − xµ

n(τn)
)
, 可以进一步

将上面结果写成

δS =
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

) ∂ϵµ
∂xν

n

=

∫
d4x

[∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

)
δ4
(
x− xn(τn)

)]
∂νϵµ(x). (6.11)

从而易知，与时空平移对称性对应的能动量张量为

T µν =
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

)
δ4
(
x− xn(τn)

)
. (6.12)

显然，这个能动量张量是一个对称张量。

为了看清楚上述能动量张量的意义，我们将它重写成，

T µν =
∑
n

mn

∫
dsn

(dxµ
n

dsn

dxν
n

dτn

)
δ4
(
x− xn(sn)

)
. (6.13)

然后取世界线参数sn = x0
n, 则当我们做完对sn的积分后，即有能动量密度

T 0µ =
∑
n

mn

(dxµ
n

dτn

)
δ3
(
x− xn(t)

)
=

∑
n

pµnδ
3
(
x− xn(t)

)
. (6.14)
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式中δ3
(
x − xn(t)

)
=

∏3
i=1 δ

(
xi − xi

n(t)
)
。从而可知与时空平移对称性对应

的守恒量为 ∫
d3xT 0µ =

∑
n

pµn, (6.15)

即粒子系统总的四维动量守恒。类似的，在取sn = x0
n并做完对sn的积分以

后，也有流密度

T iµ =
∑
n

mn

(dxµ
n

dτn

dxi
n

dt

)
δ3
(
x− xn(t)

)
=

∑
n

pµnv
i
nδ

3
(
x− xn(t)

)
. (6.16)

综合(6.14)式和(6.16)式，可知粒子系统的能动量张量可以表达成

T µν =
[∑

n

pµnp
ν
n

p0n
δ3
(
x− xn(t)

)]
. (6.17)

进一步，我们有

∂µT
µν =

∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

)
∂µδ

4
(
x− xn(τn)

)
.

= −
[∑

n

mn

∫
dτn

dxν
n

dτn

dxµ
n

dτn

∂

∂xµ
n
δ4
(
x− xn(τn)

)]
= −

[∑
n

∫
dτnp

ν
n

d

dτn
δ4
(
x− xn(τn)

)]
. (6.18)

将上式分部积分，并丢弃τn → ∞的边界项1，即可以得到

∂µT
µν =

∑
n

∫
dτn

dpνn
dτn

δ4
(
x− xn(τn)

)
. (6.19)

对于我们所考察的自由粒子系统, dpµn
dτn

= 0，从而上式就给出自由粒子系统

的能动量张量守恒方程。但是，即使对于相互作用的粒子系统，(6.19)式依

然是成立的，只不过，这时候方程(6.19)的右边将取决于粒子间的相互作用

力场。

1边界项−
[∑

n p
ν
n(±∞)δ4

(
x− xn(±∞)

)]
之所以可以丢弃，是因为xn(±∞)位于时空的

无穷远过去和无穷远将来，而x点位于有限区域内，从而δ4
(
x − xn(±∞)

)
= 0, 即边界项

其实等于零。
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6.2 耦合到电磁场

现在，假设前面考察的粒子是带电粒子，因此可以耦合到电磁场。根

据《经典力学新讲》第三章的知识可知，与电磁场耦合的带电粒子系统的

作用量为

S[x(s)] = −
∑
n

mn

∫
dτn +

∑
n

qn

∫
Aµdx

µ
n. (6.20)

式中qn为粒子n的电荷。为了得到系统的运动微分方程，我们将这个作用量

对粒子坐标变分，其中第一项的变分与(6.2)式完全相同，关键是要将第二

项，即与规范势Aµ耦合的项进行变分，则有∑
n

qnδ

∫
Aµdx

µ
n =

∑
n

qn

∫
δAνdx

ν
n +

∑
n

qn

∫
Aµd(δx

µ
n)

=
∑
n

qn

∫ (
∂µAνδx

µ
ndx

ν
n − dAµδx

µ
n

)
=

∑
n

qn

∫ (
∂µAνδx

µ
ndx

ν
n − ∂νAµdx

ν
nδx

µ
n

)
=

∑
n

qn

∫
dτnFµν

dxν
n

dτn
δxµ

n. (6.21)

其中第二个等号进行了分部积分，并注意到边界项等于零。从而即可得到

与电磁场耦合的作用量(6.20)的变分，

δS[x(s)] =
∑
n

∫
dτn

[
−mn

d2xµ
n

dτ 2n
+ qnF

µ
ν

dxν
n

dτn

]
δxnµ. (6.22)

根据最小作用量原理，即可得粒子的运动微分方程，为

dpµn
dτn

= mn
d2xµ

n

dτ 2n
= qnF

µ
ν

dxν
n

dτn
. (6.23)

很显然，方程(6.23)也可以写作

dpµn
dt

= qnF
µ
ν

dxν
n

dt
. (6.24)

从这里读者不难得到

dpn

dt
= qn(E+ vn ×B). (6.25)
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这正是通常所谓的洛伦兹力公式。

将作用量(6.20)对规范势Aµ变分，即可得到

δS =
∑
n

qn

∫
dτn

dxµ
n

dτn
δAµ

=

∫
d4x

[∑
n

qn

∫
dτn

dxµ
n

dτn
δ4
(
x− xn(τn)

)]
δAµ. (6.26)

将这个式子与标准的电流四矢量Jµ与规范势的耦合δS =
∫
d4xJµδAµ进行

比较，即可得到此带电粒子系统的电流四矢量，为

Jµ(x) =
∑
n

qn

∫
dτn

dxµ
n

dτn
δ4
(
x− xn(τn)

)
=

∑
n

qn

∫
dsn

dxµ
n

dsn
δ4
(
x− xn(sn)

)
. (6.27)

为了看清楚(6.27)式的物理意义，我们取世界线参数sn = x0
n, 并做

出(6.27)式中的积分，则有

ρ =
∑
n

qnδ
3(x− xn(t))

J =
∑
n

qnvnδ
3(x− xn(t)). (6.28)

很显然，结果正符合我们对电荷密度以及电流密度表达式的预期。

下面回到多粒子系统的能动量张量。当我们将(6.23)式代入(6.19)式，

即有(对与电磁场耦合的带电粒子系统)，

∂µT
µν =

∑
n

∫
dτnqnF

ν
ρ

dxρ
n

dτn
δ4
(
x− xn(τn)

)
. (6.29)

注意到电流四矢量的定义式(6.27)，即有

∂µT
µν = F ν

ρJ
ρ(x). (6.30)

现在，假设电磁场本身就是这些带电粒子产生的，因此要将它包括进

我们的系统之中。从而整个带电粒子与电磁场耦合系统的作用量为，

S[x(s), Aµ] = −
∫

d4x
1

4
FµνF

µν −
∑
n

mn

∫
dτn +

∑
n

qn

∫
Aµdx

µ
n. (6.31)



第六章 带电粒子与电磁场耦合 8

电磁场当然也会对系统的能动量张量有贡献，根据第四章的知识，电磁场

贡献的能动量张量为

T µν
em = F µ

ρF
νρ − 1

4
ηµνFρσF

ρσ. (6.32)

由于要和带电粒子耦合，T µν
em本身当然也是不守恒的，它满足

∂µT
µν
em = ∂µF

µ
ρF

νρ + Fµρ∂
µF νρ − 1

4
∂ν

(
FµρF

µρ
)

= ∂µF
µ
ρF

νρ +
1

2
Fµρ

(
∂µF νρ − ∂ρF νµ

)
− 1

2
Fµρ∂

νF µρ

= ∂µF
µ
ρF

νρ +
1

2
Fµρ

(
∂µF νρ + ∂νF ρµ + ∂ρF µν

)
. (6.33)

代入麦克斯韦方程组，即得

∂µT
µν
em = −F ν

ρJ
ρ. (6.34)

联合前面的(6.30)式，即可知如下总的能动量张量是守恒的,

T µν = F µ
ρF

νρ − 1

4
ηµνFρσF

ρσ +
∑
n

mn

∫
dτn

(dxµ
n

dτn

dxν
n

dτn

)
δ4
(
x− xn(τn)

)
.(6.35)

满足

∂µT
µν = 0. (6.36)

另外，注意到T µ
µ em = 0, 以及ηµν

dxµ
n

dτn

dxν
n

dτn
= −1 (即−dτ 2n = ηµνdx

µ
ndx

ν
n), 即可

知这个总能量动量张量满足如下特性

T µ
µ = −

∑
n

mn

∫
dτnδ

4
(
x− xn(τn)

)
≤ 0. (6.37)


