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第五章 超导的有效理论以及涡旋

解

陈陈陈童童童

5.1 超导的金兹堡-朗道理论

5.1.1 金兹堡-朗道理论

本章我们接着讨论复标量场与电磁场的耦合系统。特别的，我们假定

这个系统的作用量为

S =

∫
d4x

[
− 1

4
FµνF

µν −DµϕD
µϕ− g

2

(
|ϕ|2 − u

)2]
. (5.1)

式中u > 0为实参数，Dµϕ = (∂µ − ieAµ)ϕ，µ = 0, 1, 2, 3。从这个作用量很

容易看出，它其实就是将前面第三章讨论对称性自发破缺时的复标量场耦

合到了电磁场。对称性自发破缺的原始思想源自于朗道有关二阶相变的理

论，而将它推广到与电磁场耦合的情形就是所谓的金兹堡-朗道理论。

金兹堡-朗道理论是作为超导的长程有效理论而提出的，它的原始版本

当然是一个非相对论性理论。而上面的复标量场与电磁场的耦合系统却是

一个相对论性理论，当然，人们可以通过取上述理论的非相对论极限来得

到原始的金兹堡-朗道理论。不过，假如我们关心的是平衡态，即是说，假

如我们只关心静态场位形，那相对论性理论和非相对论理论的区别就无关

紧要。正因为如此，本章中，我我我们们们将将将主主主要要要关关关心心心静静静态态态场场场位位位形形形。
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第五章 超导的有效理论以及涡旋解 3

不妨让我们写出上述系统的能量动量张量，

T µν =F µ
ρF

νρ − 1

4
ηµνFρσF

ρσ

+DµϕDνϕ+DνϕDµϕ− ηµν [DρϕD
ρϕ+

g

2

(
|ϕ|2 − u

)2
]. (5.2)

从而可知系统的能量密度为

H = T 00 =
1

2
(E2 +B2) + |D0ϕ|2 + |Diϕ|2 +

g

2

(
|ϕ|2 − u

)2
. (5.3)

式中指标i = 1, 2, 3。

上述系统具有U(1)规范对称性，因此我们总可以通过选取合适的规范

变换，使得

A0 = 0. (5.4)

通常称这之选取了轴规范。轴规范和第四章中介绍的洛伦兹规范一样，都

只是一种规范条件，本身并不是一个物理上的要求。

很显然，在轴规范下，E = −∂A
∂t
，D0ϕ = ∂tϕ，因此如果只考虑静态场

位形的话，那将有E = 0, D0ϕ = 0。所以，对于静态场位形，系统的能量

泛函可以写成，

H =

∫
d3x

[1
2
B2 + |Diϕ|2 +

g

2

(
|ϕ|2 − u

)2]
. (5.5)

这就是所谓的金兹堡-朗道能量泛函(Ginzburg-Landau energy functions)。

而对于静态场位形，最小作用量原理就变成了能量泛函取极值的原理，即

δH = 0. (5.6)

金兹堡和朗道称复标量场ϕ为序参量，起初人们并不知道它的微观起

源是什么，后来，Lev Gor’kov 从超导的微观理论――BCS理论(Bardeen-

Cooper-Schrieffer theory)――出发导出了金兹堡-朗道理论，这时人们才知

道，ϕ可以看作是库珀对的场。因此，金兹堡朗道理论中复标量场与电磁场

的耦合常数e正比于库珀对的电荷qcp, 两者之间的关系是

e =
qcp
~
. (5.7)

一个库珀对由两个配对的电子组成，而在很多书上常常把电子电量记作e，

进而库珀对的电荷就是2e，如此一来库珀对场与电磁场的耦合常数就应该
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记作2e/~。不过，在本书中我们将坚持将这个耦合常数简单地记作e，希望

不会引起读者的混淆。

回到我们的物理讨论，我们记除磁能之外的能量为Hm,

Hm =

∫
d3x

[
|Diϕ|2 +

g

2

(
|ϕ|2 − u

)2]
. (5.8)

因此对于静态场位形，规范场与电流的耦合关系δSm =
∫
d4xJµ

AδAµ就变成

δHm = −
∫

d3xJA · δA. (5.9)

由此可得电流密度的表达式

J i
A = ie

(
Diϕϕ− ϕDiϕ

)
. (5.10)

下面我们将复标量场ϕ分解为一个模长场|ϕ|(x)和一个相位场θ(x)，

ϕ(x) = |ϕ|eiθ(x). (5.11)

代入金兹堡-朗道能量泛函，即得

Hm =

∫
d3x

[
(∂i|ϕ|)2 + |ϕ|2

(
∂iθ − eAi

)2
+

g

2

(
|ϕ|2 − u

)2]
. (5.12)

以及

JA = 2e|ϕ|2
(
∇θ − eA). (5.13)

注意到在上面表达式(5.12)和(5.13)中θ场总以偏导的形式出现，且∂iθ总

是和−eAi作为一个整体出现，由此再结合δHm = −
∫
d3xJ i

AδAi，即知能量

泛函H对θ的变分为

δH = δHm =
1

e

∫
d3xJ i

Aδ(∂iθ)

= −1

e

∫
d3x∂iJ

i
Aδθ. (5.14)

上式最后一行我们进行了分部积分，并扔掉了无穷远的边界项。进而根据

最小作用量原理δH = 0，即知θ场的运动微分方程正是

∂iJ
i
A = 0 ⇔ ∇ · JA = 0. (5.15)
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这也正是稳恒电流所满足的方程。另外，将能量泛函H对A变分，即可得

场方程

∇×B = JA. (5.16)

从Hm的表达式(5.12)容易看出，为了使得系统的能量尽可能低，表达

式(5.12)中的每一项都应该取零，从而有

|ϕ| =
√
u, ∂iθ − eAi = 0. (5.17)

进而可知JA = 0，同时

B = ∇×A =
1

e
∇×∇θ = 0. (5.18)

这时候我们称系统处于超导相。而|ϕ| = 0, Ai ̸= ∂iθ/e, 从而B不一定等于零

的相，则称作正常相。特别的，正常相的模长场等于零，而超导相的模长

场非零，模长场的这种非零取值就是所谓的库珀对凝聚。

假设上述场论系统描述的是一块宏观材料，那上面的结果将意味着材

料处于超导相时，内部的磁场必定为零。即使在它转变为超导相前内部有

磁场线，在转变为超导相后，磁场线也会被排斥出去，这就是所谓的迈斯

纳(Meissner)效应！同时，上面的结果也告诉我们，超导相的材料内部不会

有超导电流，超导电流只能出现在材料表面的某个薄层里面。

为了考察这样的薄层到底有多厚，我们将θ场和A场在超导相(5.17)附

近做一个扰动，记这样的扰动为δθ、δA, 显然它们满足方程

∇ · δJA = 0, ∇× δB = δJA. (5.19)

注意到δJA = 2eu
(
∇δθ − eδA), 即得

∇2δθ = e∇ · δA
∇× (∇× δA) = 2eu(∇δθ − eδA). (5.20)

假设选取如下规范固定条件

∇ · δA = 2euδθ. (5.21)

则稍微整理一下，即有如下δθ和δA脱耦的两个方程

∇2δθ = 2e2uδθ

∇2δA = 2e2uδA. (5.22)
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这两个方程的解都是指数衰减的，典型地取作δA ∼ δθ ∼ e−x/λ，式中x为

超导体内某点离表面的距离，而参数λ等于

λ =
1√
2e2u

. (5.23)

λ称作超导体的穿透深度，它衡量的是超导材料表面超导电流以及磁场非

零的表面薄层的厚度。

另外，在超导相(5.17)附近对模长场作一个扰动，记扰动为ρ, 即设

|ϕ| =
√
u+ ρ. (5.24)

代入(5.12)式并保留到ρ的最低阶，即有

Hm ≃
∫

d3x
[
(∂iρ)

2 + 2guρ2
]
. (5.25)

进而即可得ρ所满足的方程

∇2ρ = 2guρ. (5.26)

这个方程的解典型地取作ρ ∼ e−x/ξ, 式中

ξ =
1√
2gu

. (5.27)

ξ称作关联长度，它表示的是模长场发生变化的典型距离。

朗道还引入了第三个参数来刻画超导体，那就是λ与ξ的比值，记作κ,

很显然

κ =
λ

ξ
=

√
g

e2
. (5.28)

κ < 1称作第一类超导体(除了铌以外的绝大多数纯金属)，κ > 1称作第二类

超导体(铌以及绝大多数合金)。

从(5.12)式可以看到，|ϕ| =
√
u超导相的能量比|ϕ| = 0正常相能量每单

位体积要少

∆ =
g

2
(02 − u)2 =

gu2

2
=

1

8e2λ2ξ2
. (5.29)
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但是，假设超导材料原来处于外磁场中的话，那为了排出外磁场进而形成

超导相，每单位体积需要能量1
2
B2，B为外磁场大小。因此，从能量上考

虑，仅当下式满足时

1

2
B2 < ∆ ⇒ B <

√
2∆, (5.30)

系统才会倾向于处于超导相。而当外磁场过强，即B >
√
2∆，系统将倾向

于处在正常相。

5.1.2 涡旋线激发的初步讨论

迈斯纳效应告诉我们，超导相内部磁场必定为0。但是，有可能出现

这样一种情况，即在超导态中间出现某个很小的管状区域，其管子中心

处不处在超导态，而是处在通常态，所以它允许磁场通过，如图(5.1)所

示。 我们知道，在以从管子中心开始算起与周围超导态交界的一个横截半

图 5.1: 超导体的磁通量子化。

径为λ的管状区域内会有超导电流和磁场。而在离管子中心的横截距离大

于λ时，磁场衰减为零。同时我们也知道，管子中心处由于处于通常态，所

以其模长场取值为零，模长场在距离为ξ的尺度上变化，在离管子中心横截

距离大于ξ时，模长场就要趋于超导态的
√
u。这样一种处于超导体内部的

磁通管子就称作超导体的涡旋线激发，因为从远处看，它就是一根内部有

磁场线通过的细线。

由于中间有磁场通过，所以在如图(5.1)所示的这种情况下，超导态内

部任何一条包围涡旋线的闭合回路上，矢量势A将不为0，这是因为，沿着



第五章 超导的有效理论以及涡旋解 8

这样的闭合回路
∮
L
A ·dl =

∫
S
B ·dS = Φ，式中S表示回路L所包围的面积，

Φ就是这根涡旋线内部通过的磁通。

另一方面，根据(5.17)式，我们又知道，在超导态内部，有∇θ = eA，

从而
∮
L
A · dl = 1/e

∮
L
∇θ · dl = 1/e

∮
L
dθ，但是由于θ是一个相角，因此围

绕着闭合回路一周，θ的改变量只可能取2Nπ(N ∈ Z)，从而必有

Φ =

∮
L

A · dl = N2π/e. (5.31)

因此，涡旋线的磁通必然是量子化的，其量子化单位为

Φ0 = 2π/e, (5.32)

称为一个磁通量子。而这里的整数N就称为相应涡旋线的拓扑量子数。这

样的涡旋线激发实际上可以在超导体里面移动，不仅如此，两个不同拓扑

量子数的涡旋线还可以合并成一个涡旋线，而一个高拓扑量子数的涡旋线

也可能分裂成多个低拓扑量子数的涡旋线，但是，在整个这样的合并或分

裂过程前后，总拓扑量子数是守恒的。

磁通量子化表明, 拥有最小磁通Φ0的超导涡旋线是稳定的。拥有更高

通量的涡旋线无法简单地凭空消失,但是磁通量子化自身并不能阻止这个涡

旋线分裂成多个通量更小的涡旋线。Bogomolnyi证明了1, 仅当λ > ξ时(即

仅对于第二类超导体),对于通量NΦ0的涡旋线,它分裂成N个通量为Φ0的涡

旋线会更稳定。

无论对于第一类超导体还是对于第二类超导体，涡旋解总是存在的，

但是正如我们即将要看到的, 仅对于第二类超导体以及某个有限范围的外

磁场强度, 从能量上看才是倾向于产生涡旋线的。

为了看清楚这一点，我们首先要注意到，在实际的条件下，涡旋线往

往不是孤立存在的，而是同时有大量涡旋线平行地排布，不妨记n为超导

体内单位横截面积上涡旋线的数目。根据上面所述，每个涡旋线为一个横

截面积为πξ2的管状区域，在区域之内，材料处于正常态或者接近正常态，

而在区域之外，材料处于超导态。根据前面的分析，为了制造出这些涡旋

线，单位体积需要能量nπξ2∆。这里，涡旋线的密度限制在n < 1/(πξ2), 否

则不同涡旋线的管状区域将会重叠，这时就可以将材料视作是处于正常态。

如果同时有n < 1/(πλ2), 则每单位横截面积上面积为1−nπλ2区域内的磁场

1E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976). 关于数值计算, 参看E. B.

Bogomol’nyi and A. I. Vainshtein, Sov. J. Nucl. Phys. 23, 558 (1976).
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会被排斥出去，如果n > 1/(πλ2), 则没有磁场会被排斥出去。所以，相对

于没有磁场时的超导态，单位体积涡旋态(vortex state)的能量是

WV ≈ nπξ2∆+
1

2
B2 ×

1− nπλ2, n < 1/(πλ2)

0, n > 1/(πλ2)
. (5.33)

另外，相较于超导态，正常态(normal state)每单位体积超出的能量是WN ≈
∆, 而为了将所有的磁场都排斥出去，超导态(super-conducting state) 每单

位体积需要的能量是WS ≈ B2/2。对于给定外磁场，通过比较WV ,WN ,WS中

哪个最小，我们就能决定材料处于相应的哪种状态上。

对于第一类超导体，由于n < 1/(πξ2), 而对于第一类超导体又有ξ > λ,

所以必有n < 1/(πλ2)。当B <
√
2∆时，由(5.33)式即有，WV > 1

2
B2 +

nπ(ξ2 − λ2)∆ > WS，所以不可能存在涡旋态！另一方面，当B >
√
2∆时，

由(5.33)式有，WV > ∆
[
1+nπ(ξ2 − λ2)

]
> ∆ = WN，所以同样不存在涡旋

态。总之，从能量上考虑，对于第一类超导体，将不存涡旋态，只有超导

态和正常态。

对于第二类超导体，我们需要将磁场划分为如下三个区域，

B < Bc1, Bc1 < B < Bc2, B > Bc2. (5.34)

式中Bc1和Bc2分别为

Bc1 ≈
√
2∆(ξ/λ), Bc2 ≈

√
2∆(λ/ξ). (5.35)

根据Bogomolnyi的证明可知，仅当每个涡旋的磁通为最小磁通量子Φ0时

才是稳定的。由此可知，单位横截面积上涡旋线的数目必为n = B/Φ0。

对于B < Bc1, 即有n = B/Φ0 <
√
2∆(ξ/λ)( e

2π
), 代入(5.29)式，即得n <

1
4πλ2 ∼ 1

πλ2 . 由(5.33)式即有，WV ≈ nπξ2∆ + 1
2
B2(1 − nπλ2) = 1

2
B2 +

nπ(ξ2∆ − 1
2
B2λ2) > 1

2
B2 ≈ WS。同时，这时也显然有WN > WS，所以

材料处于超导态，没有涡旋线。而当B > Bc1时，我们有n = B/Φ0 >
1

4πλ2 ∼ 1
πλ2，所以在涡旋态中，磁场完全穿透了超导体，由(5.33)式有，

WV ≈ nπξ2∆ = (B/Φ0)πξ
2∆ = 1

2
eBξ2∆ ∼ (B/Bc2)WN ∼ (Bc1/B)WS。由

此可知，当Bc1 < B < Bc2时，WV < WN , WV < WS，所以材料处于涡旋

态上。而当B > Bc2时，我们依然有WV < WS，但现在WV > WN , 所以这

时候WN最小，材料处于正常态。
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为了真正求解出涡旋解的场位形，我们需要完整求解A场和模长

场|ϕ|的运动微分方程，由(5.12)式的变分，可得

∇×B = 2e|ϕ|2
(
∇θ − eA)

∇2|ϕ| = |ϕ|
(
∇θ − eA

)2
+ g(|ϕ|2 − u)|ϕ|. (5.36)

作为二阶偏微分方程，这组方程的求解并不容易，即使是数值求解都不容

易。好在，正如后文将要看到的，对于λ = ξ ⇒ g = e2的临界类超导体，情

况将可以大大简化。

5.2 涡旋解

本节我们具体讨论涡旋解。涡旋线是一根磁通细管，不妨假定这根管

子沿着x3方向排布，为此我们可以进一步假定整个场位形沿着x3方向是均

匀的，即所有场都不依赖于x3坐标。这样一来，我们需要关心的，就只是

横截方向，即x1, x2方向。很显然，在这个横截方向上，涡旋线就类似于一

个有限尺寸的“粒子”。即是说，这时候系统有效地是一个二维系统(考虑

时间的话就是2 + 1维系统)，涡旋解是这个二维系统的孤立子解。

由于只有第二类超导体才能够处于涡旋态，所以本节将仅限于考察这

种情形，即假定g ≥ e2。另外，在本节中，i, j = 1, 2。

5.2.1 Bogomolny能限

对于我们实际关心的这个二维系统，考虑静态场位形，能量表达式为

H =

∫
d2x

[1
2
B2 + |Diϕ|2 +

g

2

(
|ϕ|2 − u

)2]
. (5.37)

式中B = F12。很显然，为了让场位形的总能量有限，当空间趋于无穷远

时，能量表达式的每一项都必须趋于零，从而可知，在空间无穷远处

ϕ(x) →
√
ueiθ(x), Diϕ → i

√
u(∂iθ − eAi)e

iθ(x) → 0. (5.38)

特别的，根据上式，我们有，在空间无穷远边界上∂iθ− eAi → 0, 从而
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可知全空间的磁通必定满足，

Φ

2π
=

1

2π

∫
d2xB =

1

2π

∫
1

2
Fijdx

i ∧ dxj

=
1

2π

∮
∞
Ajdx

j =
1

2πe

∮
∞
∂jθdx

j

=
1

2πe
2πN =

N

e
. (5.39)

式中N为当我们围绕着空间无穷远走一圈时，作为相角的θ场所绕过的圈

数，N当然为整数，这个结果就是上一节讨论过的磁通量子化关系。N非

零的静态场位形就称之为拓扑非平凡的静态场位形。

事实上，正如我们即将证明的，当g ≥ e2时，对于拓扑非平凡的有限

能量场位形，其总能量必定有一个正的下界。为了推导这个下界，我们注

意到

|D1ϕ|2 + |D2ϕ|2 = |(D1 ± iD2)ϕ|2 ∓ iD1ϕD2ϕ± iD2ϕD1ϕ

= |(D1 ± iD2)ϕ|2 ∓ iϵijDiϕDjϕ. (5.40)

式中反对称张量ϵij满足ϵ12 = −ϵ21 = 1。进一步，

∓iϵijDiϕDjϕ = ∓iϵij∂iϕDjϕ± ϵijeAiϕDjϕ

= ∓iϵij∂i(ϕDjϕ)± iϵijϕ(∂iDjϕ)± ϵijeAiϕDjϕ

= ∓iϵij∂i(ϕDjϕ)± iϵijϕ(DiDjϕ). (5.41)

利用

ϵijDiDj =
1

2
ϵij[Di, Dj] =

1

2
ϵij(−ieFij) = −ieF12 = −ieB. (5.42)

即得

∓iϵijDiϕDjϕ = ∓iϵij∂i(ϕDjϕ)± eB|ϕ|2. (5.43)

综合(5.40)式和(5.43)式，即有

|Diϕ|2 = |(D1 ± iD2)ϕ|2 ∓ iϵij∂i(ϕDjϕ)± eB|ϕ|2. (5.44)
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将(5.44)式代入静态场位形能量公式(5.37)，即有

H =

∫
d2x

[
|(D1 ± iD2)ϕ|2 ± eB(|ϕ|2 − u) +

1

2
B2 +

g

2

(
|ϕ|2 − u

)2]
+

∫
d2x

[
± euB ∓ iϵij∂i(ϕDjϕ)

]
=

∫
d2x

[
|(D1 ± iD2)ϕ|2 +

1

2
[B ± e(|ϕ|2 − u)]2 +

(g − e2)

2

(
|ϕ|2 − u

)2]
+

∫
d2x

[
± euB ∓ iϵij∂i(ϕDjϕ)

]
. (5.45)

注意到ϵijd2x = ϵijdx1dx2 = dxi ∧ dxj, 从而∫
d2xϵij∂i(ϕDjϕ) =

∫
(dxi ∧ dxj)∂i(ϕDjϕ)

=

∫
d
(
ϕDjϕdx

j
)
=

∮
∞
ϕDjϕdx

j. (5.46)

结果为空间无穷远边界上的积分，但根据(5.38)式，在空间无穷远边界上，

Djϕ → 0, 从而上式最终的积分等于零，即∫
d2xϵij∂i(ϕDjϕ) = 0. (5.47)

再注意到总磁通的量子化，即(5.39)式，从而即知表达静态场位形总能

量的(5.45)式可以写成

H =

∫
d2x

[
|(D1 ± iD2)ϕ|2 +

1

2
[B ± e(|ϕ|2 − u)]2

]
+

(g − e2)

2

∫
d2x

(
|ϕ|2 − u

)2 ± 2πNu. (5.48)

由这个式子很容易看出，只要g ≥ e2，那么有限能量静态场位形的能量必

定满足如下Bogomolny能限(BPS bound)，

H ≥ 2π|N |u. (5.49)

5.2.2 BPS方程和涡旋解

前面说了，我们可以求出涡旋解，且在本节的有效二维系统中，这些

涡旋解就是拓扑非平凡的孤立子解。正如我们即将看到的，在g = e2的临
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界情况下对这些孤立子解的考察将会变得尤其容易。因此，本小节我们假

定g = e2。

根据上一小节的讨论，这时候静态场位形的能量满足

H =

∫
d2x

[
|(D1 ± iD2)ϕ|2 +

1

2
[B ± e(|ϕ|2 − u)]2

]
± 2πNu. (5.50)

即能量有一个大于零的下界2π|N |u。下面我们不妨假定拓扑量子数N > 0,

从而上式中的±号都取+号，因此在给定拓扑等价类中，使得能量达到下界

的场位形必定满足如下方程，

(D1 + iD2)ϕ = 0, B + e(|ϕ|2 − u) = 0. (5.51)

这就是BPS方程，满足这个方程的场位形使得静态能量取极小值，而根据

最小作用量原理，对于静态场位形，场的运动微分方程正是由能量的极值

条件给出，从而满足BPS方程的场位形必定满足场的运动微分方程(反之则

不然)。但是场方程是二阶偏微分方程，而BPS方程只是一阶微分方程，所

以求解起来当然要容易很多。

为了找到BPS方程(5.51)的一组拓扑非平凡的涡旋解，我们不妨假设涡

旋的中心位于坐标原点，然后在两维空间平面上引入极坐标(r, α)，

x1 = r cosα, x2 = r sinα. (5.52)

假设ϕ(x) = |ϕ|(x)eiθ(x), 则根据(5.39)式，对于拓扑量子数为N的场位形，

相角θ在空间无穷远处必定围绕着原点转N圈，由此我们不妨进一步假

设θ(x) = Nα, 同时假设|ϕ|只依赖于径向坐标r。即，我们假设

ϕ(x) = |ϕ|(r)eiθ, θ = Nα. (5.53)

将上面的假设代入BPS方程(5.51), 即有

(∂1 + i∂2)|ϕ| − ie(A1 + iA2)|ϕ|+ i|ϕ|(∂1 + i∂2)θ = 0. (5.54)

分离这个等式的实部和虚部，即有

A1 =
1

e
[∂2 ln |ϕ|(r) + ∂1θ], A2 =

1

e
[−∂1 ln |ϕ|(r) + ∂2θ]. (5.55)

或者利用二阶反对称张量ϵij，将这个结果写成

Ai =
1

e
[ϵij∂j ln |ϕ|(r) + ∂iθ]. (5.56)
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即是说，只需求出|ϕ|(r)，就可以进一步根据这个结果得到规范场的场位
形。

为了求出|ϕ|(r)，我们需要利用BPS方程(5.51)中的另一个方程。为此，

我们注意到

B = F12 = ϵij∂iAj

=
1

e
ϵijϵjk∂i∂k ln |ϕ|+

1

e
ϵij∂i∂jθ

= −1

e
∂2
i ln |ϕ|+

1

e
ϵij∂i∂jθ. (5.57)

式中∂2
i = ∂2

1 + ∂2
2 , 也记作∇2。为了得到上面的结果，我们代入了(5.56)式，

并利用了恒等式ϵijϵkj = δik。

由于∂i∂j关于指标i, j对称，所以(5.57)式中的1
e
ϵij∂i∂jθ项应该等于零。

但，需要小心的是，这个结论只对除坐标原点之外的区域成立，因为在这

样的区域上θ = Nα作为xi的函数是光滑的，但是在坐标原点处，极角α作

为xi的函数却是奇异的！即是说，ϵij∂i∂jα在原点之外为零，但在原点处却

是奇异的，从而必有

ϵij∂i∂jα = cδ2(x), (5.58)

式中δ2(x) = δ(x1)δ(x2)。为了定出待定常数c的值，我们将这个结果对以坐

标原点为中心的一个小圆盘D积分，从而有

c =

∫
D

d2xϵij∂i∂jα =

∫
D

dxi ∧ dxj∂i∂jα

=

∫
D

d(∂jαdx
j) =

∮
C

∂jαdx
j = 2π. (5.59)

式中C表示圆盘D的边界。上面的结果告诉我们

ϵij∂i∂jα = 2πδ2(x). (5.60)

从而

B = −1

e
∂2
i ln |ϕ|+

1

e
2πNδ2(x). (5.61)

代入BPS方程(5.51)中的另一个方程，即有

∇2 ln |ϕ|(r) = 2πNδ2(x) + e2(|ϕ|2 − u). (5.62)
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方程(5.62)通常没有解析解，但它可以数值求解，它的解(以及相应的

规范场Ai的解) 就描写电磁场与复标量场耦合系统的一个涡旋激发，涡旋

的中心在坐标原点，涡旋的总磁通为量子化的2πN/e。这样的涡旋场位形

大体如图(5.2)所示。

图 5.2: 涡旋解：其中复标量场在两维场空间的取向用一个小箭头表示，这

样的小箭头围着坐标原点打转，所以称作涡旋。磁场的方向垂直于两维空

间平面，并限制在涡旋中心的一个小区域内。

虽然无法得到涡旋的解析解，但是人们可以方便地考察这个解在r →
∞以及r → 0时的极限行为。首先，总能量有限的条件要求，

r → ∞ : |ϕ|(r) →
√
u. (5.63)

很显然，这是满足方程(5.62)的。这时候，规范场趋于一个纯规范，即

Ai →
1

e
∂iθ. (5.64)

从而磁场B → 0, 当然这个结论也很容易从BPS方程的第二个方程中得到。

其次，当r → 0时，方程(5.62)右边的δ函数项将占主导地位，从而这时

候方程本身可以近似成

r → 0 : ∇2 ln |ϕ|(r) = 2πNδ2(x). (5.65)
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这个方程的解是ln |ϕ|(r) = N ln(r) + C2，即是说，

r → 0 : |ϕ|(r) → ArN , (5.69)

式中A为积分常数。也即是说，

r → 0 : ϕ(x) → AzN , (5.70)

式中z = reiα = x1 + ix2为两维空间的复坐标。进一步，根据BPS方程的第

二个方程，我们也可以得到涡旋中心的磁场强度，

r → 0 : B = −e(|ϕ|2 − u) → eu = constant. (5.71)

2为了验证这个解，我们将方程在原点附近积分，从而有

2πN =

∫
D

d2x(∂2
1 + ∂2

2) ln |ϕ(r)|

=

∮
C

(
∂1 ln |ϕ|dx2 − ∂2 ln |ϕ|dx1

)
, (5.66)

代入ln |ϕ|(r) = N ln(r) + C, 并利用∂ir = xi/r，即得

2πN = N

∮
C

(x1dx2 − x2dx1)

r2
. (5.67)

另一方面由极坐标定义x1 = r cosα, x2 = r sinα, 可得r2dα = x1dx2 − x2dx1，从而上面的

式子即是

2πN = N

∮
C

dα. (5.68)

这显然成立！从而就验证了ln |ϕ|(r) = N ln(r) + C的确是方程(5.65)的解。


