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第四章 规范对称性和麦克斯韦方

程

陈陈陈童童童

我们一直在强调对称性，但是到此为止我们讨论的对称性全都是所谓

的整体对称性，这一章我们要开始讨论局域对称性，也称之为规范对称性。

对于整体对称性来说，它在时空整体上的变换都完全一样，但是，对于规

范对称性来说，不同时空点的对称变换可以相互独立。

为了将一个整体对称性局域化成一个规范对称性，我们往往需要引入

规范场。最简单的规范场就是电磁场，它所对应的规范对称性就是所谓

的U(1)规范对称性，它是通过将上一章引入的U(1)整体对称性局域化而得

到的对称性。本章我们将着重讨论这种局域化(通常称作gauging)是如何完

成的，以及它如何自动给出电磁场所满足的著名的麦克斯韦方程。

4.1 规范不变性和麦克斯韦方程

4.1.1 局域化U(1)整体对称性(gauging U(1) global sym-

metry)

假设我们考虑一个U(1)不变的复标量场论，其拉氏密度如下

L = −∂µϕ∂
µϕ− U(ϕϕ). (4.1)
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根据上一章可知，这个系统具有如下对称性，

ϕ → eieαϕ, ϕ → e−ieαϕ, (4.2)

式中e为某个固定参数，α为实变量。则相应的有守恒流Jµ(与上一章的定义

差了一个负号),

Jµ = ie
(
∂µϕϕ− ϕ∂µϕ

)
. (4.3)

上一章对诺特定理的证明过程告诉我们，当我们考虑无穷小变换α =

ϵ，并将无穷小变量局域化成依赖于时空点的ϵ(x)时，系统的作用量在变换

之下将不再保持不变，其变换前后的改变量将为(与上一章的定义差了一个

负号)，

δS = −
∫

d4xJµ∂µϵ(x). (4.4)

也就是说，当我们把原来整体的U(1)变换局域化，使得不同时空点可以取

不同的变换相位eieϵ(x)时，这个变换将不再是原来系统的对称性，原系统的

作用量在这个变换之下的改变量由(4.4)式给出。

一个自然的想法是，可不可以通过给原来的作用量添加上一些项，并

让它们在局域U(1)变换之下的改变量正好抵消(4.4)式呢？如果可以，那我

们就成功地将原来的整体U(1)对称性局域化成了一个U(1)规范对称性。

对上述问题的回答是肯定的。下面我们给出具体做法，那就是引入一

个新的矢量场Aµ, 让它耦合到原来的守恒流Jµ上，从而使得作用量多出如

下耦合项 ∫
d4xJµAµ. (4.5)

现在，我们只需要求，在复标量场按照上述局域U(1)变换eieϵ(x)变换的同

时，Aµ同步地按照下式变换

Aµ → Aµ + ∂µϵ(x). (4.6)

则上述耦合项(4.5)在变换前后的改变量是，∫
d4xJµ∂µϵ(x). (4.7)
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很显然，它正好抵消了原作用量在变换之下多出来的−
∫
d4xJµ∂µϵ(x)

(即(4.4)式)！也就是说，添加上了新场Aµ与守恒流的耦合项之后的理论

将在如下局域U(1)变换之下保持不变，

ϕ(x) → eieϵ(x)ϕ(x), Aµ(x) → Aµ(x) + ∂µϵ(x). (4.8)

不过，上述做法有一个细节的问题，那就是，守恒流Jµ(由(4.3)式给

出)本身在(4.8)式的变换下不会保持不变！也就是说，Jµ与Aµ的耦合项

在(4.8)式变换之下的改变量其实不是正好抵消原来多出来的(4.4)式，从而

上述做法其实还有些问题。不过，作为一个正确做法的导引，上述做法

的大体思路是正确的，它让我们看到局域化U(1)对称性并非不可完成的任

务，但代价是要引入一个按照(4.8)式变换的矢量场Aµ。而(4.8)式就是所谓

的U(1)规范变换，其中的ϵ(x)可以不再是无穷小量。下面，我们将从要求

理论在这一规范变换下保持不变出发，看真正的局域化U(1)对称性的做法

应该是怎么样的。

首先我们来看，如何修正守恒流Jµ的定义，以使得它在(4.8)式的规范

变换下保持不变！为此只需注意到在(4.8)式的规范变换下，

(∂µ − ieAµ)ϕ → eieϵ(x)(∂µ − ieAµ)ϕ

(∂µ + ieAµ)ϕ → e−ieϵ(x)(∂µ + ieAµ)ϕ. (4.9)

从而易知如下修正后的守恒流Jµ
A是规范不变的，

Jµ
A = ie

(
Dµϕϕ− ϕDµϕ

)
, (4.10)

式中Dµ称作协变导数，当它作用在ϕ上时就是Dµϕ = (∂µ−ieAµ)ϕ,而Dµϕ =

(∂µ + ieAµ)ϕ。参数e就称作Aµ场与ϕ场的耦合常数。

有了协变导数以后，人们很容易进一步写出U(1)规范不变的作用量(常

常记为Sm, 称作物质场的作用量)，为

Sm = −
∫

d4x
[
DµϕD

µϕ+ U(ϕϕ)
]
. (4.11)

将上述作用量对矢量场Aµ变分，就可以导出守恒流Jµ
A与Aµ场真正的耦合关

系，为

δSm =

∫
d4xJµ

AδAµ, (4.12)
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人们很容易直接验证这个关系式。很显然，(4.12)式正是前述(4.5)式的修正

版！

到此为止，我们就成功地将U(1)整体对称性gauging成了一个局域U(1)

规范对称性。代价是引入了一个额外的矢量场Aµ, 通常称之为规范场。问

题是，规范场Aµ本身的动力学是怎样的呢？换言之，规范场Aµ本身的作用

量是怎样的呢？

4.1.2 “发现”麦克斯韦方程

为了找到规范场Aµ本身的作用量，最重要的是要注意到这样的作用量

必须保持规范不变性，即它得在Aµ → Aµ + ∂µϵ的规范变换下保持不变！同

时，当然，Aµ的作用量还得洛伦兹不变，即得是洛伦兹标量。

为了满足规范不变性的要求，我们注意到如下反对称张量Fµν在Aµ →
Aµ + ∂µϵ的规范变换下是不变的，

Fµν = ∂µAν − ∂νAµ. (4.13)

因此，我们只要用Fµν而不是直接用Aµ来构造作用量，就能自动满足规范

不变性的要求。

利用Fµν构造出来的最简单的洛伦兹标量有如下两个，

FµνF
µν , and ϵµνρσFµνFρσ, (4.14)

式中ϵµνρσ是第二章中引入的四维时空体积形式所对应的反对称张量。因此，

最简单的规范场作用量可以写成如下形式，

Sg = −a

∫
d4x

1

4
FµνF

µν + b

∫
d4x

1

4
ϵµνρσFµνFρσ, (4.15)

式中b和a > 0为两个实常数，第一项的负号是为了使得Ai(i=1,2,3)场的动

能项(即(∂tAi)
2项)为正。

注意到 ∫
d4x

1

4
ϵµνρσFµνFρσ =

∫
d4x∂µ

(
ϵµνρσAν∂ρAσ

)
(4.16)

为一个全微分项，因此只在时空的无穷远边界上对作用量有贡献。但是在

利用最小作用量原理求场的运动微分方程时，无穷远边界上的场取值是固
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定不变的，因此这一项其实对场的运动微分方程没有任何贡献，所以常常

可以忽略。因此人们通常将规范场的作用量取成，

Sg = −a

∫
d4x

1

4
FµνF

µν . (4.17)

习惯上，人们常常将作用量(4.17)中的正常数a吸收进Aµ场的定义中，

即重新定义
√
aAµ为Aµ, 同时重新定义耦合常数e，以使得协变导数Dµ保持

为∂µ − ieAµ的形式。因此，通过这种场和耦合常数的重新定义，我们总可

以将规范场的作用量取成，

Sg = −
∫

d4x
1

4
FµνF

µν . (4.18)

将这个作用量对Aµ变分，可得

δSg = −
∫

d4x
1

2
F µνδFµν = −

∫
d4xF µν∂µδAν

=

∫
d4x∂µF

µνδAν . (4.19)

为了得出上式最后一行的结果，我们需要分部积分，并丢弃边界项(因为假

设无穷远边界上场的变分等于零)。

现在，整个场论系统既包括作为物质场的复标量场ϕ，也包括规范

场Aµ，所以整个系统总的作用量S应该等于S = Sm + Sg, 即

S = −
∫

d4x
[
DµϕD

µϕ+ U(ϕϕ) + 1

4
FµνF

µν
]
. (4.20)

由(4.12)式和(4.19)式可得这个完整的作用量对Aν的变分，为

δS = δSg + δSm =

∫
d4x

[
∂µF

µν + Jν
A

]
δAν . (4.21)

根据最小作用量原理即可得规范场Aµ满足的运动微分方程，

−∂µF
µν = Jν

A. (4.22)

另外，根据Fµν的定义(4.13)，很容易验证它还必然满足如下方程

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (4.23)
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以上两个方程，其实只有方程(4.22)是真正的Aµ场的动力学微分方程，

因为根据Fµν场的定义式(4.13)，方程(4.23)其实是一个恒等式，是自动成立

的。反过来，满足方程(4.23)的Fµν场也必定可以写成(4.13)式的形式。

令人吃惊的是，方程(4.22)和方程(4.23) 其实就是用一种更优雅的方式

写出来的麦克斯韦方程组！为了看清楚这一点，对于i, j, k = 1, 2, 3，我们

定义

F 0i = Ei, F ij = ϵijkBk. (4.24)

特别的，根据Fµν的定义(4.13)，可以得到B与矢量势A((A)i = Ai)的关系

式

B = ∇×A. (4.25)

用E场和B场表达Fµν以后，进而由方程(4.22)有

− ∂tF
0j − ∂iF

ij = J i
A

⇒− ∂tEj − ϵijk∂iBk = J j
A

⇒− ∂tE+∇×B = JA (4.26)

或者写成更常见的形式，

∇×B = JA +
∂E

∂t
. (4.27)

类似的，由方程(4.22)也有

−∂iF
i0 = J0

A

⇒ ∂iF
0i = ρA

⇒ ∇ · E = ρA. (4.28)

而由方程(4.23)有

∂1F23 + ∂2F31 + ∂3F12 = 0

⇒∇ ·B = 0. (4.29)

同样由方程(4.23)，也有

∂0Fij + ∂iFj0 + ∂jF0i = 0

⇒∂tFij + ∂iF
0j − ∂jF

0i = 0. (4.30)
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与1
2
ϵijk进行指标收缩，即有

∂tBk + (∇× E)k = 0

⇒∇× E = −∂B

∂t
. (4.31)

方程(4.27)、(4.28)、(4.29)、(4.31)就是人们熟悉的麦克斯韦方程组的

四个方程！E就是电场强度，B就是磁场强度。当然，它们和国际单位制中

的麦克斯韦方程组还有些微的系数出入，但这完全是单位制的问题，因为

我们这里采用的不是国际单位制。至于如何与国际单位制中的相应方程联

系起来，我们将在后面的小节中再来讨论。

就这样，从局域化U(1)整体对称性出发，我们最终“独立发现”了著

名的麦克斯韦方程1！这说明，电磁场起源于U(1)规范对称性，电场和磁场

是一个整体，它们共同构成二阶反对称张量场Fµν，因此电场和磁场在洛

伦兹变换下会相互转变。而U(1)对称性守恒流中的J0
A = ρA正是电荷密度，

JA则是电流密度，流守恒方程∂µJ
µ
A = 0正是电荷守恒方程。

需要注明的是，真实世界中产生电磁场的电流四矢量Jµ
A通常并不是由

某个复标量场产生的，实际上，除了超导情形中由库珀对所形成的场，宏

观世界中并没有带电的复标量场。宏观世界中的电荷密度电流密度其实是

由运动的带电粒子(而不是场)提供的。不过，在本章中，作为一个很好的

理论模型，我们不妨先研究复标量场耦合电磁场的情形，然后在后面的章

节中再转向带电粒子与电磁场耦合的情形。这样处理的原因，除了因为复

标量场与电磁场的耦合更能说清楚规范场论的逻辑之外，也因为这一有趣

的模型能够从宏观上描述超导。

1类似的，如果我们局域化时空对称性，我们将发现爱因斯坦的广义相对论。这时候取

代(4.12)式，将有

δSm =
1

2

∫
d4x

√
−gTµνδgµν . (4.32)

式中对称张量gµν为所谓的度规场，在线性近似下，它在局域时空变换下的变换关系是

δgµν = ∂µϵν + ∂νϵµ. (4.33)

这就是所谓的微分同胚变换，相应的局域化规范对称性就是所谓的微分同胚对称性。
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4.1.3 光是一种电磁波

将Fµν场的定义式(4.13)代入动力学方程(4.22)，即可得

−∂µ∂
µ(Aν) + ∂ν(∂µA

µ) = Jν
A. (4.34)

而且，这个方程还可以进一步简化。简化的关键点就在于注意到Aµ场本

身并非物理上可直接观测的，原因在于Aµ和它规范变换以后的Aµ + ∂µϵ描

述的是同样的物理内容，换言之，对于同样物理上可测量的内容，描述它

的Aµ不唯一，而是可以相差一个规范变换。因此Aµ本身并不是物理的，真

正物理的场是规范不变的Fµν。

由于Aµ有一个规范变换的自由度，因此对于同样的物理内容，我

们总可以用一个合适的函数ϵ(x)来对Aµ场进行一个合适的规范变换，使

得∂µA
µ + ∂µ∂

µϵ = 0，即是说，总可以使得变换之后新的Aµ场满足下式

∂µA
µ = 0. (4.35)

这个方程就称为一种规范选择，或者说规范固定，它有一个专门的名称，

称为洛伦兹规范条件，额外满足这个方程的Aµ场就称作洛伦兹规范下

的Aµ场。将洛伦兹规范条件代入上面的方程(4.34), 即可得

−∂µ∂
µ(Aν) = Jν

A. (4.36)

特别的，对于真空中的自由电磁场，即电流四矢量Jµ
A等于零时的电磁

场，方程(4.36)将变成，

−∂µ∂
µ(Aν) = 0,⇔ (∂2

t −∇2)Aν = 0. (4.37)

显然，对于Aµ场的每一个分量，这个方程描述的都是一种以c = 1的速度传

播的波动，这就是电磁波！由于在我们的单位制中光速正是c = 1，这和电

磁波的传播速度一样，因此，麦克斯韦提出光就是一种电磁波！麦克斯韦

的这一设想是对历史上人们长期迷惑不解的光的本性的一次深刻洞察！这

一设想后来被无数的实验证实，并在今天成为人们熟知的基本事实。同时，

由于c = 1是相对论中的最大信息传播速度，所以这也证明光――或者更一

般的电磁波――是以最大速度传播的。
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4.1.4 物理可观测量的规范不变性

我们已经看到电流四矢量Jµ
A以及电磁场强Fµν在如下规范变换下均是

不变的，

ϕ(x) → eieϵ(x)ϕ(x), Aµ(x) → Aµ(x) + ∂µϵ(x). (4.38)

不仅如此，我们更看到电磁场的动力学微分方程(麦克斯韦方程)――方

程(4.22)和方程(4.23)――在上述规范变换下是不变的。同样，人们也能验证

与电磁场耦合的复标量场ϕ的动力学场方程在上述规范变换下也保持不变。

进一步，人们发现，所有的物理可观测量都得规范不变！正因为如此，规

范势Aµ本身才不可直接观测，但是规范场强Fµν却是可观测的。

规范场强当然是一个局域可观测量，但是，一般来说，规范不变的物

理可观测量却不一定是局域的，相反，它们很可能是非局域的物理量。为

了看清楚这一点，我们不妨考虑规范势沿着某条时空路径的积分
∫ b

a
Aµdx

µ。

容易验证，在(4.38)式的规范变换下，我们有如下变换

exp{ie
∫ b

a

Aµdx
µ} → eieϵ(b) exp{ie

∫ b

a

Aµdx
µ}e−ieϵ(a). (4.39)

从而易知，如下非局域量是规范不变的，

ϕ(b) exp{ie
∫ b

a

Aµdx
µ}ϕ(a). (4.40)

特别的，当路径的终点b与起点a重合，从而形成一条闭合路径时，我们有

如下非局域的规范不变量

exp{ie
∮

Aµdx
µ}. (4.41)

有一种理解规范理论的观点认为，规范理论真正的物理自由度其实是

非局域的，因此，当我们用局域的规范场Aµ来表达理论时，就会有变量的

冗余，这种变量的冗余就反映为规范等价关系，即(4.38)式。

4.2 电磁场的能量、动量以及角动量

上一节中，我们已经写出了电磁场的作用量，即(4.18)式，那当然就可

以根据上一章时空对称性导致相应守恒定律的办法，求出电磁场的能量动

量张量，以及电磁场的角动量。不过，还是让我们先从回顾标量场的能量

动量张量开始吧。
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4.2.1 电磁场的能量、动量以及角动量

实标量场的能量、动量以及角动量

假设我们考察一个由拉氏密度L(ϕ, ∂ϕ)描述的实标量场论模型，则根
据上一章的知识易知，

T µν = −
[ ∂L
∂(∂µϕ)

∂νϕ(x)− ηµνL
]
. (4.42)

特别的, 场的动量密度T 0i为

T 0i(x) = −π(x)∂iϕ(x), (4.43)

式中π(x)为此标量场的正则动量，它由下式定义

π(x) =
∂L

∂(∂tϕ)
. (4.44)

由能量密度的积分可以得到场的总能量，同样由场动量密度的积分可以得

到场的总动量。

但是，关于上述实标量场的总角动量，我们想多说几句。首先，场的

总角动量由下式给出

J ij =

∫
d3x

[
xiT 0j − xjT 0i

]
. (4.45)

为了和电流密度的符号相区分，我们将通常的角动量矢量记为L, 它和J ij的

关系为Lk =
1
2
ϵijkJ

ij。从而对此实标量场系统，可得

L = −
∫

d3x
[
π(x)(x×∇)ϕ(x)

]
. (4.46)

通常称这一角动量为轨道角动量。

电磁场的能量、动量以及角动量

下面我们来考察一个自由电磁场的能量、动量以及角动量。所谓的自

由电磁场就是不与其它任何东西耦合，单独只由拉氏密度L = −1
4
FµνF

µν描

述的无源电磁场。我们已经知道标量场能动量张量的公式，为了得到电磁

场的能动量张量，我们将Aµ(µ = 0, 1, 2, 3)的每一个分量看成一个实标量

场，从而容易给出电磁场能动量张量的公式

T µν = −
[ ∂L
∂(∂µAρ)

∂νAρ − ηµνL
]
. (4.47)
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代入自由电磁场的拉氏密度可以得到，

T µν = F µ
ρ∂

νAρ − 1

4
ηµνFρσF

ρσ. (4.48)

很显然，这个能动量张量不是一个对称张量，而更为严重的问题是，它不

是规范不变的！而作为物理可观测量，能动量张量必须规范不变！好在，

正如上一章所说的，我们可以通过给它加上一个合适的∂ρX
ρµν来重新定义

能动量张量，使它成为一个对称张量。具体来说，我们可以给上述能动量

张量加上∂ρ(−F µ
ρA

ν) = −F µ
ρ∂

ρAν (注意到对于自由电磁场，电流四矢量

等于零，从而方程(4.22)变成∂ρF µ
ρ = 0), 很显然，加上这一项修正以后，

电磁场的能动量张量就变成了如下对称张量

T µν = F µ
ρF

νρ − 1

4
ηµνFρσF

ρσ. (4.49)

这才是一个真正规范不变的量。这个能动量张量有一个重要的特征，即

T µ
µ = 0. (4.50)

如果用电场强度E磁场强度B来写，那电磁场的能量密度H = T 00就

是，

H = T 00 =
1

2
(E2 +B2). (4.51)

电磁场的能量流密度通常称作坡印廷矢量，在c = 1单位制中记作Si = T i0。

而电磁场的动量密度在c = 1单位制中记作gi = T 0i。不过，由于能量动量

张量为对称张量，所以在c = 1单位制中gi和Si实际上是相等的。根据能动

量张量的表达式(4.49)容易知道，坡印廷矢量S可以表达为

S = E×B. (4.52)

类似的，读者也可以写出动量流密度T ij用电场Ei和磁场Bi的表达式。

将对称的能动量张量代入J ij =
∫
d3x

[
xiT 0j − xjT 0i

]
，即可以得到电磁

场的总角动量L，为

L =

∫
d3x

[
x× (E×B)

]
. (4.53)

将矢量叉乘用列维-西维塔符号ϵijk表达出来，并利用如下恒等式(请直接验

证)

ϵklmϵmno = δknδlo − δkoδln, (4.54)
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以及利用Bm = ϵmno∂nAo(即B = ∇×A), 进而即可以得到

Li =

∫
d3x

[
ϵijkxjϵklmElϵmno∂nAo

]
=

∫
d3xϵijkxj

[
El∂kAl − El∂lAk

]
=

∫
d3x

[
El(x×∇)iAl − ϵijkxjEl∂lAk

]
(4.55)

将最后一行的第二项分部积分，丢弃无穷远处的边界项，并利用自由电磁

场的∂lEl = 0(即∇ · E = 0), 即可得

Li =

∫
d3x

[
El(x×∇)iAl + (E×A)i

]
. (4.56)

或者写成矢量形式，即是

L =

∫
d3x

[
Ei(x×∇)Ai + (E×A)

]
. (4.57)

为了理解(4.57)式的含义，我们注意到，根据自由电磁场的拉氏密度，

可以知道它不含A0的时间导数项(因为F00 = 0), 换言之，A0场不是一个动

力学变量，系统真正的动力学变量只有Ai, i = 1, 2, 3场，进而容易求出Ai场

所对应的正则动量，为

∂L
∂(∂tAi)

= −F 0i = −Ei. (4.58)

进一步，比较(4.57)式右边的第一项和标量场的轨道角动量表达式(4.46),

不难发现，这一项描述的正是矢量场A的轨道角动量。但是(4.57)式右边还

多出了第二项，即
∫
d3x[E×A]，这一项只能是反应了矢量场A的某种内禀

角动量，通常称之为自旋角动量。

电磁场与复标量场耦合系统的能动量张量

以上讨论的是自由电磁场，那么如果将电磁场耦合到复标量场上，情

况会怎样呢？这时候整个耦合系统的能量动量张量将是什么？为了讨论这

个问题，我们先写出耦合系统的拉氏密度，

L = −
[
DµϕD

µϕ+ U(ϕϕ) + 1

4
FµνF

µν
]
. (4.59)
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直接推广上一章的相关知识，可以得到这样一个耦合系统的能动量张量计

算公式，

T µν = −
[ ∂L
∂(∂µAρ)

∂νAρ +
∂L

∂(∂µϕ)
∂νϕ+

∂L
∂(∂µϕ)

∂νϕ− ηµνL
]
. (4.60)

代入拉氏密度(4.59)，可以得到

T µν =F µ
ρ∂

νAρ − 1

4
ηµνFρσF

ρσ

+Dµϕ∂νϕ+Dµϕ∂νϕ− ηµν [DρϕD
ρϕ+ U(ϕϕ)]

=F µ
ρ∂

νAρ − 1

4
ηµνFρσF

ρσ

+DµϕDνϕ+DνϕDµϕ− ηµν [DρϕD
ρϕ+ U(ϕϕ)] + Jµ

AA
ν (4.61)

显然，这个能动量张量既不对称也不规范不变。但是，正如前面处理自由

电磁场那样，我们可以给它加上一个∂ρ(−F µ
ρA

ν)项进行修正，只不过，这

时候我们有−∂ρF µ
ρ = −Jµ

A(即方程(4.22)), 从而加上的这一项其实等于

∂ρ(−F µ
ρA

ν) = −∂ρF µ
ρA

ν − F µ
ρ∂

ρAν = −Jµ
AA

ν − F µ
ρ∂

ρAν . (4.62)

从而，当将这一项加到之前(4.61)式的能动量张量以后，即可得如下修正后

的能动量张量，

T µν =F µ
ρF

νρ − 1

4
ηµνFρσF

ρσ

+DµϕDνϕ+DνϕDµϕ− ηµν [DρϕD
ρϕ+ U(ϕϕ)]. (4.63)

很明显，这既是一个对称张量，同时又是一个规范不变的量，它由两部分

组成，一部分是纯的电磁场的能动量张量，这一部分显然和前面自由电磁

场的相应结果完全一致，另一部分是通过将单纯的复标量场能动量张量中

的时空导数替换成协变导数――从而使它规范不变并和Aµ场耦合――而得

到。

4.2.2 与国际单位制的关系

以上推导电磁场的基本方程时用的不是国际单位制，现在让我们将它

们与国际单位制中的形式联系起来。为此，首先引入真空中的磁导率µ0，

并重新定义Aµ场为
1√
µ0
Aµ, 从而将电磁场的拉氏密度重写成如下形式，

L = − 1

4µ0

FµνF
µν . (4.64)
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如果还需要考虑电磁场与复标量场的耦合，那我们就同时重新定义耦合常

数e，以使得协变导数依然具有Dµ = ∂µ − ieAµ的形式，从而使得电磁场与

复标量场的耦合依然满足

δSm =

∫
d4xJµ

AδAµ. (4.65)

如此一来，电磁场的动力学方程就应该重写成，

−∂µF
µν = µ0J

ν
A. (4.66)

而电磁场的能动量张量就要重写成

T µν =
1

µ0

[
F µ

ρF
νρ − 1

4
ηµνFρσF

ρσ
]
. (4.67)

下面我们恢复光速c，这时候就可以引入电磁场的国际单位制了。在国

际单位制中，Fµν所有分量的量纲都应该一样，而且和磁场强度的量纲相

同，因此对磁场的定义还和以前一样，即Bk = 1
2
ϵijkF

ij。但是，在国际单

位制中电场的量纲等于磁场量纲乘以速度量纲，所以电场的定义应该为

F 0i =
1

c
Ei. (4.68)

从而如果将拉氏密度用电场和磁场写出来，即有

L =
1

2

[ 1

µ0c2
E2 − 1

µ0

B2
]
. (4.69)

通常将 1
µ0c2
记作ϵ0称作真空的介电常数，即

1

µ0c2
= ϵ0 ⇔ c =

1
√
ϵ0µ0

. (4.70)

从而，国际单位制中的拉氏密度即是，

L =
1

2

[
ϵ0E

2 − 1

µ0

B2
]
. (4.71)

同样的，可以得到国际单位制中的能量密度为

H = T 00 =
1

2

[
ϵ0E

2 +
1

µ0

B2
]
. (4.72)
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注意到恢复光速c以后，有J0 = ρc，再加上F 0i = Ei/c，进而根据方

程(4.66)，可知之前的方程(4.28)现在应该是，

∇ · E/c = µ0ρc ⇔ ∇ · E =
1

ϵ0
ρ. (4.73)

类似的，方程(4.27)、(4.31)、(4.29)将分别变成

∇×B = µ0J+
∂E/c

∂(ct)
⇔ ∇×B = µ0J+

1

c2
∂E

∂t
.

∇× E/c = − ∂B

∂(ct)
⇔ ∇× E = −∂B

∂t

∇ ·B = 0. (4.74)

以上就是国际单位制中的麦克斯韦方程组。

能动量张量T µν所有分量的量纲当然要一致，也就是都取能量密

度T 00的量纲。由于动量的量纲乘以速度的量纲结果等于能量量纲，所

以恢复光速c以后，动量密度gi应该定义成

cgi = T 0i ⇒ g =
( 1

µ0

E/c×B
)
/c ⇔ g = ϵ0E×B. (4.75)

由于能流密度衡量的是能量的流动，它的量纲应该等于能量密度的量纲乘

以速度的量纲，从而恢复c以后能流密度的定义应该是

Si = cT i0 ⇒ S = c2g =
1

µ0

E×B. (4.76)

这就是所谓的坡印廷矢量！

通常还引入标量势ϕ(x, t) (读者需要注意根据上下文将它和与电磁场耦

合的复标量场区分开来)，它的定义是

A0 =
ϕ

c
. (4.77)

利用标量势，并利用x0 = −x0 = −ct, 可得

Ei

c
= F 0i =

∂Ai

∂x0

− ∂A0

∂xi

=
1

c

(
− ∂Ai

∂t
− ∂ϕ

∂xi

)
⇒E = −∂A

∂t
−∇ϕ. (4.78)

假如保留真空中的磁导率和真空中的介电常数的符号，但是与此同时

取c = 1，那么根据(4.70)式，将有

µ0 =
1

ϵ0
. (4.79)



第四章 规范对称性和麦克斯韦方程 17

4.3 外微分与麦克斯韦方程

4.3.1 麦克斯韦方程的外微分形式

我们可以用外微分形式重新表达麦克斯韦方程――即方程(4.22)和方

程(4.23)。为此定义规范场1形式A，它和规范势Aµ的关系是，

A = Aµdx
µ. (4.80)

对A外微分，可得到场强2形式F = dA，容易看出

F = ∂µAνdx
µ ∧ dxν =

1

2
(∂µAν − ∂νAµ)dx

µ ∧ dxν =
1

2
Fµνdx

µ ∧ dxν . (4.81)

因此，2形式F的分量正好是规范场强Fµν。

由于F = dA，所以显然有

dF = 0. (4.82)

这个方程正是方程(4.23)的外微分形式写法，因为它等价于

0 =
1

2
∂ρFµνdx

ρ ∧ dxµ ∧ dxν

⇒0 =
1

6

(
∂ρFµν + ∂µFνρ + ∂νFρµ

)
dxρ ∧ dxµ ∧ dxν

⇒0 = ∂ρFµν + ∂µFνρ + ∂νFρµ. (4.83)

另外，根据第二章中介绍的外微分知识，有

∗d ∗ F =
(
− ∂µFµν

)
dxν . (4.84)

假设我们进一步定义电流1形式

J = Jνdx
ν . (4.85)

则很容易看出，方程(4.22)可以重写为

∗d ∗ F = J ⇔ d ∗ F = ∗J. (4.86)

即有

d ∗ F = ∗J, dF = 0, (4.87)

这正是用外微分形式表达的麦克斯韦方程组。
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4.3.2 电磁场的洛伦兹变换

下面考察电磁场的洛伦兹变换。为此，让我们考虑一种特殊情况，假

设S ′系沿着S系的x轴正方向以匀速v运动。假设我们这么选取S ′的坐标轴，

以使得初始时两个坐标系的坐标轴完全重合。这样一来，由于两坐标系的

相对运动只发生在x方向上，与y, z方向无关，所以显然有

dy′ = dy, dz′ = dz. (4.88)

由第二章的知识，我们还知道

dt′ =
dt− vdx√
1− v2

,

dx′ =
dx− vdt√
1− v2

. (4.89)

根据第二章的知识可知，电磁势Aµ在洛伦兹变换下的变换规则

与dxµ相同，而F µν的变换规则则和dxµ ∧ dxν相同。而对于上一段的两个

参考系，容易算得

dt′ ∧ dx′ = dt ∧ dx, dy′ ∧ dz′ = dy ∧ dz. (4.90)

以及

dt′ ∧ dy′ =
dt ∧ dy − vdx ∧ dy√

1− v2
,

dt′ ∧ dz′ =
dt ∧ dz + vdz ∧ dx√

1− v2
. (4.91)

以及

dz′ ∧ dx′ =
dz ∧ dx+ vdt ∧ dz√

1− v2
,

dx′ ∧ dy′ =
dx ∧ dy − vdt ∧ dy√

1− v2
. (4.92)

进一步由F tx = Ex, F
ty = Ey, F

tz = Ez以及F xy = Bz, F
yz = Bx, F

zx = By,

即可以得到电磁场的变换关系，

E ′
x = Ex, B′

x = Bx

E ′
y =

Ey − vBz√
1− v2

, E ′
z =

Ez + vBy√
1− v2

.

B′
y =

By + vEz√
1− v2

, B′
z =

Bz − vEy√
1− v2

. (4.93)
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当相对运动的速度远远小于光速时，即v ≪ 1时，上述结果可以简化为

E′ = E+ v ×B, B′ = B− v × E. (4.94)

我们看到，在洛伦兹变换之下，电场和磁场总是相互转化的。但是，

我们可以定义如下矢量场G

G = E+ iB, (4.95)

可以证明，G在洛伦兹变换之下总是变回自身各分量的线性组合。以上述

特殊的洛伦兹变换为例，根据上面的结果，不难得到

dt′ ∧ dx′ + idy′ ∧ dz′ = dt ∧ dx+ idy ∧ dz

dt′ ∧ dy′ + idz′ ∧ dx′ =
1√

1− v2
(dt ∧ dy + idz ∧ dx)

+
iv√
1− v2

(dt ∧ dz + idx ∧ dy)

dt′ ∧ dz′ + idx′ ∧ dy′ =
1√

1− v2
(dt ∧ dz + idx ∧ dy)

− iv√
1− v2

(dt ∧ dy + idz ∧ dx). (4.96)

从而即有G场的变换关系，

G′
x = Gx, G′

y = cos(iω)Gy + sin(iω)Gz

G′
z = cos(iω)Gz − sin(iω)Gy. (4.97)

式中cosh(ω) = 1/
√
1− v2，sinh(ω) = v/

√
1− v2，从而cos(iω) = cosh(ω)，

sin(iω) = i sinh(ω) = iv/
√
1− v2。由此可见，洛伦兹变换相当于场G的一

个三维空间旋转，只不过旋转角度为一个复数。

场G的另一个应用是，利用它我们可以把无源的自由电磁场(即Jµ =

0)的麦克斯韦方程改写成如下方程

i
∂G

∂t
= ∇×G, ∇ ·G = 0. (4.98)

对于这个结果，我们请读者自己直接验证。


