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前面我们讲过对称性与守恒定律的关系，也说明过对称性如何决定系
统的作用量。其实，对称性还强烈地限制着哈密顿力学系统的动力学
行为。一个系统的对称性越高，其动力学行为就越呈现出规则性，而
对称性的降低就可能导致混沌。相反，一个系统的行为越表现出规则
性往往就意味着它有越高的对称性，不过这个对称性可能是隐藏的。

另一方面，连续对称性总是对应着守恒量，也就是与哈密顿量泊松对
易的物理量1。因此，如果一个力学系统有越多的守恒量，其动力学行
为就会越规则，而守恒量的不足也是力学系统呈现混沌行为的必要条
件。本章我们将从最规则的力学系统 (也就是所谓的可积系统)出发，
逐步探讨哈密顿力学系统如何从规则过渡到混沌。

1假设不显含时间。
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最规则的哈密顿系统-可积系统

动力学行为最规则的哈密顿系统是所谓的可积系统，也称作刘维尔可
积系统。这个概念上一章已经引入了，假设我们考察的是一个 n自由
度的哈密顿系统，那么可积的定义是，存在 n个泊松对易的独立守恒
量，不妨记这些守恒量为 Ga,a = 1, 2, 3...,n，它们满足 [H,Ga] = 0。
所谓泊松对易即满足

[Ga,Gb] = 0, (1)

而所谓独立即满足

dG1 ∧ dG2 ∧ ... ∧ dGn ̸= 0. (2)

对于 2n维相空间，不可能有超过 n个相互独立且泊松对易的守恒量。
由于哈密顿量 H 本身也是守恒量2，而且它和所有 Ga 均泊松对易，因
此这意味着 H 不是独立的，而必然是 Ga 的函数。实际上，后面将看
到，H 完全由这些 Ga 决定，不再依赖于更多的独立变量。

2我们仅考虑 H 不显含 t 的情形。
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最规则的哈密顿系统-可积系统
不变环面

由于 Ga 是守恒量，因此系统在相空间的运动轨道一定会被限制在
Ga,a = 1, 2, ..., n取常数值的 n维超曲面上，不同的取值就将相空间分
层成不同的超曲面，不妨记 Ga = ga,a = 1, 2, ..., n的那一层超曲面为
Mg。可以证明，如果Mg 连通且有限 (用数学术语来说即紧致)，那它
一定可以参数化为 n维环面 Tn = S1 × S1 × ...× S1,即Mg = Tn，称
作相空间的不变环面，不变的意思是，系统始终在这个环面上运动。
图 (1)中所示的就是一个两维环面 T2。

Figure:相空间的不变环面。图片来自 Tom W.B. Kibble and Frank H.
Berkshire, Classical Mechanics(下图同)。
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最规则的哈密顿系统-可积系统
不变环面

为了证明上一段的这个结论，我们引入相空间坐标 x = (q,p),并以
x i , i = 1, 2, ..., 2n来表示它的各分量。很显然，等 Ga 面Mg 的法向就
是 Ga 的梯度方向，即有 ∂Ga

∂x ,a = 1, 2, .., n均垂直于Mg。另一方面，
我们取 Ga,a = 1, 2, .., n为生成元，让它们在相空间生成相流，并记相
应的相流参数为 λa，即有相流方程

dx i

dλa = v i
Ga

= ωij∂jGa, (3)

式中 v i
Ga
表示相应相流的速度场。很显然，总共有 n个这样的相流，

并且由于 Ga,a = 1, 2, .., n相互独立，所以这些相流的速度场是线性独
立的。另外，

v i
Gb
∂iGa = (∂iGa)ω

ij(∂jGb) = [Ga,Gb] = 0, (4)

即这些相流的流动方向均与 Ga 的梯度方向相垂直！从而也即是说，这
些相流均是沿着曲面Mg 流动的。
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最规则的哈密顿系统-可积系统
不变环面

当这 n个线性独立相流流遍 n维超曲面Mg 时，它们的参数
λa,a = 1, 2, .., n就给出了Mg 的一种坐标。而这些相流是可以一直持
续下去的，它们并没有边界。因此要么这组 n维参数 (λ1, λ2, ..., λn)的
取值范围都是 (−∞,+∞),从而相当于一个 n维空间 Rn,要么，如果每
个参数的取值都有限的话，那每一个参数的取值范围都只能是在一个
圆周 S1 上，从而相当于一个 n维环面 Tn,而这正是我们想要证明的结
论。比如图 (1)中所画的两维环面 T2 上的坐标网就是由相流参数组
(λ1, λ2)所参数化的。如此就完成了整个证明。
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最规则的哈密顿系统-可积系统
不变环面

Tn 由 n个圆周作笛卡尔积而成，每一个圆周对应一个拓扑独立的非平
凡回路，即不可以通过连续形变相互过渡也不可以连续收缩为一点的
回路，因此 Tn 上有 n个拓扑独立的非平凡回路，不妨记为
Ca,a = 1, 2, ..., n。假设Mg = Tn,则系统就在这个 n维环面上运动，
它在每一个独立回路 Ca 方向都是周期性的，但是整个完整的相轨道却
不一定是闭合轨道，因为这里有两种不同的可能性。为了弄清楚问题，
我们记系统在 Ca 方向的运动周期为 Ta，从而它在这个方向的角频率
为 ωa = 2π

Ta
。仔细考虑一下不难明白，如果任何两个方向的角频率之比

ωa/ωb 都是整数比，则各个方向的运动一定有公共的周期，从而整个
系统一定作周期性的运动，从而一定是闭合轨道，图 (2)中左图所画的
就是这种情形。但是，如果这些角频率之比都是无理数，那就没有公
共的周期，也没有闭合轨道，实际上，这时候系统的相轨道最终将密
密布满整个 Tn,称作相轨道遍历整个不变环面，图 (2)中右图所画的就
是这种情形。
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最规则的哈密顿系统-可积系统
不变环面

Figure:不变环面上的相轨道。

一般来说，对于具有角频率 ω⃗ = (ω1, ω2, ..., ωn)的不变环面,它不能被
相应相轨道遍历的充要条件是，存在一组整数
m⃗ = (m1,m2, ...,mn) ̸= 0,使得 ω⃗ · m⃗ = m1ω1 + m2ω2 + ...+ mnωn = 0。
这个条件称之为共振条件，满足共振条件的不变环面就是所谓的共振
环面。
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最规则的哈密顿系统-可积系统
另一个刘维尔定理

刘维尔定理：可积系统的相空间运动可以通过积分法求解。

类似的结论上一章我们其实证明过，但那个证明假定了能找到哈密
顿-雅可比方程的一组解析解。下面要给出的证明完全不依赖于这个假
定，相反，我们可以用证明得出的哈密顿正则方程的解析解构造出相
应哈密顿-雅可比方程的解析解，如何构造已经在上一章讲过了。
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最规则的哈密顿系统-可积系统
另一个刘维尔定理

下面我们来证明这个刘维尔定理。证明的关键在于找到一组正则变换，
将相空间坐标由原来的 x = (q,p)变换为 x′ = (ψ,G)，式中 G代表所
有相互泊松对易的守恒量 Ga，它们是新的正则动量，ψ 代表新的正则
坐标 ψa,a = 1, 2, ..., n。如果我们成功地做到这一步，那这首先证明了
哈密顿量 H 只能依赖于守恒量 G,不能依赖于 ψ，这是因为
0 = [H,Ga]x = [H,Ga]x′ = ∂H

∂ψa，即 ∂H
∂ψa = 0。其次，如果我们成功找到

这样的正则变换，则

Ġa = [Ga,H] = 0, ψ̇a = [ψa,H] =
∂H
∂Ga

= Ωa, (5)

式中 Ωa 定义为 ∂H
∂Ga
，是一些仅仅依赖于 G的量。从而我们就可以得到

系统的运动在这组新正则变量下的解

Ga(t) = Ga(0), ψa(t) = ψa(0) + tΩa. (6)

将这组解变换回去，就能得到原来正则变量 (q,p)下的解。如果这组
正则变换可以用某个积分表达式来生成，那我们就证明了能通过积分
法得到系统在原变量 (q,p)下的解析解。这样就完成了想要的证明。
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最规则的哈密顿系统-可积系统
另一个刘维尔定理

为了构造这组正则变换，我们注意到系统的运动总是限制在某层超曲
面Mg 上，而Mg 由 Ga(q,p) = ga 确定，因此我们可以反解出 pa 作
为 g,q 的函数，记为 pa(g,q)。下面在Mg 上任意选定一个参考点 q0，
并在Mg 上考察一条从 q0 到 q 的路径，然后将 pa(g,q)dqa 沿着这条
路径积分3。很明显，如果积分的结果与具体的路径无关，而只与起末
两点位置有关，那这个积分就定义了一个函数 F (G,q)，

F (G,q) =
∫ q

q0

pa(g,q)dqa. (7)

很显然，这个函数满足

pa =
∂F
∂qa , (8)

因此我们将之取为正则变换的第二类生成函数，进而将 Ga 看作新的正
则动量，并定义新的正则坐标为，

ψa =
∂F
∂Ga

. (9)

这样，所需的正则变换就构造出来了。
3本章同样使用求和约定。ct |经典力学新讲第 6章
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最规则的哈密顿系统-可积系统
另一个刘维尔定理

唯一还需要证明的就是 (7)式的积分的确与具体路径无关！要证明积分
和路径无关，只需证明在Mg 的闭合回路4上的积分等于零 (请读者自
己思考一下为什么是这样？)，即证明

∮
padqa|Mg = 0。但是 padqa 就

是辛势 Θ，因此就是要证明
∮
Θ|Mg = 0。根据斯托克斯公式，这就是

要证明 ∮
Θ|Mg =

∫
dΘ|Mg =

∫
ω|Mg = 0. (10)

为此只需证明，辛形式限制在Mg 上等于零，即 ω|Mg = 0。

4假设它可以连续收缩成到 q0 点
ct |经典力学新讲第 6章
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最规则的哈密顿系统-可积系统
另一个刘维尔定理

这个证明如下，

ω|Mg =
1

2
ωij

dx i

dλa
dx j

dλb dλa ∧ dλb

=
1

2
ωijv i

Ga
v j

Gb
dλa ∧ dλb

=
1

2
ω(vGa , vGb)dλ

a ∧ dλb

=
1

2
[Gb,Ga]dλa ∧ dλb = 0. (11)

上面的推导过程使用了上一章讲相流时推导的相关公式。到此为止就
完成了整个刘维尔定理的证明。
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最规则的哈密顿系统-可积系统
作用-角变量

如果可积系统的运动有限，从而其Mg = Tn，那就可以选择一组非常
有用的正则变量，称之为作用-角变量。其中作用变量通常记为
Ia,a = 1, 2, .., n，是一组互相泊松对易的守恒量，它和原来的守恒量 G
互为函数关系。Ia 常常作为正则动量，与之对应的正则坐标记为 θa，
称作角变量。可积系统的哈密顿量只是作用变量 I 的函数，记为 H(I)。
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最规则的哈密顿系统-可积系统
作用-角变量

作用变量的定义相应于不变环面 Tn 上的非平凡回路，对于每一个独立
非平凡回路 Ca，可以定义相应的 Ia 如下

Ia =

∮
Ca

Θ

2π
=

∮
Ca

pbdqb

2π
, (12)

由于Mg = Tn 由原守恒量 G定义，因此这样定义的 Ia 显然是 G的函
数。进而我们也可以将不变环面刻画成 Ia,a = 1, 2, ..., n取常数值的超
曲面，即 Ia(q,p) = fa 的超曲面，不同的 f 值就将整个相空间分层成不
同的不变环面。比如，第一章讲势能曲线的时候，实际上我们已经初步
接触过一维情形下的作用变量，在一维运动的情形中，相空间是两维
的，而不变环面也是一维的，就是一条闭合的相轨道，这时候作用变量
就是这条相轨道包围的面积除以 2π，具体细节读者不妨往回翻看一下。
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最规则的哈密顿系统-可积系统
作用-角变量

为了定义角变量 θa，我们仿照对刘维尔定理的证明过程，首先通过反
解 Ia(q,p) = fa,a = 1, 2, ..., n得出 pa = pa(f ,q)，进而引入正则变换的
第二类生成函数 F (I,q),定义如下

F (I,q) =
∫ q

q0

pa(I,q)dqa. (13)

进而即有

pa =
∂F
∂qa , θa =

∂F
∂Ia

. (14)

θa 之所以称作角变量，是因为它在回路 Ca 上以 2π 为周期，而在其它
b ̸= a的回路 Cb 上周期是零，即满足∮

Cb

dθa

2π
= δa

b. (15)
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最规则的哈密顿系统-可积系统
作用-角变量

证明如下， ∮
Cb

dθa =

∮
Cb

∂2F
∂qc∂Ia

dqc

=
∂

∂Ia

∮
Cb

∂F
∂qc dqc =

∂

∂Ia

∮
Cb

pcdqc

= (2π)
∂Ib
∂Ia

= (2π)δa
b. (16)

类似于前面对刘维尔定理的讨论，作用变量和角变量满足的哈密顿正
则方程为

İa = 0, θ̇a =
∂H
∂Ia

= ωa(I), (17)

式中 ωa(I)定义为 ∂H
∂Ia
，为系统在 Ca 方向上运动的角频率。
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最规则的哈密顿系统-可积系统
作用-角变量

不仅如此，而且第一章谈到的玻尔-索末菲量子化条件也可以推广为

Ia = nah̄, (18)

式中 na 为非负整数，是一个标记量子状态的量子数。
假设我们以作用变量和角变量为相空间的坐标，那玻尔-索末菲量子化
条件将带来一个直观的相空间图像，对于一维运动情形，它意味着相
空间沿着 θ 轴可以划分成一个个长为 2π 的区间，而沿着 I 轴可以划分
成一个个长为 h̄的区间，这样就可以将整个相空间分成一些宽为 2π，
高为 h̄,从而面积为 2πh̄，的小格子，称之为相格。玻尔-索末菲量子化
条件告诉我们，每一个相格对应一个量子状态。推广到 n自由度情形
即是，相空间可以划分成一些体积为 (2πh̄)n 的相格，每一个相格对应
一个量子状态。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

前面的章节中求解过粒子在中心力场 V (r) = − k
r (k > 0)中运动的问题，

也就是所谓的开普勒问题。我们知道，这个问题可以化简为一个平面
运动问题，相应的哈密顿量为

H =
p2

r

2m
+

p2
θ

2mr2
− k

r
. (19)

其中 pθ 就是角动量，有时候也记为 J，它当然是一个守恒量，因此 pθ
与 H 泊松对易。所以，我们有两个相互泊松对易的守恒量，H 和 pθ，
而这又是一个两自由度的两维运动问题，所以它构成一个可积系统。
我们可以选取 H,pθ 为正则动量 (两者看成相互独立)，相应的两个正则
坐标分别记为 ψH , ψθ。很明显

ψ̇H =
∂H
∂H

= 1, ψ̇θ = 0. (20)

由此即知道 ψH = t − t0，ψθ 为常数。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

如果我们想进一步求出 r , θ 如何随时间演化，那根据刘维尔定理的证
明过程，就需要将守恒量 H,pθ 以及相应的两个正则坐标 ψH , ψθ 正则
变换回去。这个正则变换的生成函数 (第二类生成函数)F (H,pθ, r , θ)为

F (H,pθ, r , θ) =
∫ (

pr dr + pθdθ
)

=

∫
dr

√
2m

(
H −

p2
θ

2mr2
+

k
r
)
+ pθθ. (21)

这个生成函数按照下式生成正则变换

t − t0 = ψH =
∂F
∂H

=

∫
dr

m√
2m

(
H − p2

θ

2mr2 + k
r

)
ψθ =

∂F
∂pθ

= −
∫

dr
pθ/r2√

2m
(
H − p2

θ

2mr2 + k
r

) + θ (22)

这里的 ψθ 就可以理解为初始角度 θ0。读者可以将这个结果与第四章
第五章的相应结果进行比较，不同的方法结论是完全一致的。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

下面我们看看如何用作用-角变量处理开普勒问题。对于束缚运动 (符
合运动区域有限的条件)，开普勒问题的两个作用变量 I1, I2 分别为

I2 =

∮
pθdθ
2π

= pθ

I1 =

∮
pr dr
2π

=
1

2π

∮
dr

√
2m

(
H −

p2
θ

2mr2
+

k
r
)

=
1

π

∫ rmax

rmin

dr

√
2m

(
H −

p2
θ

2mr2
+

k
r
)
. (23)

式中对 r 的回路积分表示从下限 rmin 积到上限 rmax，然后再积回下限
rmin。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

rmin, rmax 由 pr = 0确定，从而是方程 H − p2
θ

2mr2 + k
r = 0的两个根，两

根之和以及两根之积分别为

rmin + rmax = − k
H
, rminrmax = − p2

θ

2mH
. (24)

由此也可以知道，必有总能量 H < 0。为了进一步算出 I1 表达式中的
积分，我们可以利用如下公式∫ rmax

rmin

dr
√(

1− rmin

r
)( rmax

r
− 1

)
=
π

2
(rmin + rmax)− π

√
rminrmax . (25)

利用这些结果，不难算出

I1 = −I2 + k
√

m
−2H

. (26)

进而即有

H = − mk2

2(I1 + I2)2
= E . (27)
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

从上面的结果容易得到 ω1 = ∂H
∂I1

= ∂H
∂I2

= ω2,以及

ω1 = ω2 =
mk2

(I1 + I2)3
=

m
k
(
− 2E

m
)3/2

. (28)

这说明两件事情：第一，由于 ω1/ω2 = 1是一个有理数，这说明粒子
的运动是一个周期运动，特别的，运动轨道是闭合轨道。第二，周期
T = 2π

ω1
= (2π)km1/2

(
− 2E

)−3/2,这正是开普勒第三定律，这是因为半

长轴 a = k
(
− 2E

)−1,所以 T = (2π)
√

m
k a3/2。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

下面再考察一个例子，即一个两维谐振子，其哈密顿量为

H =
1

2

(
p2
1 + ω2

1q2
1 + p2

2 + ω2
2q2

2

)
. (29)

很显然系统 1,2两个分量的哈密顿量都是守恒量，而且相互泊松对易，
分别记为 H1,H2，H1 = 1

2

(
p2
1 + ω2

1q2
1

)
, H2 = 1

2

(
p2
2 + ω2

2q2
2

)
。同样很明

显的是，H1 = E1 给出的是相空间 (q1,p1)平面上的一个椭圆，椭圆在
拓扑上当然等同于圆周 S1。同样 H2 = E2 也是 (q2,p2)平面上的椭圆，
也拓扑等价于 S1，所以系统的运动正是限制在这两个 S1 的笛卡尔积
上，这也就是相空间的不变环面 T2 = S1 × S1。所以这个系统当然是
一个可积系统，人们不难按照求解可积分系统的一般办法得出系统的
解析解。不过，我们这里真正想讨论的是如何构造这个系统的作用-角
变量。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

人们当然可以按照构造作用-角变量的一般方法找到这个系统的作用-角
变量，但这不是最快捷的方法。对于这个系统而言最快捷的方法就是
先找到参数化两个独立 S1 的角变量，然而通过正则变换进一步找到与
角变量对应的作用变量。具体来说，对于 H1 = 1

2

(
p2
1 + ω2

1q2
1

)
= E1 的

椭圆，我们可以定义相空间的坐标变换

p1 = ρ1 cos θ1, ω1q1 = ρ1 sin θ1, (30)

式中 θ1 正是参数化这个椭圆的角变量，但满足 ρ21 = 2E1 的 ρ1 却不一
定是相应的作用变量，因为上面的变换只是相空间的坐标变换，却不
一定是正则变换。同样，对于 H2 = 1

2

(
p2
2 + ω2

2q2
2

)
= E2 的椭圆，我们

也可以定义相空间的坐标变换

p2 = ρ2 cos θ2, ω2q2 = ρ2 sin θ2, (31)

式中 θ2 也是一个角变量。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

找到作用变量的关键是找到以上面两个角变量 θ1, θ2 为正则坐标的正
则变换，而找到正则变换的关键则是要求相空间的坐标变换保持辛结
构。为此我们进行如下计算

ω = dp1 ∧ dq1 + dp2 ∧ dq2

=
1

ω1
ρ1dρ1 ∧ dθ1 +

1

ω2
ρ2dρ2 ∧ dθ2

= d
( 1

2ω1
ρ21
)
∧ dθ1 + d

( 1

2ω2
ρ22
)
∧ dθ2. (32)

从这个计算可以知道，只需令 I1 = 1
2ω1

ρ21, I2 = 1
2ω2

ρ22,就会有

ω = dp1 ∧ dq1 + dp2 ∧ dq2 = dI1 ∧ dθ1 + dI2 ∧ dθ2. (33)

这正是正则变换的保辛结构条件。也即是说，上面定义的 I1, I2 正是我
们要找的作用变量。
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最规则的哈密顿系统-可积系统
开普勒问题和两维谐振子问题

不妨将作用-角变量与原来变量之间的正则变换关系明显地写出来，

p1 =
√
2I1ω1 cos θ1, q1 =

√
2I1
ω1

sin θ1,

p2 =
√
2I2ω2 cos θ2, q2 =

√
2I2
ω2

sin θ2. (34)

很显然，H1 = I1ω1, H2 = I2ω2，从而

H = I1ω1 + I2ω2. (35)

利用作用-角变量的哈密顿正则方程，我们容易得到

θ̇1 =
∂H
∂I1

= ω1, θ̇2 =
∂H
∂I2

= ω2. (36)

从而即有 θ1 = ω1t + φ1, θ2 = ω2t + φ2,代回 (34)式就可以得到原来的
变量 q1,q2,p1,p2 的解。
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近可积系统与混沌系统
近可积系统与 KAM定理

前面已经看到，对于有限区域内的运动，可积系统的相空间分层成不
同的不变环面 Tn，并且我们可以将 Tn 的坐标取作角变量
θ = (θ1, θ2, ..., θn)，将不同层的不变环面对应不同的作用变量
I = (I1, I2, ..., In)。即是说，我们可以用作用-角变量来描述可积系统，
在这一描述下系统的哈密顿量仅为作用变量的函数。

假设我们有一个可积系统 H0(I)，现在我们给它加上一个微扰，使得整
个系统的哈密顿量变成

H(I, θ) = H0(I) + ϵH1(I, θ), (37)

式中 ϵ代表一个小量，H1(I, θ)代表扰动，它不仅依赖于原来的作用变
量同时还依赖于原来的角变量。这个扰动以后的系统就是一个近可积
系统。
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近可积系统与混沌系统
近可积系统与 KAM定理

起初人们认为，扰动会破坏可积系统的不变环面，使得原来 n维不变
环面上的相轨道在扰动后弥漫到整个 2n − 1维等能量曲面 (注意，哈
密顿系统的能量守恒)。但是，1954年 Kolmogorov在世界数学家大会
上指出：非退化的可积系统在上述扰动之后，虽然某些不变环面会被
扰动破坏掉 (称为共振环面)，但所谓满足强非共振条件的不变环面 (这
种不变环面占大多数)仍然会被保存下来。也就是说近可积系统整个相
空间中大部分的相轨道依然是非常规则的！这个发现后来被 Arnold和
Moser分别给予了严格的证明，这就是著名的 KAM定理。
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近可积系统与混沌系统
近可积系统与 KAM定理

证明 KAM定理的基本办法是某种改进的牛顿迭代法。粗略地说，就是
找一系列的正则变换对扰动后得到的近可积系统进行步步变换，使之
越来越靠近一个可积系统 (只要对大部分相空间区域能做到这一点就
行)。问题是，这个迭代展开在分母上依赖于 ω⃗ · m⃗，ω⃗ 就是原来不变环
面的角频率，m⃗是任何形如 (m1,m2, ...,mn)的整数组。因此这个展开
对于共振环面 (即存在某个 m⃗ ̸= 0使得 ω⃗ · m⃗ = 0的不变环面)是不收
敛的。不仅如此，对于任何不变环面，实际上人们总可以选择 m⃗，使得
ω⃗ · m⃗任意接近零，因此看起来这个迭代展开对于任何不变环面都不收
敛，这就是所谓的“小分母”困难。Arnold和 Moser正是利用改进的
牛顿迭代法解决了“小分母”问题，证明对于满足所谓强非共振条件
的不变环面，改进后的迭代展开收敛，从而证明了 KAM定理。对具体
证明过程感兴趣的读者，可以阅读 Jurgen Poschel的文章 A Lecture
on the Classical KAM Theorem，https://arxiv.org/abs/0908.2234v1。
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近可积系统与混沌系统
近可积系统与 KAM定理

在那些不变环面被扰动破坏的相空间区域，随着不变环面的破坏可能
发生两件事情：第一，系统的相空间轨迹可能会与邻近轨迹发生剧烈
的甚至随时间指数增长的偏离，从而导致对初始条件的极端敏感性和
混沌行为。第二，它可能使得系统演化缺乏可预测性。即使我们处理
的是严格的确定性系统，它也可能产生有效的随机输出，从而使得系
统丧失可预测性。

太阳系是否稳定呢？这个大问题曾经引发大量的工作，直到 KAM定理
提供一个也许肯定的回答。太阳系是一个多体问题，具有明显的层次
性，其行星与行星之间的相互作用比行星与太阳之间的相互作用要弱
得多，可以看成是一个微扰。而行星与太阳的相互作用则是一个可积
系统，其解就是开普勒的椭圆轨道。因此太阳系是一个近可积系统，
KAM定理可以适用，由于这个原因，该系统的大体结构是稳健的！但
是，我们并不能非常确定目前的太阳系处在相空间的稳定区域。
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近可积系统与混沌系统
混沌系统

假设我们考察的既不是可积系统，又不是近可积系统，而是一个一般
性的哈密顿系统，其泊松对易的守恒量的数目少于自由度数目 n，甚至
当自由度数目 n很大时大大少于 n，比方说只有一个守恒量，即能量。
那这时候系统的动力学行为往往不再规则，而是常常会表现出混沌。

前面的章节中，我们讨论过不少这样的系统，这里不妨简单回顾一下。
首先，第二章的最后，我们讨论过双摆系统，那是一个两自由度的系
统，但是它只有一个守恒量，即能量。我们说过，当能量足够大时这个
系统会表现出混沌行为。其次，第四章我们讨论过受限三体问题，我
们说过庞加莱正是在研究受限三体问题时发现混沌的。
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近可积系统与混沌系统
混沌系统

具体到第四章中对受限三体问题的那个简化模型，它显然是一个两自
由度系统，但是只有能量这一个守恒量，因此出现混沌行为也不奇怪。
至于一般性的三体问题，显然它有 9个自由度，但是守恒量只有能量、
总动量 (三个分量)、还有总角动量 (三个分量)，共 7个守恒量，而且相
互泊松对易的守恒量实际上只有四个，所以当然一般会展现出混沌行
为。
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