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泊松括号
辛结构

前面的章节中我们引入了哈密顿正则方程，它是一组关于粒子如何在
广义坐标和广义动量所构成的相空间中演化的一阶常微分方程，其形
式是

q̇a =
∂H
∂pa

, ṗa = − ∂H
∂qa . (1)

式中假设系统有 n个自由度，从而指标 a = 1, 2, ..., n。我们看到，广
义坐标 q 和广义动量 p 在哈密顿正则方程中地位非常平等，正因为如
此，人们也常将 qa,pa 称为一对正则变量，同时也称广义坐标为正则
坐标，称广义动量为正则动量。但是我们也看到，正则坐标的方程和
正则动量的方程相差了一个负号！这个负号从哪儿来的呢？
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泊松括号
辛结构

为了理解哈密顿正则方程中这个额外负号的来源，我们可以回想一下
相空间的最小作用量原理，我们知道，哈密顿正则方程的形式是由相
空间作用量决定的，而这个作用量除了取决于哈密顿量之外，还有一
项就是取决于辛势 Θ = padqa(默认对 a求和)。哈密顿正则方程中的负
号显然和哈密顿量没什么关系，所以它必定来源于辛势 Θ。但是，辛
势的表达式 Θ = padqa 中 p,q 甚至都不完全平等，为了让这两者更平
等一点，我们不妨考察 Θ的外微分，称之为辛形式，记为 ω，它的具
体定义是

ω = dΘ = dpa ∧ dqa. (2)
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泊松括号
辛结构

辛形式 ω 是一个 2-形式，而且由于它是辛势的外微分，所以是一个恰
当形式，从而当然也一定是闭形式，即满足

dω = 0. (3)

辛形式 ω 关于正则坐标和正则动量非常对称，但是，由于
dqa ∧ dpa = −dpa ∧ dqa,所以 q,p 互换的时候正好会多出一个负号。
这其实就是哈密顿正则方程中额外的那个负号的来源。辛形式对于哈
密顿正则系统非常重要，原因在于，它是相空间的一个基本结构，因
此带有辛形式 ω 的相空间就称之为定义了辛结构的相空间。
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泊松括号
辛结构

既然 q,p 地位平等，都是相空间的坐标，我们不妨把它们写得更平等
一点。具体来说，即引入 2n维相空间的坐标
x = (x1, x2, ....x2n)T = (q1, ..., qn,p1, ..., pn)

T，式中 T 表示转置操作，
所以 x是一个具有 2n个分量的列矢量，注意它不是三维坐标矢量，请
读者注意根据上下文区分 x这个符号的含义。x的各分量我们记为
x i , i = 1, 2, ..., 2n，前 n个 i 指标代表正则坐标 q，后 n个 i 指标代表
正则动量 p。有了更为对称的相空间坐标 x之后，我们就可以把辛形
式重新表示为

ω = dpa ∧ dqa ≡ 1

2
ωijdx i ∧ dx j . (4)

式中和本章的所有地方一样使用了求和约定，对于重复指标 a，约定从
1到 n求和，对于重复指标 i , j 则约定从 1到 2n求和。
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泊松括号
辛结构

我们可以把辛形式在坐标 x中的分量 ωij 理解为一个 2n × 2n矩阵的第
i 行第 j 列，很明显这个矩阵 (记为 J−1)为，

J−1 = (ωij) =

(
0n×n −1n×n
1n×n 0n×n

)
. (5)

这是一个反对称矩阵，满足 ωji = −ωij。式中 1n×n 表示 n × n的单位矩
阵。J−1 的逆矩阵当然就记为 J(请不要和角动量相混淆)，很容易看出
J = −J−1，为

J = (ωij) =

(
0n×n 1n×n
−1n×n 0n×n

)
, (6)

这里我们已经把 J 的第 i 行第 j 列记为 ωij，即有

ωijω
jk = δk

i , ωijωjk = δi
k . (7)

式中 δi
j 表示单位矩阵的第 i 行第 j 列，即 i = j 时，δi

j = 1，i ̸= j 时，
δi

j = 0。
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泊松括号
辛结构

很容易验证，有了上面由辛形式导出的矩阵 J，我们就可以将哈密顿正
则方程重写为

ẋ i = ωij∂jH, (8)

式中 ∂j =
∂
∂x j。或者写成矩阵形式

ẋ = J
∂H
∂x . (9)

哈密顿正则方程的这种形式完美地解释了额外的那个负号如何来源于
相空间的辛结构。
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泊松括号
泊松括号

哈密顿力学如何刻画物理量呢？回答是，很简单，任何物理量都是相
空间中的函数，具有 A(q,p)这样的形式 (这里 q,p 只是示意性的符号，
分别代表所有的正则坐标和所有的正则动量)，或者也可以用相空间的
x坐标，写作更抽象的 A(x)。那么随着粒子在相空间中演化，物理量
该如何演化呢？为了回答这个问题，我们进行下面的推导

dA
dt

=
∂A
∂qa q̇a +

∂A
∂pa

ṗa =
∂A
∂qa

∂H
∂pa

− ∂A
∂pa

∂H
∂qa . (10)

人们通常将上面最后的表达式记为 [A,H]，称之为泊松括号。
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泊松括号
泊松括号

即是说，泊松括号的定义为

[A,B] =
∂A
∂qa

∂B
∂pa

− ∂A
∂pa

∂B
∂qa . (11)

很明显，我们也可以利用前面引入的 x坐标以及 ωij，进而将这个定义
式写为

[A,B] =
∂A
∂x i ω

ij ∂B
∂x j = (∂iA)ωij(∂jB). (12)

利用泊松括号，就可以将物理量如何随时间演化的方程写成

dA
dt

= [A,H]. (13)

特别的，我们可以将哈密顿正则方程写成

q̇q = [qa,H], ṗa = [pa,H]. (14)

或者更简洁地写成

ẋ = [x,H]. (15)
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泊松括号
泊松括号

上面考察的是最常见的，表达式本身不显含时间的物理量，如果推广
到显含时间的情形，即表达式具有 A(q,p, t)的形式，则物理量的演化
方程就要推广成

dA
dt

=
∂A
∂t

+ [A,H]. (16)

按照泊松括号的定义，人们很容易计算出如下基本泊松括号

[qa,qb] = [pa,pb] = 0, [qa,pb] = δa
b . (17)

或者也可以用更抽象的 x坐标，写成

[x i , x j ] = ωij . (18)

利用这个基本泊松括号，我们也可以将泊松括号的定义式 (12)重写成

[A,B] = (∂iA)(∂jB)[x i , x j ]. (19)
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泊松括号
泊松括号

可以证明，泊松括号有如下性质：
▶ [A,B] = −[B,A]。
▶ 线性性，即 [A, c1B1 + c2B2] = c1[A,B1] + c2[A,B2]，式中

A,B1,B2 为三个任意物理量，c1, c2 为两个任意常数。
▶ 莱布尼兹法则，即 [A,BC] = [A,B]C + B[A,C]。
▶ 雅可比恒等式，即 [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0。注意这
个式子中的 A,B,C 是轮换的。
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泊松括号
泊松括号

以上，1,2两条性质比较显然。3,4两条性质需要证明。首先看性质 3，
为了证明它，我们注意到，根据泊松括号的定义式 (12)，[A,B]可以看
作是对函数 B 的特定偏导运算 (当然也可以看作对 A的偏导运算)，因
为 [A,B]具有 (Ai∂i)B 的形式,式中系数 Ai 与 A有关，具体可以从定
义式 (12)中读出来。我们记偏导算符 Ai∂i = LA，则

LAB = [A,B] = (Ai∂i)B. (20)

而性质 3其实就是偏导算符的莱布尼兹法则，即
LA(BC) = (LAB)C + B(LAC)。
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泊松括号
泊松括号

下面证明性质 4，即证明雅可比恒等式。为此我们注意到，对于任何一
个物理量来说，每将它进行一次泊松括号就相当于对它进行一次偏导
运算。因此 [B,C]既是 B 的一阶偏导项，也是 C 的一阶偏导项，而
[A, [B,C]]当然就是 B,C 的二阶偏导项。同样 [B, [C,A]]是 C,A的二
阶偏导项，而 [C, [A,B]]则是 A,B 的二阶偏导项。即是说，雅可比恒
等式 [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0左边的三项全部算出来必
定要么是 A的二阶偏导项，要么是 B 或 C 的二阶偏导项，即雅可比恒
等式的左边是 A,B,C 的二阶偏导项之和。下面我们证明，表达式
[A, [B,C]] + [B, [C,A]] + [C, [A,B]]中关于 A,B,C 的二阶偏导项均是
零，很显然，如果完成了这一证明，那就必定有雅可比恒等式。
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泊松括号
泊松括号

这个证明并不难，举例来说，要证明 C 的二阶偏导项为零，我们只需
注意，[C, [A,B]]显然是关于 C 的一阶偏导 (C 只进行了一次泊松括号
运算)，因此可以不用管，剩下的两项显然有

[A, [B,C]] + [B, [C,A]] = [A, [B,C]]− [B, [A,C]]

=LALBC − LBLAC =
(
LALB − LBLA

)
C. (21)

但是，
(
LALB − LBLA

)
其实是一阶偏导运算，原因在于

LALB − LBLA = (Ai∂i)(Bj∂j)− (Bi∂i)(Aj∂j)

=
[
Ai(∂iBj)− Bi(∂iAj)

]
∂j . (22)

所以 [A, [B,C]] + [B, [C,A]]其实也是关于 C 的一阶偏导项。因此雅可
比恒等式左边关于 C 的二阶偏导项其实为零，由于 A,B,C 的轮换性
质，我们同样可以证明，关于 A,B 的二阶偏导项也是零，如此就完成
了整个证明！
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泊松括号
泊松括号

利用雅可比恒等式，我们有

d
dt

(
[A,B]

)
= [[A,B],H] = −[[B,H],A]− [[H,A],B]

=[[A,H],B] + [A, [B,H]] = [
d
dt

A,B] + [A,
d
dt

B]. (23)

也即是

d
dt

(
[A,B]

)
= [

d
dt

A,B] + [A,
d
dt

B]. (24)

如果物理量显含时间，那我们还可以在泊松括号的性质中增加一条，
性质 5， ∂

∂t

(
[A,B]

)
= [ ∂∂t A,B] + [A, ∂

∂t B]。这条性质并不难证明，这里
留给读者作练习。结合这条性质和雅可比恒等式就可以看出，对于物
理量显含时间的情形，依然有 (24)式。
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泊松括号
泊松括号

如果某个物理量 A满足 d
dt A = 0，它当然就是一个守恒量。因此根据

(24)式可以知道，如果 A是一个守恒量，B 也是一个守恒量，那么它
们的泊松括号 [A,B]将是一个新的守恒量。另外，从物理量的时间演
化方程 (13)容易知道，对于一个不显含时间的物理量 A来说，它是守
恒量的充要条件是

[A,H] = 0. (25)

如果两个物理量的泊松括号等于零，人们就称这两个物理量泊松对易。
因此，不显含时间的物理量成为守恒量的充要条件是，与哈密顿量泊
松对易！
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泊松括号
泊松括号

下面利用泊松括号的性质算一个例子，算角动量的泊松括号。为了避
免混淆，这里我们将三维空间位置矢量记为 r，r = (x , y , z)。根据角动
量的定义 J = r × p,可以知道它的分量形式

J1 = ypz − zpy , J2 = zpx − xpz , J3 = xpy − ypx . (26)

从而易有

[J1, J2] = [ypz − zpy , zpx − xpz ]

= [ypz , zpx ] + [zpy , xpz ]− [ypz , xpz ]− [zpy , zpx ]

= y [pz , z]px + x [z,pz ]py = xpy − ypx = J3. (27)
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泊松括号
泊松括号

上面的计算过程利用了泊松括号的性质以及基本泊松括号。类似的，
也可以算得

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2. (28)

习惯上，人们常常利用列维-西维塔符号，将这个结果概括成

[Ji , Jj ] = ϵijk Jk . (29)

从这个计算可以知道，如果一个系统的 J1, J2 均守恒，那么它的 J3 也
必定守恒。另外，利用上面的结果，也不难证明

[J2, Ji ] = 0. (30)
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正则变换

本节将要讲述哈密顿正则系统的一个核心概念，叫做正则变换，它是
一种保持相空间辛结构的数学变换。关于正则变换有两种不同的观点，
一是，将之看作描述同一个物理系统的两组不同相空间坐标，即看成相
空间的一类保持辛结构的坐标变换。另一种观点是，将正则变换看作相
空间到其自身的一对一映射 (称之为微分同胚)，这种映射会将一个相
空间点映射为另一个不同的相空间点，因此它会将系统的一个物理状
态映射为另一个状态，类似的，这种映射也要保持辛结构。在数学上，
这两种观点完全等价，它们可以看成是源自于对相空间辛结构的两种
不同理解方式，但是，不同的观点会带来对正则变换物理内涵的不同
思考，而且由于这两种思考各有其方便之处，所以我们分开介绍它们。
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正则变换
正则变换作为相空间坐标变换

首先讨论正则变换的第一种观点。上一节我们看到，相空间有坐标
x = (q,p)(q,p 均是示意性的写法)，人们自然想到对相空间进行一个
坐标变换，变到 x′ 坐标。但是，如果这种坐标变换过于任意，那 x′ 就
可能没有正则坐标和正则动量的结构，即是说新坐标下无法分别定义
正则坐标和正则动量，这就不是物理上我们想要的。所谓的正则变换，
大体来说就是对相空间坐标变换进行一定的限制，使得变换以后的新
坐标 x′ 依然可以写成 x′ = (q′,p′)的形式，这就是所谓的保持辛结构。
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正则变换
正则变换作为相空间坐标变换

辛形式 ω 作为一个微分形式，它本身当然不依赖于坐标系，因此在任
何新坐标 x′ 下都必然有

ω =
1

2
ωijdx i ∧ dx j =

1

2
ω′

mndx ′m ∧ dx ′n. (31)

式中 ω′
mn 为辛形式在新坐标下的分量。利用

ωijdx i ∧ dx j = ωij
∂x i

∂x ′m
∂x j

∂x ′n dx ′m ∧ dx ′n，与上面的式子比较，就能得出
ω′

mn 应该为

ω′
mn = ωij

∂x i

∂x ′m
∂x j

∂x ′n . (32)
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正则变换
正则变换作为相空间坐标变换

问题是，上一节我们已经看到，ωij 不是任意的，它是前面给出过的特
定矩阵 J−1 的第 i 行第 j 列。但如果这种相空间的坐标变换过于任意
的话，那 (32)式给出来的 ω′

mn 就不可能依然是矩阵 J−1 的第 m行第
n列了。如此一来就无法保持正则坐标和正则动量的定义了 (因为 J−1

的形式正是由于有正则坐标和正则动量才有的)，为了保持正则坐标和
正则动量始终有定义，我们要求 ω′

mn = ωmn。即要求坐标变换满足

ωmn = ωij
∂x i

∂x ′m
∂x j

∂x ′n . (33)

这就叫保持相空间的辛结构！
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正则变换
正则变换作为相空间坐标变换

为了看清楚保持辛结构的条件 (33)有什么重要的含义，我们将 ∂x i

∂x ′m 定
义成一个矩阵 D 的第 i 行第 m列，记为 Di

m = ∂x i

∂x ′m ,则不难看出条件
(33)相当于如下矩阵方程

DT J−1D = J−1. (34)

式中 DT 表示矩阵 D 的转置矩阵。将上面这个矩阵方程两边求逆，即
有

(D−1)J(D−1)T = J. (35)

由于 ∂x i

∂x ′m
∂x ′m

∂x j = ∂x i

∂x j = δi
j，所以 D−1 的第 m行第 j 列就是 ∂x ′m

∂x j ,因此
我们可以将矩阵方程 (38)重写为

∂x ′m

∂x i ωij ∂x ′n

∂x j = ωmn ⇔ ∂ix ′mωij∂jx ′n = ωmn. (36)

ct |经典力学新讲第 5章



24

正则变换
正则变换作为相空间坐标变换

为了看清楚保持辛结构的条件 (33)有什么重要的含义，我们将 ∂x i

∂x ′m 定
义成一个矩阵 D 的第 i 行第 m列，记为 Di

m = ∂x i

∂x ′m ,则不难看出条件
(33)相当于如下矩阵方程

DT J−1D = J−1. (37)

式中 DT 表示矩阵 D 的转置矩阵。将上面这个矩阵方程两边求逆，即
有

(D−1)J(D−1)T = J. (38)

由于 ∂x i

∂x ′m
∂x ′m

∂x j = ∂x i

∂x j = δi
j，所以 D−1 的第 m行第 j 列就是 ∂x ′m

∂x j ,因此
我们可以将矩阵方程 (38)重写为

∂x ′m

∂x i ωij ∂x ′n

∂x j = ωmn ⇔ ∂ix ′mωij∂jx ′n = ωmn. (39)
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正则变换
正则变换作为相空间坐标变换

根据上一节关于泊松括号的定义可以知道，这个结果其实就是

[x ′m, x ′n]x = ωmn. (40)

式中我们给泊松括号加上了下角标 x，这是为了强调我们是用老正则变
量 x来定义的泊松括号。我们当然也可以用新正则变量 x′ 来定义泊松
括号，显然就有 [x ′m, x ′n]x′ = ωmn，将这个式子和上面导出的式子比
较，即有

[x ′m, x ′n]x = ωmn = [x ′m, x ′n]x′ . (41)

可见，相空间坐标变换保持辛结构的要求其实就等价于保持基本泊松
括号不变。
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正则变换
正则变换作为相空间坐标变换

进一步，从泊松括号的性质可以知道，如果基本泊松括号在坐标变换
下保持不变，那我们计算任何两个物理量的泊松括号时，是用新坐标
来计算还是用老坐标来计算就是一样的了，即

[A,B]x = [A,B]x′ . (42)

即是说，物理量的泊松括号在正则变换下是不变的！特别的，我们将有

ẋ′ = [x′,H]x = [x′,H]x′ = J
∂H
∂x′ . (43)

这也即是说，哈密顿正则方程的数学结构在正则变换下将保持不变！
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正则变换
正则变换作为相空间坐标变换

但是，值得特别强调的是，哈密顿正则方程的数学结构虽然在正则变
换下保持不变，但作为常微分方程，两种不同坐标下的哈密顿正则方
程其实是不同的方程，有不同的常微分方程形式。这是因为，哈密顿
量 H 作为原来变量 x的函数，和作为变量代换后新变量 x′ 的函数，这
两者其实是不同的！只不过由于它们描写的是同一个物理量，所以我
们才用了同样的符号 H。如果要强调哈密顿量的数学表达式的话，那
我们应该用一个新的函数 H ′(x′)来表示新坐标下的哈密顿量，当然由
于它和老坐标 x下的 H(x)描写同一个量，所以有

H ′(x′) = H(x). (44)

也即是说，正则变换其实改变了哈密顿量的函数形式，从而改变了动
力学方程作为微分方程的形式，因此，正则变换一般来说并不是一种
对称性！
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正则变换
正则变换作为相空间的微分同胚映射

现在来讨论正则变换的第二种观点，这种观点将正则变换看成是相空
间到其自身的一种连续映射，并且它是可逆的，称作相空间的微分同
胚 1。不妨将这种微分同胚映射记为 g,它会将相空间的 x点映射为 x′

点，即

g : x → x′. (45)

在这一映射的作用下，x点描述的物理状态就映射为 x′ 点描述的物理
状态，因此，物理量 A作为相空间点的函数 A(x)，在微分同胚映射的
作用下，其函数形式也要改变，设改变以后的函数为 A′(x),记为
g∗ : A → A′，g∗ 表示微分同胚映射对物理量的作用。很显然，映射以
后 x′ 点的物理量值其实来自于映射之前的 x点，所以必有

A′(x′) = A(x). (46)

1微分同胚的严格数学定义比这要复杂抽象一些，感兴趣的读者请参阅拓扑学方面的
数学书。
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正则变换
正则变换作为相空间的微分同胚映射

不过，正则变换并非任意的微分同胚映射，而是保持辛结构的微分同
胚映射。为了说清楚这一点，我们考察微分同胚映射对辛形式 ω 的作
用，记为 g∗ : ω → ω′。由于 ω = 1

2ωijdx i ∧ dx j，ωij 是常数系数因此在
映射下保持不变，由此可知，必有

ω → ω′ =
1

2
ωijdx ′i ∧ dx ′j . (47)

所谓的保持辛结构，即要求辛形式在映射前后保持不变，即

g∗ : ω → ω′ = ω. (48)

由此即有 ωmndx ′m ∧ dx ′n = ωijdx i ∧ dx j ,也即是

ωmn = ωij
∂x i

∂x ′m
∂x j

∂x ′n . (49)

这正是上一小节所得到的保持辛结构的条件 (33)。
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正则变换
正则变换作为相空间的微分同胚映射

到此为止，我们已经清楚地看到，关于正则变换的这第二种观点虽然
看起来与第一种观点不同，但它们在数学上其实完全等价。

我们当然可以将上面的核心结果用更物理的 (q,p)坐标写出来，这时
候，ω = dpa ∧ dqq ,因此 ω′ = dp′

a ∧ dq′a,因此保持辛结构的要求 (48)
就相当于

dp′
a ∧ dq′a = dpa ∧ dqq ⇔ dΘ′ = dΘ. (50)

式中 Θ′ = p′
adq′a 是正则变换以后的辛势。
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正则变换
正则变换作为相空间的微分同胚映射

上面的结果意味着 d(Θ−Θ′) = 0。即正则变换前后的辛势之差是一个
闭形式。前面讲微分形式的时候我们说过，恰当形式必定是闭形式，
但是反过来，闭形式不一定是恰当形式。但是，如果只关心空间的局
部区域，而不关心空间整体，那就有一个重要的庞加莱引理说，局部
上反过来也对，闭形式局部上也必定是恰当形式。甚至在理论力学的
应用中，这一庞加莱引理成立的相空间局部常常能延展为整个相空间。
因此，我们有

Θ−Θ′ = dF ⇔ padqa − p′
adq′a = dF . (51)

式中，F 为相空间的某个函数。这一段的讨论告诉我们，如果某个相
空间的微分同胚映射满足 (51)，那它必定是正则变换。并且反过来常
常也对！
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正则变换
无穷小正则变换与诺特定理

现在，假设某个正则变换将相空间点 x变到和它邻近的 x′,即 x′ 与 x
的差值为无穷小量，称为无穷小正则变换。为了考察无穷小正则变换，
不妨设

qa → q′a = qa + ϵQa(q,p), pa → p′
a = pa + ϵPa(q,p). (52)

式中 ϵ为无穷小量，Qa,Pa 均为相空间的函数 (请注意本书符号与其它
教材的不同)。我们要解决的问题是，满足什么条件才能让上面这个无
穷小映射变成一个正则变换？
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正则变换
无穷小正则变换与诺特定理

上一小节的知识告诉我们，条件就是

dp′
a ∧ dq′a − dpa ∧ dqa = 0. (53)

代入上面的无穷小映射 (52)，并展开到一阶无穷小，即有(
dPa ∧ dqa + dpa ∧ dQa)ϵ = 0. (54)

由此即有

0 = dPb ∧ dqb + dpa ∧ dQa

=
∂Pb

∂qa dqa ∧ dqb +
∂Pb

∂pa
dpa ∧ dqb +

∂Qa

∂qb dpa ∧ dqb +
∂Qa

∂pb
dpa ∧ dpb

=
1

2

(
∂Pb

∂qa − ∂Pa

∂qb

)
dqa ∧ dqb +

1

2

(
∂Qa

∂pb
− ∂Qb

∂pa

)
dpa ∧ dpb

+

(
∂Pb

∂pa
+

∂Qa

∂qb

)
dpa ∧ dqb. (55)
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正则变换
无穷小正则变换与诺特定理

由此即可得到 Qa,Pa 必须满足的方程

∂Pb

∂qa − ∂Pa

∂qb = 0

∂Qa

∂pb
− ∂Qb

∂pa
= 0

∂Pb

∂pa
+

∂Qa

∂qb = 0. (56)

这三个方程看起来复杂，实际上它们的通解非常简单，不难验证，下
面为它们的通解

Qa =
∂G
∂pa

, Pa = − ∂G
∂qa . (57)

式中 G为某个任意的相空间函数。即是说，如果无穷小映射 (52)具有
(57)的形式,那它就是一个无穷小正则变换，称之为由物理量 G(q,p)
生成的无穷小正则变换。
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正则变换
无穷小正则变换与诺特定理

人们常常记无穷小正则变换前后正则坐标的改变量为 δqa = q′a − qa,
记正则动量的改变量为 δpa = p′

a − pa,则根据 (52)式和 (57)式，我们
有

δqa = ϵ
∂G
∂pa

, δpa = −ϵ
∂G
∂qa . (58)

按照这一节一直在使用的关于正则变换的第二种观点，无穷小正则变
换前后，物理量的函数形式也必然发生了无穷小改变，通常定义
A(q,p)的无穷小改变为

δA = A(q′,p′)− A′(q′,p′) = A(q′,p′)− A(q,p). (59)

代入 (58)式，可以算得这个无穷小改变量为

δA =
∂A
∂qa δqa +

∂A
∂pa

δpa

= ϵ

(
∂A
∂qa

∂G
∂pa

− ∂A
∂pa

∂G
∂qa

)
= ϵ[A,G]. (60)
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正则变换
无穷小正则变换与诺特定理

以上的讨论促使我们进一步考察一个正则变换的单参簇，

qa → q′a(q,p, λ), pa → p′
a(q,p, λ), (61)

λ为这一簇正则变换的参数，满足
q′a(q,p, λ = 0) = qa,p′

a(q,p, λ = 0) = pa。显然，随着参数 λ的连续
变动，这簇正则变换会在相空间中画出一条以 λ为参数的路径，路径
上任何两个相差无穷小量 dλ的点都是用无穷小正则变换连接起来的。
因此，根据上面关于无穷小正则变换的 (58)式，我们容易得到

dq′a

dλ
=

∂G
∂p′

a
,

dp′
a

dλ
= − ∂G

∂q′a , (62)

式中 G(q′,p′, λ)称为这个正则变换单参簇的生成元！习惯上，人们会
省略变量上的撇号，将上面的方程写成

dqa

dλ
=

∂G
∂pa

,
dpa

dλ
= − ∂G

∂qa . (63)
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正则变换
无穷小正则变换与诺特定理

人们常常将 ( dqa

dλ ,
dpa
dλ )想像成某种在相空间中随参数 λ而变化的流动，

由于 G是整个相空间上的函数，所以这种流动在相空间的每一点都有
定义，因此 ( dqa

dλ ,
dpa
dλ )就形成相空间的一个流速场。进而，上面的方程

(63)就称为由生成元 G生成的相流。如果我们使用更抽象的相空间坐
标 x = (q,p),那就可以将上面的相流方程 (63)重写成

dx i

dλ
= ωij∂jG. (64)

dx i

dλ 就是 G生成的相流的流速场，可以记作 v i
G,即 v i

G = dx i

dλ = ωij∂jG。
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正则变换
无穷小正则变换与诺特定理

特别的，我们可以取参数 λ为时间 t ,取生成元 G为哈密顿量 H,那么
上面的相流方程 (63)就变成了标准的哈密顿正则方程。正因为如此，
人们常常称哈密顿量为时间演化的生成元。由于哈密顿量描述的就是
系统能量，因此这就给出了物理系统能量的一般定义，即，时间演化
的生成元描述系统的能量。通过这一段的论述我们也知道了，系统在
相空间的时间演化过程实际上是一个持续进行的正则变换，是以时间
为参数的正则变换单参簇。因此，时间演化过程保持相空间的辛结构。
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正则变换
无穷小正则变换与诺特定理

进一步，假设我们有两个正则变换的单参簇，分别由 G1 和 G2 生成，
相应的参数分别记为 λ1, λ2,则利用相流方程以及 ωijω

jm = δm
n ,可以算

得

ωijv i
G1

v j
G2

= ωij
dx i

dλ1

dx j

dλ2
= (∂mG2)ω

mn(∂nG1) = [G2,G1]. (65)

这个结果本章用不到，但是下一章会用到。数学家们喜欢记左边的
ωijv i

G1
v j

G2
= ω(vG1

, vG2
),称为辛形式在速度场 v i

G1
, v j

G2
上的值。这样一

来，上面的结果就可以重写为

ω(vG1
, vG2

) = [G2,G1]. (66)

它告诉我们，辛形式在两个速度场上的值，可以由生成这些速度场的
物理量的泊松括号算出。
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正则变换
无穷小正则变换与诺特定理

原则上正则变换可以是任何保持辛结构的数学变换。不过，对一个物
理系统进行的物理操作 (比如将系统旋转一个角度)常常在相空间诱导
出一个正则变换。这是因为，对系统的物理操作会将一个物理状态变
到另一个物理状态，从而在相空间诱导出一个微分同胚映射，而且由
于物理操作之后系统依然是一个哈密顿正则系统，满足同样的哈密顿
正则方程，所以这一诱导出来的微分同胚映射必定是一个正则变换。
特别的，如果物理操作本身依赖于一个连续参数 (比如旋转操作中的旋
转角度)，那它就会在相空间诱导出一个正则变换的单参簇，这时候我
们就称这个单参簇的生成元为相应物理操作的生成元。比如，前面我
们已经看到，正则动量就是对相应正则坐标的平移操作的生成元。
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正则变换
无穷小正则变换与诺特定理

再比如说，对于一个在 x − y 平面上运动的粒子，我们可以对系统进行
绕原点的旋转操作。实际上，这一旋转操作的生成元就是角动量
J = xpy − ypx。这是因为，J 可以生成如下无穷小正则变换

δx = ϵ[x , J] = ϵ[x , xpy − ypx ] = −ϵy ,
δy = ϵ[y , J] = ϵ[y , xpy − ypx ] = ϵx ,
δpx = ϵ[px , J] = ϵ[px , xpy − ypx ] = −ϵpy ,

δpy = ϵ[py , J] = ϵ[py , xpy − ypx ] = ϵpx . (67)

不难看出，这正是绕原点的无穷小旋转，ϵ为旋转角度。所以，角动量
是旋转操作的生成元。
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正则变换
无穷小正则变换与诺特定理

以上所谈是任意的连续物理操作。但是，如果这一连续操作本身是一
个对称操作，即在操作前后系统的运动微分方程保持形式不变。那就
会有更进一步的结论，也就是诺特定理，它说，这时候这一对称操作
的生成元必定是守恒量。证明非常简单，对称操作由于要保持运动微
分方程 (由哈密顿正则方程给出)的形式不变，因此必定要保持哈密顿
量的函数表达式 H(q,p)不变2，设对称操作的生成元为 G，从而即有

0 = δH = ϵ[H,G] ⇔ [H,G] = 0. (68)

进而根据物理量 G的时间演化方程，有

dG
dt

= [G,H] = 0. (69)

因此，G必定是守恒量。诺特定理得证。
2这里考察的是不显含时间的对称操作，即其生成元不显含时间。对于显含时间的情

形，情况会比较复杂一些，虽然诺特定理依然是成立的。不过，不显含时间的情形推理
更为简洁，且更能抓住论证的本质，而显含时间的情况又比较少见，所以我们就不作讨
论了。
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正则变换
无穷小正则变换与诺特定理

在前面第三章中，我们在最小作用量原理的框架中证明过诺特定理。
以上我们又在相空间中，在哈密顿正则系统的框架中再次证明了诺特
定理。不同的理论框架能够让我们看清诺特定理的不同侧面，从而增
加对这一深刻结论的理解。

不妨举一个简单的例子。考察一个在 x − y 平面上运动的粒子，假设系
统处在一个中心力场中，势能为 V (r) = V (

√
x2 + y2),从而系统的哈

密顿量为

H =
1

2m
(
p2

x + p2
y
)
+ V (

√
x2 + y2). (70)

很显然，这个哈密顿量是旋转不变的，因此根据诺特定理，必定有旋
转操作的生成元 J = xpy − ypx 守恒，即角动量守恒。
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正则变换
刘维尔定理和庞加莱回归定理

前面说过，物理系统在相空间的时间演化过程可以看成一种相空间流
动，记相空间坐标为 x，那么这种流动的流速 ẋ由哈密顿正则方程
ẋ = [x,H]给出。而且这一流动过程可以看成是一种持续进行的正则变
换。进一步，我们可以考察所有可能初始状态的演化过程，由于每一
个初始状态对应一个相空间点，因此所有可能相空间点的“流动”就
构成了一种相空间“流体”。刘维尔定理说的就是，这种相空间“流体”
是一种不可压缩“流体”。
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正则变换
刘维尔定理和庞加莱回归定理

具体来说就是，假设初始 t = 0时刻在相空间任取一个区域 D0,假设这
个区域随时间演化到 t 时刻变成了区域 Dt ,即 D0 内的点在 t 时刻“流
到”了 Dt。则刘维尔定理说，这种流动的体积不可压缩，即 Dt 的体积
等于 D0 的体积，记为

Vol(Dt) = Vol(D0). (71)

如图 (1)所示，区域 Dt 相对于 D0 可以发生很大的形变，但是体积不
变。

Figure: Vol(Dt) = Vol(D0).
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正则变换
刘维尔定理和庞加莱回归定理

为了证明刘维尔定理，我们首先仔细看一下相空间体积元的定义。以
一个 2 · 2 = 4维相空间为例，相空间体积元 Ω可以定义为
Ω = dp1dq1dp2dq2，用微分形式来写即是 Ω = dp1 ∧ dq1 ∧ dp2 ∧ dq2。
而容易验证的是，

dp1 ∧ dq1 ∧ dp2 ∧ dq2

=
1

2

(
dp1 ∧ dq1 + dp2 ∧ dq2

)
∧
(
dp1 ∧ dq1 + dp2 ∧ dq2

)
=

1

2!
ω∧2. (72)

式中 ω 为辛形式，ω∧2 定义为 ω∧2 ≡ ω ∧ ω。推广到 2n维相空间的一
般情形，我们可以定义相空间体积元为 Ω = dp1dq1dp2dq2....dpndqn，
写成微分形式即是 Ω = dp1 ∧ dq1 ∧ dp2 ∧ dq2.... ∧ dpn ∧ dqn。同样可
以证明，有

Ω =
1

n!
ω∧n. (73)

式中 ω∧n 代表将 ω 用外积 ∧自乘 n次。
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(73)式告诉我们，相空间体积元唯一由辛形式 ω 决定。而辛形式 ω 在
正则变换的微分同胚映射下是保持不变的 (即，正则变换保持辛结构)！
所以，相空间体积元，进而任何区域的相空间体积，都在正则变换的
微分同胚映射下保持不变，简称相空间体积在正则变换下保持不变。
进一步，物理系统的时间演化也是一种正则变换，因此，相空间体积
在时间演化下保持不变。这就证明了刘维尔定理。

[插入一个注记：体积元 Ω在正则变换下保持不变的一个推论是，正则
变换的雅可比行列式 |∂x′

∂x |等于 1，即

|∂x′

∂x | = 1. (74)

这是因为，体积元在坐标变换下会多出一个雅可比行列式，如果体积
元保持不变，那就说明这个行列式等于 1.]
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同样的论证也可以用于相空间的任何 2k (k ≤ n)维曲面 S2k ,其“面积
元”定义为 1

k !ω
∧k。我们同样有：随时间演化的 S2k，其“面积”将保

持不变！

特别的，在相空间任取一条闭合回路 C，让 C 随着时间演化，考察辛
势 Θ沿着这条闭合回路的积分 IC = 1

2π

∮
C Θ,由于∮

C
Θ =

∫
S2

dΘ =

∫
S2

ω. (75)

式中 S2 为回路 C 所包围的区域。从上面的推导易知，IC 将在时间演
化下保持不变！

很显然，以上的所有结果不仅对时间演化生成的相流成立，而且对任
何正则变换单参簇的相流都成立！
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设想你有一盒气体，初始时气体分子处于盒子的左侧，右侧是真空，
中间用挡板隔开，如图 (2)所示。然后你撤去中间的挡板，气体当然就
扩散到右边。但是，庞加莱说，只要你等待的时间足够长，那总有一个
时刻，气体会自动回归到左侧，如图 (2)所示。

Figure:盒中气体的庞加莱回归，如右图。图片来自 David Tong, Classical
Mechanics,以下两幅图也是一样.
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你说，庞加莱肯定错了，因为这违反了热力学第二定律。但是庞加莱
说，热力学第二定律首先要取热力学极限，即取气体分子数目 N → ∞,
而庞加莱回归的时间 t ∝ tN

c (tc > 1是某个特征量)，因此如果你首先取
N → ∞，那庞加莱回归就看不到了，因为这时候 t → ∞。所以庞加莱
回归其实不违法热力学第二定律，对一个宏观系统，它的庞加莱回归
时间远比宇宙年龄更长，所以实际上观测不到。
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庞加莱回归其实是一个数学定理，是可以证明的！为了证明这个定理，
首先要给我们的物理系统加上一个限制条件，即它的实际相空间得是
有限的。上面盒子中的气体就满足这个条件，这是因为，首先，盒子限
制了气体的空间坐标，使之有限。其次，气体的总能量是守恒的，是一
个常数，因此这就限制了气体分子的动量。每一个气体分子的坐标和
动量均有限，那所有气体分子在相空间等能量面上的 6N − 1维相空间
当然也有限。

庞加莱回归定理说的是：对于一个相空间有限的哈密顿正则系统，任
意取定一个相空间初始点 x0，则对于它的任意邻域 D0,必定存在一个
点 x′

0 ∈ D0,它将在有限时间内回归 D0。简单地说就是，只要等待的时
间足够长，那么系统总可以回归到和初态任意接近的状态。
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定理的证明如下：取定一个有限的时间步长 τ ,然后演化初始区域 D0，
每次演化一个时间步长 τ，直至无穷。从而就可以得到一系列的区域,
记第 k 步演化的区域为 Dk，k = 0, 1, 2, ...,∞。刘维尔定理告诉我们

Vol(Dk ) = Vol(D0), for any k . (76)

由此可知，必定存在某对整数 k 和 k ′(不妨设 k ′ > k )，使得

Dk ∩ Dk ′ ̸= 0, (77)

这里 0表示空集。如图 (3)左图所示。因为否则的话，就说明所有的一
系列 Dk 中任何两个都不相交。由于 Vol(Dk )有限，那这将意味着
Vol (

⋃∞
k=0 Dk ) = ∞。但这是不可能的，因为整个相空间有限。
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Figure:庞加莱回归定理的证明.
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记上面的 Dk ∩ Dk ′ 为 Dk ′,k ,则

Dk ′,k = Dk ∩ Dk ′ ̸= 0. (78)

但是时间演化过程所导致的微分同胚映射是可逆的。现在，将上面的
结果从第 k ′ 步开始往回映射 k 步，即有

Dk ′−k,0 = D0 ∩ Dk ′−k ̸= 0, (79)

如图 (3)右图所示。因此，Dk ′−k,0 中的点在第 k ′ − k 步回归了！这就
完成了庞加莱回归定理的证明。
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这一小节的核心目标有两个，一是稍微推广一下前面讨论的正则变换，
二是讨论如何构造具体的正则变换。

先看如何构造正则变换。前面的 (51)式已经得出，一个变换为正则变
换的充分 (常常是充要)条件是满足下式

padqa − p′
adq′a = dF . (80)

式中 F 为相空间的函数。现在，假设我们取 F 为某类函数，记为
F1(q,q′),即 F 是 q 和 q′ 的函数，这里符号 q 代表所有的 q 坐标，q′

代表所有的 q′ 坐标。
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则 (80)式就给出

padqa − p′
adq′a = dF1

⇒padqa − p′
adq′a =

∂F1

∂qa dqa +
∂F1

∂q′a dq′a. (81)

很显然，只要取

pa =
∂F1

∂qa (q,q
′) − p′

a =
∂F1

∂q′a (q,q
′) (82)

就能得到一组 (q,p)和 (q′,p′)之间的坐标变换，由于它自动满足 (80)
式，所以显然是正则变换。即是说，我们只要选择不同的 F1(q,q′)函
数，就能根据 (82)式得到各种不同的正则变换，函数 F1(q,q′)因此称
为正则变换的第一类生成函数。
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不妨举一个简单的例子。考虑一个单自由度的系统，因此相空间为 2
维，由 q,p 描述。很明显，下面这个坐标变换是正则变换

q′ = p, p′ = −q. (83)

不难验证，这个正则变换可以由第一类生成函数 F1 = qq′ 生成。

下面我们把 (80)式改写成

padqa + q′adp′
a = d(F + p′

aq′a) = dF2. (84)

则很容易看出，只要选 F2 为 q,p′ 的函数，就能根据下式得到正则变换

pa =
∂F2

∂qa (q,p
′) q′a =

∂F2

∂p′
a
(q,p′). (85)

F2(q,p′)因此称为正则变换的第二类生成函数。
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很显然，我们也可以构造第三、第四类生成函数，如下

F3(p,q′) :取 qa = −∂F3

∂pa
(p,q′), p′

a = − ∂F3

∂q′a (p,q
′)

F4(p,p′) :取 qa = −∂F4

∂pa
(p,p′), q′a =

∂F4

∂p′
a
(p,p′). (86)

值得指出的是，这四类生成函数并没有穷尽所有的可能性，比方说，
对于一个 2 · 2 = 4维相空间，下面正则变换就不能由以上四类生成函
数生成

q′1 = q1, q′2 = p2, p′
1 = p1, p′

2 = −q2. (87)

实际上，它要由一种混合型 (第一类和第二类混合)生成函数生成，具
体的生成函数为 q1p′

1 + q2q′2。
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我们知道，正则变换以后，新的正则变量 x′ = (q′,p′)也满足哈密顿正
则方程。实际上，(80)式可以发展成一种证明这一结论的不同方法。
为此，我们将 (80)式凑成如下形式

padqa − Hdt = p′
adq′a − Hdt + dF . (88)

然后我们将这个式子两边分别沿着时间积分，从初始的 ti 积到末尾的
tf，即 ∫ tf

ti

[
padqa − Hdt

]
=

∫ tf

ti

[
p′

adq′a − Hdt
]
+

∫ tf

ti
dF , (89)

可以看到，左边是老正则变量所描述的相空间作用量，右边是新正则变
量所描述的相空间作用量加上一个多出来的全微分项。多出来的全微
分项当然只在积分的上下限有贡献，也就是只在相空间路径的两个端
点上有贡献，可以称之为端点项。如果我们先忽略这个端点项，那很显
然，(89)式左边变分等于零就等价于右边变分等于零。左边变分等于
零给出的是老正则变量下的哈密顿正则方程，右边变分等于零给出的
当然就是新正则变量下的哈密顿正则方程。这样我们的证明就完成了。
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到此为止，我们所讨论的主要是不显含时间的正则变换，即正则变量
的变换函数关系 x′(x)中不显含时间。如果想将我们的讨论应用到显含
时间的情形，即应用到 x′(x, t)的情形，那就应该将前面所有的微分表
达式理解为瞬时进行的，即不对时间变量 t 微分。比如 (80)式中的微
分就应该作此理解。不过，对于这种显含 t 的情形就无法证明变换后
的系统依然满足同样的哈密顿正则方程了 (因为在这种情况下，考虑时
间演化时，x′(x, t)要对 t 求偏导)。不过，可以证明，只要不取变换后
的哈密顿量为原来的 H,而是重新选取一个合适的哈密顿量 (记为 K )
(它不仅函数表达式与 H 不同，而且是不同的物理量)，那变换后的系
统也将满足哈密顿正则方程。
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证明如下：首先我们引入一个 K ,对 K 的要求是使得下式成立

padqa − Hdt = p′
adq′a − Kdt + dF , (90)

注意，这里的微分是对所有的变量进行，包括对 t 进行微分，而式中的
F 一般来说也显含 t。换言之，为了使得 (90)式依然满足正则变换的
条件 (80)，我们应该这样选择 K，即使得它刚好抵消 (90)式中关于 t
的偏微分 3。容易看出，如果将式中的 F 取成第一类生成函数
F1(q,q′, t)，那 K 即是

K = H +
∂F1

∂t
. (91)

下面，从 (90)式出发，完全类似于上面利用相空间最小作用量原理的
证明过程，就可以得到，变换以后的系统满足如下哈密顿正则方程

q̇′a =
∂K
∂p′

a
, ṗ′

a = − ∂K
∂q′a . (92)

即是说，在这种情况中，K 就是变换以后的哈密顿量。
3注意，由于 q′ = q′(q, p, t)，所以 dq′ 中其实也包含对 t 的偏微分。
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我们知道，给定 q 坐标在相空间的起点和终点，给定连接两点的一条
相空间路径

(
q(t ′),p(t ′)

)
,我们就可以计算相空间作用量

S[q(t ′),p(t ′)] =
∫ t

0

[
pa(t ′)dqa(t ′)− H(q(t ′),p(t ′))dt ′

]
. (93)

这里已经假设 0时刻为起始时刻，t 为末尾时刻。不妨进一步假设 0时
刻和末尾 t 时刻的 q 坐标分别为 q0 和 q,即

qa(0) = qa
0 , qa(t) = qa. (94)

注意，我们并没有预先给定起末两端的 p 坐标。

现在，假设我们考察的这条路径是一条满足哈密顿正则方程的路径，
即使作用量取极值的路径。我们计算这条路径的作用量，很显然，这个
作用量依赖于预先给定的起末坐标 q0 和 q(起末两端的 p 坐标是自动
被哈密顿正则方程决定的)。也即是说，extrem[q(t′),p(t′)]S[q(t ′),p(t ′)]
定义了一个依赖于 t ,q0,q 的函数，记为 S(q0,q, t)，

S(q0,q, t) = extrem[q(t′),p(t′)]S[q(t ′),p(t ′)]. (95)
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为了研究函数 S(q0,q, t)，我们假设末端的 q 发生了一个无穷小变动
δq,极值路径当然会跟着发生一个无穷小改变，但很显然，

δS(q0,q, t) = extremδS[q(t ′),p(t ′)]

=

∫ t

0

d(paδqa) + extrem
∫ t

0

dt ′
[(

q̇a − ∂H
∂pa

)
δpa −

(
ṗa +

∂H
∂qa

)
δqa].

=pa(t)δqa(t) = pa(t)δqa. (96)

由此就可以得到，

pa(t) =
∂S
∂qa (q0,q, t). (97)
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有了这个关系以后再回顾作用量泛函的表达式 (93)，就可以发现，

∂S
∂t

(q0,q, t) = −H(q,p). (98)

结合 (97)式和 (98)式，就可以得到函数 S(q0,q, t)所满足的偏微分方
程

∂S
∂t

+ H(q,
∂S
∂q

, t) = 0. (99)

这就是哈密顿-雅可比方程，式中我们已经允许了哈密顿量显含时间 t
(这对上面的推导没有任何影响)。很显然，哈密顿-雅可比方程不能完
全决定函数 S,至少我们可以给 S 加上一个任意的常数，这个任意常数
对于讨论并不重要，所以下面我们都忽略它。
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下面将推理逻辑反过来，假设我们从哈密顿-雅可比方程出发，我们想
求解这个偏微分方程。那上面的推理过程就告诉我们，如何通过考虑
一条起于 q0，t 时刻到达 q 的极值路径，并计算这条路径的作用量泛
函，来构造出哈密顿-雅可比方程方程的解。在这种构造方式中，起始
点 q0 可以看成是积分常数。这一构造过程也告诉我们，如果极值路径
(也称作物理路径，或经典路径)可以解析求解 (允许用积分来表达)，那
就能得到哈密顿-雅可比方程的形如 S(q0,q, t)的解析解。
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但是，S(q0,q, t)只是哈密顿-雅可比方程的一类解。而且实际上，我们
通常无法求出其解析形式。进一步，对一个 n自由度的系统，如果能
找到哈密顿-雅可比方程的一类形如 S(α, q, t)的解析解 (允许用积分来
表达)，其中 α代表 αa(a = 1, 2, ..., n)，为积分常数 (类比于前面的 q0)。
那这样的系统就称作可积系统。后面我们将证明，这 n个积分常数
αa(a = 1, 2, ..., n)其实是系统的 n个泊松对易的独立守恒量。反过来，
如果一个哈密顿力学系统有 n个泊松对易的独立守恒量，那我们就能
用这些守恒量构造出哈密顿-雅可比方程的一类形如 S(α, q, t)的解析
解。所以，存在 n个泊松对易的独立守恒量是一个哈密顿力学系统成
为一个可积系统的充要条件，下一章我们会进一步讨论这个问题。
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一般地，假设找到了哈密顿-雅可比方程的一个解 S(q, t)，则根据 (97)
式，我们就能得到粒子正则动量与正则坐标的函数关系，将之代入哈
密顿正则方程的第一个方程 (如下)，就能解出粒子在位形空间的运动
路径，

q̇a =
∂H
∂pa

|p= ∂S
∂q
. (100)

显然，这种求解运动路径的方法最后只需求解 n个一阶常微分方程，
而不是求解 n个二阶常微分方程，这当然大大简化了问题。然而 (100)
解出来的路径真是粒子的经典路径吗？为了证明这一点，我们需要进
一步验证哈密顿正则方程的第二个方程也是满足的。
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证明如下，首先

ṗa =
d
dt

(
∂S
∂qa

)
=

∂2S
∂t∂qa +

∂2S
∂qb∂qa q̇b. (101)

其次，将哈密顿雅可比方程 (99)对 q 求偏导，有

∂2S
∂t∂qa +

∂H
∂qa |p= ∂S

∂q
+

∂H
∂pb

|p= ∂S
∂q

∂2S
∂qb∂qa = 0

⇒ ∂2S
∂t∂qa +

∂H
∂qa |p= ∂S

∂q
+ q̇b ∂2S

∂qb∂qa = 0.

⇒ ∂2S
∂t∂qa + q̇b ∂2S

∂qb∂qa = − ∂H
∂qa |p= ∂S

∂q
. (102)

将最后的结果与上面那个式子比较，就可以得到，ṗa = − ∂H
∂qa，证明因

此就完成了。
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哈密顿-雅可比方程
哈密顿-雅可比方程

假设哈密顿量不显含时间，则有能量守恒，记这个守恒量为 E ,哈密
顿-雅可比方程当然有依赖于这个守恒量的解，定义

S(E ,q, t) = W (E ,q)− Et . (103)

将这个定义代入哈密顿雅可比方程，就可以得到

H(q,
∂W
∂q

) = E . (104)

我们只需求解这个偏微分方程，就能得到原来的哈密顿-雅可比方程的
一类解，这类解的特点是，利用它反过来求解出的粒子运动路径都有
同样的能量 E。W (E ,q)也常常简记为W (q)，人们有时候称之为哈密
顿主函数。
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哈密顿-雅可比方程
可积系统

上一小节我们说过，如果系统有一个守恒量 α，相应的哈密顿-雅可比
方程就有一类依赖于这个守恒量的解，S(α, q, t),从偏微分方程求解的
角度来看，α就是这类解的积分常数。特别的，对于 n自由度的可积
系统，人们能找到 n个相互泊松对易 (待会儿就能看到泊松对易的要求
怎么来的)的独立守恒量 αa,a = 1, 2, ..., n。相应的也能找到哈密顿-雅
可比方程的具有 n个积分常数的解析解，记为 S(α, q, t) (这里 α代表
αa,a = 1, 2, ..., n)。

可积系统之所以称作可积系统，是因为可以进一步得出粒子运动路径
的解析解 (用积分和隐函数表达出来)。下面我们来证明这个结论。

ct |经典力学新讲第 5章



71

哈密顿-雅可比方程
可积系统

假设找到了哈密顿-雅可比方程的一类含 n个积分常数的解析解，记为
S(α, q, t)，写得更清楚一点就是 S(α1, ..., αn,q1, ..., qn, t)。我们可以将
αa,a = 1, 2, .., n看作是正则变换以后新的 q 坐标，进而考虑 (q,p)到
(α, β)的正则变换，其中 β 代表 βa,a = 1, 2, .., n为正则变换以后新的
正则动量。我们将哈密顿-雅可比方程的解 S(α, q, t)取作正则变换的
第一类生成函数。很明显，这是一种显含时间的正则变换，变换以后
的哈密顿量 K 为

K = H +
∂S
∂t

. (105)

根据哈密顿雅可比方程，我们有

K = 0. (106)
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哈密顿-雅可比方程
可积系统

进而由变换以后的哈密顿正则方程，可以知道

α̇a = 0, β̇a = 0. (107)

即变换以后的正则坐标 αa 的确是守恒量，而且因为它们都是正则坐
标，所以泊松对易！变换以后的正则动量 βa 也是守恒量，不过，由于
正则动量和正则坐标的泊松括号不是零，所以它们与 αa 并不泊松对
易，实际上，对它们的更好解释是，将之看成初始条件。
由第一类生成函数的知识可以知道

βa = − ∂S
∂αa . (108)

解这组式子就能得到位形空间的运动路径 qa(t)(作为 α, β 的函数)。进
一步，无论是由前面的 (97)式，还是由第一类生成函数的知识，我们
都有

pa =
∂S
∂qa . (109)

这一组方程就进一步决定了函数 pa(t)。可见，可积系统粒子运动路径
的解析解是可以得到的。
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哈密顿-雅可比方程
举例：哈密顿雅可比方程求解中心力场问题

中心力场问题其实就是一个可积系统。因为这个系统的自由度数为 3，
而它也存在 3个相互泊松对易的守恒量，即 H, J2, Jz，这里 J是系统
的角动量，Jz 是它的 z 分量。J2, Jz 这两者与 H 泊松对易是因为系统
具有旋转对称性，而 [J2, Jz ] = 0我们前面在讲泊松括号的时候提到过。
下面我们来看如何从哈密顿-雅可比方程得到中心力场问题的解析解。

首先，由于角动量守恒，粒子必定作平面运动，进而可以将自由度数
降低为 2。我们取粒子的运动平面为 x − y 平面，因此可以写出系统的
哈密顿量

H =
1

2m
(
p2

x + p2
y
)
+ V (r). (110)
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哈密顿-雅可比方程
举例：哈密顿雅可比方程求解中心力场问题

其次，在 x − y 平面上取极坐标 x = r cos θ, y = r sin θ。利用辛势在
两种坐标系中的不同表达，我们有

pxdx + py dy = pr dr + pθdθ. (111)

由此即得 pr = px cos θ + py sin θ, pθ/r = −px sin θ + py cos θ.进而可
以得到

p2
x + p2

y = p2
r +

p2
θ

r2
. (112)

从而可以将哈密顿量在极坐标中写成

H =
1

2m
(
p2

r +
p2
θ

r2
)
+ V (r). (113)

当然，人们也可以通过先写出极坐标中的拉格朗日量，再进行勒让德
变换的方式得到上面的式子。
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哈密顿-雅可比方程
举例：哈密顿雅可比方程求解中心力场问题

由于能量守恒，我们可以设

S(q, t) = W (r , θ)− Et . (114)

进而由 (104)式，即有

1

2m

[(∂W
∂r

)2
+

1

r2
(∂W
∂θ

)2]
+ V (r) = E .

⇔ r2
[
2m

[
E − V (r)

]
−
(∂W
∂r

)2]
=

(∂W
∂θ

)2
. (115)

很明显，我们可以用分离变量的方式解上面的方程，即设

W (r , θ) = W1(r) + W2(θ). (116)

代入 (115)即有

r2
[
2m

[
E − V (r)

]
−
(∂W1

∂r
)2]

=
(∂W2

∂θ

)2
, (117)

方程的左边只依赖于 r ,而方程的右边只依赖于 θ，左右要相等，那只能
是都等于一个常数 (由于右边是完全平方，所以是一个大于零的常数).
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哈密顿-雅可比方程
举例：哈密顿雅可比方程求解中心力场问题

设这个常数为 J2，从而有

dW1

dr
=

√
2m

[
E − V (r)

]
− J2

r2
dW2

dθ
= J. (118)

将这个式子积分，即有

W1(r) =
∫

dr

√
2m

[
E − V (r)

]
− J2

r2

W2(θ) = Jθ. (119)

因此即有

S =

∫
dr

√
2m

[
E − V (r)

]
− J2

r2
+ Jθ − Et . (120)

式中我们已经忽略了不重要的相加常数。
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哈密顿-雅可比方程
举例：哈密顿雅可比方程求解中心力场问题

从 (118)的第二个式子可以清楚地看到，pθ = ∂S
∂θ = ∂W2

∂θ = J 为守恒
量，这就是角动量，另一个守恒量就是能量 E。它们也是哈密顿-雅可
比方程的两个积分常数，不妨记 α1 = E , α2 = J。则根据上一小节的
理论，我们还有下面两个运动积分

β1 = −∂S
∂E

= t −
∫

dr
m√

2m
[
E − V (r)

]
− J2

r2

,

β2 = −∂S
∂J

=

∫
dr

J/r2√
2m

[
E − V (r)

]
− J2

r2

− θ. (121)

实际上，人们通常记 β1 = t0 为初始时刻，记 −β2 = θ0 为初始角度。
这样，我们就完全解出了中心力场问题。人们可以将这里的结果和第
四章中的相应结果进行比较，两者是完全一致的。
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Thank You!
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