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两体问题

太阳系的九大行星如何运动呢？这问题其实非常复杂，答案是未知的。
因为这是一个多体问题，而这样的多体问题并没有一般性的解析解。
不过我们知道，太阳的质量比行星大很多，任何行星主要是受太阳的
万有引力，其它行星的影响往往可以忽略。如此一来，行星的运动问
题就变成了一个只需考虑这颗行星本身和太阳的相互作用的两体问题。
开普勒告诉我们，行星相对太阳是在作椭圆轨道运动。几百年前的牛
顿和我们一样知道这个结论，但是，牛顿面临的难题是，如何用理论
推理得出行星必定作椭圆轨道运动，这就是所谓的开普勒问题，本章
的核心之一就是要解决这一问题。
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两体问题

假设有两个质点，质量分别为 m1,m2，位置矢量分别为 x1, x2。两质点
间有相互作用势能，它仅仅依赖于两质点间的距离 |x1 − x2|，记为
V (|x1 − x2|),则这个系统的拉格朗日量可以写成

L =
1

2
m1ẋ2

1 +
1

2
m2ẋ2

2 − V (|x1 − x2|). (1)

很显然，这个系统有空间平移不变性，因此总动量守恒，即是说系统
的质心作匀速直线运动。因此，我们可以在质心参考系中考察问题。

不妨设 x1, x2 为两质点在这个质心系中的位置矢量，从而有

m1x1 + m2x2 = 0, (2)

另外，我们再引入相对坐标 x，

x1 − x2 = x. (3)
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两体问题

由这两个方程容易解出

x1 =
m2

m1 + m2
x =

m
m1

x, x2 = − m1

m1 + m2
x = − m

m2
x. (4)

式中 m称为约化质量，其定义为

m =
m1m2

m1 + m2
⇔ 1

m
=

1

m1
+

1

m2
. (5)

将 x1, x2 的表达式代入系统的拉格朗日量 (1)，就可以将这个拉格朗日
量在质心系中简化为

L(x, ẋ) = 1

2
mẋ2 − V (|x|). (6)

这样一来，就把原来的两体问题约化成了一个单体问题，不过，这个
单体的质量是约化质量 m,其位置矢量为原来两个质点的相对位置 x。
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两体问题

很明显，(6)式不显含时间，从而必有能量守恒！另外，(6)式显然在 x
的空间旋转之下保持不变，因此有角动量守恒，记这个守恒的角动量
为 J, J = x × p。从矢量叉乘的性质容易知道，J必定始终和位置矢量
x相垂直。而 J是守恒的，它指向三维空间的一个固定方向，因此 x必
定始终和这个固定方向垂直，如此一来，x只能处于与这个方向垂直的
平面上。即是说，这个约化的单体运动必定是平面运动。

我们可以在这个运动平面上取极坐标，从而将 dx2 写成，
dx2 = dr2 + r2dϕ2，进而就可以将拉格朗日量 (6)在极坐标中写成

L(r , ṙ , ϕ̇) =
1

2
m(ṙ2 + r2ϕ̇2)− V (r). (7)

这个拉格朗日量显然不依赖于 ϕ，即在 ϕ → ϕ+ a下保持不变 (由于 ϕ
是极角，因此这其实就是旋转不变),因此按照上一章关于对称性与守
恒量的处理容易知道， ∂L

∂ϕ̇
必定是守恒量。和旋转对称性对应的守恒量

当然就是上面的角动量，这里记为 J，即

J =
∂L
∂ϕ̇

= mr2ϕ̇. (8)
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中心力场
中心力场的一般讨论

上一节出现的力场 V (r)就是中心力场，即是说，中心力场其实就是势
能函数仅仅依赖于径向坐标 r，从而具有空间旋转不变性的力场，
r = 0的坐标原点就是力心。上一节其实就是将两体问题约化为了一个
在中心力场中运动的单体问题。我们已经看到，这样一个系统的角动
量 J = mr2ϕ̇是守恒的，另外系统的能量也是守恒的，即

E =
1

2
m(ṙ2 + r2ϕ̇2) + V (r) =

1

2
mṙ2 + V (r) +

J2

2mr2
(9)

是一个常数。
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中心力场
中心力场的一般讨论

中心力场的角动量守恒其实和著名的开普勒第二定律是一回事。根据
开普勒第二定律，行星的掠面速度 (即行星在单位时间内扫过的面积)
是一个常数，记行星扫过的面积为 A，即有

dA
dt

=
1

2
|x × dx|/dt =

1

2
|x × v| (10)

是一个常数。但是很显然，

dA
dt

=
1

2
|x × v| = 1

2
|x × mv|/m =

J
2m

, (11)

所以这正是角动量守恒。
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中心力场
中心力场的一般讨论

所以中心力场真正需要仔细处理的其实是径向运动，即 r 如何随时间 t
演化。从 (9)式容易看出，假设我们定义

Veff(r) = V (r) +
J2

2mr2
, (12)

(其中 J2

2mr2 称为离心势能)，那么这一径向运动问题其实就是在有效势
能 Veff(r)中运动的一维问题。r 就是这个一维运动的坐标，而这个“一
维运动”粒子的守恒能量为

E =
1

2
mṙ2 + Veff(r). (13)

从这个式子很容易得到

dr
dt

=

√
2

m
[
E − Veff(r)

]
, (14)

积分就可以得出 r(t)。
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中心力场
中心力场的一般讨论

而由角动量守恒，我们又有

dϕ
dt

=
J

mr2
, (15)

进一步积分就能得出 ϕ(t)，到此为止，原则上我们就可以完全解出中
心力场问题了。

但是，很多时候我们更关心的其实是粒子的运动轨道。为此我们消去
(14)式和 (15)式中的 dt，进而可以知道中心力场中粒子的轨道 r(ϕ)
由下面的积分给出

ϕ = ϕ0 +

∫ r

dr ′
(J/r ′2)√

2m[E − Veff(r ′)]
. (16)

很显然，只要知道了 Veff(r)，就能求出粒子的运动轨道。
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中心力场
中心力场的一般讨论

为此我们来研究一下 (12)式定义的有效势能 Veff(r)。首先很明显，由
于离心势能在 r → 0时趋于 +∞,因此只要 V (r)在 r → 0时不趋于
−∞或者趋于 −∞的速度不够快，那 Veff(r)就会满足

r → 0 : Veff(r) → +∞. (17)

另外，合理的势能当然会随着 r → +∞而衰减为零，所以 Veff(r)也应
该满足，

r → +∞ : Veff(r) → 0. (18)

满足这两个要求的典型 Veff(r)曲线如图 (1)所示。
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中心力场
中心力场的一般讨论

Figure:有效势能曲线。

图中能量水平线 E 和势能曲线的交点 rmin 和 rmax 对应 ṙ = 0，粒子的
运动束缚在 r ∈ [rmin, rmax ]的区间上。rmin 和 rmax 分别对应中心势场中
粒子运动的近心点和远心点。但是从图中也可以看到，如果粒子的能
量 E 过大，那 rmax 点就不存在了，这时候粒子就不再做束缚运动，而
是可以跑到无穷远处去了。
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中心力场
中心力场的一般讨论

即使对于图 (1)中所示的束缚运动，粒子的运动轨道一般也不闭合，而
是如图 (2)所示的那样，在半径区间为 [rmin, rmax ]的一个环形区域内不
断进动。从公式 (16)可以知道，粒子半径每次从 rmax 变到 rmin 然后再
回到 rmax ,它的矢径都会扫过一个 ∆ϕ角，

∆ϕ = 2

∫ rmax

rmin

dr
(J/r2)√

2m[E − Veff(r)]
. (19)

从图 (2)中可以看出，这个角度通常并不等于 2π，它和 2π 的差值就是
所谓的近心点在一周之内的进动角。通常来说这个进动角并不等于零。
关于进动角的近似计算，请读者参看朗道《力学》第三章的习题。
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中心力场
中心力场的一般讨论

Figure:不闭合的轨道。图片来自朗道《力学》。
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中心力场
中心力场的一般讨论

公式 (16)中的平方根在近心点和远心点处改变符号，因此，如果将力
心到近心点 (或者远心点)的方向选为极轴，ϕ角从这里开始算起，则
很显然，在这个极轴的两侧，对于同一 r 值，ϕ角的区别仅仅在于正负
号不同。也即是说，有心力场中粒子的轨道关于这一从力心到近心点
的轴是对称的。

什么情况下会出现闭合轨道呢？有一个伯特兰定理 (Bertrand
Theorem)说：只有两类中心力场，其中一切束缚运动都是闭合轨道，
第一类是 V (r) = − k

r，第二类是 V (r) = kr2，这里系数 k > 0。第二类
其实就是所谓的三维谐振子，而很幸运的是，万有引力属于第一类，
正因为如此行星绕太阳才是一个闭合轨道。(注意，伯特兰定理并没有
排除其它势能函数在某些特定情况下也可能出现闭合轨道。)实际上，
对于万有引力情形，行星的轨道不仅是闭合轨道，而且开普勒第一定
律告诉我们，它还是椭圆轨道。怎么证明这是一个椭圆轨道呢？这就
是我们下面要求解的开普勒问题。
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中心力场
开普勒问题

求解开普勒问题的关键就在于对于 V (r) = − k
r 的引力势能计算出公式

(16)中的积分。这时候有效势能 Veff(r)为，

Veff(r) = −k
r
+

J2

2mr2
, (20)

这正好属于前面讨论过的典型势能曲线。而我们要计算的就是

ϕ = ϕ0 +

∫ r

dr ′
(J/r ′2)√

2m[E + k
r ′ −

J2

2mr ′2 ]
, (21)

为此,进行 r ′ = 1
u 的变量代换，得积分

ϕ = ϕ0 −
∫ 1/r

du
1√

2mE/J2 + u2mk/J2 − u2

= ϕ0 −
∫ 1/r

du
1√

m2k2e2/J4 − (u − mk/J2)2

= ϕ0 + arccos
[ 1
e
(
p
r
− 1)

]
(22)

ct |经典力学新讲第 4章



16

中心力场
开普勒问题

式中

e =

√
1 +

2EJ2

mk2
, p =

J2

mk
. (23)

由此即有

p
r
= 1 + e cos(ϕ− ϕ0). (24)

这是以力心为焦点的二次曲线的极坐标方程，e就是所谓的离心率。从
(23)式可知，这个离心率依赖于粒子的总能量 E ,当 E > 0时，e > 1,
这时候 (24)描述的是一条双曲线，它说明粒子沿着双曲线的一支运动，
这显然不是束缚运动。当 E = 0时，e = 1, (24)描述的是一条抛物线，
这也不是束缚运动。有意思的是 E < 0情形，这时候 e < 1，(24)描述
的是椭圆，很明显这是束缚轨道，它也正是我们想要证明的，行星绕
太阳做椭圆轨道运动。
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中心力场
开普勒问题

如果以力心到近日点的方向为极坐标的极轴，则方程 (24)可以进一步
简化成

p
r
= 1 + e cos(ϕ). (25)

对于椭圆轨道，从 (25)式很容易看出，近心点和远心点分别为

rmin =
p

1 + e
, rmax =

p
1− e

. (26)

由 rmin + rmax = 2a,可以求出椭圆的半长轴 a，为

a =
p

1− e2
=

k
2|E |

. (27)

可见，半长轴仅仅依赖于系统的总能量 E 和角动量 J 无关。由
b =

√
a2 − c2 = a

√
1− e2 可以进一步求出半短轴，和 a不同，它既依

赖于 E 又依赖于 J。
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中心力场
开普勒问题

下面我们来证明开普勒第三定律。为此我们首先计算椭圆的面积

A = πab = πa2
√
1− e2 = πp2(1− e2)−3/2

= πp
1
2 (

p
1− e2

)3/2 = π
J

(mk) 1
2

a3/2. (28)

另一方面，行星的掠面速度等于 1
2 r2ϕ̇ = J

2m。将椭圆面积除以掠面速
度，就得到行星运动的周期 T

T = 2π

√
m
k

a3/2. (29)

注意到对于万有引力，k = GMm(M 为太阳质量)，代入上式即得
T = 2π

√
1

GM a3/2，这正是开普勒第三定律。
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中心力场
开普勒问题

但是，如果两个质点之间的中心力场不是一个吸引力，而是排斥力 (比
如同性带电粒子之间的库伦排斥力)，即 V (r) = k

r (k > 0),那情况会略
微有些不同。这时候有效势能为

Veff(r) =
k
r
+

J2

2mr2
, (30)

这个势能恒大于零，从而必有系统总能量 E > 0。另外，与前面吸引力
情形同样的算积分，现在将会有

p
r
= −1 + e cos(ϕ). (31)

式中 e,p 依然由 (23)式给出。由于现在 E 必定大于零，从而必有
e > 1，从而 (31)描述的必定是双曲线，粒子沿着双曲线的一支运动，
只不过，现在力心位于这一支的外焦点上。当然，这种情况粒子的运
动必定是无界的，不可能是束缚运动。近心点 rmin 为

rmin =
p

e − 1
= a + c = a(1 + e). (32)
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中心力场
拉普拉斯-龙格-楞次矢量

前面说过，闭合轨道是非常特殊的，那么为什么行星绕太阳运动的轨
道是一个闭合的椭圆轨道呢？伯特兰定理告诉我们，这是因为
V (r) = −k/r 这种形式的势能的特殊性。那这种势能特殊在哪儿呢？
回答是，这种 1/r 形式的势能不仅有空间旋转对称性，它还有更高的
隐藏的对称性，通常称作动力学对称性。这种动力学对称性的存在意
味着除了角动量守恒以外，系统还有额外的守恒量。这个额外的守恒
量就是所谓的拉普拉斯-龙格-楞次矢量，记为 R，它的定义是

R = v × J − k
x
r
. (33)
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中心力场
拉普拉斯-龙格-楞次矢量

为了证明 R的确是守恒量，我们进行如下计算 (注意角动量是守恒的)

d
dt

(v × J) = v̇ × J = −k
1

m
x
r3

× J = −k
1

r3
x × (x × v)

= −k
1

r3
[
(x · ẋ)x − (x2)ẋ

]
= −k

1

r3
[
(r ṙ)x − r2ẋ

]
= k

[
− x

r2
ṙ +

ẋ
r
]
= k

d
dt

(x
r

)
. (34)

从计算结果很明显可以看出 R是守恒量。
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中心力场
拉普拉斯-龙格-楞次矢量

实际上，R始终从力心指向近心点。为了看出这一点，我们选取 R方
向为极轴，从而

x · R = r |R| cosϕ. (35)

另一方面，x · R = x · (v × J)− k x2

r = (x × v) · J − kr = J2

m − kr。结合
上面的式子，就可以得到

J2

m
− kr = r |R| cos(ϕ) ⇔ J2

mk
/r = 1 +

|R|
k

cos(ϕ). (36)

很显然，最后这个式子正是椭圆轨道的 (25)式。这个推导过程说明了
两件事情：第一，由于 (25)式正是以力心到近心点的方向为极轴，所
以这说明了 R的确指向近心点。第二，它说明了闭合的椭圆轨道的确
来源于额外的这个守恒量。
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中心力场
散射问题

开普勒问题更关心的是束缚轨道，散射问题则关心的是散射运动。这
时候我们以一个粒子为散射粒子，另外一个粒子为靶粒子，我们要考
察的是散射粒子相对于靶粒子的运动。我们知道，对于这一相对运动
而言，只需要取质心参考系并将散射粒子质量取成约化质量 m，则两
体散射问题就约化成了一个单体问题。这时候可以将靶粒子的位置看
成是“固定不动”的力心，初始时散射粒子从无穷远处朝着靶粒子入
射，受靶粒子产生的中心力场作用以后，最后又以一个偏转角 θ 飞到
无穷远处去 (设 r → +∞时 V (r) → 0)，如图 (3)所示。
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中心力场
散射问题

和所有的中心力场问题一样，散射过程当然也有能量守恒和角动量守
恒，不过人们通常用粒子在无穷远处的速度 v0 以及入射粒子的瞄准距
离 b 来刻画这两个守恒量。所谓的瞄准距离，就是力心 O 到入射粒子
初动量 v0 方向的垂直距离，如图 (3)所示。很明显，能量 E 以及角动
量 J 与 v0,b 的关系为

E =
1

2
mv2

0 , J = mv0b. (37)

Figure:散射
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中心力场
散射问题

前面说过，对于这样的中心力场问题，粒子的运动轨道关于从力心到
近心点的轴线 (即图 (3)中的 OA线)对称。如果记散射粒子轨道的两
条渐近线与此轴线的夹角为 ϕ0，则很显然，粒子散射后的偏转角 (也
叫散射角)θ 满足

θ = π − 2ϕ0. (38)

从前面关于中心力场的一般讨论容易知道，ϕ0 可以由下式算出

ϕ0 =

∫ ∞

rmin

dr
(J/r2)√

2m[E − Veff(r)]
=

∫ ∞

rmin

(b/r2)dr√
1− 2V (r)/(mv2

0 )− b2/r2
. (39)

由这两个式子原则上就能算出散射角 θ 对入射粒子速度 v0 以及瞄准距
离 b 的依赖关系。通过实验测量验证这个依赖关系就能验证我们的理
论，特别是能得到很多关于中心力场 V (r)的信息。
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中心力场
散射问题

卢瑟福通过他的 α粒子散射实验最早表明了散射问题的重要性，卢瑟
福的工作不仅是建立正确的原子模型的基础，而且在一定意义上它也
是整个粒子物理的开端。不过，卢瑟福不是直接去测量 θ 与 v0,b 的关
系，而是引入了一个全新的更容易测量的量，这就是散射截面。

具体来说，就是考虑一束 (而不是单独的一个)同样速度的入射粒子，
它们的瞄准距离不同且均匀分布，然后测量单位时间有多少粒子被散
射到 θ 方向的单位立体角内。很显然，如果入射粒子越多，那散射的
就会越多，散射粒子数一定正比于入射粒子流强 I (也就是单位时间单
位横截面积上的入射粒子数)，因此为了抓住真正物理的信息，实验上
测的是散射粒子数与入射流强 I 的比值。如果记单位时间散射到 θ 方
向的立体角 dΩ = 2π sin θdθ 之内 (整个立体角形成一个环绕水平方向
的空心圆锥)的粒子数为 dN，那实验上测的就是下面这个量

dσ =
dN
I
. (40)

很容易看出，这个量有面积的量纲，所以叫微分散射截面。
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中心力场
散射问题

散射角 θ 是瞄准距离 b 的函数，两者一一对应。假设空心圆锥立体角
dΩ = 2π sin θdθ 对应瞄准距离 [b,b + db]，即是说瞄准距离在这个区
间之内的入射粒子都被散射到圆锥立体角 dΩ = 2π sin θdθ 中了。则很
显然，这样的入射粒子构成一个以 b 为内径 b + db 为外径的面积为
2πbdb 的圆环，从而 dN = I(2πbdb)，从而

dσ = 2πbdb = 2πb(θ)|db
dθ

|dθ =
b(θ)
sin θ

|db
dθ

|dΩ, (41)

式中的绝对值符号来源于 b(θ)通常是一个减函数，而我们定义的微分
散射截面始终是正的。很显然，只要知道了 b 和 θ 之间的函数关系，
就能算出微分散射截面。反过来，测量微分散射截面就可以间接验证 b
和 θ 之间的函数关系。
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中心力场
散射问题

假设散射粒子和靶粒子之间的力场为库伦排斥力场，V (r) = k
r (k > 0)。

则我们容易算出公式 (39)中的积分，为

ϕ0 = arccos

 k
mv2

0 b√
1 + ( k

mv2
0 b )

2

 . (42)

从而即有

b2 =
( k

mv2
0

)2 tan2 ϕ0. (43)

根据 (38)式，即有

b2 =
( k

mv2
0

)2 cot2
(θ
2

)
. (44)

将这个式子两边微分，并代入微分散射截面的公式 (41)，就可以得到

dσ =
( k
2mv2

0

)2 1

sin4
(
θ
2

)dΩ. (45)

这就是著名的卢瑟福公式。
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受限三体问题和拉格朗日点

前两节通过将两体问题约化为单体问题，再通过能量守恒和角动量守
恒，我们已经完全求解出了两体问题。按照道理来说，下面要研究的
自然应该是三体问题，即三个质量分别为 m1,m2,m3 的质点通过万有
引力相互作用的问题。但是三体问题是数学和天文学中著名的难题，
庞加莱等人曾经证明过，一般性的三体问题不存在解析解。所以人们
自然想到研究某种极端简化后的三体问题，具体来说即是研究三体中
的某一体质量相比来说非常小 (因此其引力场可以忽略)的情形，即

m1 ≫ m3, m2 ≫ m3. (46)

这就是所谓的受限三体问题，或者有时候也称作限制性三体问题。
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受限三体问题和拉格朗日点

在实际应用中，受限三体问题非常重要，因为比方说，太阳-地球-月亮
就可以看成这样的一个受限三体系统，因为月亮的质量相对很小。另
外，人们常常将航天器发射到日地系统或者地月系统中，这时候航天
器和日地系统或者和地月系统一起也构成了受限三体系统。然而，即
使对于受限三体问题，一般性的求解也非常困难，事实上，1889年庞
加莱正是在研究受限三体问题时，首次发现了动力系统中的混沌。所
以下面我们也不是要一般性地求解受限三体问题，而是将注意力集中
于受限三体问题的一个重要概念，叫做拉格朗日点。

ct |经典力学新讲第 4章



31

受限三体问题和拉格朗日点

从上面的论述可以知道，受限三体问题就是 m1 和 m2 这两个大质量的
物体形成两体运动，然后 m3 在这个两体的引力场中运动的问题。m3

质量很小，因此对 m1,m2 的反作用可以忽略。这里进一步考虑一种简
单情形，我们假设，m1,m2 绕着它们的质心做匀速率圆轨道运动，两
者的旋转角速度为 ω，很显然它满足

mω2R = G
m1m2

R2
, (47)

式中 m为约化质量，R 为 m1,m2 两者之间的距离。由上式即有

ω2 =
G(m1 + m2)

R3
. (48)

另外，由前面关于两体问题的分析可以知道，m1,m2 与质心的距离
r1, r2 分别为

r1 =
m
m1

R, r2 =
m
m2

R. (49)
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受限三体问题和拉格朗日点

下面进一步简化问题，假设 m3 的运动限制在 m1,m2 的旋转平面上。
为了分析 m3 的具体运动，我们取 m1,m2 的质心为原点，取旋转平面
为 x − y 平面，取参考系 (坐标系)在这个平面上以角速度 ω 旋转，并
让 m1,m2 位于这个旋转参考系的 x 轴上，如图 (4)所示。

Figure: m1,m2 所构成的旋转参考系。
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受限三体问题和拉格朗日点

记 m3 相对这个旋转参考系的速度为 v′ = (ẋ , ẏ)，它在这个旋转参考系
中的坐标为 x = (x , y)，则 m3 相对静止惯性系的速度 v应该等于 v′ 再
加上参考系旋转的速度 ω × x，即

v = v′ + ω × x. (50)

从而 m3 的拉格朗日量 L为

L =
1

2
m3

(
v′ + ω × x

)2 − V

=
1

2
m3v′2 + m3v′ · (ω × x)−

[
V − 1

2
m3(ω × x)2

]
=

1

2
m3(ẋ2 + ẏ2) + m3ω(xẏ − yẋ)− Veff. (51)
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受限三体问题和拉格朗日点

式中有效势能 Veff 的定义为

Veff = V − 1

2
m3(ω × x)2 = V − 1

2
m3ω

2(x2 + y2), (52)

其中的第二项代表的是离心势能。而 V 代表的是 m3 受 m1,m2 的万有
引力势能，即

V = −G
m1m3

r13
− G

m2m3

r23
, (53)

式中

r213 = (x +
m
m1

R)2 + y2, r223 = (x − m
m2

R)2 + y2. (54)
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受限三体问题和拉格朗日点

利用拉格朗日方程容易得出 m3 在旋转参考系中的运动微分方程，为

m3ẍ − 2m3ωẏ = −∂Veff

∂x

m3ÿ + 2m3ωẋ = −∂Veff

∂y
. (55)

上述方程左边的第二项代表的就是所谓的科里奥利力。这组方程的一
般性求解不是一件容易的事情，下面我们考虑它的平衡解，即
ẋ = ẏ = ẍ = ÿ = 0的解。相应的解就是所谓的拉格朗日点，显然它们
相应于有效势能的极值点，满足如下方程

0 =
∂Veff

∂x
= Gm1m3

x + Rm/m1

r313
+ Gm2m3

x − Rm/m2

r323
− m3ω

2x

0 =
∂Veff

∂y
= Gm1m3

y
r313

+ Gm2m3
y

r323
− m3ω

2y . (56)
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受限三体问题和拉格朗日点

下面要做的就是求解方程 (56)。首先求 y = 0的解，这时候 (56)式的
第二个方程自动满足，而第一个方程相当于

ω2x = Gm1
x + Rm/m1

|x + Rm/m1|3
+ Gm2

x − Rm/m2

|x − Rm/m2|3
. (57)

这个方程有三个解，图 (5)分别画出了这个方程左边和右边的函数曲
线，从交点可以清楚地看到这三个解。

Figure: y = 0对应的 x 的三个解。图片来自 David Tong的在线讲义 classical
dynamics.
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受限三体问题和拉格朗日点

也即是说，在 m1,m2 的连线上有三个拉格朗日点，分别位于 m1 的左
侧、m2 的右侧、以及 m1,m2 的中间，记为 L3,L2,L1。这三个拉格朗
日点最早是欧拉发现的。

下面求方程 (56)y ̸= 0的解。这时候由 (56)的第二个方程可以得到

G
m2

r323
= ω2 − G

m1

r313
. (58)

代入 (56)的第一个方程，就可以得到

ω2 =
G(m1 + m2)

r313
=

G(m1 + m2)

r323
. (59)

与前面的 (48)式比较，即有

r13 = r23 = R. (60)

即 m3 要和 m1,m2 构成等边三角形，显然，有两个点满足这样的要求，
分别记为 L4,L5。这就是拉格朗日发现的两个拉格朗日点。
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受限三体问题和拉格朗日点

所以，总共有五个不同的拉格朗日点，其分布如图 (6)所示。

Figure:五个不同的拉格朗日点。

研究表明，L1,L2,L3 这三个拉格朗日点是不稳定平衡点，而只要 m2

远远小于 m1，那么由于科里奥利力的存在，L4,L5 这两个拉格朗日点
将是稳定平衡点。
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受限三体问题和拉格朗日点

所有的拉格朗日点都很有用。比如，L1,L2,L3 这三个拉格朗日点虽然
不稳定，但是在它们附近的航天器只需要很小的能量消耗就能回复到
平衡点附近。在日地系统中 (地球为 m2)，由于距离地球比较近，L1 这
个拉格朗日点常被用来放置太阳观测卫星，例如 NASA(美国国家航空
航天局)1997年发射的先进成分探测器 (Advanced Composition
Explorer，ACE)，就在 L1 点运行。NASA和 ESA(欧洲空间局)联合发
射的太阳和日光层探测器 (Solar and Heliospheric Observatory，
SOHO)同样在日地系统的 L1 处运行。日地系统的 L2 点同样离地球比
较近，因此也被 NASA和 ESA用来放置太空天文台。宇宙学领域两颗
著名的用于探测微波背景辐射的探测器，WMAP和 PLANCK就被放
置在日地系统的 L2 处。类似的，地月系统的这三个拉格朗日点也很有
用，比如，2018年中国发射的登月探测器玉兔二号就利用了地月系统
中 (月球为 m2，地球为 m1)的 L2 点来实现其在月背时和地球的中继
通信。
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受限三体问题和拉格朗日点

太阳和行星系统的 L4,L5 点天然是稳定平衡点，因此可以想见，这两
个位置会吸引很多小行星。这些小行星通常被称为特洛伊星体。据统
计，日木系统的 L4,L5 位置有几千颗这样的小行星。同样，地月系统
的 L4,L5 点也是稳定平衡点，不令人意外，这两个位置被观测到吸引
有星际尘埃。
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