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第五章 再谈哈密顿力学

陈陈陈童童童

本章讲述哈密顿力学的系统理论，内容包括泊松括号，正则变换，以

及哈密顿-雅可比方程。这一章和通常教材的不同在于，处理方式更为现

代，语言也更为现代，因此更有利于读者日后阅读现代文献。

这一章中包含了一些漂亮的定理，包括诺特定理的重新回顾，刘维尔

定理，还有庞加莱回归定理。只要不是单纯的数学定理，而是理论力学框

架中的结论，我们都给出了证明，并且我采用的都是一些在我看来最为简

洁优雅的证明。
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第五章 再谈哈密顿力学 3

5.1 泊松括号

5.1.1 辛结构

前面的章节中我们引入了哈密顿正则方程，它是一组关于粒子如何在

广义坐标和广义动量所构成的相空间中演化的一阶常微分方程，其形式是

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
. (5.1)

式中假设系统有n个自由度，从而指标a = 1, 2, ..., n。我们看到，广义坐

标q和广义动量p在哈密顿正则方程中地位非常平等，正因为如此，人们也

常将qa, pa称为一对正则变量，同时也称广义坐标为正则坐标，称广义动量

为正则动量。但是我们也看到，正则坐标的方程和正则动量的方程相相相差差差了了了

一一一个个个负负负号号号！这个负号从哪儿来的呢？

为了理解哈密顿正则方程中这个额外负号的来源，我们可以回想一

下相空间的最小作用量原理，我们知道，哈密顿正则方程的形式是由相

空间作用量决定的，而这个作用量除了取决于哈密顿量之外，还有一项

就是取决于辛势Θ = padq
a(默认对a求和)。哈密顿正则方程中的负号显然

和哈密顿量没什么关系，所以它必定来源于辛势Θ。但是，辛势的表达

式Θ = padq
a中p, q甚至都不完全平等，为了让这两者更平等一点，我们不

妨考察Θ的外微分，称之为辛形式，记为ω，它的具体定义是

ω = dΘ = dpa ∧ dqa. (5.2)

辛形式ω是一个2-形式，而且由于它是辛势的外微分，所以是一个恰当

形式，从而当然也一定是闭形式，即满足

dω = 0. (5.3)

辛形式ω关于正则坐标和正则动量非常对称，但是，由于dqa∧dpa = −dpa∧
dqa, 所以q, p互换的时候正好会多出一个负号。这其实就是哈密顿正则方程

中额外的那个负号的来源。辛形式对于哈密顿正则系统非常重要，原因在

于，它是相空间的一个基本结构，因此带有辛形式ω的相空间就称之为定

义了辛辛辛结结结构构构的相空间。

既然q, p地位平等，都是相空间的坐标，我们不妨把它们写得更平

等一点。具体来说，即引入2n维相空间的坐标x = (x1, x2, ....x2n)T =

(q1, ..., qn, p1, ..., pn)
T，式中T表示转置操作，所以x是一个具有2n个分量
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的列矢量，注注注意意意它它它不不不是是是三三三维维维坐坐坐标标标矢矢矢量量量，请读者注意根据上下文区分x这个

符号的含义。x的各分量我们记为xi, i = 1, 2, ..., 2n，前n个i指标代表正则

坐标q，后n个i指标代表正则动量p。

有了更为对称的相空间坐标x之后，我们就可以把辛形式重新表示为

ω = dpa ∧ dqa ≡ 1

2
ωijdx

i ∧ dxj. (5.4)

式中和本本本章章章的的的所所所有有有地地地方方方一一一样样样使使使用用用了了了求求求和和和约约约定定定，对于重复指标a，约定

从1到n求和，对于重复指标i, j则约定从1到2n求和。我们可以把辛形式在

坐标x中的分量ωij理解为一个2n × 2n矩阵的第i行第j列，很明显这个矩

阵(记为J−1)为，

J−1 = (ωij) =

(
0n×n −1n×n

1n×n 0n×n

)
. (5.5)

这是一个反对称矩阵，满足ωji = −ωij。式中1n×n表示n × n的单位矩阵。

J−1的逆矩阵当然就记为J(请不要和角动量相混淆)，很容易看出J =

−J−1，为

J = (ωij) =

(
0n×n 1n×n

−1n×n 0n×n

)
, (5.6)

这里我们已经把J的第i行第j列记为ωij，即有

ωijω
jk = δki , ωijωjk = δik. (5.7)

式中δij表示单位矩阵的第i行第j列，即i = j时，δij = 1，i ̸= j时，δij = 0。

很容易验证，有了上面由辛形式导出的矩阵J，我们就可以将哈密顿

正则方程重写为

ẋi = ωij∂jH, (5.8)

式中∂j =
∂

∂xj。或者写成矩阵形式

ẋ = J
∂H

∂x
. (5.9)

哈密顿正则方程的这种形式完美地解释了额外的那个负号如何来源于相空

间的辛结构。
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5.1.2 泊松括号

哈密顿力学如何刻画物理量呢？回答是，很简单，任何物理量都是相

空间中的函数，具有A(q, p)这样的形式(这里q, p只是示意性的符号，分别

代表所有的正则坐标和所有的正则动量)，或者也可以用相空间的x坐标，

写作更抽象的A(x)。那么随着粒子在相空间中演化，物理量该如何演化

呢？为了回答这个问题，我们进行下面的推导

dA

dt
=

∂A

∂qa
q̇a +

∂A

∂pa
ṗa =

∂A

∂qa
∂H

∂pa
− ∂A

∂pa

∂H

∂qa
. (5.10)

人们通常将上面最后的表达式记为[A,H]，称之为泊松括号。即是说，泊

松括号的定义为

[A,B] =
∂A

∂qa
∂B

∂pa
− ∂A

∂pa

∂B

∂qa
. (5.11)

很明显，我们也可以利用前面引入的x坐标以及ωij，进而将这个定义式写

为

[A,B] =
∂A

∂xi
ωij ∂B

∂xj
= (∂iA)ω

ij(∂jB). (5.12)

利用泊松括号，就可以将物理量如何随时间演化的方程写成

dA

dt
= [A,H]. (5.13)

特别的，我们可以将哈密顿正则方程写成

q̇q = [qa, H], ṗa = [pa, H]. (5.14)

或者更简洁地写成

ẋ = [x, H]. (5.15)

上面考察的是最常见的，表达式本身不显含时间的物理量，如果推广

到显含时间的情形，即表达式具有A(q, p, t)的形式，则物理量的演化方程

就要推广成

dA

dt
=

∂A

∂t
+ [A,H]. (5.16)
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按照泊松括号的定义，人们很容易计算出如下基本泊松括号

[qa, qb] = [pa, pb] = 0, [qa, pb] = δab . (5.17)

或者也可以用更抽象的x坐标，写成

[xi, xj] = ωij. (5.18)

利用这个基本泊松括号，我们也可以将泊松括号的定义式(5.12)重写成

[A,B] = (∂iA)(∂jB)[xi, xj]. (5.19)

从这里可以看到，泊松括号的定义其实就是普通的偏导运算加上基本变

量x的泊松括号。

可以证明，泊松括号有如如如下下下性性性质质质：1. [A,B] = −[B,A]。。。2. 线线线性性性性性性，，，

即即即[A, c1B1+c2B2] = c1[A,B1]+c2[A,B2]，式中A,B1, B2为三个任意物理量，

c1, c2为两个任意常数。3. 莱莱莱布布布尼尼尼兹兹兹法法法则则则，，，即即即[A,BC] = [A,B]C +B[A,C]。

4. 雅雅雅可可可比比比恒恒恒等等等式式式，，，即即即[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0。注意这个式

子中的A,B,C是轮换的。

以上，1,2两条性质比较显然。3,4两条性质需要证明。首先看性

质3，为了证明它，我们注意到，根据泊松括号的定义式(5.12)，[A,B]可

以看作是对函数B的特定偏导运算(当然也可以看作对A的偏导运算)，

因为[A,B]具有(Ai∂i)B的形式, 式中系数Ai与A有关，具体可以从定义

式(5.12)中读出来。我们记偏导算符Ai∂i = LA，则

LAB = [A,B] = (Ai∂i)B. (5.20)

而性质3其实就是偏导算符的莱布尼兹法则，即LA(BC) = (LAB)C +

B(LAC)。

下面证明性质4，即证明雅可比恒等式。为此我们注意到，对于任何一

个物理量来说，每将它进行一次泊松括号就相当于对它进行一次偏导运算。

因此[B,C]既是B的一阶偏导项，也是C的一阶偏导项，而[A, [B,C]]当然就

是B,C的二阶偏导项。同样[B, [C,A]]是C,A的二阶偏导项，而[C, [A,B]]则

是A,B的二阶偏导项。即是说，雅可比恒等式[A, [B,C]] + [B, [C,A]] +

[C, [A,B]] = 0左边的三项全部算出来必定要么是A的二阶偏导项，要

么是B或C的二阶偏导项，即雅可比恒等式的左边是A,B,C的二阶偏导

项之和。下面我们证明，表达式[A, [B,C]] + [B, [C,A]] + [C, [A,B]]中关
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于A,B,C的二阶偏导项均均均是是是零零零，很显然，如果完成了这一证明，那就必定

有雅可比恒等式。

这个证明并不难，举例来说，要证明C的二阶偏导项为零，我们只需

注意，[C, [A,B]]显然是关于C的一阶偏导(C只进行了一次泊松括号运算)，

因此可以不用管，剩下的两项显然有

[A, [B,C]] + [B, [C,A]] = [A, [B,C]]− [B, [A,C]]

= LALBC − LBLAC =
(
LALB − LBLA

)
C. (5.21)

但是，
(
LALB − LBLA

)
其实是一阶偏导运算，原因在于

LALB − LBLA = (Ai∂i)(B
j∂j)− (Bi∂i)(A

j∂j)

=
[
Ai(∂iB

j)−Bi(∂iA
j)
]
∂j. (5.22)

所以[A, [B,C]] + [B, [C,A]]其实也是关于C的一阶偏导项。因此雅可比恒等

式左边关于C的二阶偏导项其实为零，由于A,B,C的轮换性质，我们同样

可以证明，关于A,B的二阶偏导项也是零，如此就完成了整个证明！

利用雅可比恒等式，我们有

d

dt

(
[A,B]

)
= [[A,B], H] = −[[B,H], A]− [[H,A], B]

= [[A,H], B] + [A, [B,H]] = [
d

dt
A,B] + [A,

d

dt
B]. (5.23)

也即是

d

dt

(
[A,B]

)
= [

d

dt
A,B] + [A,

d

dt
B]. (5.24)

如果物理量显含时间，那我们还可以在泊松括号的性质中增加一条，性性性

质质质5，，， ∂
∂t

(
[A,B]

)
= [ ∂

∂t
A,B] + [A, ∂

∂t
B]。这条性质并不难证明，这里留给读

者作练习。结合这条性质和雅可比恒等式就可以看出，对于物理量显含时

间的情形，依然有(5.24)式。

如果某个物理量A满足 d
dt
A = 0，它当然就是一个守恒量。因此根

据(5.24)式可以知道，如果A是一个守恒量，B也是一个守恒量，那么它

们的泊松括号[A,B]将是一个新的守恒量。另外，从物理量的时间演化方

程(5.13)容易知道，对于一个不显含时间的物理量A来说，它是守恒量的充

要条件是

[A,H] = 0. (5.25)
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如果两个物理量的泊松括号等于零，人们就称这两个物理量泊泊泊松松松对对对易易易。因

此，不显含时间的物理量成为守恒量的充要条件是，与哈密顿量泊松对

易！

在量子力学中，物理量都是算符(或者说矩阵)，这时候两个物理量的

泊松括号就变成了算符的对易子，它的定义甚至比泊松括号更为简单。对

于两个算符(可以按照矩阵来理解)Â, B̂, 其对易子就是[Â, B̂] = ÂB̂ − B̂Â。

不难证明，算符对易子满足泊松括号的所有那些性质，甚至更简单，读者

有兴趣的话不妨试着证明一下算符对易子的雅可比恒等式(提示：直接按

定义展开证明)。算符对易子和泊松括号的这种相似性并非偶然，它说明，

经典物理和量子物理是有联系的，经典物理可以看成量子物理在普朗克常

数~ → 0时的极限。的确，可以证明，在~ → 0时算符对易子自动就会给出

经典物理的泊松括号。

下面利用泊松括号的性质算一个例子，算角动量的泊松括号。为了避

免混淆，这里我们将三维空间位置矢量记为r，r = (x, y, z)。根据角动量的

定义J = r× p, 可以知道它的分量形式

J1 = ypz − zpy, J2 = zpx − xpz, J3 = xpy − ypx. (5.26)

从而易有

[J1, J2] = [ypz − zpy, zpx − xpz]

= [ypz, zpx] + [zpy, xpz]− [ypz, xpz]− [zpy, zpx]

= y[pz, z]px + x[z, pz]py = xpy − ypx = J3. (5.27)

上面的计算过程利用了泊松括号的性质以及基本泊松括号。类似的，也可

以算得

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2. (5.28)

习惯上，人们常常利用列维-西维塔符号，将这个结果概括成

[Ji, Jj] = ϵijkJk. (5.29)

从这个计算可以知道，如果一个系统的J1, J2均守恒，那么它的J3也必定守

恒。另外，利用上面的结果，也不难证明

[J2, Ji] = 0. (5.30)
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5.1.3 涡旋的运动

前面处理的哈密顿系统都是一些通常的单粒子或者多粒子系统，但是

哈密顿系统的适用范围比这要广泛得多。这一节我们将表明，两维平面流

体中多个涡旋所构成的系统是一个哈密顿系统，而且对于这个哈密顿系统

而言，涡旋运动的正则坐标和正则动量天然就是一回事。

考察一种平面流体(我们用x = (x, y)表示两维平面的坐标)，假设其中

有一个涡旋，涡旋中心位于坐标原点，简称有一个位于坐标原点的涡旋。

当这样说时，我们指的是流体围绕着坐标原点在打转，或者说流速场像

图(5.1)中所示的那样分布。 更精确地说，位于坐标原点的涡旋指的是，流

图 5.1: 位于坐标原点的一个涡旋。

速场v = (vx, vy)的旋度满足，

∂xvy − ∂yvx = 2πγδ(x), (5.31)

式中δ(x) = δ(x)δ(y)为两维平面的狄拉克δ函数，而式中的常数γ用于表示

这个涡旋的强度。

换言之，位于原点的涡旋指的是这样一种速度场分布，它的旋度在

坐标原点处是无穷大，而在其它地方都是零。因此将速度场围绕着半径

为r = |x|的圆周C积分，将有∮
C

(
vxdx+ vydy

)
=

∫
D

(
∂xvy − ∂yvx

)
dx ∧ dy

= 2πγ

∫
D

δ(x)dx ∧ dy = 2πγ. (5.32)

式中D表示圆周C所包围的区域，式中的推导用了斯托克斯公式。

很容易验证，满足要求(即满足(5.31)式和(5.32)式)的速度场为，

vx = −γ
y

r2
, vy = γ

x

r2
. (5.33)
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假设有一个质点跟随这个位于原点的涡旋运动，那它的运动方程当然就是

ẋ = vx = −γ
y

|x|2
, ẏ = vy = γ

x

|x|2
. (5.34)

下面假设有两个涡旋，分别位于x1 = (x1, y1)和x2 = (x2, y2)，强度分

别为γ1和γ2，并且每一个涡旋都跟随着另一个的速度场运动。那么我们就

有方程

ẋ1 = −γ2
y1 − y2

|x1 − x2|2
, ẏ1 = γ2

x1 − x2

|x1 − x2|2

ẋ2 = −γ1
y2 − y1

|x2 − x1|2
, ẏ2 = γ1

x2 − x1

|x2 − x1|2
. (5.35)

但是，速度场是可以矢量叠加的，因此如果有多个涡旋，那每一个涡

旋都将跟着所有其它涡旋共同产生的速度场而运动！这样一来，我们就可

以将上面的方程推广到多个涡旋的情形，记第i个涡旋的位置为xi = (xi, yi),

即有

ẋi = −
∑
j ̸=i

γj
yi − yj

|xi − xj|2
, ẏi =

∑
j ̸=i

γj
xi − xj

|xi − xj|2
. (5.36)

方程(5.36)所描述的这个多涡旋系统实际上是一个哈密顿正则系统。其

相空间就是多涡旋的位形空间，即{x1,x2, ...,xn}所构成的空间。相空间的
辛形式可以定义为

ω =
∑
i

γidyi ∧ dxi. (5.37)

这里有两点说明：第一，将ω定义成
∑

i γidyi ∧ dxi而不是
∑

i γidxi ∧ dyi，这

并不是一件重要的事情，因为它仅仅是一种约定。第二，(5.37)给出的并不

是辛形式的标准形式，为了得到标准形式，我们只需重新定义一下变量，

具体来说即是令px,i = γiyi，进而将(5.37)式写成ω =
∑

i dpx,i ∧ dxi。请注

意，在相差一个系数的意义上，yi坐标其实是正则动量px,i。

有了辛形式ω以后，我们就很容易写出基本泊松括号

[xi, yj] = γ−1
i δij. (5.38)

进而就可以计算任何两个物理量的泊松括号

[A,B] =
∑
i

1

γi

(
∂A

∂xi

∂B

∂yi
− ∂A

∂yi

∂B

∂xi

)
. (5.39)
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证明(5.36)构成哈密顿正则系统的另一个关键是定义如下哈密顿量

H = −1

2

∑
i<j

γiγj log |xi − xj|2. (5.40)

有了这个哈密顿量以后，读者不难证明，(5.36)式可以由如下哈密顿正则方

程给出

ẋi = [xi, H] = γ−1
i

∂H

∂yi

ẏi = [yi, H] = −γ−1
i

∂H

∂xi

. (5.41)

因此，多个涡旋所构成的动力系统(5.36)的确是一个哈密顿正则系统。

不难证明，下面这两个物理量Px, Py与(5.40)式给出的哈密顿量泊松对

易(即[Px, H] = [Py, H] = 0)，从而是守恒量，

Px =
∑
i

px,i =
∑
i

γiyi, Py =
∑
i

py,i = −
∑
i

γixi. (5.42)

(请注意，px,i和py,i任何一个都能看作正则动量，但两者不能同时都看作正

则动量。) 从这两个守恒量的定义容易看出，它们其实就是两个分量的总

动量。不过，Px, Py两者之间可不泊松对易，容易算得，它们的泊松括号实

际上是，[Px, Py] =
∑

i γi, 结果是一个常数，当然也是一个守恒量。

不仅如此，我们还可以证明，如下定义的总角动量L也是一个守恒

量(即满足[L,H] = 0),

L =
1

2

∑
i

(
xipy,i − yipx,i

)
= −1

2

∑
i

γi
(
x2
i + y2i

)
. (5.43)

之所以这个角动量的定义多除了2，是因为在现在的系统中，每个变量都是

双重的，既可以当成正则坐标，也可以当成正则动量，这样当我们按通常

的方式定义角动量时，就把这些变量重复考虑了两次。

不难验证，守恒量L和守恒量Px, Py之间满足如下代数关系，

[L, Px] = Py, [L, Py] = −Px. (5.44)

由此可以进一步得到，L和守恒量P2 = P 2
x + P 2

y泊松对易。因此，再加

上哈密顿量本身这个守恒量，我们就得到了三个两两泊松对易的守恒量，

即H,L,P2。这三个守恒量使得2个涡旋以及3个涡旋的系统都是所谓的可积
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系统(关于可积系统的讨论我们放到了下一章)。但是，4个以及4个以上涡

旋的系统就不再是可积系统了，实际上，这时候的系统是混沌的1。

5.2 正则变换

本节将要讲述哈密顿正则系统的一个核心概念，叫做正则变换，它是

一种保持相空间辛结构的数学变换。关于正则变换有两种不同的观点，一

是，将之看作描述同一个物理系统的两组不同相空间坐标，即看成相空间

的一类保持辛结构的坐标变换。另一种观点是，将正则变换看作相空间到

其自身的一对一映射(称之为微分同胚)，这种映射会将一个相空间点映射

为另一个不同的相空间点，因此它会将系统的一个物理状态映射为另一个

状态，类似的，这种映射也要保持辛结构。在在在数数数学学学上上上，，，这这这两两两种种种观观观点点点完完完全全全等等等

价价价，它们可以看成是源自于对相空间辛结构的两种不同理解方式，但是，

不同的观点会带来对正则变换物理内涵的不同思考，而且由于这两种思考

各有其方便之处，所以我们分开介绍它们。

5.2.1 正则变换作为相空间坐标变换

首先讨论正则变换的第一种观点。上一节我们看到，相空间有坐

标x = (q, p)(q, p均是示意性的写法)，人们自然想到对相空间进行一个坐

标变换，变到x′坐标。但是，如果这种坐标变换过于任意，那x′就可能没

有正则坐标和正则动量的结构，即是说新坐标下无法分别定义正则坐标和

正则动量，这就不是物理上我们想要的。所谓的正则变换，大体来说就是

对相空间坐标变换进行一定的限制，使得变换以后的新坐标x′依然可以写

成x′ = (q′, p′)的形式，这就是所谓的保持辛结构。

具体来说，辛形式ω作为一个微分形式，它本身当然不依赖于坐标系，

因此在任何新坐标x′下都必然有

ω =
1

2
ωijdx

i ∧ dxj =
1

2
ω′
mndx

′m ∧ dx′n. (5.45)

式中ω′
mn为辛形式在新坐标下的分量。利用ωijdx

i ∧ dxj = ωij
∂xi

∂x′m
∂xj

∂x′ndx
′m ∧

dx′n，与上面的式子比较，就能得出ω′
mn应该为

ω′
mn = ωij

∂xi

∂x′m
∂xj

∂x′n . (5.46)

1更多的讨论请参阅，H. Aref, “Integrable, Chaotic, and Turbulent Vortex Motion in

Two-Dimensional Flows”, Ann. Rev. Fluid Mech. 15 345 (1983).
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问题是，上一节我们已经看到，ωij不是任意的，它是前面给出过的特

定矩阵J−1的第i行第j列。但如果这种相空间的坐标变换过于任意的话，

那(5.46)式给出来的ω′
mn就不可能依然是矩阵J−1的第m行第n列了。如此一

来就无法保持正则坐标和正则动量的定义了(因为J−1的形式正是由于有正

则坐标和正则动量才有的)，为了保持正则坐标和正则动量始终有定义，我

们要求ω′
mn = ωmn。即要求坐标变换满足

ωmn = ωij
∂xi

∂x′m
∂xj

∂x′n . (5.47)

这就叫保持相空间的辛结构！

为了看清楚保持辛结构的条件(5.47)有什么重要的含义，我们将 ∂xi

∂x′m 定

义成一个矩阵D的第i行第m列，记为Di
m = ∂xi

∂x′m , 则不难看出条件(5.47)相

当于如下矩阵方程

DTJ−1D = J−1. (5.48)

式中DT表示矩阵D的转置矩阵。将上面这个矩阵方程两边求逆，即有

(D−1)J(D−1)T = J. (5.49)

由于 ∂xi

∂x′m
∂x′m

∂xj = ∂xi

∂xj = δij，所以D−1的第m行第j列就是∂x′m

∂xj , 因此我们可以

将矩阵方程(5.49)重写为

∂x′m

∂xi
ωij ∂x

′n

∂xj
= ωmn ⇔ ∂ix

′mωij∂jx
′n = ωmn. (5.50)

根据上一节关于泊松括号的定义可以知道，这个结果其实就是

[x′m, x′n]x = ωmn. (5.51)

式中我们给泊松括号加上了下角标x，这是为了强调我们是用老正则变

量x来定义的泊松括号。我们当然也可以用新正则变量x′来定义泊松括号，

显然就有[x′m, x′n]x′ = ωmn，将这个式子和上面导出的式子比较，即有

[x′m, x′n]x = ωmn = [x′m, x′n]x′ . (5.52)

可见，相相相空空空间间间坐坐坐标标标变变变换换换保保保持持持辛辛辛结结结构构构的的的要要要求求求其其其实实实就就就等等等价价价于于于保保保持持持基基基本本本泊泊泊松松松括括括

号号号不不不变变变。
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进一步，从泊松括号的性质可以知道，如果基本泊松括号在坐标变换

下保持不变，那我们计算任何两个物理量的泊松括号时，是用新坐标来计

算还是用老坐标来计算就是一样的了，即

[A,B]x = [A,B]x′ . (5.53)

即是说，物理量的泊松括号在正则变换下是不变的！特别的，我们将有

ẋ′ = [x′, H]x = [x′, H]x′ = J
∂H

∂x′ . (5.54)

这也即是说，哈哈哈密密密顿顿顿正正正则则则方方方程程程的的的数数数学学学结结结构构构在在在正正正则则则变变变换换换下下下将将将保保保持持持不不不变变变！

但是，值得特别强调的是，哈密顿正则方程的数学结构虽然在正则变

换下保持不变，但作为常微分方程，两种不同坐标下的哈密顿正则方程其

实是不同的方程，有不同的常微分方程形式。这是因为，哈密顿量H作为

原来变量x的函数，和作为变量代换后新变量x′的函数，这两者其实是不

同的！只不过由于它们描写的是同一个物理量，所以我们才用了同样的符

号H。如果要强调哈密顿量的数学表达式的话，那我们应该用一个新的函

数H ′(x′)来表示新坐标下的哈密顿量，当然由于它和老坐标x下的H(x)描

写同一个量，所以有

H ′(x′) = H(x). (5.55)

也即是说，正则变换其实改变了哈密顿量的函数形式，从而改变了动力学

方程作为微分方程的形式，因此，正正正则则则变变变换换换一一一般般般来来来说说说并并并不不不是是是一一一种种种对对对称称称性性性！！！

5.2.2 正则变换作为相空间的微分同胚映射

现在来讨论正则变换的第二种观点，这种观点将正则变换看成是相空

间到其自身的一种连续映射，并且它是可逆的，称作相空间的微分同胚2。

不妨将这种微分同胚映射记为g, 它会将相空间的x点映射为x′点，即

g : x → x′. (5.56)

在这一映射的作用下，x点描述的物理状态就映射为x′点描述的物理状态，

因此，物理量A作为相空间点的函数A(x)，在微分同胚映射的作用下，其

2微分同胚的严格数学定义比这要复杂抽象一些，感兴趣的读者请参阅拓扑学方面的数

学书。
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函数形式也要改变，设改变以后的函数为A′(x), 记为g∗ : A → A′，g∗表示

微分同胚映射对物理量的作用。很显然，映射以后x′点的物理量值其实来

自于映射之前的x点，所以必有

A′(x′) = A(x). (5.57)

很显然，这就是上一小节以哈密顿量为例得到的(5.55)式。

不过，正则变换并非任意的微分同胚映射，而是保持辛结构的微分同

胚映射。为了说清楚这一点，我们考察微分同胚映射对辛形式ω的作用，记

为g∗ : ω → ω′。由于ω = 1
2
ωijdx

i ∧ dxj，ωij是常数系数因此在映射下保持不

变，由此可知，必有

ω → ω′ =
1

2
ωijdx

′i ∧ dx′j. (5.58)

所谓的保保保持持持辛辛辛结结结构构构，，，即即即要要要求求求辛辛辛形形形式式式在在在映映映射射射前前前后后后保保保持持持不不不变变变，即

g∗ : ω → ω′ = ω. (5.59)

由此即有ωmndx
′m ∧ dx′n = ωijdx

i ∧ dxj, 也即是

ωmn = ωij
∂xi

∂x′m
∂xj

∂x′n . (5.60)

这正是上一小节所得到的保持辛结构的条件(5.47)。

到此为止，我们已经清楚地看到，关于正则变换的这第二种观点虽然

看起来与第一种观点不同，但它们在数学上其实完全等价。

我们当然可以将上面的核心结果用更物理的(q, p)坐标写出来，这时

候，ω = dpa ∧ dqq, 因此ω′ = dp′a ∧ dq′a, 因此保持辛结构的要求(5.59)就相

当于

dp′a ∧ dq′a = dpa ∧ dqq ⇔ dΘ′ = dΘ. (5.61)

式中Θ′ = p′adq
′a是正则变换以后的辛势。

上面的结果意味着d(Θ − Θ′) = 0。即正则变换前后的辛势之差是一个

闭形式。前面讲微分形式的时候我们说过，恰当形式必定是闭形式，但是

反过来，闭形式不一定是恰当形式。但是，如果只关心空间的局部区域，

而不关心空间整体，那就有一个重要的庞庞庞加加加莱莱莱引引引理理理说，局部上反过来也对，
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闭闭闭形形形式式式局局局部部部上上上也也也必必必定定定是是是恰恰恰当当当形形形式式式。甚至在理论力学的应用中，这一庞加莱

引理成立的相空间局部常常能延展为整个相空间。因此，我们有

Θ−Θ′ = dF ⇔ padq
a − p′adq

′a = dF. (5.62)

式中，F为相空间的某个函数。这一段的讨论告诉我们，如如如果果果某某某个个个相相相空空空间间间

的的的微微微分分分同同同胚胚胚映映映射射射满满满足足足(5.62)，，，那那那它它它必必必定定定是是是正正正则则则变变变换换换。。。并且反过来常常也

对！

5.2.3 无穷小正则变换与诺特定理

现在，假设某个正则变换将相空间点x变到和它邻近的x′, 即x′与x的差

值为无穷小量，称为无穷小正则变换。为了考察无穷小正则变换，不妨设

qa → q′a = qa + ϵQa(q, p), pa → p′a = pa + ϵPa(q, p). (5.63)

式中ϵ为无穷小量，Qa, Pa均为相空间的函数(请注意本书符号与其它教材的

不同)。我们要解决的问题是，满足什么条件才能让上面这个无穷小映射变

成一个正则变换？

上一小节的知识告诉我们，条件就是

dp′a ∧ dq′a − dpa ∧ dqa = 0. (5.64)

代入上面的无穷小映射(5.63)，并展开到一阶无穷小，即有(
dPa ∧ dqa + dpa ∧ dQa

)
ϵ = 0. (5.65)

由此即有

0 = dPb ∧ dqb + dpa ∧ dQa

=
∂Pb

∂qa
dqa ∧ dqb +

∂Pb

∂pa
dpa ∧ dqb +

∂Qa

∂qb
dpa ∧ dqb +

∂Qa

∂pb
dpa ∧ dpb

=
1

2

(
∂Pb

∂qa
− ∂Pa

∂qb

)
dqa ∧ dqb +

1

2

(
∂Qa

∂pb
− ∂Qb

∂pa

)
dpa ∧ dpb

+

(
∂Pb

∂pa
+

∂Qa

∂qb

)
dpa ∧ dqb. (5.66)
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由此即可得到Qa, Pa必须满足的方程

∂Pb

∂qa
− ∂Pa

∂qb
= 0

∂Qa

∂pb
− ∂Qb

∂pa
= 0

∂Pb

∂pa
+

∂Qa

∂qb
= 0. (5.67)

这三个方程看起来复杂，实际上它们的通解非常简单，不难验证，下面为

它们的通解

Qa =
∂G

∂pa
, Pa = − ∂G

∂qa
. (5.68)

式中G为某个任意的相空间函数。即是说，如果无穷小映射(5.63)具有(5.68)

的形式, 那它就是一个无穷小正则变换，称之为由物理量G(q, p)生成的无穷

小正则变换。

举一个简单的例子，假设取G = pc, 则由(5.68)式可以得到，Qa = δac ,

Pa = 0。从而G生成的无穷小正则变换为

qa → qa + ϵδac , pa → pa. (5.69)

即是说，正则动量pc可以生成正则坐标qc的无穷小平移。

人们常常记无穷小正则变换前后正则坐标的改变量为δqa = q′a − qa, 记

正则动量的改变量为δpa = p′a − pa, 则根据(5.63)式和(5.68)式，我们有

δqa = ϵ
∂G

∂pa
, δpa = −ϵ

∂G

∂qa
. (5.70)

按照这一节一直在使用的关于正则变换的第二种观点，无穷小正则变换前

后，物理量的函数形式也必然发生了无穷小改变，通常定义A(q, p)的无穷

小改变为

δA = A(q′, p′)− A′(q′, p′) = A(q′, p′)− A(q, p). (5.71)

代入(5.70)式，可以算得这个无穷小改变量为

δA =
∂A

∂qa
δqa +

∂A

∂pa
δpa

= ϵ

(
∂A

∂qa
∂G

∂pa
− ∂A

∂pa

∂G

∂qa

)
= ϵ[A,G]. (5.72)
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以上的讨论促使我们进一步考察一个正则变换的单参簇，

qa → q′a(q, p, λ), pa → p′a(q, p, λ), (5.73)

λ为这一簇正则变换的参数，满足q′a(q, p, λ = 0) = qa, p′a(q, p, λ = 0) = pa。

显然，随着参数λ的连续变动，这簇正则变换会在相空间中画出一条以λ为

参数的路径，路径上任何两个相差无穷小量dλ的点都是用无穷小正则变换

连接起来的。因此，根据上面关于无穷小正则变换的(5.70)式，我们容易得

到

dq′a

dλ
=

∂G

∂p′a
,

dp′a
dλ

= − ∂G

∂q′a
, (5.74)

式中G(q′, p′, λ)称为这个正则变换单参簇的生生生成成成元元元！习惯上，人们会省略变

量上的撇号，将上面的方程写成

dqa

dλ
=

∂G

∂pa
,

dpa
dλ

= − ∂G

∂qa
. (5.75)

人们常常将(dq
a

dλ
, dpa

dλ
) 想像成某种在相空间中随参数λ而变化的流动，由

于G是整个相空间上的函数，所以这种流动在相空间的每一点都有定义，

因此(dq
a

dλ
, dpa

dλ
)就形成相空间的一个流速场。进而，上面的方程(5.75)就称为

由生成元G生成的相相相流流流。如果我们使用更抽象的相空间坐标x = (q, p), 那就

可以将上面的相流方程(5.75)重写成

dxi

dλ
= ωij∂jG. (5.76)

dxi

dλ
就是G生成的相流的流速场，可以记作viG, 即viG = dxi

dλ
= ωij∂jG。

特别的，我们可以取参数λ为时间t, 取生成元G为哈密顿量H, 那么上

面的相流方程(5.75)就变成了标准的哈密顿正则方程。正因为如此，人们常

常称哈密顿量为时间演化的生成元。由于哈密顿量描述的就是系统能量，

因此这就给出了物理系统能量的一般定义，即，时时时间间间演演演化化化的的的生生生成成成元元元描描描述述述系系系

统统统的的的能能能量量量。通过这一段的论述我们也知道了，系统在相空间的时间演化过

程实际上是一个持续进行的正则变换，是以时间为参数的正则变换单参簇。

因此，时时时间间间演演演化化化过过过程程程保保保持持持相相相空空空间间间的的的辛辛辛结结结构构构。

进一步，假设我们有两个正则变换的单参簇，分别由G1和G2生成，相

应的参数分别记为λ1, λ2, 则利用相流方程以及ωijω
jm = δmn , 可以算得

ωijv
i
G1
vjG2

= ωij
dxi

dλ1

dxj

dλ2

= (∂mG2)ω
mn(∂nG1) = [G2, G1]. (5.77)
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这个结果本章用不到，但是下一章会用到。数学家们喜欢记左边的ωijv
i
G1
vjG2

=

ω(vG1 , vG2), 称为辛形式在速度场viG1
, vjG2
上的值。这样一来，上面的结果就

可以重写为

ω(vG1 , vG2) = [G2, G1]. (5.78)

它告诉我们，辛形式在两个速度场上的值，可以由生成这些速度场的物理

量的泊松括号算出。

诺特定理

原则上正则变换可以是任何保持辛结构的数学变换。不过，对一个物

理系统进行的物理操作(比如将系统旋转一个角度)常常在相空间诱导出一

个正则变换。这是因为，对系统的物理操作会将一个物理状态变到另一个

物理状态，从而在相空间诱导出一个微分同胚映射，而且由于物理操作之

后系统依然是一个哈密顿正则系统，满足同样的哈密顿正则方程，所以这

一诱导出来的微分同胚映射必定是一个正则变换。特别的，如果物理操作

本身依赖于一个连续参数(比如旋转操作中的旋转角度)，那它就会在相空

间诱导出一个正则变换的单参簇，这时候我们就称这个单参簇的生成元为

相应物理操作的生成元。比如，前面我们已经看到，正正正则则则动动动量量量就就就是是是对对对相相相应应应

正正正则则则坐坐坐标标标的的的平平平移移移操操操作作作的的的生生生成成成元元元。

再比如说，对于一个在x − y平面上运动的粒子，我们可以对系统进

行绕原点的旋转操作。实际上，这一旋转操作的生成元就是角动量J =

xpy − ypx。这是因为，J可以生成如下无穷小正则变换

δx = ϵ[x, J ] = ϵ[x, xpy − ypx] = −ϵy,

δy = ϵ[y, J ] = ϵ[y, xpy − ypx] = ϵx,

δpx = ϵ[px, J ] = ϵ[px, xpy − ypx] = −ϵpy,

δpy = ϵ[py, J ] = ϵ[py, xpy − ypx] = ϵpx. (5.79)

不难看出，这正是绕原点的无穷小旋转，ϵ为旋转角度。所以，角角角动动动量量量是是是旋旋旋

转转转操操操作作作的的的生生生成成成元元元。

以上所谈是任意的连续物理操作。但是，如果这一连续操作本身是一

个对称操作，即在操作前后系统的运动微分方程保持形式不变。那就会有

更进一步的结论，也就是诺特定理，它说，这时候这一对对对称称称操操操作作作的的的生生生成成成

元元元必必必定定定是是是守守守恒恒恒量量量。证明非常简单，对称操作由于要保持运动微分方程(由
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哈密顿正则方程给出)的形式不变，因此必定要保持哈密顿量的函数表达

式H(q, p)不变3，设对称操作的生成元为G，从而即有

0 = δH = ϵ[H,G] ⇔ [H,G] = 0. (5.80)

进而根据物理量G的时间演化方程，有

dG

dt
= [G,H] = 0. (5.81)

因此，G必定是守恒量。诺特定理得证。

在前面第三章中，我们在最小作用量原理的框架中证明过诺特定理。

以上我们又在相空间中，在哈密顿正则系统的框架中再次证明了诺特定理。

不同的理论框架能够让我们看清诺特定理的不同侧面，从而增加对这一深

刻结论的理解。

不妨举一个简单的例子。考察一个在x− y平面上运动的粒子，假设系

统处在一个中心力场中，势能为V (r) = V (
√

x2 + y2), 从而系统的哈密顿量

为

H =
1

2m

(
p2x + p2y

)
+ V (

√
x2 + y2). (5.82)

很显然，这个哈密顿量是旋转不变的，因此根据诺特定理，必定有旋转操

作的生成元J = xpy − ypx守恒，即角动量守恒。

再比方说，在上一节关于涡旋运动的讨论中，我们曾经得出，系统的

总动量Px, Py，以及总角动量L, 这三者均守恒。现在我们看到，原因就在

于，Px, Py是平移操作的生成元，L是旋转操作的生成元，而涡旋系统的哈

密顿量既平移不变，又旋转不变。所以，Px, Py, L的守恒其实是诺特定理

的必然结论。

5.2.4 刘维尔定理和庞加莱回归定理

刘维尔定理

前面说过，物理系统在相空间的时间演化过程可以看成一种相空间

流动，记相空间坐标为x，那么这种流动的流速ẋ由哈密顿正则方程ẋ =

3这里考察的是不显含时间的对称操作，即其生成元不显含时间。对于显含时间的情

形，情况会比较复杂一些，虽然诺特定理依然是成立的。不过，不显含时间的情形推理更

为简洁，且更能抓住论证的本质，而显含时间的情况又比较少见，所以我们就不作讨论

了。
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[x, H]给出。而且这一流动过程可以看成是一种持续进行的正则变换。进一

步，我们可以考察所有可能初始状态的演化过程，由于每一个初始状态对

应一个相空间点，因此所有可能相空间点的“流动”就构成了一种相空间

“流体”。刘维尔定理说的就是，这种相空间“流体”是一种不可压缩“流

体”。

具体来说就是，假设初始t = 0时刻在相空间任取一个区域D0, 假设

这个区域随时间演化到t时刻变成了区域Dt, 即D0内的点在t时刻“流到”

了Dt。则刘维尔定理说，这种流动的体积不可压缩，即Dt的体积等于D0的

体积，记为

Vol(Dt) = Vol(D0). (5.83)

如图(5.2)所示，区域Dt相对于D0可以发生很大的形变，但是体积不变。

图 5.2: Vol(Dt) = Vol(D0).

为了证明刘维尔定理，我们首先仔细看一下相空间体积元的定义。以

一个2 · 2 = 4维相空间为例，相空间体积元Ω可以定义为Ω = dp1dq
1dp2dq

2，

用微分形式来写即是Ω = dp1 ∧ dq1 ∧ dp2 ∧ dq2。而容易验证的是，

dp1 ∧ dq1 ∧ dp2 ∧ dq2

=
1

2

(
dp1 ∧ dq1 + dp2 ∧ dq2

)
∧
(
dp1 ∧ dq1 + dp2 ∧ dq2

)
=

1

2!
ω∧2. (5.84)

式中ω为辛形式，ω∧2定义为ω∧2 ≡ ω ∧ ω。推广到2n维相空间的一般情形，

我们可以定义相空间体积元为Ω = dp1dq
1dp2dq

2....dpndq
n，写成微分形式

即是Ω = dp1 ∧ dq1 ∧ dp2 ∧ dq2.... ∧ dpn ∧ dqn。同样可以证明，有

Ω =
1

n!
ω∧n. (5.85)
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式中ω∧n代表将ω用外积∧自乘n次。

(5.85)式告诉我们，相空间体积元唯一由辛形式ω决定。而辛形式ω在

正则变换的微分同胚映射下是保持不变的(即，正则变换保持辛结构)！所

以，相空间体积元，进而任何区域的相空间体积，都在正则变换的微分同

胚映射下保持不变，简称相相相空空空间间间体体体积积积在在在正正正则则则变变变换换换下下下保保保持持持不不不变变变。进一步，物

理系统的时间演化也是一种正则变换，因此，相相相空空空间间间体体体积积积在在在时时时间间间演演演化化化下下下保保保

持持持不不不变变变。这就证明了刘维尔定理。

[插入一个注记：体积元Ω在正则变换下保持不变的一个推论是，正则

变换的雅可比行列式|∂x′

∂x
|等于1，即

|∂x
′

∂x
| = 1. (5.86)

这是因为，体积元在坐标变换下会多出一个雅可比行列式，如果体积元保

持不变，那就说明这个行列式等于1.]

同样的论证也可以用于相空间的任何2k(k ≤ n)维曲面S2k, 其“面积

元”定义为 1
k!
ω∧k。我们同样有：随时间演化的S2k，其其其“““面面面积积积”””将将将保保保持持持不不不

变变变！

特别的，在相空间任取一条闭合回路C，让C随着时间演化，考察辛

势Θ沿着这条闭合回路的积分IC = 1
2π

∮
C
Θ, 由于∮

C

Θ =

∫
S2

dΘ =

∫
S2

ω. (5.87)

式中S2为回路C所包围的区域。从上面的推导易知，IC将在时间演化下保

持不变！

很显然，以上的所有结果不仅对时间演化生成的相流成立，而且对任

何正则变换单参簇的相流都成立！

庞加莱回归定理

设想你有一盒气体，初始时气体分子处于盒子的左侧，右侧是真空，

中间用挡板隔开，如图(5.3)所示。然后你撤去中间的挡板，气体当然就扩

散到右边。但是，庞加莱说，只要你等待的时间足够长，那总有一个时刻，

气体会自动回归到左侧，如图(5.3)所示。 你说，庞加莱肯定错了，因为这

违反了热力学第二定律。但是庞加莱说，热力学第二定律首先要取热力学

极限，即取气体分子数目N → ∞, 而庞加莱回归的时间t ∝ tNc (tc > 1是某
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图 5.3: 盒中气体的庞加莱回归，如右图。图片来自David Tong, Classical

Mechanics, 以下两幅图也是一样.

个特征量)，因此如果你首先取N → ∞，那庞加莱回归就看不到了，因为
这时候t → ∞。所以庞加莱回归其实不违法热力学第二定律，对一个宏观
系统，它的庞加莱回归时间远比宇宙年龄更长，所以实际上观测不到。

庞加莱回归其实是一个数学定理，是可以证明的！为了证明这个定理，

首先要给我们的物理系统加上一个限制条件，即它的实际相相相空空空间间间得得得是是是有有有限限限

的的的。上面盒子中的气体就满足这个条件，这是因为，首先，盒子限制了气

体的空间坐标，使之有限。其次，气体的总能量是守恒的，是一个常数，

因此这就限制了气体分子的动量。每一个气体分子的坐标和动量均有限，

那所有气体分子所构成的6N维相空间当然也有限。

庞庞庞加加加莱莱莱回回回归归归定定定理理理说说说的的的是是是：：：对于一个相空间有限的哈密顿正则系统，

任意取定一个相空间初始点x0，则对于它的任意邻域D0, 必定存在一个

点x′
0 ∈ D0, 它将在有限时间内回归D0。简单地说就是，只要等待的时间足

够长，那么系统总可以回归到和初态任意接近的状态。

定理的证明如下：取定一个有限的时间步长τ , 然后演化初始区域D0，

每次演化一个时间步长τ，直至无穷。从而就可以得到一系列的区域, 记

第k步演化的区域为Dk，k = 0, 1, 2, ...,∞。刘维尔定理告诉我们

Vol(Dk) = Vol(D0), for any k. (5.88)

由此可知，必定存在某对整数k和k′(不妨设k′ > k)，使得

Dk ∩Dk′ ̸= 0, (5.89)

这里0表示空集。如图(5.4)左图所示。因为否则的话，就说明所有的一系

列Dk中任何两个都不相交。由于Vol(Dk)有限，那这将意味着Vol (
∪∞

k=0Dk) =

∞。但这是不可能的，因为整个相空间有限。
记上面的Dk ∩Dk′为Dk′,k, 则

Dk′,k = Dk ∩Dk′ ̸= 0. (5.90)
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图 5.4: 庞加莱回归定理的证明.

但是时间演化过程所导致的微分同胚映射是可逆的。现在，将上面的结果

从第k′步开始往回映射k步，即有

Dk′−k,0 = D0 ∩Dk′−k ̸= 0, (5.91)

如图(5.4)右图所示。因此，Dk′−k,0中的点在第k′ − k步回归了！这就完成了

庞加莱回归定理的证明。

5.2.5 生成函数与哈密顿正则方程

这一小节的核心目标有两个，一是稍微推广一下前面讨论的正则变换，

二是讨论如何构造具体的正则变换。

生成函数

先看如何构造正则变换。前面第(5.2.2)小节的(5.62)式已经得出，一个

变换为正则变换的充分(常常是充要) 条件是满足下式

padq
a − p′adq

′a = dF. (5.92)

式中F为相空间的函数。现在，假设我们取F为某类函数，记为F1(q, q
′),

即F是q和q′的函数，这里符号q代表所有的q坐标，q′代表所有的q′坐标。

则(5.92)式就给出

padq
a − p′adq

′a = dF1

⇒ padq
a − p′adq

′a =
∂F1

∂qa
dqa +

∂F1

∂q′a
dq′a. (5.93)
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很显然，只要取

pa =
∂F1

∂qa
(q, q′) − p′a =

∂F1

∂q′a
(q, q′) (5.94)

就能得到一组(q, p)和(q′, p′)之间的坐标变换，由于它自动满足(5.92)式，所

以显然是正则变换。即是说，我们只要选择不同的F1(q, q
′)函数，就能根

据(5.94)式得到各种不同的正则变换，函数F1(q, q
′)因此称为正则变换的第

一类生成函数。

不妨举一个简单的例子。考虑一个单自由度的系统，因此相空间

为2维，由q, p描述。很明显，下面这个坐标变换是正则变换

q′ = p, p′ = −q. (5.95)

不难验证，这个正则变换可以由第一类生成函数F1 = qq′生成。

下面我们把(5.92)式改写成

padq
a + q′adp′a = d(F + p′aq

′a) = dF2. (5.96)

则很容易看出，只要选F2为q, p′的函数，就能根据下式得到正则变换

pa =
∂F2

∂qa
(q, p′) q′a =

∂F2

∂p′a
(q, p′). (5.97)

F2(q, p
′)因此称为正则变换的第二类生成函数。

很显然，我们也可以构造第三、第四类生成函数，如下

F3(p, q
′) :取 qa = −∂F3

∂pa
(p, q′), p′a = −∂F3

∂q′a
(p, q′)

F4(p, p
′) :取 qa = −∂F4

∂pa
(p, p′), q′a =

∂F4

∂p′a
(p, p′). (5.98)

值得指出的是，这四类生成函数并没有穷尽所有的可能性，比方说，

对于一个2 · 2 = 4维相空间，下面正则变换就不能由以上四类生成函数生成

q′1 = q1, q′2 = p2, p′1 = p1, p′2 = −q2. (5.99)

实际上，它要由一种混合型(第一类和第二类混合)生成函数生成，具体的

生成函数为q1p′1 + q2q′2。
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正则变换与哈密顿正则方程再讨论

我们知道，正则变换以后，新的正则变量x′ = (q′, p′)也满足哈密顿正

则方程。实际上，(5.92)式可以发展成一种证明这一结论的不同方法。为

此，我们将(5.92)式凑成如下形式

padq
a −Hdt = p′adq

′a −Hdt+ dF. (5.100)

然后我们将这个式子两边分别沿着时间积分，从初始的ti积到末尾的tf，即∫ tf

ti

[
padq

a −Hdt
]
=

∫ tf

ti

[
p′adq

′a −Hdt
]
+

∫ tf

ti

dF, (5.101)

可以看到，左边是老正则变量所描述的相空间作用量，右边是新正则变量

所描述的相空间作用量加上一个多出来的全微分项。多出来的全微分项当

然只在积分的上下限有贡献，也就是只在相空间路径的两个端点上有贡献，

可以称之为端点项。如果我们先忽略这个端点项，那很显然，(5.101)式左

边变分等于零就等价于右边变分等于零。左边变分等于零给出的是老正则

变量下的哈密顿正则方程，右边变分等于零给出的当然就是新正则变量下

的哈密顿正则方程。这样我们的证明就完成了。

但是，端点项得小心处理。因为前面第二章讲相空间最小作用量原理

时我们说过，相空间路径端点的q坐标是固定的，但是p坐标不能固定。这

样看来，变分时端点项的变分就不一定是零。这个问题是这样处理的(稍

微有些微妙)：首先，注意到任何变分都是对相空间中一条确定路径的

无穷小变动。因此，我们可以不限定这些确定路径在端点处的p坐标，但

与此同时要求对任何确定路径的无穷小变动在路径两端取零，即不仅要

求δq(ti) = δq(tf ) = 0，也要求δp(ti) = δp(tf ) = 0(虽然p(ti), p(tf )本身不固

定)。因此，这样处理的话，端点项的变分就是零，从而的确可以忽略，上

一段的论证也就没有漏洞了。

到此为止，我们所讨论的主要是不显含时间的正则变换，即正则变量

的变换函数关系x′(x)中不显含时间。如果想将我们的讨论应用到显含时间

的情形，即应用到x′(x, t)的情形，那就应该将前面所有的微分表达式理解

为瞬时进行的，即不不不对对对时时时间间间变变变量量量t微微微分分分。比如(5.92)式中的微分就应该作此

理解。不过，对于这种显含t的情形就无法证明变换后的系统依然满足同

样的哈密顿正则方程了(因为在这种情况下，考虑时间演化时，x′(x, t)要

对t求偏导)。不过，可以证明，只要不取变换后的哈密顿量为原来的H, 而
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是重新选取一个合适的哈密顿量(记为K) (它不仅函数表达式与H不同，而

且是不同的物理量)，那变换后的系统也将满足哈密顿正则方程。

证明如下：首先我们引入一个K, 对K的要求是使得下式成立

padq
a −Hdt = p′adq

′a −Kdt+ dF, (5.102)

注意，这里的微分是对所有的变量进行，包包包括括括对对对t进进进行行行微微微分分分，而式中

的F一般来说也显含t。换言之，为了使得(5.102)式依然满足正则变换的条

件(5.92)，我们应该这样选择K，即使得它刚好抵消(5.102)式中关于t的偏

微分4。容易看出，如果将式中的F取成第一类生成函数F1(q, q
′, t)，那K即

是

K = H +
∂F1

∂t
. (5.103)

下面，从(5.102)式出发，完全类似于上面利用相空间最小作用量原理

的证明过程，就可以得到，变换以后的系统满足如下哈密顿正则方程

q̇′a =
∂K

∂p′a
, ṗ′a = − ∂K

∂q′a
. (5.104)

即是说，在这种情况中，K就是变换以后的哈密顿量。

5.3 哈密顿-雅可比方程

5.3.1 哈密顿-雅可比方程

我们知道，给定q坐标在相空间的起点和终点，给定连接两点的一条相

空间路径
(
q(t′), p(t′)

)
, 我们就可以计算相空间作用量

S[q(t′), p(t′)] =

∫ t

0

[
pa(t

′)dqa(t′)−H(q(t′), p(t′))dt′
]
. (5.105)

这里已经假设0时刻为起始时刻，t为末尾时刻。不妨进一步假设0时刻和末

尾t时刻的q坐标分别为q0和q, 即

qa(0) = qa0 , qa(t) = qa. (5.106)

注意，我们并没有预先给定起末两端的p坐标。

4注意，由于q′ = q′(q, p, t)，所以dq′中其实也包含对t的偏微分。
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现在，假设我们考察的这条路径是一条满足哈密顿正则方程的路径，

即使作用量取极值的路径。我们计算这条路径的作用量，很显然，这个作

用量依赖于预先给定的起末坐标q0和q(起末两端的p坐标是自动被哈密顿

正则方程决定的)。也即是说，extrem[q(t′),p(t′)]S[q(t
′), p(t′)]定义了一个依赖

于t, q0, q的函数，记为S(q0, q, t)，

S(q0, q, t) = extrem[q(t′),p(t′)]S[q(t
′), p(t′)]. (5.107)

为了研究函数S(q0, q, t)，我们假设末端的q发生了一个无穷小变动δq,

极值路径当然会跟着发生一个无穷小改变，但很显然，

δS(q0, q, t) = extremδS[q(t′), p(t′)]

=

∫ t

0

d(paδq
a) + extrem

∫ t

0

dt′
[(
q̇a − ∂H

∂pa

)
δpa −

(
ṗa +

∂H

∂qa
)
δqa
]
.

= pa(t)δq
a(t) = pa(t)δq

a. (5.108)

由此就可以得到，

pa(t) =
∂S

∂qa
(q0, q, t). (5.109)

有了这个关系以后再回顾作用量泛函的表达式(5.105)，就可以发现，

∂S

∂t
(q0, q, t) = −H(q, p). (5.110)

结合(5.109)式和(5.110)式，就可以得到函数S(q0, q, t) 所满足的偏微分方程

∂S

∂t
+H(q,

∂S

∂q
, t) = 0. (5.111)

这就是哈哈哈密密密顿顿顿-雅雅雅可可可比比比方方方程程程，式中我们已经允许了哈密顿量显含时间t (这

对上面的推导没有任何影响)。很显然，哈密顿-雅可比方程不能完全决定

函数S, 至少我们可以给S加上一个任意的常数，这个任意常数对于讨论并

不重要，所以下面我们都忽略它。

下面将推理逻辑反过来，假设我们从哈密顿-雅可比方程出发，我们想

求解这个偏微分方程。那上面的推理过程就告诉我们，如何通过考虑一条

起于q0，t时刻到达q的极值路径，并计算这条路径的作用量泛函，来构造

出哈密顿-雅可比方程方程的解。在这种构造方式中，起始点q0可以看成是

积分常数。这一构造过程也告诉我们，如果极值路径(也称作物理路径，或
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经典路径)可以解析求解(允许用积分来表达)，那就能得到哈密顿-雅可比方

程的形如S(q0, q, t)的解析解。

但是，S(q0, q, t)只是哈密顿-雅可比方程的一类解。而且实际上，我们

通常无法求出其解析形式。进一步，对一个n自由度的系统，如果能找到

哈密顿-雅可比方程的一类形如S(α, q, t)的解析解(允许用积分来表达)，其

中α代表αa(a = 1, 2, ..., n)，为积分常数(类比于前面的q0)。那这样的系统

就称作可可可积积积系系系统统统。后面我们将证明，这n个积分常数αa(a = 1, 2, ..., n)其实

是系统的n个泊松对易的独立守恒量。反过来，如果一个哈密顿力学系统

有n个泊松对易的独立守恒量，那我们就能用这些守恒量构造出哈密顿-雅

可比方程的一类形如S(α, q, t)的解析解。所以，存在n个泊松对易的独立守

恒量是一个哈密顿力学系统成为一个可积系统的充要条件，下一章我们会

进一步讨论这个问题。

一般地，假设找到了哈密顿-雅可比方程的一个解S(q, t)，则根据(5.109)

式，我们就能得到粒子正则动量与正则坐标的函数关系，将之代入哈密顿

正则方程的第一个方程(如下)，就能解出粒子在位形空间的运动路径，

q̇a =
∂H

∂pa
|p= ∂S

∂q
. (5.112)

显然，这种求解运动路径的方法最后只需求解n个一阶常微分方程，而不

是求解n个二阶常微分方程，这当然大大简化了问题。然而(5.112)解出来

的路径真是粒子的经典路径吗？为了证明这一点，我们需要进一步验证哈

密顿正则方程的第二个方程也是满足的。证明如下，首先

ṗa =
d

dt

(
∂S

∂qa

)
=

∂2S

∂t∂qa
+

∂2S

∂qb∂qa
q̇b. (5.113)

其次，将哈密顿雅可比方程(5.111)对q求偏导，有

∂2S

∂t∂qa
+

∂H

∂qa
|p= ∂S

∂q
+

∂H

∂pb
|p= ∂S

∂q

∂2S

∂qb∂qa
= 0

⇒ ∂2S

∂t∂qa
+

∂H

∂qa
|p= ∂S

∂q
+ q̇b

∂2S

∂qb∂qa
= 0.

⇒ ∂2S

∂t∂qa
+ q̇b

∂2S

∂qb∂qa
= −∂H

∂qa
|p= ∂S

∂q
. (5.114)

将最后的结果与上面那个式子比较，就可以得到，ṗa = − ∂H
∂qa
，证明因此就

完成了。
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假设哈密顿量不显含时间，则有能量守恒，记这个守恒量为E, 哈密

顿-雅可比方程当然有依赖于这个守恒量的解，定义

S(E, q, t) = W (E, q)− Et. (5.115)

将这个定义代入哈密顿雅可比方程，就可以得到

H(q,
∂W

∂q
) = E. (5.116)

我们只需求解这个偏微分方程，就能得到原来的哈密顿-雅可比方程的一类

解，这类解的特点是，利用它反过来求解出的粒子运动路径都有同样的能

量E。W (E, q)也常常简记为W (q)，人们有时候称之为哈密顿主函数。

5.3.2 可积系统

上一小节我们说过，如果系统有一个守恒量α，相应的哈密顿-雅可比

方程就有一类依赖于这个守恒量的解，S(α, q, t), 从偏微分方程求解的角度

来看，α就是这类解的积分常数。特别的，对于n自由度的可积系统，人们

能找到n个相互泊松对易(待会儿就能看到泊松对易的要求怎么来的)的独立

守恒量αa, a = 1, 2, ..., n。相应的也能找到哈密顿-雅可比方程的具有n个积

分常数的解析解，记为S(α, q, t) (这里α代表αa, a = 1, 2, ..., n)。

可积系统之所以称作可积系统，是因为可以进一步得出粒子运动路径

的解析解(用积分和隐函数表达出来)。下面我们来证明这个结论。

假设找到了哈密顿-雅可比方程的一类含n个积分常数的解析解，

记为S(α, q, t)，写得更清楚一点就是S(α1, ..., αn, q1, ..., qn, t)。我们可以

将αa, a = 1, 2, .., n看作是正则变换以后新的q坐标，进而考虑(q, p)到(α, β)的

正则变换，其中β代表βa, a = 1, 2, .., n为正则变换以后新的正则动量。我们

将哈密顿-雅可比方程的解S(α, q, t)取作正则变换的第一类生成函数。很明

显，这是一种显含时间的正则变换，变换以后的哈密顿量K为

K = H +
∂S

∂t
. (5.117)

根据哈密顿雅可比方程，我们有

K = 0. (5.118)

进而由变换以后的哈密顿正则方程，可以知道

α̇a = 0, β̇a = 0. (5.119)
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即变换以后的正则坐标αa的确是守恒量，而且因为它们都是正则坐标，所

以泊泊泊松松松对对对易易易！变换以后的正则动量βa也是守恒量，不过，由于正则动量和

正则坐标的泊松括号不是零，所以它们与αa并不泊松对易，实际上，对它

们的更好解释是，将之看成初始条件。

由第一类生成函数的知识可以知道

βa = − ∂S

∂αa
. (5.120)

解这组式子就能得到位形空间的运动路径qa(t)(作为α, β的函数)。进一步，

无论是由前面的(5.109)式，还是由第一类生成函数的知识，我们都有

pa =
∂S

∂qa
. (5.121)

这一组方程就进一步决定了函数pa(t)。可见，可积系统粒子运动路径的解

析解是可以得到的。

5.3.3 举例：哈密顿雅可比方程求解中心力场问题

中心力场问题其实就是一个可积系统。因为这个系统的自由度数为3，

而它也存在3个相互泊松对易的守恒量，即H,J2, Jz，这里J是系统的角动

量，Jz是它的z分量。J2, Jz这两者与H泊松对易是因为系统具有旋转对称

性，而[J2, Jz] = 0我们前面在讲泊松括号的时候提到过。下面我们来看如

何从哈密顿-雅可比方程得到中心力场问题的解析解。

首先，由于角动量守恒，粒子必定作平面运动，进而可以将自由度数

降低为2。我们取粒子的运动平面为x − y平面，因此可以写出系统的哈密

顿量

H =
1

2m

(
p2x + p2y

)
+ V (r). (5.122)

其次，在x− y平面上取极坐标x = r cos θ, y = r sin θ。利用辛势在两种坐

标系中的不同表达，我们有

pxdx+ pydy = prdr + pθdθ. (5.123)

由此即得pr = px cos θ + py sin θ, pθ/r = −px sin θ + py cos θ. 进而可以得到

p2x + p2y = p2r +
p2θ
r2
. (5.124)
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从而可以将哈密顿量在极坐标中写成

H =
1

2m

(
p2r +

p2θ
r2
)
+ V (r). (5.125)

当然，人们也可以通过先写出极坐标中的拉格朗日量，再进行勒让德变换

的方式得到上面的式子。

由于能量守恒，我们可以设

S(q, t) = W (r, θ)− Et. (5.126)

进而由(5.116)式，即有

1

2m

[(∂W
∂r

)2
+

1

r2
(∂W
∂θ

)2]
+ V (r) = E.

⇔ r2
[
2m
[
E − V (r)

]
−
(∂W
∂r

)2]
=
(∂W
∂θ

)2
. (5.127)

很明显，我们可以用分离变量的方式解上面的方程，即设

W (r, θ) = W1(r) +W2(θ). (5.128)

代入(5.127)即有

r2
[
2m
[
E − V (r)

]
−
(∂W1

∂r

)2]
=
(∂W2

∂θ

)2
, (5.129)

方程的左边只依赖于r, 而方程的右边只依赖于θ，左右要相等，那只能是都

等于一个常数(由于右边是完全平方，所以是一个大于零的常数)，设这个

常数为J2，从而有

dW1

dr
=

√
2m
[
E − V (r)

]
− J2

r2

dW2

dθ
= J. (5.130)

将这个式子积分，即有

W1(r) =

∫
dr

√
2m
[
E − V (r)

]
− J2

r2

W2(θ) = Jθ. (5.131)
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因此即有

S =

∫
dr

√
2m
[
E − V (r)

]
− J2

r2
+ Jθ − Et. (5.132)

式中我们已经忽略了不重要的相加常数。

从(5.130)的第二个式子可以清楚地看到，pθ = ∂S
∂θ

= ∂W2

∂θ
= J为守恒

量，这就是角动量，另一个守恒量就是能量E。它们也是哈密顿-雅可比方

程的两个积分常数，不妨记α1 = E,α2 = J。则根据上一小节的理论，我们

还有下面两个运动积分

β1 = − ∂S

∂E
= t−

∫
dr

m√
2m
[
E − V (r)

]
− J2

r2

,

β2 = −∂S

∂J
=

∫
dr

J/r2√
2m
[
E − V (r)

]
− J2

r2

− θ. (5.133)

实际上，人们通常记β1 = t0为初始时刻，记−β2 = θ0为初始角度。这样，

我们就完全解出了中心力场问题。人们可以将这里的结果和第四章中的相

应结果进行比较，两者是完全一致的。


