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物理学的局部视角与全局视角

令人吃惊的是，看待经典力学有两种不同的视角：
▶ 局部视角，它说粒子在相空间中按照哈密顿正则方程演化，对于
单粒子这个方程是

dp
dt

= −∂H
∂x ,

dx
dt

=
∂H
∂p . (1)

这也就是前面第 1章讲述的内容。
▶ 全局视角，也就是所谓的最小作用量原理，它说粒子在相空间中
不是按照哈密顿正则方程这样的微分方程演化，粒子是按“代价”
最小的相空间路径演化。即是说，粒子的演化路径有无穷多种可
能性，每一条可能的演化路径都要付出一个相应的“代价”，而粒
子的真实演化路径是所有可能路径中“代价”最小的那条，严格
一点说应该是“代价”取极值的那条。每一条路径的“代价”就叫
做这条路径的作用量，记为 S,它由下式给出

S[x(t),p(t)] =
∫ [

p · ẋ − H(x,p)
]
dt . (2)

▶ 这两种视角在物理上完全等价!
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物理学的局部视角与全局视角

局部视角称作蚂蚁视角 (蚂蚁太小，每一只蚂蚁都只能看到一个很小的
邻域)，而最小作用量原理这样的全局视角称得上是上帝视角。

看待物理的蚂蚁视角源自于牛顿，正是牛顿想到用微分方程来描述物
理规律。而上帝视角则源自于几何光学中的费马原理，然后经过莫培
督 (Maupertuis)和哈密顿等人推广到力学里来。实际上，最小作用量
原理有时候也称作哈密顿原理。不可思议的是，我们可以用这样两种
完全不同的视角来看待同样的物理。
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从费马原理到变分法
费马原理

皮埃尔·德·费马 (1607年
10月 31日- 1665年 1月 12日)
是一位法国数学家，他对微积
分的早期发展有重要贡献。尤其
值得一提的是，他发现了一种寻
找曲线的最大和最小值的原始方
法，这种方法类似于当时未知的
微积分。他在解析几何、概率论
和光学方面都做出了杰出的贡献。
他最著名的著作是关于光传播的
费马原理和在数论中的费马最后
定理，他在丢番图的一本《算术》
边上的注释中描述了这一点。他
也是法国图卢兹议会的一名律师。
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从费马原理到变分法
费马原理

费马在古希腊数学家希罗 (Hero of Alexandria)的最短路径原理基础上
提出：光走时间最短的路径，这就是几何光学的费马原理。假设真空
中的光速为 c，介质的折射率为 n(x),记 dl = |dx|，则费马原理说的
是，给定初末两点，光走时间 t 最小的路径，

t =
∫

dl
v

=
1

c

∫
n(x)|dx|. (3)

式中 v = c/n为介质中的光速。

显然，费马原理也可以等价地说成是，光走光程最短的路径，光程 S 为

S =

∫
n(x)|dx|. (4)

可以证明，从费马原理出发，能够导出几何光学的所有定律，包括光
的反射定律、折射定律，以及透镜成像的规律等等。具体的证明可以
参见《费恩曼物理学讲义》第一卷，第 26，27章。
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从费马原理到变分法
费马原理

下面来看数学上该如何处理费马原理：考虑一种特殊情况，设光线在
x − y 平面内运动，再设折射率仅仅依赖于 y 坐标，则光程的表达式为

S =

∫
n(y)|dx| =

∫
n(y)

√
(dx)2 + (dy)2

=

∫
n(y)

√
1 + (

dy
dx

)2dx

=

∫
n(y)

√
1 + (y ′)2dx . (5)

式中 y ′ = dy
dx，我们用函数 y(x)来描写光在 x − y 平面上的可能路径。

另外，光线的起末两点是给定的，假设起点为 a，终点为 b，则这意味
着光的任何可能路径 y(x)都以这两点为端点，即满足

y(a) = ya, y(b) = yb fixed (6)

根据费马原理，光真实所走的路径 yc(x)应该是所有满足 (6)式的两端
固定的函数 y(x)中，使得 (5)式给出的光程 S[y(x)]取极小值的那一
个特定函数。
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从费马原理到变分法
费马原理

光真实所走的路径 yc(x)应该是所有满足 (6)式的两端固定的函数
y(x)中，使得 (5)式给出的光程 S[y(x)]取极小值的那一个特定函数，
如图 (1)所示。光程 S 依赖于可能路径 y(x),是路径 y(x)的泛函，所
以记作 S[y(x)]。

Figure:光的路径
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从费马原理到变分法
费马原理

从 (5)式可以看出，光程 S 的被积函数的表达式既依赖于 y(x)，又依
赖于 y ′(x)。我们不妨抽象一步，将这个被积表达式写成 L(y , y ′)，在
这里即 L(y , y ′) = n(y)

√
1 + (y ′)2，但是下文的讨论将不限于这一特定

的 L函数。所以我们要做的就是在所有两端由 (6)式给出的函数 y(x)
中，找出使得下面的表达式 S[y(x)]取极值的那个特定函数，

S[y(x)] =
∫ b

a
dxL(y , y ′). (7)

这就把费马原理变成了一个纯粹的数学问题，这个数学问题最早是欧
拉和拉格朗日解决的。他们的方法就是我们即将介绍的变分法，它的
本质其实就是多变量微分，只不过这个多变量是多到无穷个实变数！

ct |经典力学新讲第 2章



9

从费马原理到变分法
变分和泛函导数

让我们从多变量求导和微分出发来理解变分法：对于多变量函数
S(y1, y2, ....)的极值问题，显然应该求解 ∂S

∂yi
= 0, i = 1, 2, ...。定义函数

偏导的一种方法是通过微分，即将

dS = S(y1 + dy1, y2 + dy2, ....)− S(y1, y2, ...), (8)

展开到各无穷小量 dyi , i = 1, 2, ...的一阶，一阶无穷小量前面的展开系
数就是 ∂S

∂yi
，即是说，我们有

dS(y1, y2, ...) =
∑

i

∂S
∂yi

dyi . (9)

因此多变量函数的极值条件即是

dS = 0. (10)
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从费马原理到变分法
变分和泛函导数

下面我们做两个很平凡的操作：
▶ 考虑到自变量很多，我们把函数 S(y1, y2, ....)重记为 S[yi ]。
▶ 把指标 i 改写成 x，则按照刚才的记号，这个多变量函数就应该记
为 S[yx ],而上面的两个方程 (8)和 (9)就应该重写成

dS[yx ] = S[yx + dyx ]− S[yx ], dS[yx ] =
∑

x

∂S
∂yx

dyx . (11)

下面是关键的一步，我们假设上面的指标 x 是一个连续指标。就微积
分的实质而言连续指标和离散指标并没有什么不同，但在数学形式上
的确有些不同，比方说对离散变量的求和过渡到连续情形那就应该变
成积分。为了强调连续指标的不同，我们将 (11)式中所有的微分号
(包括偏导符号)换一种写法，写成 δ(其本质含义依然是一阶无穷小),
然后将求和变成积分。这样一来，(11)式就变成了

δS[yx ] = S[yx + δyx ]− S[yx ], δS[yx ] =

∫
dx

δS
δyx

δyx . (12)
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从费马原理到变分法
变分和泛函导数

最后一步，既然 x 是连续指标，yx 当然也可以看成是 x 的一个函数，
重写为 y(x)。即是说，连续多个自变量刚好可以看成是以函数 y(x)为
自变量，而刚才的记号 S[yx ]也就成了 S[y(x)]，它表示 S 是依赖于未
定函数 y(x)的，是以未定函数 y(x)为自变量的某种“函数”，我们知
道，这也就是泛函。而 (12)式中的第一个方程也就变成了，

δS[y(x)] = S[y(x) + δy(x)]− S[y(x)], (13)

这称作泛函的变分，按照定义它要展开到无穷小函数 δy(x)的一阶项。
这个式子的含义就是，当作为自变量的函数 y(x)发生无穷小改变
δy(x)时，泛函 S[y(x)]的改变量。当然，变分和普通的微分本质是一
样的，只不过现在的自变量按照普通的实变数来理解有连续统的无穷
多个。
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从费马原理到变分法
变分和泛函导数

现在，函数求极值的方程 (10)也就变成了泛函取极值的方程，

δS[y(x)] = 0. (14)

即是说，泛函取极值时，泛函的值在自变量函数的无穷小改变下保持
不变。

同样的，(12)式中的第二个方程现在就变成了

δS[y(x)] =
∫

dx
δS

δy(x)
δy(x). (15)

式中无穷小量 δy(x)前面的系数 δS
δy(x) 就叫做泛函导数，很显然，它和

普通导数本质完全一样，只不过现在的自变量按照普通的实变数来理
解有连续统的无穷多个。而上面式子中对 x 的积分本质不过就是对所
有的变量求和。
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从费马原理到变分法
变分和泛函导数

既然变分的本质其实就是微分，那它当然也满足微分的那些规则，比
方说莱布尼兹法则，即假设 f ,g 为两个关于 y(x)的泛函，则

δ(fg) = (δf )g + f (δg). (16)

但是变分并不是普通的微分，普通的微分和积分是对变量 x 进行的，
而 x 在变分中不过是一个指标，真正的变量是 y(x) = yx ,变分是对 yx
进行的。这就产生了一些新的东西，因为我们当然可以同时对指标 x
进行普通的微分和积分，由于这些操作是作用在指标上，它当然和对
yx 本身的“微分”(即变分)操作可交换顺序。由此我们知道，变分可
以和普通的微分与积分交换顺序！
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从费马原理到变分法
变分和泛函导数

最简单的关于 y(x)的泛函就是 y(x)本身，具体来说，我们将 y(x)理
解为函数 y 在某个特定 x 处的取值，它当然依赖于函数 y 本身，所以
是一个泛函。对这个泛函进行变分，即有

δy(x) =
∫

dx ′δ(x − x ′)δy(x ′), (17)

式中 δ(x − x ′)为狄拉克的 δ 函数 (参见数理方法的书)。将这个结果与
泛函导数的定义式 (15)比较容易知道

δy(x)
δy(x ′)

= δ(x − x ′). (18)

这个例子说明，除了可以应用泛函导数对应的求导规则 (比如链式法
则)之外，泛函导数往往都是通过变分来进行计算的。
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从费马原理到变分法
欧拉-拉格朗日方程

下面回到我们在费马原理的例子中提出来的变分问题，我们要求的是
下面泛函的极值

S[y(x)] =
∫ b

a
dxL(y , y ′). (19)

这里有一个额外的限制条件，即所有可能函数 y(x)在 a,b 两端都是固
定的，也即是说，当我们对 y(x)进行变分时，这两端要固定不变，即

δy(a) = δy(b) = 0. (20)

上面我们说过，泛函取极值的条件是变分等于零，由此我们就可以解
出费马原理提出的变分问题。
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从费马原理到变分法
欧拉-拉格朗日方程

首先我们注意到 L(y , y ′)关于 y 和 y ′ 是普通的函数关系，因此按照变
分的定义，我们有

δL(y , y ′) = L(y + δy , y ′ + δy ′)− L(y , y ′)

=
∂L
∂y

δy +
∂L
∂y ′ δy ′

=
∂L
∂y

δy +
∂L
∂y ′ (δy)′. (21)

最后一个等号我们利用了变分可以和普通的求导交换顺序。
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从费马原理到变分法
欧拉-拉格朗日方程

由此我们有

δS[y(x)] =
∫ b

a
dxδL(y , y ′)

=

∫ b

a
dx

[∂L
∂y

δy +
∂L
∂y ′ (δy)′

]
=

∫ b

a
dx

[∂L
∂y

δy +
d
dx

( ∂L
∂y ′ δy

)
− d

dx

( ∂L
∂y ′

)
δy

]
=

∫ b

a
dx

d
dx

( ∂L
∂y ′ δy

)
+

∫ b

a
dx

[∂L
∂y

− d
dx

( ∂L
∂y ′

)]
δy

=
∂L
∂y ′ δy |ba +

∫ b

a
dx

[∂L
∂y

− d
dx

( ∂L
∂y ′

)]
δy

=

∫ b

a
dx

[∂L
∂y

− d
dx

( ∂L
∂y ′

)]
δy . (22)
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从费马原理到变分法
欧拉-拉格朗日方程

所以由泛函取极值的条件 δS = 0，我们可以导出

δS =

∫ b

a
dx

[∂L
∂y

− d
dx

( ∂L
∂y ′

)]
δy = 0. (23)

但是，变分 δy(x)作为一个普通函数来看的话是一个取无穷小函数值
但是函数形式任意的函数，因此有

δS
δy(x)

=
∂L
∂y

− d
dx

( ∂L
∂y ′

)
= 0. (24)

这就是著名的欧拉-拉格朗日方程。通过上面的推导我们知道，使得泛
函取极值的那个特定函数 yc(x)必然要满足这个欧拉-拉格朗日方程，
反过来也一样，满足欧拉-拉格朗日方程的函数必然使得泛函 S[y(x)]
取极值。
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从费马原理到变分法
欧拉-拉格朗日方程

比方说，对于前面费马原理中提到的特定函数
L(y , y ′) = n(y)

√
1 + (y ′)2，我们代入欧拉-拉格朗日方程，就可以导出

光的路径所要满足的方程，即

dn
dy

√
1 + (y ′)2 − d

dx

(
n(y)

y ′√
1 + (y ′)2

)
= 0.

⇒(1 + (y ′)2)
dn
dy

− n(y)y ′′ = 0. (25)

进而容易验证必有 (不要试图去推导，反过来验证比较简单)

d
dx

( n(y)√
1 + (y ′)2

)
= 0 ⇔ n(y)√

1 + (y ′)2
= C. (26)
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从费马原理到变分法
欧拉-拉格朗日方程

但是，我们刚才处理的是一个特殊的费马原理问题，对于一般的费马
原理问题，光程函数由 (4)式给出。为了将这一问题转化为一个变分问
题，我们引入参数 s 来将光的路径参数化，从而得到光程泛函 S[x(s)],

S[x(s)] =
∫ sf

si

n(x)|dx
ds

|ds. (27)

我们要做的就是用变分法求解这个泛函的极值，同样，这里要求所有
可能路径的端点是固定的，即在起末两端有

δx(si) = δx(sf ) = 0. (28)
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从费马原理到变分法
欧拉-拉格朗日方程

我们发现，上面这个极值问题的泛函 S[x(s)]具有如下结构

S[x(s)] =
∫ sf

si

dsL(x, ẋ), (29)

式中 ẋ = dx
ds ,函数 L(x, ẋ) = n(x)|ẋ|。很显然，这个泛函和我们刚才在

推导欧拉-拉格朗日方程时处理的泛函具有完全类似的结构，只要将刚
才的 x 替换成这里的 s，将之前的 y(x)替换成这里的 x(s)就可以了。
所以我们有完全类似的欧拉-拉格朗日方程，

∂L
∂x − d

ds

(∂L
∂ẋ

)
= 0. (30)
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相空间的最小作用量原理

相空间，即粒子的位置坐标和动量一起所构成的空间，对于单粒子体
系，相空间就是 (x,p)空间，粒子在相空间中按照哈密顿正则方程演
化。然而最小作用量原理提供了一种看起来完全不同的观点，它说，
粒子在相空间的真实演化路径是所有可能路径中使得作用量 S 取极值
的那条路径，作用量 S 由下式给出

S[x(t),p(t)] =
∫ tf

ti

[
p · ẋ − H(x,p)

]
dt . (31)

显然，这个泛函极值问题具有 S[x(t),p(t)] =
∫ tf

ti
dtL(x,p, ẋ)的结构，

这正好是欧拉-拉格朗日方程能够处理的泛函极值问题。当然，需要将
前面推导欧拉-拉格朗日方程时的 x 替换成这里的 t，将 y(x)替换成这
里的 (x(t),p(t))。我们会发现这时候欧拉-拉格朗日方程正好给出了哈
密顿正则方程。但这样做掩盖了一个微妙的问题。
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相空间的最小作用量原理

问题就是，最小作用量原理的这个泛函极值问题实际上和费马原理那
一类泛函极值问题有一点微妙的区别，那就是，在这里可能的相空间
路径 (x(t),p(t))的两个端点不能完全固定！基本原因在于，前面欧
拉-拉格朗日方程给出的都是二阶微分方程，而在这里这个泛函极值路
径所要满足的哈密顿正则方程则是一组一阶微分方程，要确定这样的
一阶微分方程的解我们只能要么给定它在起端 (即初始时)的值，要么
给定它在末端的值，而不能同时任意指定它的初始值和末尾值！

当然，在这里，完全固定起端或者完全固定末端都不是我们的正确选
择，正确的做法是固定起末两端的 x坐标，但是，完全不限制这两端
的 p坐标，也就是只要求

δx(ti) = δx(tf ) = 0. (32)
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相空间的最小作用量原理

即是说，在现在的泛函极值问题中，可能的相空间路径如图 (2)所示。

Figure:可能的相空间路径。注意时间 t 我们没有画出。
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相空间的最小作用量原理

δS[x(t),p(t)] =
∫ tf

ti

[
δp · ẋ + p · δẋ − δH(x,p)

]
dt .

=

∫ tf

ti

[
δp · ẋ +

d
dt

(
p · δx

)
− ṗ · δx − δH(x,p)

]
dt

= p · δx|tfti +
∫ tf

ti

[
δp · ẋ − ṗ · δx − δH(x,p)

]
dt

=

∫ tf

ti

[
δp · ẋ − ṗ · δx − ∂H

∂x · δx − ∂H
∂p · δp

]
dt

=

∫ tf

ti

[(
ẋ − ∂H

∂p

)
· δp −

(
ṗ +

∂H
∂x

)
· δx

]
dt (33)

最后由泛函极值方程 δS = 0，就能得到
δS
δp(t) = ẋ − ∂H

∂p = 0,
δS
δx(t) = −

(
ṗ +

∂H
∂x

)
= 0. (34)

当然，这正是哈密顿正则方程。ct |经典力学新讲第 2章
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相空间的最小作用量原理

由此我们就证明了，最小作用量原理这种看起来完全不同的全局视角，
其结果和力学规律的微分方程视角完全等价！值得提醒大家的是，对于
一般的哈密顿系统，动量 p与速度 ẋ之间的关系将不一定是 p = mẋ，
两者的关系应该由以上哈密顿正则方程的第一个方程 ẋ = ∂H

∂p 去确定。

很容易将上面的最小作用量原理推广到多粒子情形。假设有 N 个粒子，
每个粒子 3个坐标，因此共有 3N 个坐标，我们可以用指标
µ = 1, 2, ...., 3N 来区分它们，相应的位置坐标就标记为 xµ，动量坐标
就标记为 pµ (注意动量是下指标，位置是上指标)，利用上下指标的求
和约定，就可以把多粒子的相空间作用量写成

S[x(t),p(t)] =
∫ tf

ti
dt
[
pµẋµ − H(x ,p)

]
. (35)

式中 H(x ,p)是 H(x1, ..., x3N ,p1, ..., p3N)的简记符号，S[x(t),p(t)]也
是作类似理解。
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相空间的最小作用量原理

完全类似的变分，就能得出多粒子情形的哈密顿正则方程，如下

ẋµ =
∂H
∂pµ

, ṗµ = − ∂H
∂xµ

. (36)

注意这两个式子等号左右两边的指标对应关系，即，对一个上指标的
量求导，其结果相当于一个下指标的量，而对一个下指标的量求导，
其结果则相当于一个上指标的量。

所以，只要写出相空间作用量，我们就能得到哈密顿正则方程，但是
从相空间作用量的一般表达式可以知道，写出具体的作用量关键在于
写出具体的哈密顿量，一个系统的哈密顿量怎么写呢？简单来说就是
所有对系统能量有贡献的都要包括进哈密顿量。
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相空间的最小作用量原理

不过，也有很多系统，人们甚至无法判断有哪些项对系统能量有贡献，
这时候想写出哈密顿量并不容易，因此写出相空间作用量的具体形式
当然也不容易。好在，马上我们会介绍一个坐标空间 (或者说位形空
间)的最小作用量原理，它里面用到的作用量是表达在坐标空间的作用
量，这时候，人们往往可以根据系统所满足的对称性直接写出它的具
体表达式 (即是说，对称性限制作用量)，有了这个作用量在坐标空间
的表达式，随之就能得到运动微分方程，甚至还能反过来得到系统哈
密顿量的表达式。

ct |经典力学新讲第 2章



29

相空间的最小作用量原理

作为一个物理量，作用量的量纲是什么？回答很简单，作用量的量纲
等于能量量纲乘以时间量纲，或者也可以说等于动量量纲乘以长度量
纲。简言之，作用量与角动量同量纲。为了看清楚这一点，只需注意到
作用量等于 pẋ − H 对时间的积分，pẋ 和能量同量纲，而哈密顿量当
然是能量量纲，所以 pẋ − H 也是能量量纲，再对时间积分，就是能量
量纲乘以时间量纲。
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相空间的最小作用量原理

作为一个物理量，作用量的量纲是什么？回答很简单，作用量的量纲
等于能量量纲乘以时间量纲，或者也可以说等于动量量纲乘以长度量
纲。简言之，作用量与角动量同量纲。为了看清楚这一点，只需注意到
作用量等于 pẋ − H 对时间的积分，pẋ 和能量同量纲，而哈密顿量当
然是能量量纲，所以 pẋ − H 也是能量量纲，再对时间积分，就是能量
量纲乘以时间量纲。
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坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

为了理解如何从相空间的最小作用量原理走向坐标空间的最小作用量
原理，我们来看一个二元函数求极值问题。假设要求一个二元函数
S(x , y)的极值，则需要求解下面两个方程

∂S
∂x

= 0,
∂S
∂y

= 0. (37)

我们当然可以同时求解这两个方程，但是，等价的，也可以先求解
∂S
∂y = 0，得到一个关系式 y = ϕ(x)，然后将这个关系式代入原来的二
元函数 S(x , y)中，得到一个一元函数 S(x , ϕ(x))，然后再求解这个一
元函数的极值，

dS
dx

=
∂S
∂x

+
∂S
∂y

∂ϕ

∂x
= 0. (38)

很明显，两种不同方法得出来的结果是一样的。
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坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

下面我们以单粒子情形为例，说明以上思路如何导出坐标空间的最小
作用量原理。我们的出发点是相空间的最小作用量原理，即求泛函
S[x(t),p(t)]的极值，我们知道，这其实就是要求解下面两个方程

δS
δx(t) = 0,

δS
δp(t) = 0. (39)

前面处理相空间最小作用量原理时 [(34)式]，我们是同时给出这两个
方程，设想人们会同时求解它们。现在，按照上一段的思路，我们先求
解第二个方程，即

δS
δp(t) = ẋ − ∂H

∂p = 0. (40)

假设由这个方程解出了一个 p(t)关于 x(t)的泛函表达式 (注意 ẋ(t)也
是一个 x(t)的泛函)，比方说 p(t) = ϕ[x(t)],则当将这个泛函关系代入
原来的相空间作用量 S[x(t),p(t)]时，得到的 S[x(t), ϕ[x(t)]]就是所谓
的坐标空间作用量泛函。剩下只要将这个坐标空间作用量泛函对坐标
x(t)变分求极值就可以了！
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坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

通常我们将这个坐标空间作用量泛函 S[x(t), ϕ[x(t)]]记为 S[x(t)]，希
望大家不要和原来的相空间作用量泛函 S[x(t),p(t)]混淆。原来的相空
间作用量泛函具有 S[x(t),p(t)] =

∫
dtL(x,p, ẋ)的结构，其中

L(x,p, ẋ) = p · ẋ − H(x,p). (41)

我们注意到，方程 (40)实际上就是求这个函数 L(x,p, ẋ)关于变量 p的
极值，不妨定义一个新的函数，记为 L(x, ẋ)(希望大家不要和原来的
L(x,p, ẋ)混淆)

L(x, ẋ) = extrempL(x,p, ẋ) = extremp
[
p · ẋ − H(x,p)

]
. (42)

则很明显，新的坐标空间作用量泛函 S[x(t)]其实就是

S[x(t)] =
∫ tf

ti
L(x, ẋ)dt . (43)

式中 L(x, ẋ)由 (42)式给出，它有一个专门的名称，叫做拉格朗日量。
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坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

所谓坐标空间最小作用量原理，其实就是求泛函 S[x(t)]在坐标空间的
极值路径，当然在变分时我们要求

δx(ti) = δx(tf ) = 0. (44)

从前面关于二元函数极值问题的讨论中容易知道，这个坐标空间的最
小作用量原理和原来的相空间最小作用量原理是等价的！

从哈密顿量 H(x,p)得出拉格朗日量 L(x, ẋ)的过程称之为勒让德变换，
反过来可以证明，哈密顿量 H(x,p)也是拉格朗日量 L(x, ẋ)的勒让德
变换，即

extremẋ
[
p · ẋ − L(x, ẋ)

]
= H(x,p). (45)
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坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

证明过程如下，

extremẋ
[
p · ẋ − L(x, ẋ)

]
=extremẋ

[
p · ẋ − extremp′

[
p′ · ẋ − H(x,p′)

]]
=extremẋextremp′

[
(p − p′) · ẋ + H(x,p′)

]
=extremp′,ẋ

[
(p − p′) · ẋ + H(x,p′)

]
=H(x,p). (46)

所以，拉格朗日量和哈密顿量互为对方的勒让德变换。

ct |经典力学新讲第 2章



36

坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

比方说，对于我们熟知的最简单的单粒子哈密顿量
H(x,p) = p2

2m + V (x)，由 ẋ = ∂H
∂p = p/m,我们容易解出 p = mẋ，从而

根据勒让德变换 (42)，容易得到单粒子的拉格朗日量

L(x, ẋ) = extremp
[
p · ẋ − p2

2m
− V (x)

]
=

1

2
mẋ2 − V (x). (47)

我们发现这个拉格朗日量碰巧等于动能减去势能 (这个结论也可以推广
到多粒子情形)。因此相应的坐标空间作用量泛函就是

S[x(t)] =
∫ tf

ti
dt
[1
2

mẋ2 − V (x)
]
. (48)
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坐标空间的最小作用量原理
最小作用量原理与拉格朗日方程

很显然的是，坐标空间的最小作用量原理完全可以用前面导出来的欧
拉-拉格朗日方程来处理，从而有

∂L
∂x − d

dt
(∂L
∂ẋ

)
= 0. (49)

这就是所谓的拉格朗日力学的欧拉-拉格朗日方程，式中的 L就是拉格
朗日量 L(x, ẋ),因此这个方程通常也称为拉格朗日方程！比方说，对于
单粒子拉格朗日量 L(x, ẋ) = 1

2mẋ2 − V (x),拉格朗日方程给出来的是

m
d2x
dt2

= −∂V
∂x . (50)

这正是牛顿运动定律！
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坐标空间的最小作用量原理
发现洛伦兹力

既然坐标空间的最小作用量原理和相空间的最小作用量原理等价，我
们为什么还要专门讨论它呢？而且某种意义上甚至它的重要性还要超
过相空间的最小作用量原理。这是因为，有时候推广拉格朗日量比直
接写哈密顿量要简单，下面举一个例子说明。

单粒子最简单的拉格朗日量是 L = 1
2mẋ2 − V (x),它关于速度是一个二

次型，人们禁不止想问，如果在拉格朗日量中加上一个速度的一次方
项会怎么样呢？最简单的尝试是设这一项为

∫
dtA · ẋ,其中 A为一个

常矢量，但事实上，这一项不会产生任何结果，原因在于它显然是一
个全微分项，积分以后就成了 A · (x(tf )− x(ti))，但是 x(t)在两个端点
是固定的，所以变分的时候多出来的这一项贡献实际为零，因此不会
产生任何影响。
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坐标空间的最小作用量原理
发现洛伦兹力

那么，如果假设 A依赖于 x会怎么样呢？这时候拉格朗日量就是

L =
1

2
mẋ2 + A(x) · ẋ − V (x). (51)

这时候作用量 S[x(t)]为

S[x(t)] =
∫ tf

ti
dt
[1
2

mẋ2 + A(x) · ẋ − V (x)
]

=

∫ tf

ti
dt
[1
2

mẋ2 − V (x)
]
+

∫
Aj(x) · dx j . (52)

这里我们使用了矢量的分量形式，也使用了求和约定。
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坐标空间的最小作用量原理
发现洛伦兹力

下面要做的就是对这个作用量进行变分，前两项的变分是通常的，我
们直接写出结果 (用分量形式)，我们将注意力集中在新加的这一项上，
从而有 (令 ∂i =

∂
∂x i )

δS = −
∫ tf

ti
dt
[
mẍi + ∂iV (x)

]
δx i + δ

∫
Aj · dx j

= −
∫ tf

ti
dt
[
mẍi + ∂iV (x)

]
δx i +

∫ (
∂iAjδx idx j + Aidδx i)

= −
∫ tf

ti
dt
[
mẍi + ∂iV (x)

]
δx i +

∫
d(Aiδx i) +

∫ (
∂iAjδx idx j − dAiδx i)

= −
∫ tf

ti
dt
[
mẍi + ∂iV (x)

]
δx i +

∫ (
∂iAj − ∂jAi

)
dx jδx i

= −
∫ tf

ti
dt
[
mẍi + ∂iV (x)− Fij ẋ j]δx i . (53)

式中 Fij = ∂iAj − ∂jAi ,式中第 4个等号利用了路径两端固定从而全微
分项积出来实际为零。
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坐标空间的最小作用量原理
发现洛伦兹力

最小作用量原理告诉我们，δS = 0，由此可以得到

δS
δx i(t)

= −
[
mẍi + ∂iV (x)− Fij ẋ j] = 0

⇒ mẍi = −∂iV (x) + Fij ẋ j . (54)

我们看到，在拉格朗日量中多加上这一项，其效果就是，牛顿定律右
边多了一个力 Fij ẋ j ,这个力初看起来很陌生，实际上，它正可以代表洛
伦兹力！

ct |经典力学新讲第 2章



42

坐标空间的最小作用量原理
发现洛伦兹力

我们注意到 Fij = ∂iAj − ∂jAi ,很容易看出，它实际上就是对矢量场 求
旋度的分量式写法，比如 ∂xAy − ∂y Ax 其实就是 (∇× A)z。因此，Fij
和磁场强度 B的分量形式是一一对应的，人们可以使用所谓的列维-席
维塔符号 ϵijk，将这两者之间的对应关系写成 Fij = ϵijk Bk。这里 ϵijk 关
于三个指标是全反对称的，即任意两个指标交换顺序都会出一个负号
(因此当三个指标中有两个取值一样时就会得到 0)，比如说 ϵjik = −ϵijk，
并且 ϵ123 = 1。

利用 Fij = ϵijk Bk，我们就可以将 (54)式重写成

mẍi = −∂iV (x) + ϵijk ẋ jBk . (55)

容易验证，这个式子的矢量形式正是

mẍ = −∇V + ẋ × B. (56)

这和洛伦兹力的表达式已经几乎一样了。为了得到完全正确的洛伦兹
力，只需将拉格朗日量中的 A替换成 qA(q 是粒子的电荷),并将这个
A理解为所谓的矢量势就可以了。矢量势和磁场 B的关系是
B = ∇× A。
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坐标空间的最小作用量原理
发现洛伦兹力

我们就这样“发现”了洛伦兹力！描述洛伦兹力的正确拉格朗日量是

L(x, ẋ) = 1

2
mẋ2 + qA(x) · ẋ − V (x). (57)

为了将它勒让德变换得到哈密顿量，我们需要求
∂

∂ẋ
[
p · ẋ − L(x, ẋ)

]
= 0 ⇔ p =

∂L
∂ẋ (58)

将拉格朗日量 (57)代进去,可以得到

p =
∂L
∂ẋ = mẋ + qA. (59)

(注意，对于一般的力学系统，动量 p与速度 ẋ之间的关系并不天然是
p = mẋ，这里就是一个例子。)由此可以反解出 ẋ = (p − qA)/m，进
而可以算出

H(x,p) = extremẋ
[
p · ẋ − L(x, ẋ)

]
=

(p − qA)2

2m
+ V (x). (60)

这就是带电粒子在磁场中的哈密顿量。
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广义坐标和广义动量

前面我们看到了，最小作用量原理 (无论是相空间的还是坐标空间的)
以及与之等价的哈密顿正则方程或者拉格朗日方程，均可以统一处理
单粒子情形和多粒子情形，形式上唯一的改动无非是指标的取值范围
在单粒子情形是 1,2,3，而在多粒子情形是 1, 2, ..., 3N。但统一处理单
粒子和多粒子仅仅只是我们这两章介绍的力学框架的优点之一，这一
框架的另一个重要优点是使得我们不限于直角坐标，而可以使用任何
坐标。这种对坐标的使用自由也使得我们可以方便地处理一大类约束
系统。
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广义坐标和广义动量
理想约束与广义坐标

所谓的约束系统，就是这样的 N 粒子系统，它的 3N 个坐标之间并不
相互独立，而是要满足一定的约束条件1。比方说，两维平面内一个约
束在圆环 x2 + y2 = R2 上的粒子，它的 x , y 坐标就不相互独立。由于
这些变量不相互独立，所以当我们利用最小作用量原理进行变分的时
候，各变量的变分也就不相互独立，从而就无法直接得出通常的哈密
顿正则方程或者拉格朗日方程。

1这实际上只包括了所谓的完整约束 (holonomic constriant)系统，实际的约束系统比
这还要复杂。

ct |经典力学新讲第 2章



46

广义坐标和广义动量
理想约束与广义坐标

一般来说，约束系统的处理很复杂，但是有一大类约束系统，称之为
理想约束系统，处理起来却很方便。值得说明的是，当对系统的约束
光滑，从而不存在摩擦力时，很多约束系统都是理想约束系统。一般
地，理想约束系统就是这样的约束系统，它的约束力对系统所有可能
的满足约束条件的运动 (不管它是否真实发生)均不做功！从而只要不
破坏约束条件，那约束力对这一系统的能量就没有贡献，也就是对哈
密顿量没有贡献，从而我们就可以根本不去管约束力。
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广义坐标和广义动量
理想约束与广义坐标

不仅如此，对于理想约束系统，我们还可以不使用直角坐标，而是使
用一些描述系统的独立变量为坐标，比方说，对于约束在圆环
x2 + y2 = R2 上的粒子，我们可以不使用直角坐标，而是使用角度 θ
作为独立坐标。描述理想约束系统的这些独立变量就叫做广义坐标！
独立变量的个数就叫做系统的自由度数。使用广义坐标的好处就在于，
它们是自动满足约束条件的独立变量，这样就无需在问题的求解中额
外再把约束条件强加进来。如此一来，在处理最小作用量原理时，对
这些独立变量的变分就是相互独立的，这样就能够根据最小作用量原
理写出哈密顿正则方程或者拉格朗日方程了。

与广义坐标对应的概念叫广义动量，它的定义要复杂一些，下面我们
首先从相空间出发来给出定义，然后再讨论如何从位形空间以及拉格
朗日量出发定义它。
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广义坐标和广义动量
直接从相空间出发定义广义动量

为了定义广义动量，我们首先注意到一个 N 粒子系统的相空间作用量
为

S =

∫
dt
[
pµẋµ − H(x ,p)

]
=

∫
pµdxµ −

∫
Hdt . (61)

注意第二行这个表达式，它的第二项很简单，就是哈密顿量对时间的
积分，我们主要关心前一项，它是一个 1-形式 pµdxµ 沿着相空间路径
的积分。这个 1-形式对于决定哈密顿正则方程无疑是至关重要的，因
此它有一个专门的名称，叫做辛势，记作 Θ,

Θ = pµdxµ. (62)
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广义坐标和广义动量
直接从相空间出发定义广义动量

以上是用通常的坐标表达问题，因此 µ = 1, 2, ..., 3N。但是通常坐标的
坏处是，它们可能不相互独立。为此，我们转用广义坐标，假设这个系
统有 s 个独立的广义坐标 (自由度数是 s)，记作 qa,a = 1, 2, ...s。则，
为了保证哈密顿正则方程在广义坐标中看起来形式也一样 (注意，当存
在约束时，由于通常坐标的各变量不相互独立，所以其实并没有对于
它们的哈密顿正则方程)，我们要求辛势 Θ在广义坐标中也有和通常坐
标完全类似的形式，具体来说，我们要求

Θ = pµdxµ = padqa. (63)

上面表达式中的 pa(虽然我们用的是与 pµ 几乎相同的符合，但请大家
不要把这两者搞混)就是广义动量。即是说，广义动量可以通过通常的
动量 pµ 经由下面的坐标变换得来

pa = pµ
∂xµ

∂qa . (64)
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广义坐标和广义动量
直接从相空间出发定义广义动量

利用广义坐标和广义动量，我们可以将相空间的作用量写成

S =

∫
dt
[
paq̇a − H(q,p)

]
. (65)

利用相空间的最小作用量原理，对广义坐标 q 和广义动量 p 进行变分，
就能得到最一般的哈密顿正则方程

dqa

dt
=

∂H
∂pa

,
dpa

dt
= − ∂H

∂qa . (66)

显然，它和通常坐标中的哈密顿正则方程有完全类似的形式，区别在
于，如果存在约束的话，那这时候实际上没有通常坐标的哈密顿正则
方程。
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广义坐标和广义动量
直接从相空间出发定义广义动量

如果没有约束，那广义坐标和广义动量不过是相空间的一组不同坐标
系。但是如果有约束，那通常的坐标和通常的动量由于不相互独立，
它们就不够成系统的相空间，相反，这时候系统的相空间是指广义坐
标和广义动量的空间。显然，系统在相空间中依然按照哈密顿正则方
程进行演化。
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广义坐标和广义动量
直接从相空间出发定义广义动量

还是那个约束在圆环 x2 + y2 = R2 上的粒子。取广义坐标为角度 θ,它
和直接坐标的关系是

x = R cos(θ), y = R sin(θ). (67)

将辛势 Θ分别在两种坐标中表达，即有

Θ = pxdx + py dy = pθdθ
⇒ pθ = [−px sin(θ) + py cos(θ)]R
⇒ p2 = p2

θ/R2.

读者容易验证 pθ 其实刚好是粒子环绕圆环的角动量 (所以广义动量不
一定是通常的动量，它甚至可以是角动量)。我们也容易将粒子的哈密
顿量用广义坐标和广义动量表达出来，

H =
p2

2m
+ V =

p2
θ

2mR2
+ V (θ). (68)
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广义坐标和广义动量
直接从相空间出发定义广义动量

进而可以写出这个例子的哈密顿正则方程

θ̇ =
∂H
∂pθ

=
pθ

mR2

ṗθ = −∂H
∂θ

= −∂V
∂θ

. (69)

θ 和 pθ 的空间就是这个例子的相空间。θ 的取值范围是一个圆周，构
成这个例子的广义坐标空间，记为 S1，pθ 的取值范围是 −∞到 +∞，
也就是取遍实数轴，记为 R1。通常我们把广义坐标空间 S1 画在平面
上，再把广义动量空间 R1 画在垂直于这个平面的轴上。很显然，如此
一来，上面这个例子的相空间就是以 S1 为底，以 R1 为高的一个无穷
长圆柱面，记为 S1 × R1。数学家常常称这个相空间为 S1 的余切丛，
并记为 T ∗S1，当然 T ∗S1 = S1 × R1
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广义坐标和广义动量
从位形空间出发定义广义动量

如果我们是从拉格朗日量以及坐标空间最小作用量原理出发处理问题，
那情况就更简单，这时候只要先写出直角坐标中的拉格朗日量 (通常是
动能减去势能)，然后再坐标变换成广义坐标就可以了。用广义坐标来
表达的拉格朗日量通常记作 L(q, q̇),这里 q 这样的符号只是一个抽象
的记号，实际上它代表所有作为独立变量的广义坐标 qa。广义坐标的
空间也叫做系统的位形空间，而函数组 {qa(t),a = 1, 2, ..., s}就代表位
形空间的一条路径。相应的坐标空间的最小作用量原理就成了位形空
间的最小作用量原理，作用量 S[q(t)]为

S[q(t)] =
∫

dtL(q, q̇). (70)

对位形空间的路径 q(t)进行变分，就能够得到熟知的拉格朗日方程

∂L
∂qa − d

dt

( ∂L
∂q̇a

)
= 0. (71)
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广义坐标和广义动量
从位形空间出发定义广义动量

同样，我们可以对拉格朗日量 L(q, q̇)进行勒让德变换，进而得到哈密
顿量 H(q,p)。具体来说，

H(q,p) = extrem{q̇a}
[
pbq̇b − L(q, q̇)

]
. (72)

显然，为了进行这个勒让德变换，需要求解

∂

∂q̇a

[
pbq̇b − L(q, q̇)

]
= 0 ⇒ pa =

∂L
∂q̇a . (73)

我们正是把后面这个式子当作从拉格朗日量出发对广义动量的定义。
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广义坐标和广义动量
从位形空间出发定义广义动量

下面以双摆为例来说明广义坐标表达下的拉格朗日方程如何方便我们
求解力学问题的。所谓的双摆，就是两个质量分别为 m1,m2 的质点，
用长度分别为 l1, l2 的轻杆连起来所组成的系统，如图 (3)所示。假设
连接处光滑且可自由活动，那这就是一个理想约束系统。

Figure:双摆
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广义坐标和广义动量
从位形空间出发定义广义动量

我们引入图 (3)中的两个广义坐标 θ1, θ2。很显然，第一个质点的动能
T1 和势能 V1(重力势能)分别为

T1 =
1

2
m1l21 θ̇

2
1, V1 = −m1gl1 cos(θ1). (74)

为了求出第二个质点的动能，我们假设系统在 x − y 平面内摆动，x 轴
水平向右，y 轴竖直向下。则第二个质点的坐标 (x2, y2)可以表示为

x2 = l1 sin(θ1) + l2 sin(θ2), y2 = l1 cos(θ1) + l2 cos(θ2). (75)

则容易求出质点 2的动能 T2 为

T2 =
1

2
m2(ẋ2

2 + ẏ2
2 )

=
1

2
m2

(
l21 θ̇

2
1 + l22 θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2

)
. (76)

质点 2的重力势能 V2 为

V2 = −m2gy2 = −m2g(l1 cos(θ1) + l2 cos(θ2)). (77)
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广义坐标和广义动量
从位形空间出发定义广义动量

由此可以写出整个系统的拉格朗日量 (等于总动能减去总势能)

L =
1

2
(m1 + m2)l21 θ̇

2
1 +

1

2
m2l22 θ̇

2
2 + m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

+ (m1 + m2)gl1 cos(θ1) + m2gl2 cos(θ2). (78)

代入下面的拉格朗日方程，就可以得到系统的运动微分方程

∂L
∂θ1

− d
dt

( ∂L
∂θ̇1

)
= 0,

∂L
∂θ2

− d
dt

( ∂L
∂θ̇2

)
= 0. (79)

不过，这是一个相当复杂的系统，实际上，当能量大到一定程度时，这
个系统的运动是混沌的！
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