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什么是对称性

设想你在一艘太空飞船里，离所有的星星都很远，船窗密闭，你看不
到外面，也无法接收外界的信息，并且假设推进器已经不向外喷射物
质了，总之，假设你和飞船成了一个真正的封闭系统。不过，只要局限
于飞船之内，你可以做任何事情。请问，你是否能判断飞船在太空中
的坐标，飞船的朝向，以及飞船是否在飞行？
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什么是对称性

答案当然是不能，你的这种不能就是物理定律的对称性。简言之，物
理定律的对称性，就是对某些物理性质的无法辨测性。伽利略最早领
悟了对称性在物理学中的重要性，伽利略的这种领悟后来被爱因斯坦
发扬光大，最终成为现代物理学的基石。那么，为什么无法辨测呢？
你为什么无法辨测飞船的坐标和方向呢？原因在于，即使把飞船平移
一段距离并旋转一个角度，飞船之内的你也无法觉察到任何的不同。
即是说，这种无法辨测性起因于你可以对系统进行一些操作，但操作
前后你归纳出来的物理定律完全一样，有完全一样的数学形式。所以，
物理定律的对称性其实就是物理定律的形式在操作前后的不变性。
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对称性与守恒定律
对称性就是作用量的不变性

所谓的某系统有一个对称性，我们是指 (为了公式简洁起见，我们省略
广义坐标上面的分量指标)：首先，系统按照某条物理路径 q(t)在位形
空间中演化，这条物理路径满足基本方程 δS[q(t)] = 0。其次，假设在
对称操作的作用之下，原来的 q(t)演化路径变换成了新的路径
q̃(t) = F (q(t))。所谓的对称操作，我们是指这条新的路径满足同样形
式的基本方程 δS[q̃(t)] = 0。即，对于对称操作作用前后的两条路径
q(t)和 q̃(t) = F (q(t)),有

δS[q(t)] = 0 ⇔ δS[q̃(t)] = 0. (1)

很显然，满足这一要求的最直接方式是

S[q̃(t)] = S[q(t)]. (2)

即是说，在对称操作的作用下，作用量泛函保持不变，对称性就是作
用量的不变性。
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对称性与守恒定律
诺特定理

对称性可以分成两类，像镜像对称这样的只包含有限个不同操作的对
称性，称为离散对称性。像空间旋转这样的对称性称为连续对称性，
因为它有无穷多不同的对称操作 (这里即是旋转操作)，这些对称操作
依赖于某些连续的参数 (在这里就是旋转角度)。本章主要考察连续对
称性。原因之一在于，连续对称性出人意料地和所谓的守恒定律密切
相关，可以证明，每一种连续对称性都对应一条守恒定律，这就是著
名的诺特定理。

诺特定理的证明并不复杂，下面我们给出一个绝妙的证明。下面的证
明假设了对称操作不改变时间 t。不过，即使将一般情形包括进来证明
的关键也还是类似的。为了让读者看清楚证明的关键，这里先处理简
化情形，然后，我们将在下一节中用对时间平移对称性的讨论说清楚
如何推广到更一般情形。
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对称性与守恒定律
诺特定理

假设系统有某种连续对称性 (即是说，系统的作用量在这样的连续操作
之下保持不变)，记为 G(θ)，θ 就是这种对称性所依赖的连续参数，
θ = 0表示对称操作还来不及加上，即表示不进行任何操作，也称恒等
操作。下面考虑参数 θ = ϵ的无穷小对称操作, ϵ为无穷小量。假设在
此对称操作之下，时间 t 保持不变，但 q 变为 q̃

q(t) → q̃(t) = q(t) + ϵF (q(t)), (3)

式中 F (q(t))为某个表达式，它的形式取决于对称操作的具体定义。则
根据对称性的定义，作用量泛函将在此对称操作下保持不变，即

δS = S[q̃(t)]− S[q(t)] =
∫

dtL(q̃, ˙̃q)−
∫

dtL(q, q̇) = 0. (4)
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对称性与守恒定律
诺特定理

下面是关键的证明技巧。前面的 ϵ是一个无穷小常数，现在，设想我们
将这个无穷小常数变成一个关于 t 的任意函数 ϵ(t) (函数值为无穷小
量)，并要求在路径的起末两端 (分别对应时间 ti 和 tf )，这个函数取值
为零，即

ϵ(ti) = ϵ(tf ) = 0. (5)

我们考虑修改的变换

q(t) → q̃(t) = q(t) + ϵ(t)F (q(t)),
即 δq = q̃(t)− q(t) = ϵ(t)F (q(t)). (6)

当然，现在因为 ϵ(t)不再是对称变换参数 (对称变换参数不依赖于 t)，
所以这个变换并不是一个对称性，因此不能保持作用量不变，但是如
果 ϵ(t)变回常数函数，那作用量将是不变的。
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对称性与守恒定律
诺特定理

这就意味着，在 (6)的变换下，作用量的改变量必然具有如下形式

δS =

∫ tf

ti
dt
(
L(q̃, ˙̃q)− L(q, q̇)

)
=

∫ tf

ti
dtQ(q, q̇)ϵ̇(t). (7)

式中 Q(q, q̇)为某个表达式。我们简单解释一下为什么是这样，原因有
三：第一，作用量是某个函数 (拉格朗日量)对时间的积分，所以作用
量的改变量必然具有时间积分的形式。第二，拉格朗日量中只含有
q(t)的一阶导数，因此作用量的改变量中最多只含有 ϵ(t)的一阶导数。
第三，将作用量的改变量计算到一阶无穷小项，那这个改变量必然不
能含 ϵ(t)，因为这样的项在 ϵ(t)变回常数函数时不能变成零。所以这
个改变量的一阶小量只能含 ϵ̇ (因此当 ϵ(t)变回常数函数时自动得到
零)。综上，我们必有表达式 (7)。
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对称性与守恒定律
诺特定理

上面讨论中的路径 q(t)是任意路径，不必是真实演化路径。现在，假
设我们取 q(t)为真实的物理演化路径，那最小作用量原理将告诉我们，
对于任何两端固定的无穷小改变 (变分)，将有 δS = 0。(6)正是这样的
一个两端固定的无穷小变分，因此这就意味着，对于真实的物理路径
q(t)，(7)式得出的作用量改变量必定恒为零，即

δS =

∫ tf

ti
dtQ(q, q̇)ϵ̇(t) = 0. (8)

将上式分部积分，就可以得到

δS = −
∫ tf

ti
dtQ̇(q, q̇)ϵ(t) = 0. (9)

但是，ϵ(t)的函数形式是任意的，因此这就说明，对于物理路径 q(t)，
我们有

dQ
dt

= 0. (10)

即 Q(q, q̇)为一个守恒量！可见，相应于每一个连续的对称性，都必定
存在一个守恒量，这，就是诺特定理！
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

动量守恒、角动量守恒、还有能量守恒，这是最为人们熟知的守恒定
律，也是最为基本的物理学定律之一。这些定律为什么如此基本呢？
按照诺特定理的精神，原因应该在于导致这些守恒定律的对称性很基
本，那么它们分别是什么对称性呢？结果表明，动量守恒是所谓的空
间平移不变性的结果，角动量守恒是空间旋转不变性的结果，它们也
就是本章一开始所谈的宇宙飞船位置坐标和空间方向的无法辨测性。
而能量守恒则是时间平移不变性的结果，所谓的时间平移不变性也就
是时间的零点是人们任意规定的，无法通过物理定律辨测时间的零点，
因为明天做实验将和今天做实验得到同样的规律。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

我们先来讨论空间平移对称性和动量守恒。考虑一个多粒子系统，记
其拉格朗日量为 L(xi , ẋi)(L(x1, ..., xN , ẋ1, ..., ẋN)的简记)，因此系统的
作用量为 S =

∫
dtL(xi , ẋi)。假设系统具有空间平移不变性，即在如下

坐标平移下，作用量保持不变

xi → x̃i = xi + a. (11)

很显然，这里作用量保持不变其实就相当于拉格朗日量在坐标平移下
保持不变，即有 L(xi + a, ẋi) = L(xi , ẋi)。考察无穷小平移，即取平移量
a = ϵ为无穷小量，从而有

0 = δL = L(xi + ϵ, ẋi)− L(xi , ẋi) = ϵ ·
∑

j

∂L
∂xj

. (12)
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

下面使用关键技巧，即将无穷小参数 ϵ变成 ϵ(t)，即考察

xi → x̃i = xi + ϵ(t). ⇔ δxi = ϵ(t). (13)

从而容易计算出作用量的改变量，有

δS =

∫
dtδL =

∫
dt
[∑

j

∂L
∂xj

· δxj +
∑

j

∂L
∂ẋj

δẋj
]

=

∫
dt
[∑

j

∂L
∂xj

· ϵ+
∑

j

∂L
∂ẋj

· ϵ̇
]

(14)

利用平移不变性的 (12)式，即有

δS =

∫
dt
(∑

j

∂L
∂ẋj

)
· ϵ̇. (15)

根据上一节关于诺特定理的证明容易知道，上式说明
(∑

j
∂L
∂ẋj

)
是守恒

量。根据上一章关于勒让德变换的讨论， ∂L
∂ẋj
就是第 j 个粒子的动量 pj ,

即 pj =
∂L
∂ẋj
。所以，守恒的正是系统的总动量 p。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

下面讨论旋转不变性和角动量守恒。这一次我们考察单粒子情形 (推广
到多粒子情形是直接了当的)，不过，我们假设这个粒子在 d 维空间中
运动 (即不限于通常的 3维空间)。这里依然采用直角坐标，从而粒子
的位置矢量 x = (x1, x2, ..., xd ),我们将各分量记为 xα, α = 1, 2, ..., d。
这里采用了上指标来标识各直角坐标分量，但其实对于欧氏空间的直
角坐标，用上指标还是下指标并没有区别，即有 xα = xα。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

首先需要研究一下如何处理 d 维空间中的无穷小空间旋转。记无穷小
旋转操作之下，坐标的改变量为 δxα，很显然，δxα 应该与原来的矢量
{xα}成线性关系，我们设

δxα = ϵαβxβ . (16)

式中的 ϵαβ 为刻画旋转的无穷小量。很明显，空间旋转不会改变一个
矢量的长度，从而 δ(x2) = 0，即有

0 = δ(x2)/2 = x · δx = xαδxα = ϵαβxαxβ . (17)

注意到 xαxβ 关于指标 α, β 对称，所以满足上式的唯一可能性是，ϵαβ
关于两个指标反对称 1，即

ϵαβ = −ϵβα. (18)

所以，d 维空间中独立的无穷小旋转有 d(d − 1)/2个，对于 d = 3的
三维空间，独立的无穷小旋转数目刚好是 3！

1因为反对称和对称乘在一起才等于零，证明如下：设 Aαβ 关于两指标反对称，Bαβ

关于两指标对称，即 Aαβ = −Aβα, Bαβ = Bβα。则有
AαβBαβ = −AβαBαβ = −AβαBβα = −AαβBαβ ,从而 AαβBαβ = 0。以上推导的最
后一步是重命名了一下指标。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

因此，在无穷小旋转操作之下，我们有

δxα = ϵαβxβ , δẋα = ϵαβ ẋβ . (19)

如果系统具有旋转不变性，从而在上面的无穷小旋转之下拉格朗日量
保持不变，即有 δL(x, ẋ) = 0。

下面将 ϵαβ 变成 ϵαβ(t)，那现在 δẋα 就会多出一项，变成 (注意我们说
过，上下指标其实没有区别)

δẋα = ϵαβ ẋβ + ϵ̇αβxβ . (20)
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

从而现在拉格朗日量就不再是不变了，其改变量会多出一个非零项，
变成

δL =
∂L
∂ẋβ

ϵ̇βαxα = pβxαϵ̇βα

= −1

2

(
xαpβ − xβpα

)
ϵ̇αβ . (21)

式中已经利用了动量的定义式 pβ = ∂L
∂ẋβ。当然，现在作用量也不是不

变的，而是会改变为

δS = −1

2

∫
dt
(
xαpβ − xβpα

)
ϵ̇αβ (22)

根据上一节诺特定理证明的有关讨论可以知道，上式意味着
xαpβ − xβpα 是一个守恒量,习惯上记为 Jαβ ,

Jαβ = xαpβ − xβpα. (23)
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

从而 d 维空间的旋转不变性意味着存在 d(d − 1)/2个守恒量，为 Jαβ，
这些守恒量就是所谓的角动量。如果推广到多粒子情形，那守恒的就
是总角动量。为了看清楚 Jαβ 的确是角动量，我们取 d = 3，这时候有
3个守恒量，分别为

J12 = xpy − ypx , J23 = ypz − zpy , J31 = zpx − xpz . (24)

显然这正是通常的角动量，通常分别记作 J3, J1, J2。利用上一章引入
的列维-西维塔记号 ϵijk (请不要和上文的各无穷小量混淆),我们可以将
3维空间角动量这两种写法之间的关系写为

J i =
1

2
ϵijk Jjk . (25)

不过，很显然，高维空间的角动量只能记为 Jαβ。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

我们知道，封闭系统的能量守恒，这条守恒定律源自于哪种对称性呢？
结果表明能量守恒源自于封闭系统所具有的时间平移不变性，即你是
今天观测这个系统还是明天观测这个系统得到的物理规律是一样的。
从作用量和拉格朗日量来看的话，时间平移不变性来源于拉格朗日量
不显含时间 t，从而在 t → t̃ = t + a的时间平移下 (相当于将整个系统
往过去方向移动了 a，所以其时间坐标增加了 a)，我们有
q(t) → q̃(t) = q(̃t)，从而

S[q(t)] =
∫ tf

ti
dtL(q(t), q̇(t)) →

S[q(̃t)] =
∫ tf−a

ti−a
dtL(q(̃t),

d
dt

q(̃t)) =
∫ tf

ti
dt̃L(q(̃t), q̇(̃t))

=

∫ tf

ti
dtL(q(t), q̇(t)) = S[q(t)],

式中最后一个等号只是将 t̃ 重命名为了 t。可见，正因为 L(q, q̇)不显
含 t，所以作用量在时间平移下保持不变。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

下面考虑无穷小时间平移，并且和前面一样，将无穷小参数变为 ϵ(t),
即考虑如下时间变换

t → t̃(t) = t + ϵ(t), (26)

注意 t̃ 为 t 的函数。现在，变换以后的作用量 S[q(̃t)]为

S[q(̃t)] =
∫

dtL(q(̃t),
d
dt

q(̃t)) =
∫

dt̃
( dt

d t̃

)
L
(

q(̃t), (
dt̃
dt

)q̇(̃t)
)

=

∫
dt̃

( 1

1 + ϵ̇

)
L
(

q(̃t), (1 + ϵ̇)q̇(̃t)
)

=

∫
dt̃L(q(̃t), q̇(̃t)))−

∫
dt̃

(
ϵ̇
)
L
(

q(̃t), q̇(̃t)
)
+

∫
dt̃

∂L
∂
(
q̇(̃t)

) q̇(̃t)
(
ϵ̇
)

=

∫
dtL(q(t), q̇(t))) +

∫
dt
[ ∂L
∂
(
q̇(t)

) q̇(t)− L(q(t), q̇(t))
]
ϵ̇,

(27)

式中最后一行是将变量 t̃ 重命名成了 t。
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

从上面计算可以得到，变换前后作用量的改变量为

δS = S[q(̃t)]− S[q(t)] =
∫

dt
[∂L
∂q̇

q̇ − L(q, q̇)
]
ϵ̇. (28)

完全类似于上一节证明诺特定理时的推理可以知道，上式意味着存在
下面的守恒量

E(q, q̇) =
∂L
∂q̇

q̇ − L(q, q̇). (29)

很明显，如果我们利用 pa = ∂L
∂q̇a 将这个守恒量中的变量 q̇a 用广义动

量 pa 来表示，那这个守恒量就正是哈密顿量 H(q,p)。这说明，与时
间平移对称性对应的守恒量 E(q, q̇)在物理上就代表能量。所以，时间
平移对称性意味着能量守恒！
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对称性与守恒定律
动量守恒、角动量守恒、能量守恒

不妨举一例子。上一章在讲费马原理时我们引入过这样一个光程泛函
S[y(x)] =

∫
dxL(y , y ′),式中

L(y , y ′) = n(y)
√
1 + (y ′)2. (30)

显然，从数学上来说，这个例子的变量 x 就相当于我们上面的 t ,函数
y(x)就相当于上面的 q(t)。如此来看的话，这个例子显然也有“时间”
平移不变性，即光程泛函在 x → x̃ = x + a的变换下不变。因此这个
例子也有一个“守恒能量”，为

E(y , y ′) =
∂L
∂y ′ y

′ − L(y , y ′) = − n(y)√
1 + (y ′)2

. (31)

也即是说，E(y , y ′)是一个不依赖于 x 的积分常数，称之为欧拉-拉格
朗日方程的首积分。显然，这正是我们上一章中找到了的那个首积分。
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对称性决定作用量

到现在为止，我们应该已经比较清楚作用量的重要性了，有了作用量
的具体表达式，利用最小作用量原理就能得出运动微分方程。有了作
用量里的拉格朗日量，经过勒让德变换就是得到描述系统能量的哈密
顿量。更一般的，作用量的不变性意味着物理定律的对称性。总之，从
作用量出发讨论物理问题非常简洁，也非常方便。问题是，如何写出
一个物理系统的作用量呢？回答是，基本靠猜。

更何况，通常来说物理学家猜作用量可不是漫无目的的，物理学家们
作猜测时有一些基本的原则，其中最重要的就是根据对称性。只要我
们能预先猜测出一个物理系统的对称性，那这些对称性往往就能决定
(至少是极大地限制)作用量的形式，这是因为，作用量必须得在对称
变换下保持不变，作用量泛函不是一个任意的泛函，而是一种具有对
称性的特殊泛函。
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对称性决定作用量
相对论不变性

在非相对论物理中对称性对作用量有所限制，但这个限制还不够强，
这就是为什么爱因斯坦之前的物理学很少谈对称性的原因。但是，相
对论有很大的不同，相对论意味着一种很强的时空对称性。相对论不
变性再结合一些其它的对称性，往往就能决定作用量。所以杨振宁先
生曾经说：“对称性决定相互作用”，指的就是对称性往往能决定作用
量。为了给读者示例对称性如何决定作用量，下面我们从相对论不变
性开始谈起。
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对称性决定作用量
相对论不变性

在非相对论物理中对称性对作用量有所限制，但这个限制还不够强，
这就是为什么爱因斯坦之前的物理学很少谈对称性的原因。但是，相
对论有很大的不同，相对论意味着一种很强的时空对称性。相对论不
变性再结合一些其它的对称性，往往就能决定作用量。所以杨振宁先
生曾经说：“对称性决定相互作用”，指的就是对称性往往能决定作用
量。为了给读者示例对称性如何决定作用量，下面我们从相对论不变
性开始谈起。

从现在开始我们合适地选取时间的单位，使得光速 c = 1。因此质量的
量纲 (记为 [m])和能量量纲 (记为 [E ])相同,因为 [m] = [mc2] = [E ]。
同样，时间的量纲和空间长度的量纲也相同。
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对称性决定作用量
相对论不变性

如大家知道的，爱因斯坦基于两条基本的原理建立起了整个狭义相对
论。这两条基本原理分别是：1.相对性原理。即物理定律在所有的惯
性系中有相同的形式。这当然是伽利略相对性原理的简单推广。2.光
速不变原理。即在任何给定的惯性系中，光速 c 总是一样的，并与光
源的运动无关。

让我们考虑两个惯性系，分别称为 S 系和 S′ 系，假定同一个事件在这
两个参考系中的时空坐标分别是 (t , x , y , z)和 (t ′, x ′, y ′.z ′)。那么根据
相对性原理以及时空的均匀性，我们可以知道，这两个参考系之间的
坐标变换一定是一个线性变换。
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对称性决定作用量
相对论不变性

现在，设想在 S 系中，从 (t , x , y , z)点发出一束光到达
(t + dt , x + dx , y + dy , z + dz)点，由于 c = 1，显然我们有

−dt2 + dx2 + dy2 + dz2 = 0. (32)

根据光速不变原理，同样的两个事件在 S′ 系看来也得满足

−dt ′2 + dx ′2 + dy ′2 + dz ′2 = 0. (33)

换言之，两个邻近的事件在两个参考系中的时空坐标必得满足一个约
束关系，即当 (32)成立时必有 (33)成立，反之亦然。又由于相对性原
理所告诉我们的，两参考系之间的坐标变换是线性变换，因此，对任
意的两个邻近事件，我们必有

−dt ′2 + dx ′2 + dy ′2 + dz ′2 = D(v)(−dt2 + dx2 + dy2 + dz2), (34)

式中 v是 S′ 系相对于 S 系的速度。同样的，由于 S 与 S′ 地位平等，
如果从 S′ 变换到 S，我们就有

−dt2 + dx2 + dy2 + dz2 = D(−v)(−dt ′2 + dx ′2 + dy ′2 + dz ′2). (35)

换言之，我们必有 D(−v)D(v) = 1。
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对称性决定作用量
相对论不变性

又由于空间的各向同性可知，D 对相对速度 v的依赖只能是依赖于其
大小 v，而必定和其方向无关，因此我们必定有
D(−v) = D(v) = D(v)。因此，(D(v))2 = 1，即 D(v) = ±1。又由于
D(v)是 v 的连续函数，而且 D(0) = 1(对应 S 和 S′ 变成同一个参考
系)，因此我们必有 D(v) = 1。因此，对于任意两个邻近事件我们必有

−dt ′2 + dx ′2 + dy ′2 + dz ′2 = −dt2 + dx2 + dy2 + dz2. (36)

通常将 −dt2 + dx2 + dy2 + dz2 称为两个邻近事件的时空间隔平方，
简称间隔，并记为 −dτ2，即

−dτ2 = −dt2 + dx2 + dy2 + dz2 = −dt2 + dx2. (37)

用这个记号，方程 (36)就可以简记成

dτ ′2 = dτ2, (38)

称为两个事件的间隔不变性。
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对称性决定作用量
相对论不变性

假如有一个粒子从 (t , x , y , z)运动到 (t + dt , x + dx , y + dy , z + dz)，
那么其间隔 dτ2 就等于一个固定在粒子上的钟在这个过程中所走过的
时间的平方 (因为在粒子本身的参考系中这个钟的空间坐标改变量为
零)，所以这时候 dτ 就是这个钟走过的时间，称为粒子的固有时。

从这里的讨论可以看到，间隔的定义和是否有粒子运动无关，而固有
时的定义却依赖于一个运动的粒子。因此，这实际上是两个不同的概
念，人们常常用不同的记号表示它们。
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对称性决定作用量
相对论不变性

人们通常约定 t = x0, x = x1, y = x2, z = x3 这样就把四个时空坐标统
一地记成了 xµ, µ = 0, 1, 2, 3. 利用这个记号，我们就可以将间隔的计算
公式重写为

−dτ2 = ηµνdxµdxν , (39)

式中我们默认了求和约定 (后文也都默认求和约定)，而 ηµν 为，
−η00 = η11 = η22 = η33 = 1,其它指标分量都等于零。ηµν 称为四维闵
可夫斯基时空的度规张量，所谓的闵可夫斯基时空指的就是狭义相对
论中的平直时空。值得注意的是，ηµν 关于它的两个指标是对称的，即
满足 ηµν = ηνµ。
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对称性决定作用量
相对论不变性

dxµ 这样的四维时空的上指标量就称为四矢量，一个一般的四矢量可
以记为 Aµ。但是，我们也可以利用 ηµν 将 Aµ 的指标降下来，即约定

Aµ = ηµνAν . (40)

反过来，人们还会引入一个 ηµν ,它同样满足
−η00 = η11 = η22 = η33 = 1,其它指标分量都等于零。利用 ηµν 我们也
可以反过来将 Aµ 的指标升上去，即约定

Aµ = ηµνAν . (41)

人们也可以定义两个四矢量 Aµ,Bµ 之间的内积，记为 A · B，其定义为

A · B = AµBµ = AµBµ = ηµνAµBν . (42)

两个四矢量的内积是参考系变换不变的，称为洛伦兹标量。

ct |经典力学新讲第 3章



31

对称性决定作用量
相对论不变性

相对论不变性告诉我们，相对论粒子的作用量得是洛伦兹变换 (即不同
参考系的坐标变换)不变的！唯一的和粒子坐标有关的这种不变量就是
粒子的固有时 dτ。所以，粒子的作用量必定正比于 dτ 沿着粒子运动
路径的积分。固有时具有时间量纲，而作用量的量纲为能量量纲乘以
时间量纲，刚好粒子质量 m是能量量纲，从而我们知道，相对论粒子
的作用量必定可以写成

S[x(s)] = −m
∫

dτ = −m
∫

ds

√
−ηµν

dxµ

ds
dxν

ds
. (43)

式中 s 为粒子运动路径的参数，第一个式子的负号有多个理解角度，
这里我们想指出的是，有了这个负号，这个作用量的非相对论极限才
会对，请大家在待会儿我们讨论非相对论极限时留心。
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对称性决定作用量
相对论不变性

上述作用量 (43)显然具有重参数不变性，即在 s → s̃(s)的参数变换下
保持不变。从而我们可以任意选择参数 s。常见的选择有两种，第一种
是，取 s = τ，从而作用量 (43)可以写成

S[x(τ)] = −m
∫

dτ = −m
∫

dτ

√
−ηµν

dxµ

dτ
dxν

dτ
. (44)

第二种选择是取 s = x0 = t，即取通常的时间坐标为参数，这时候注意
到

dτ2 = dt2 − dx2 = dt2(1− v2). (45)

式中 v = dx
dt 是粒子的速度。从而就可以将作用量 (43)写成

S[x(t)] = −m
∫

dt
√
1− v2. (46)

假设粒子的运动速度远低于光速，即 v ≪ 1，那这时候就可以利用关于
v2 的泰勒展开将相对论的作用量 (46)近似成

S = −m
∫

dt +
∫

dt
1

2
mv2 + ... (47)
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对称性决定作用量
相对论不变性

另外，上述相对论粒子作用量显然具有 xµ → x̃µ = xµ + aµ(aµ 为常矢
量)的时空坐标平移不变性。不妨以固有时参数的 (44)来进一步讨论。
为了考察这一时空平移对称性所对应的守恒量，我们考虑如下无穷小
变换

xµ → x̃µ = xµ + ϵµ(τ) ⇔ δxµ = ϵµ(τ). (48)

在此变换下，作用量的改变量为

δS = −m
∫

δ(dτ) = −m
∫

1

2

δ(dτ2)
dτ

= m
∫

1

2
δ(ηµνdxµdxν)/dτ

= m
∫

dxµ

dτ
ηµνδ(dxν)

= m
∫

dτ
(dxµ

dτ
)
ϵ̇µ. (49)

这意味着与时空坐标平移对应的守恒量是 m dxµ

dτ ，记作 pµ。
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对称性决定作用量
相对论不变性

利用固有时 τ 和坐标时 t 之间的关系式 (45)容易得出

p0 =
m√

1− v2
, p =

mv√
1− v2

. (50)

另一方面，我们知道，时间坐标平移对应能量守恒，空间坐标平移对
应动量守恒。因此 p0 就是相对论粒子的能量，p就是相对论粒子的动
量。这两者一起构成了一个四矢量 pµ，称作四动量。很容易看出，四
动量满足如下关系

−pµpµ = (p0)2 − p2 = m2. (51)
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对称性决定作用量
与电磁场的耦合

上一小节所讨论的只不过是一个自由的相对论粒子。而实际的相对论
粒子会和诸如引力场或者电磁场这样的基本力场发生相互作用，如何
写出一个包含了相互作用的作用量呢？这一小节我们以电荷为 q 的带
电粒子与电磁场的相互作用为例来说明这一点。要点依然是通过考虑
对称性，不过，这时候我们要考虑的是电磁场的规范对称性。
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对称性决定作用量
与电磁场的耦合

在电动力学中，我们会引入所谓的矢量势 A,它和电势 ϕ一起构成了一
个四矢量 Aµ，它的定义是 A0 = ϕ,Ai = Ai (i = 1, 2, 3)。但是 Aµ 本身不
是物理的，真正物理上可测量的是电场强度 E和磁场强度 B,这两者可
以统一成一个两指标的所谓二阶反对称张量 Fµν ,具体来说即是
Fi0 = Ei , Fij = ϵijk Bk (i , j = 1, 2, 3)，其中 Fij 我们已经在上一章碰到过
了。Fµν 与 Aµ 的关系是

Fµν = ∂µAν − ∂νAµ, (52)

式中 ∂µ = ∂
∂xµ。
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对称性决定作用量
与电磁场的耦合

从 Fµν 的关系式 (52)可以看出，它在如下变换下保持不变

Aµ → Aµ + ∂µε. (53)

式中 ε(x)为时空坐标 xµ 的任意函数。这个变换就称之为电磁场的规
范变换，从这个变换可以知道，Aµ 本身不是物理的，因为不同的相差
一个规范变换的 Aµ 描述了同样的电磁场强度。

我们也可以用微分形式的语言，将四矢量 Aµ 写成四维时空上的电磁场
1-形式 A,

A = Aµdxµ. (54)

用这套微分形式的语言，规范变换其实就是如下变换

A → A + dε. (55)

带电粒子和电磁场相互作用，它的作用量也得在这个规范变换下保持
不变，这就是所谓的规范对称性。
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对称性决定作用量
与电磁场的耦合

为了满足规范对称性，我们当然可以只用 Fµν 来和带电粒子相耦合，
因为它是规范不变的。但我们同时还要求作用量具有洛伦兹不变性，
也就是说作用量得是一个洛伦兹标量，因此不能有没被内积掉的指标
存在。Fµν 关于两个下标反对称，因此最简单的洛伦兹标量 Fµν

dxµ

ds
dxν

ds
实际上等于零。用 Fµν 构造出来的最简单非零洛伦兹标量是 FµνFµν，
很显然它是电磁场场强的二次方项，如果电磁场不是非常强，那它就
是一个二阶小量，那这样的项实际上贡献就非常小，因此可以从带电
粒子的作用量中忽略！
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对称性决定作用量
与电磁场的耦合

仔细思考以后我们可能会发现下面这一项

+q
∫ b

a
A. (56)

这一项规范不变吗？很明显不是，因为在规范变换 (55)的作用下，它
会变为

q
∫ b

a
A → q

∫ b

a
A + q

∫ b

a
dε (57)

但是，我们发现多出来的部分是一个全微分，它完全取决于路径的两
个端点，即

q
∫ b

a
dε = q

(
ε(b)− ε(a)

)
. (58)

而我们早就知道，在使用最小作用量原理时，路径的两个端点是固定
不变的，因此规范变换下多出来的这一项对变分完全没有贡献。即是
说，虽然给作用量加上的这一项 (56)不是规范不变的，但是，由它导
出来的运动微分方程却是规范不变的！
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对称性决定作用量
与电磁场的耦合

因此，我们可以写出相对论性带电粒子完整的作用量，为

S[x(s)] = −m
∫

dτ + q
∫

A

= −m
∫

ds

√
−ηµν

dxµ

ds
dxν

ds
+ q

∫
dsAµ

dxµ

ds
. (59)

如果将参数 s 取成坐标时 t ,并考虑 v ≪ 1的非相对论极限，那上式就
可以近似成

S[x(t)] = −m
∫

dt +
∫

dt
[1
2

mv2 − qϕ+ qA · v
]
+ ... (60)

显然，除了前面那个无关紧要的常数项外，这个作用量正是我们上一
章纯粹碰运气猜出来的带电粒子的作用量。但是现在，在一定的意义
上我们是通过对称性的考虑推导出了它！
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